mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	None of the object file formats reported error on iterator increment. In retrospect, that is not too surprising: no object format stores symbols or sections in a linked list or other structure that requires chasing pointers. As a consequence, all error checking can be done on begin() and end(). This reduces the text segment of bin/llvm-readobj in my machine from 521233 to 518526 bytes. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200442 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1445 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1445 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Implementation of ELF support for the MC-JIT runtime dynamic linker.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "dyld"
 | |
| #include "RuntimeDyldELF.h"
 | |
| #include "JITRegistrar.h"
 | |
| #include "ObjectImageCommon.h"
 | |
| #include "llvm/ADT/IntervalMap.h"
 | |
| #include "llvm/ADT/OwningPtr.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/StringRef.h"
 | |
| #include "llvm/ADT/Triple.h"
 | |
| #include "llvm/ExecutionEngine/ObjectBuffer.h"
 | |
| #include "llvm/ExecutionEngine/ObjectImage.h"
 | |
| #include "llvm/Object/ELFObjectFile.h"
 | |
| #include "llvm/Object/ObjectFile.h"
 | |
| #include "llvm/Support/ELF.h"
 | |
| #include "llvm/Support/MemoryBuffer.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| using namespace llvm::object;
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| static inline
 | |
| error_code check(error_code Err) {
 | |
|   if (Err) {
 | |
|     report_fatal_error(Err.message());
 | |
|   }
 | |
|   return Err;
 | |
| }
 | |
| 
 | |
| template<class ELFT>
 | |
| class DyldELFObject
 | |
|   : public ELFObjectFile<ELFT> {
 | |
|   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
 | |
| 
 | |
|   typedef Elf_Shdr_Impl<ELFT> Elf_Shdr;
 | |
|   typedef Elf_Sym_Impl<ELFT> Elf_Sym;
 | |
|   typedef
 | |
|     Elf_Rel_Impl<ELFT, false> Elf_Rel;
 | |
|   typedef
 | |
|     Elf_Rel_Impl<ELFT, true> Elf_Rela;
 | |
| 
 | |
|   typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr;
 | |
| 
 | |
|   typedef typename ELFDataTypeTypedefHelper<
 | |
|           ELFT>::value_type addr_type;
 | |
| 
 | |
| public:
 | |
|   DyldELFObject(MemoryBuffer *Wrapper, error_code &ec);
 | |
| 
 | |
|   void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
 | |
|   void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr);
 | |
| 
 | |
|   // Methods for type inquiry through isa, cast and dyn_cast
 | |
|   static inline bool classof(const Binary *v) {
 | |
|     return (isa<ELFObjectFile<ELFT> >(v)
 | |
|             && classof(cast<ELFObjectFile
 | |
|                 <ELFT> >(v)));
 | |
|   }
 | |
|   static inline bool classof(
 | |
|       const ELFObjectFile<ELFT> *v) {
 | |
|     return v->isDyldType();
 | |
|   }
 | |
| };
 | |
| 
 | |
| template<class ELFT>
 | |
| class ELFObjectImage : public ObjectImageCommon {
 | |
|   protected:
 | |
|     DyldELFObject<ELFT> *DyldObj;
 | |
|     bool Registered;
 | |
| 
 | |
|   public:
 | |
|     ELFObjectImage(ObjectBuffer *Input,
 | |
|                  DyldELFObject<ELFT> *Obj)
 | |
|     : ObjectImageCommon(Input, Obj),
 | |
|       DyldObj(Obj),
 | |
|       Registered(false) {}
 | |
| 
 | |
|     virtual ~ELFObjectImage() {
 | |
|       if (Registered)
 | |
|         deregisterWithDebugger();
 | |
|     }
 | |
| 
 | |
|     // Subclasses can override these methods to update the image with loaded
 | |
|     // addresses for sections and common symbols
 | |
|     virtual void updateSectionAddress(const SectionRef &Sec, uint64_t Addr)
 | |
|     {
 | |
|       DyldObj->updateSectionAddress(Sec, Addr);
 | |
|     }
 | |
| 
 | |
|     virtual void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr)
 | |
|     {
 | |
|       DyldObj->updateSymbolAddress(Sym, Addr);
 | |
|     }
 | |
| 
 | |
|     virtual void registerWithDebugger()
 | |
|     {
 | |
|       JITRegistrar::getGDBRegistrar().registerObject(*Buffer);
 | |
|       Registered = true;
 | |
|     }
 | |
|     virtual void deregisterWithDebugger()
 | |
|     {
 | |
|       JITRegistrar::getGDBRegistrar().deregisterObject(*Buffer);
 | |
|     }
 | |
| };
 | |
| 
 | |
| // The MemoryBuffer passed into this constructor is just a wrapper around the
 | |
| // actual memory.  Ultimately, the Binary parent class will take ownership of
 | |
| // this MemoryBuffer object but not the underlying memory.
 | |
| template<class ELFT>
 | |
| DyldELFObject<ELFT>::DyldELFObject(MemoryBuffer *Wrapper, error_code &ec)
 | |
|   : ELFObjectFile<ELFT>(Wrapper, ec) {
 | |
|   this->isDyldELFObject = true;
 | |
| }
 | |
| 
 | |
| template<class ELFT>
 | |
| void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
 | |
|                                                uint64_t Addr) {
 | |
|   DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
 | |
|   Elf_Shdr *shdr = const_cast<Elf_Shdr*>(
 | |
|                           reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
 | |
| 
 | |
|   // This assumes the address passed in matches the target address bitness
 | |
|   // The template-based type cast handles everything else.
 | |
|   shdr->sh_addr = static_cast<addr_type>(Addr);
 | |
| }
 | |
| 
 | |
| template<class ELFT>
 | |
| void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
 | |
|                                               uint64_t Addr) {
 | |
| 
 | |
|   Elf_Sym *sym = const_cast<Elf_Sym*>(
 | |
|     ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl()));
 | |
| 
 | |
|   // This assumes the address passed in matches the target address bitness
 | |
|   // The template-based type cast handles everything else.
 | |
|   sym->st_value = static_cast<addr_type>(Addr);
 | |
| }
 | |
| 
 | |
| } // namespace
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| void RuntimeDyldELF::registerEHFrames() {
 | |
|   if (!MemMgr)
 | |
|     return;
 | |
|   for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) {
 | |
|     SID EHFrameSID = UnregisteredEHFrameSections[i];
 | |
|     uint8_t *EHFrameAddr = Sections[EHFrameSID].Address;
 | |
|     uint64_t EHFrameLoadAddr = Sections[EHFrameSID].LoadAddress;
 | |
|     size_t EHFrameSize = Sections[EHFrameSID].Size;
 | |
|     MemMgr->registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
 | |
|     RegisteredEHFrameSections.push_back(EHFrameSID);
 | |
|   }
 | |
|   UnregisteredEHFrameSections.clear();
 | |
| }
 | |
| 
 | |
| void RuntimeDyldELF::deregisterEHFrames() {
 | |
|   if (!MemMgr)
 | |
|     return;
 | |
|   for (int i = 0, e = RegisteredEHFrameSections.size(); i != e; ++i) {
 | |
|     SID EHFrameSID = RegisteredEHFrameSections[i];
 | |
|     uint8_t *EHFrameAddr = Sections[EHFrameSID].Address;
 | |
|     uint64_t EHFrameLoadAddr = Sections[EHFrameSID].LoadAddress;
 | |
|     size_t EHFrameSize = Sections[EHFrameSID].Size;
 | |
|     MemMgr->deregisterEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
 | |
|   }
 | |
|   RegisteredEHFrameSections.clear();
 | |
| }
 | |
| 
 | |
| ObjectImage *RuntimeDyldELF::createObjectImageFromFile(object::ObjectFile *ObjFile) {
 | |
|   if (!ObjFile)
 | |
|     return NULL;
 | |
| 
 | |
|   error_code ec;
 | |
|   MemoryBuffer* Buffer = MemoryBuffer::getMemBuffer(ObjFile->getData(), 
 | |
|                                                     "", 
 | |
|                                                     false);
 | |
| 
 | |
|   if (ObjFile->getBytesInAddress() == 4 && ObjFile->isLittleEndian()) {
 | |
|     DyldELFObject<ELFType<support::little, 2, false> > *Obj =
 | |
|       new DyldELFObject<ELFType<support::little, 2, false> >(Buffer, ec);
 | |
|     return new ELFObjectImage<ELFType<support::little, 2, false> >(NULL, Obj);
 | |
|   }
 | |
|   else if (ObjFile->getBytesInAddress() == 4 && !ObjFile->isLittleEndian()) {
 | |
|     DyldELFObject<ELFType<support::big, 2, false> > *Obj =
 | |
|       new DyldELFObject<ELFType<support::big, 2, false> >(Buffer, ec);
 | |
|     return new ELFObjectImage<ELFType<support::big, 2, false> >(NULL, Obj);
 | |
|   }
 | |
|   else if (ObjFile->getBytesInAddress() == 8 && !ObjFile->isLittleEndian()) {
 | |
|     DyldELFObject<ELFType<support::big, 2, true> > *Obj =
 | |
|       new DyldELFObject<ELFType<support::big, 2, true> >(Buffer, ec);
 | |
|     return new ELFObjectImage<ELFType<support::big, 2, true> >(NULL, Obj);
 | |
|   }
 | |
|   else if (ObjFile->getBytesInAddress() == 8 && ObjFile->isLittleEndian()) {
 | |
|     DyldELFObject<ELFType<support::little, 2, true> > *Obj =
 | |
|       new DyldELFObject<ELFType<support::little, 2, true> >(Buffer, ec);
 | |
|     return new ELFObjectImage<ELFType<support::little, 2, true> >(NULL, Obj);
 | |
|   }
 | |
|   else
 | |
|     llvm_unreachable("Unexpected ELF format");
 | |
| }
 | |
| 
 | |
| ObjectImage *RuntimeDyldELF::createObjectImage(ObjectBuffer *Buffer) {
 | |
|   if (Buffer->getBufferSize() < ELF::EI_NIDENT)
 | |
|     llvm_unreachable("Unexpected ELF object size");
 | |
|   std::pair<unsigned char, unsigned char> Ident = std::make_pair(
 | |
|                          (uint8_t)Buffer->getBufferStart()[ELF::EI_CLASS],
 | |
|                          (uint8_t)Buffer->getBufferStart()[ELF::EI_DATA]);
 | |
|   error_code ec;
 | |
| 
 | |
|   if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2LSB) {
 | |
|     DyldELFObject<ELFType<support::little, 4, false> > *Obj =
 | |
|       new DyldELFObject<ELFType<support::little, 4, false> >(
 | |
|         Buffer->getMemBuffer(), ec);
 | |
|     return new ELFObjectImage<ELFType<support::little, 4, false> >(Buffer, Obj);
 | |
|   }
 | |
|   else if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2MSB) {
 | |
|     DyldELFObject<ELFType<support::big, 4, false> > *Obj =
 | |
|       new DyldELFObject<ELFType<support::big, 4, false> >(
 | |
|         Buffer->getMemBuffer(), ec);
 | |
|     return new ELFObjectImage<ELFType<support::big, 4, false> >(Buffer, Obj);
 | |
|   }
 | |
|   else if (Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2MSB) {
 | |
|     DyldELFObject<ELFType<support::big, 8, true> > *Obj =
 | |
|       new DyldELFObject<ELFType<support::big, 8, true> >(
 | |
|         Buffer->getMemBuffer(), ec);
 | |
|     return new ELFObjectImage<ELFType<support::big, 8, true> >(Buffer, Obj);
 | |
|   }
 | |
|   else if (Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2LSB) {
 | |
|     DyldELFObject<ELFType<support::little, 8, true> > *Obj =
 | |
|       new DyldELFObject<ELFType<support::little, 8, true> >(
 | |
|         Buffer->getMemBuffer(), ec);
 | |
|     return new ELFObjectImage<ELFType<support::little, 8, true> >(Buffer, Obj);
 | |
|   }
 | |
|   else
 | |
|     llvm_unreachable("Unexpected ELF format");
 | |
| }
 | |
| 
 | |
| RuntimeDyldELF::~RuntimeDyldELF() {
 | |
| }
 | |
| 
 | |
| void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
 | |
|                                              uint64_t Offset,
 | |
|                                              uint64_t Value,
 | |
|                                              uint32_t Type,
 | |
|                                              int64_t  Addend,
 | |
|                                              uint64_t SymOffset) {
 | |
|   switch (Type) {
 | |
|   default:
 | |
|     llvm_unreachable("Relocation type not implemented yet!");
 | |
|   break;
 | |
|   case ELF::R_X86_64_64: {
 | |
|     uint64_t *Target = reinterpret_cast<uint64_t*>(Section.Address + Offset);
 | |
|     *Target = Value + Addend;
 | |
|     DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend))
 | |
|                  << " at " << format("%p\n",Target));
 | |
|     break;
 | |
|   }
 | |
|   case ELF::R_X86_64_32:
 | |
|   case ELF::R_X86_64_32S: {
 | |
|     Value += Addend;
 | |
|     assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
 | |
|            (Type == ELF::R_X86_64_32S &&
 | |
|              ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
 | |
|     uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
 | |
|     uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
 | |
|     *Target = TruncatedAddr;
 | |
|     DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr)
 | |
|                  << " at " << format("%p\n",Target));
 | |
|     break;
 | |
|   }
 | |
|   case ELF::R_X86_64_GOTPCREL: {
 | |
|     // findGOTEntry returns the 'G + GOT' part of the relocation calculation
 | |
|     // based on the load/target address of the GOT (not the current/local addr).
 | |
|     uint64_t GOTAddr = findGOTEntry(Value, SymOffset);
 | |
|     uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
 | |
|     uint64_t  FinalAddress = Section.LoadAddress + Offset;
 | |
|     // The processRelocationRef method combines the symbol offset and the addend
 | |
|     // and in most cases that's what we want.  For this relocation type, we need
 | |
|     // the raw addend, so we subtract the symbol offset to get it.
 | |
|     int64_t RealOffset = GOTAddr + Addend - SymOffset - FinalAddress;
 | |
|     assert(RealOffset <= INT32_MAX && RealOffset >= INT32_MIN);
 | |
|     int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
 | |
|     *Target = TruncOffset;
 | |
|     break;
 | |
|   }
 | |
|   case ELF::R_X86_64_PC32: {
 | |
|     // Get the placeholder value from the generated object since
 | |
|     // a previous relocation attempt may have overwritten the loaded version
 | |
|     uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress
 | |
|                                                                    + Offset);
 | |
|     uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
 | |
|     uint64_t  FinalAddress = Section.LoadAddress + Offset;
 | |
|     int64_t RealOffset = *Placeholder + Value + Addend - FinalAddress;
 | |
|     assert(RealOffset <= INT32_MAX && RealOffset >= INT32_MIN);
 | |
|     int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
 | |
|     *Target = TruncOffset;
 | |
|     break;
 | |
|   }
 | |
|   case ELF::R_X86_64_PC64: {
 | |
|     // Get the placeholder value from the generated object since
 | |
|     // a previous relocation attempt may have overwritten the loaded version
 | |
|     uint64_t *Placeholder = reinterpret_cast<uint64_t*>(Section.ObjAddress
 | |
|                                                                    + Offset);
 | |
|     uint64_t *Target = reinterpret_cast<uint64_t*>(Section.Address + Offset);
 | |
|     uint64_t  FinalAddress = Section.LoadAddress + Offset;
 | |
|     *Target = *Placeholder + Value + Addend - FinalAddress;
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
 | |
|                                           uint64_t Offset,
 | |
|                                           uint32_t Value,
 | |
|                                           uint32_t Type,
 | |
|                                           int32_t Addend) {
 | |
|   switch (Type) {
 | |
|   case ELF::R_386_32: {
 | |
|     // Get the placeholder value from the generated object since
 | |
|     // a previous relocation attempt may have overwritten the loaded version
 | |
|     uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress
 | |
|                                                                    + Offset);
 | |
|     uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
 | |
|     *Target = *Placeholder + Value + Addend;
 | |
|     break;
 | |
|   }
 | |
|   case ELF::R_386_PC32: {
 | |
|     // Get the placeholder value from the generated object since
 | |
|     // a previous relocation attempt may have overwritten the loaded version
 | |
|     uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress
 | |
|                                                                    + Offset);
 | |
|     uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
 | |
|     uint32_t  FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF);
 | |
|     uint32_t RealOffset = *Placeholder + Value + Addend - FinalAddress;
 | |
|     *Target = RealOffset;
 | |
|     break;
 | |
|     }
 | |
|     default:
 | |
|       // There are other relocation types, but it appears these are the
 | |
|       // only ones currently used by the LLVM ELF object writer
 | |
|       llvm_unreachable("Relocation type not implemented yet!");
 | |
|       break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
 | |
|                                               uint64_t Offset,
 | |
|                                               uint64_t Value,
 | |
|                                               uint32_t Type,
 | |
|                                               int64_t Addend) {
 | |
|   uint32_t *TargetPtr = reinterpret_cast<uint32_t*>(Section.Address + Offset);
 | |
|   uint64_t FinalAddress = Section.LoadAddress + Offset;
 | |
| 
 | |
|   DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
 | |
|                << format("%llx", Section.Address + Offset)
 | |
|                << " FinalAddress: 0x" << format("%llx",FinalAddress)
 | |
|                << " Value: 0x" << format("%llx",Value)
 | |
|                << " Type: 0x" << format("%x",Type)
 | |
|                << " Addend: 0x" << format("%llx",Addend)
 | |
|                << "\n");
 | |
| 
 | |
|   switch (Type) {
 | |
|   default:
 | |
|     llvm_unreachable("Relocation type not implemented yet!");
 | |
|     break;
 | |
|   case ELF::R_AARCH64_ABS64: {
 | |
|     uint64_t *TargetPtr = reinterpret_cast<uint64_t*>(Section.Address + Offset);
 | |
|     *TargetPtr = Value + Addend;
 | |
|     break;
 | |
|   }
 | |
|   case ELF::R_AARCH64_PREL32: {
 | |
|     uint64_t Result = Value + Addend - FinalAddress;
 | |
|     assert(static_cast<int64_t>(Result) >= INT32_MIN &&
 | |
|            static_cast<int64_t>(Result) <= UINT32_MAX);
 | |
|     *TargetPtr = static_cast<uint32_t>(Result & 0xffffffffU);
 | |
|     break;
 | |
|   }
 | |
|   case ELF::R_AARCH64_CALL26: // fallthrough
 | |
|   case ELF::R_AARCH64_JUMP26: {
 | |
|     // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
 | |
|     // calculation.
 | |
|     uint64_t BranchImm = Value + Addend - FinalAddress;
 | |
| 
 | |
|     // "Check that -2^27 <= result < 2^27".
 | |
|     assert(-(1LL << 27) <= static_cast<int64_t>(BranchImm) &&
 | |
|            static_cast<int64_t>(BranchImm) < (1LL << 27));
 | |
| 
 | |
|     // AArch64 code is emitted with .rela relocations. The data already in any
 | |
|     // bits affected by the relocation on entry is garbage.
 | |
|     *TargetPtr &= 0xfc000000U;
 | |
|     // Immediate goes in bits 25:0 of B and BL.
 | |
|     *TargetPtr |= static_cast<uint32_t>(BranchImm & 0xffffffcU) >> 2;
 | |
|     break;
 | |
|   }
 | |
|   case ELF::R_AARCH64_MOVW_UABS_G3: {
 | |
|     uint64_t Result = Value + Addend;
 | |
| 
 | |
|     // AArch64 code is emitted with .rela relocations. The data already in any
 | |
|     // bits affected by the relocation on entry is garbage.
 | |
|     *TargetPtr &= 0xffe0001fU;
 | |
|     // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
 | |
|     *TargetPtr |= Result >> (48 - 5);
 | |
|     // Shift must be "lsl #48", in bits 22:21
 | |
|     assert((*TargetPtr >> 21 & 0x3) == 3 && "invalid shift for relocation");
 | |
|     break;
 | |
|   }
 | |
|   case ELF::R_AARCH64_MOVW_UABS_G2_NC: {
 | |
|     uint64_t Result = Value + Addend;
 | |
| 
 | |
|     // AArch64 code is emitted with .rela relocations. The data already in any
 | |
|     // bits affected by the relocation on entry is garbage.
 | |
|     *TargetPtr &= 0xffe0001fU;
 | |
|     // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
 | |
|     *TargetPtr |= ((Result & 0xffff00000000ULL) >> (32 - 5));
 | |
|     // Shift must be "lsl #32", in bits 22:21
 | |
|     assert((*TargetPtr >> 21 & 0x3) == 2 && "invalid shift for relocation");
 | |
|     break;
 | |
|   }
 | |
|   case ELF::R_AARCH64_MOVW_UABS_G1_NC: {
 | |
|     uint64_t Result = Value + Addend;
 | |
| 
 | |
|     // AArch64 code is emitted with .rela relocations. The data already in any
 | |
|     // bits affected by the relocation on entry is garbage.
 | |
|     *TargetPtr &= 0xffe0001fU;
 | |
|     // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
 | |
|     *TargetPtr |= ((Result & 0xffff0000U) >> (16 - 5));
 | |
|     // Shift must be "lsl #16", in bits 22:2
 | |
|     assert((*TargetPtr >> 21 & 0x3) == 1 && "invalid shift for relocation");
 | |
|     break;
 | |
|   }
 | |
|   case ELF::R_AARCH64_MOVW_UABS_G0_NC: {
 | |
|     uint64_t Result = Value + Addend;
 | |
| 
 | |
|     // AArch64 code is emitted with .rela relocations. The data already in any
 | |
|     // bits affected by the relocation on entry is garbage.
 | |
|     *TargetPtr &= 0xffe0001fU;
 | |
|     // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
 | |
|     *TargetPtr |= ((Result & 0xffffU) << 5);
 | |
|     // Shift must be "lsl #0", in bits 22:21.
 | |
|     assert((*TargetPtr >> 21 & 0x3) == 0 && "invalid shift for relocation");
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
 | |
|                                           uint64_t Offset,
 | |
|                                           uint32_t Value,
 | |
|                                           uint32_t Type,
 | |
|                                           int32_t Addend) {
 | |
|   // TODO: Add Thumb relocations.
 | |
|   uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress +
 | |
|                                                       Offset);
 | |
|   uint32_t* TargetPtr = (uint32_t*)(Section.Address + Offset);
 | |
|   uint32_t FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF);
 | |
|   Value += Addend;
 | |
| 
 | |
|   DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
 | |
|                << Section.Address + Offset
 | |
|                << " FinalAddress: " << format("%p",FinalAddress)
 | |
|                << " Value: " << format("%x",Value)
 | |
|                << " Type: " << format("%x",Type)
 | |
|                << " Addend: " << format("%x",Addend)
 | |
|                << "\n");
 | |
| 
 | |
|   switch(Type) {
 | |
|   default:
 | |
|     llvm_unreachable("Not implemented relocation type!");
 | |
| 
 | |
|   case ELF::R_ARM_NONE:
 | |
|     break;
 | |
|   // Write a 32bit value to relocation address, taking into account the
 | |
|   // implicit addend encoded in the target.
 | |
|   case ELF::R_ARM_PREL31:
 | |
|   case ELF::R_ARM_TARGET1:
 | |
|   case ELF::R_ARM_ABS32:
 | |
|     *TargetPtr = *Placeholder + Value;
 | |
|     break;
 | |
|   // Write first 16 bit of 32 bit value to the mov instruction.
 | |
|   // Last 4 bit should be shifted.
 | |
|   case ELF::R_ARM_MOVW_ABS_NC:
 | |
|     // We are not expecting any other addend in the relocation address.
 | |
|     // Using 0x000F0FFF because MOVW has its 16 bit immediate split into 2
 | |
|     // non-contiguous fields.
 | |
|     assert((*Placeholder & 0x000F0FFF) == 0);
 | |
|     Value = Value & 0xFFFF;
 | |
|     *TargetPtr = *Placeholder | (Value & 0xFFF);
 | |
|     *TargetPtr |= ((Value >> 12) & 0xF) << 16;
 | |
|     break;
 | |
|   // Write last 16 bit of 32 bit value to the mov instruction.
 | |
|   // Last 4 bit should be shifted.
 | |
|   case ELF::R_ARM_MOVT_ABS:
 | |
|     // We are not expecting any other addend in the relocation address.
 | |
|     // Use 0x000F0FFF for the same reason as R_ARM_MOVW_ABS_NC.
 | |
|     assert((*Placeholder & 0x000F0FFF) == 0);
 | |
| 
 | |
|     Value = (Value >> 16) & 0xFFFF;
 | |
|     *TargetPtr = *Placeholder | (Value & 0xFFF);
 | |
|     *TargetPtr |= ((Value >> 12) & 0xF) << 16;
 | |
|     break;
 | |
|   // Write 24 bit relative value to the branch instruction.
 | |
|   case ELF::R_ARM_PC24 :    // Fall through.
 | |
|   case ELF::R_ARM_CALL :    // Fall through.
 | |
|   case ELF::R_ARM_JUMP24: {
 | |
|     int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
 | |
|     RelValue = (RelValue & 0x03FFFFFC) >> 2;
 | |
|     assert((*TargetPtr & 0xFFFFFF) == 0xFFFFFE);
 | |
|     *TargetPtr &= 0xFF000000;
 | |
|     *TargetPtr |= RelValue;
 | |
|     break;
 | |
|   }
 | |
|   case ELF::R_ARM_PRIVATE_0:
 | |
|     // This relocation is reserved by the ARM ELF ABI for internal use. We
 | |
|     // appropriate it here to act as an R_ARM_ABS32 without any addend for use
 | |
|     // in the stubs created during JIT (which can't put an addend into the
 | |
|     // original object file).
 | |
|     *TargetPtr = Value;
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void RuntimeDyldELF::resolveMIPSRelocation(const SectionEntry &Section,
 | |
|                                            uint64_t Offset,
 | |
|                                            uint32_t Value,
 | |
|                                            uint32_t Type,
 | |
|                                            int32_t Addend) {
 | |
|   uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress +
 | |
|                                                       Offset);
 | |
|   uint32_t* TargetPtr = (uint32_t*)(Section.Address + Offset);
 | |
|   Value += Addend;
 | |
| 
 | |
|   DEBUG(dbgs() << "resolveMipselocation, LocalAddress: "
 | |
|                << Section.Address + Offset
 | |
|                << " FinalAddress: "
 | |
|                << format("%p",Section.LoadAddress + Offset)
 | |
|                << " Value: " << format("%x",Value)
 | |
|                << " Type: " << format("%x",Type)
 | |
|                << " Addend: " << format("%x",Addend)
 | |
|                << "\n");
 | |
| 
 | |
|   switch(Type) {
 | |
|   default:
 | |
|     llvm_unreachable("Not implemented relocation type!");
 | |
|     break;
 | |
|   case ELF::R_MIPS_32:
 | |
|     *TargetPtr = Value + (*Placeholder);
 | |
|     break;
 | |
|   case ELF::R_MIPS_26:
 | |
|     *TargetPtr = ((*Placeholder) & 0xfc000000) | (( Value & 0x0fffffff) >> 2);
 | |
|     break;
 | |
|   case ELF::R_MIPS_HI16:
 | |
|     // Get the higher 16-bits. Also add 1 if bit 15 is 1.
 | |
|     Value += ((*Placeholder) & 0x0000ffff) << 16;
 | |
|     *TargetPtr = ((*Placeholder) & 0xffff0000) |
 | |
|                  (((Value + 0x8000) >> 16) & 0xffff);
 | |
|     break;
 | |
|   case ELF::R_MIPS_LO16:
 | |
|     Value += ((*Placeholder) & 0x0000ffff);
 | |
|     *TargetPtr = ((*Placeholder) & 0xffff0000) | (Value & 0xffff);
 | |
|     break;
 | |
|   case ELF::R_MIPS_UNUSED1:
 | |
|     // Similar to ELF::R_ARM_PRIVATE_0, R_MIPS_UNUSED1 and R_MIPS_UNUSED2
 | |
|     // are used for internal JIT purpose. These relocations are similar to
 | |
|     // R_MIPS_HI16 and R_MIPS_LO16, but they do not take any addend into
 | |
|     // account.
 | |
|     *TargetPtr = ((*TargetPtr) & 0xffff0000) |
 | |
|                  (((Value + 0x8000) >> 16) & 0xffff);
 | |
|     break;
 | |
|   case ELF::R_MIPS_UNUSED2:
 | |
|     *TargetPtr = ((*TargetPtr) & 0xffff0000) | (Value & 0xffff);
 | |
|     break;
 | |
|    }
 | |
| }
 | |
| 
 | |
| // Return the .TOC. section address to R_PPC64_TOC relocations.
 | |
| uint64_t RuntimeDyldELF::findPPC64TOC() const {
 | |
|   // The TOC consists of sections .got, .toc, .tocbss, .plt in that
 | |
|   // order. The TOC starts where the first of these sections starts.
 | |
|   SectionList::const_iterator it = Sections.begin();
 | |
|   SectionList::const_iterator ite = Sections.end();
 | |
|   for (; it != ite; ++it) {
 | |
|     if (it->Name == ".got" ||
 | |
|         it->Name == ".toc" ||
 | |
|         it->Name == ".tocbss" ||
 | |
|         it->Name == ".plt")
 | |
|       break;
 | |
|   }
 | |
|   if (it == ite) {
 | |
|     // This may happen for
 | |
|     // * references to TOC base base (sym@toc, .odp relocation) without
 | |
|     // a .toc directive.
 | |
|     // In this case just use the first section (which is usually
 | |
|     // the .odp) since the code won't reference the .toc base
 | |
|     // directly.
 | |
|     it = Sections.begin();
 | |
|   }
 | |
|   assert (it != ite);
 | |
|   // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
 | |
|   // thus permitting a full 64 Kbytes segment.
 | |
|   return it->LoadAddress + 0x8000;
 | |
| }
 | |
| 
 | |
| // Returns the sections and offset associated with the ODP entry referenced
 | |
| // by Symbol.
 | |
| void RuntimeDyldELF::findOPDEntrySection(ObjectImage &Obj,
 | |
|                                          ObjSectionToIDMap &LocalSections,
 | |
|                                          RelocationValueRef &Rel) {
 | |
|   // Get the ELF symbol value (st_value) to compare with Relocation offset in
 | |
|   // .opd entries
 | |
|   for (section_iterator si = Obj.begin_sections(), se = Obj.end_sections();
 | |
|        si != se; ++si) {
 | |
|     section_iterator RelSecI = si->getRelocatedSection();
 | |
|     if (RelSecI == Obj.end_sections())
 | |
|       continue;
 | |
| 
 | |
|     StringRef RelSectionName;
 | |
|     check(RelSecI->getName(RelSectionName));
 | |
|     if (RelSectionName != ".opd")
 | |
|       continue;
 | |
| 
 | |
|     for (relocation_iterator i = si->begin_relocations(),
 | |
|          e = si->end_relocations(); i != e;) {
 | |
|       // The R_PPC64_ADDR64 relocation indicates the first field
 | |
|       // of a .opd entry
 | |
|       uint64_t TypeFunc;
 | |
|       check(i->getType(TypeFunc));
 | |
|       if (TypeFunc != ELF::R_PPC64_ADDR64) {
 | |
|         ++i;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       uint64_t TargetSymbolOffset;
 | |
|       symbol_iterator TargetSymbol = i->getSymbol();
 | |
|       check(i->getOffset(TargetSymbolOffset));
 | |
|       int64_t Addend;
 | |
|       check(getELFRelocationAddend(*i, Addend));
 | |
| 
 | |
|       ++i;
 | |
|       if (i == e)
 | |
|         break;
 | |
| 
 | |
|       // Just check if following relocation is a R_PPC64_TOC
 | |
|       uint64_t TypeTOC;
 | |
|       check(i->getType(TypeTOC));
 | |
|       if (TypeTOC != ELF::R_PPC64_TOC)
 | |
|         continue;
 | |
| 
 | |
|       // Finally compares the Symbol value and the target symbol offset
 | |
|       // to check if this .opd entry refers to the symbol the relocation
 | |
|       // points to.
 | |
|       if (Rel.Addend != (int64_t)TargetSymbolOffset)
 | |
|         continue;
 | |
| 
 | |
|       section_iterator tsi(Obj.end_sections());
 | |
|       check(TargetSymbol->getSection(tsi));
 | |
|       Rel.SectionID = findOrEmitSection(Obj, (*tsi), true, LocalSections);
 | |
|       Rel.Addend = (intptr_t)Addend;
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   llvm_unreachable("Attempting to get address of ODP entry!");
 | |
| }
 | |
| 
 | |
| // Relocation masks following the #lo(value), #hi(value), #higher(value),
 | |
| // and #highest(value) macros defined in section 4.5.1. Relocation Types
 | |
| // in PPC-elf64abi document.
 | |
| //
 | |
| static inline
 | |
| uint16_t applyPPClo (uint64_t value)
 | |
| {
 | |
|   return value & 0xffff;
 | |
| }
 | |
| 
 | |
| static inline
 | |
| uint16_t applyPPChi (uint64_t value)
 | |
| {
 | |
|   return (value >> 16) & 0xffff;
 | |
| }
 | |
| 
 | |
| static inline
 | |
| uint16_t applyPPChigher (uint64_t value)
 | |
| {
 | |
|   return (value >> 32) & 0xffff;
 | |
| }
 | |
| 
 | |
| static inline
 | |
| uint16_t applyPPChighest (uint64_t value)
 | |
| {
 | |
|   return (value >> 48) & 0xffff;
 | |
| }
 | |
| 
 | |
| void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
 | |
|                                             uint64_t Offset,
 | |
|                                             uint64_t Value,
 | |
|                                             uint32_t Type,
 | |
|                                             int64_t Addend) {
 | |
|   uint8_t* LocalAddress = Section.Address + Offset;
 | |
|   switch (Type) {
 | |
|   default:
 | |
|     llvm_unreachable("Relocation type not implemented yet!");
 | |
|   break;
 | |
|   case ELF::R_PPC64_ADDR16_LO :
 | |
|     writeInt16BE(LocalAddress, applyPPClo (Value + Addend));
 | |
|     break;
 | |
|   case ELF::R_PPC64_ADDR16_HI :
 | |
|     writeInt16BE(LocalAddress, applyPPChi (Value + Addend));
 | |
|     break;
 | |
|   case ELF::R_PPC64_ADDR16_HIGHER :
 | |
|     writeInt16BE(LocalAddress, applyPPChigher (Value + Addend));
 | |
|     break;
 | |
|   case ELF::R_PPC64_ADDR16_HIGHEST :
 | |
|     writeInt16BE(LocalAddress, applyPPChighest (Value + Addend));
 | |
|     break;
 | |
|   case ELF::R_PPC64_ADDR14 : {
 | |
|     assert(((Value + Addend) & 3) == 0);
 | |
|     // Preserve the AA/LK bits in the branch instruction
 | |
|     uint8_t aalk = *(LocalAddress+3);
 | |
|     writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
 | |
|   } break;
 | |
|   case ELF::R_PPC64_ADDR32 : {
 | |
|     int32_t Result = static_cast<int32_t>(Value + Addend);
 | |
|     if (SignExtend32<32>(Result) != Result)
 | |
|       llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
 | |
|     writeInt32BE(LocalAddress, Result);
 | |
|   } break;
 | |
|   case ELF::R_PPC64_REL24 : {
 | |
|     uint64_t FinalAddress = (Section.LoadAddress + Offset);
 | |
|     int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
 | |
|     if (SignExtend32<24>(delta) != delta)
 | |
|       llvm_unreachable("Relocation R_PPC64_REL24 overflow");
 | |
|     // Generates a 'bl <address>' instruction
 | |
|     writeInt32BE(LocalAddress, 0x48000001 | (delta & 0x03FFFFFC));
 | |
|   } break;
 | |
|   case ELF::R_PPC64_REL32 : {
 | |
|     uint64_t FinalAddress = (Section.LoadAddress + Offset);
 | |
|     int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
 | |
|     if (SignExtend32<32>(delta) != delta)
 | |
|       llvm_unreachable("Relocation R_PPC64_REL32 overflow");
 | |
|     writeInt32BE(LocalAddress, delta);
 | |
|   } break;
 | |
|   case ELF::R_PPC64_REL64: {
 | |
|     uint64_t FinalAddress = (Section.LoadAddress + Offset);
 | |
|     uint64_t Delta = Value - FinalAddress + Addend;
 | |
|     writeInt64BE(LocalAddress, Delta);
 | |
|   } break;
 | |
|   case ELF::R_PPC64_ADDR64 :
 | |
|     writeInt64BE(LocalAddress, Value + Addend);
 | |
|     break;
 | |
|   case ELF::R_PPC64_TOC :
 | |
|     writeInt64BE(LocalAddress, findPPC64TOC());
 | |
|     break;
 | |
|   case ELF::R_PPC64_TOC16 : {
 | |
|     uint64_t TOCStart = findPPC64TOC();
 | |
|     Value = applyPPClo((Value + Addend) - TOCStart);
 | |
|     writeInt16BE(LocalAddress, applyPPClo(Value));
 | |
|   } break;
 | |
|   case ELF::R_PPC64_TOC16_DS : {
 | |
|     uint64_t TOCStart = findPPC64TOC();
 | |
|     Value = ((Value + Addend) - TOCStart);
 | |
|     writeInt16BE(LocalAddress, applyPPClo(Value));
 | |
|   } break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
 | |
|                                               uint64_t Offset,
 | |
|                                               uint64_t Value,
 | |
|                                               uint32_t Type,
 | |
|                                               int64_t Addend) {
 | |
|   uint8_t *LocalAddress = Section.Address + Offset;
 | |
|   switch (Type) {
 | |
|   default:
 | |
|     llvm_unreachable("Relocation type not implemented yet!");
 | |
|     break;
 | |
|   case ELF::R_390_PC16DBL:
 | |
|   case ELF::R_390_PLT16DBL: {
 | |
|     int64_t Delta = (Value + Addend) - (Section.LoadAddress + Offset);
 | |
|     assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow");
 | |
|     writeInt16BE(LocalAddress, Delta / 2);
 | |
|     break;
 | |
|   }
 | |
|   case ELF::R_390_PC32DBL:
 | |
|   case ELF::R_390_PLT32DBL: {
 | |
|     int64_t Delta = (Value + Addend) - (Section.LoadAddress + Offset);
 | |
|     assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow");
 | |
|     writeInt32BE(LocalAddress, Delta / 2);
 | |
|     break;
 | |
|   }
 | |
|   case ELF::R_390_PC32: {
 | |
|     int64_t Delta = (Value + Addend) - (Section.LoadAddress + Offset);
 | |
|     assert(int32_t(Delta) == Delta && "R_390_PC32 overflow");
 | |
|     writeInt32BE(LocalAddress, Delta);
 | |
|     break;
 | |
|   }
 | |
|   case ELF::R_390_64:
 | |
|     writeInt64BE(LocalAddress, Value + Addend);
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // The target location for the relocation is described by RE.SectionID and
 | |
| // RE.Offset.  RE.SectionID can be used to find the SectionEntry.  Each
 | |
| // SectionEntry has three members describing its location.
 | |
| // SectionEntry::Address is the address at which the section has been loaded
 | |
| // into memory in the current (host) process.  SectionEntry::LoadAddress is the
 | |
| // address that the section will have in the target process.
 | |
| // SectionEntry::ObjAddress is the address of the bits for this section in the
 | |
| // original emitted object image (also in the current address space).
 | |
| //
 | |
| // Relocations will be applied as if the section were loaded at
 | |
| // SectionEntry::LoadAddress, but they will be applied at an address based
 | |
| // on SectionEntry::Address.  SectionEntry::ObjAddress will be used to refer to
 | |
| // Target memory contents if they are required for value calculations.
 | |
| //
 | |
| // The Value parameter here is the load address of the symbol for the
 | |
| // relocation to be applied.  For relocations which refer to symbols in the
 | |
| // current object Value will be the LoadAddress of the section in which
 | |
| // the symbol resides (RE.Addend provides additional information about the
 | |
| // symbol location).  For external symbols, Value will be the address of the
 | |
| // symbol in the target address space.
 | |
| void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE,
 | |
|                                        uint64_t Value) {
 | |
|   const SectionEntry &Section = Sections[RE.SectionID];
 | |
|   return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend,
 | |
|                            RE.SymOffset);
 | |
| }
 | |
| 
 | |
| void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
 | |
|                                        uint64_t Offset,
 | |
|                                        uint64_t Value,
 | |
|                                        uint32_t Type,
 | |
|                                        int64_t  Addend,
 | |
|                                        uint64_t SymOffset) {
 | |
|   switch (Arch) {
 | |
|   case Triple::x86_64:
 | |
|     resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset);
 | |
|     break;
 | |
|   case Triple::x86:
 | |
|     resolveX86Relocation(Section, Offset,
 | |
|                          (uint32_t)(Value & 0xffffffffL), Type,
 | |
|                          (uint32_t)(Addend & 0xffffffffL));
 | |
|     break;
 | |
|   case Triple::aarch64:
 | |
|     resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
 | |
|     break;
 | |
|   case Triple::arm:    // Fall through.
 | |
|   case Triple::thumb:
 | |
|     resolveARMRelocation(Section, Offset,
 | |
|                          (uint32_t)(Value & 0xffffffffL), Type,
 | |
|                          (uint32_t)(Addend & 0xffffffffL));
 | |
|     break;
 | |
|   case Triple::mips:    // Fall through.
 | |
|   case Triple::mipsel:
 | |
|     resolveMIPSRelocation(Section, Offset,
 | |
|                           (uint32_t)(Value & 0xffffffffL), Type,
 | |
|                           (uint32_t)(Addend & 0xffffffffL));
 | |
|     break;
 | |
|   case Triple::ppc64:   // Fall through.
 | |
|   case Triple::ppc64le:
 | |
|     resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
 | |
|     break;
 | |
|   case Triple::systemz:
 | |
|     resolveSystemZRelocation(Section, Offset, Value, Type, Addend);
 | |
|     break;
 | |
|   default: llvm_unreachable("Unsupported CPU type!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| void RuntimeDyldELF::processRelocationRef(unsigned SectionID,
 | |
|                                           RelocationRef RelI,
 | |
|                                           ObjectImage &Obj,
 | |
|                                           ObjSectionToIDMap &ObjSectionToID,
 | |
|                                           const SymbolTableMap &Symbols,
 | |
|                                           StubMap &Stubs) {
 | |
|   uint64_t RelType;
 | |
|   Check(RelI.getType(RelType));
 | |
|   int64_t Addend;
 | |
|   Check(getELFRelocationAddend(RelI, Addend));
 | |
|   symbol_iterator Symbol = RelI.getSymbol();
 | |
| 
 | |
|   // Obtain the symbol name which is referenced in the relocation
 | |
|   StringRef TargetName;
 | |
|   if (Symbol != Obj.end_symbols())
 | |
|     Symbol->getName(TargetName);
 | |
|   DEBUG(dbgs() << "\t\tRelType: " << RelType
 | |
|                << " Addend: " << Addend
 | |
|                << " TargetName: " << TargetName
 | |
|                << "\n");
 | |
|   RelocationValueRef Value;
 | |
|   // First search for the symbol in the local symbol table
 | |
|   SymbolTableMap::const_iterator lsi = Symbols.end();
 | |
|   SymbolRef::Type SymType = SymbolRef::ST_Unknown;
 | |
|   if (Symbol != Obj.end_symbols()) {
 | |
|     lsi = Symbols.find(TargetName.data());
 | |
|     Symbol->getType(SymType);
 | |
|   }
 | |
|   if (lsi != Symbols.end()) {
 | |
|     Value.SectionID = lsi->second.first;
 | |
|     Value.Offset = lsi->second.second;
 | |
|     Value.Addend = lsi->second.second + Addend;
 | |
|   } else {
 | |
|     // Search for the symbol in the global symbol table
 | |
|     SymbolTableMap::const_iterator gsi = GlobalSymbolTable.end();
 | |
|     if (Symbol != Obj.end_symbols())
 | |
|       gsi = GlobalSymbolTable.find(TargetName.data());
 | |
|     if (gsi != GlobalSymbolTable.end()) {
 | |
|       Value.SectionID = gsi->second.first;
 | |
|       Value.Offset = gsi->second.second;
 | |
|       Value.Addend = gsi->second.second + Addend;
 | |
|     } else {
 | |
|       switch (SymType) {
 | |
|         case SymbolRef::ST_Debug: {
 | |
|           // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
 | |
|           // and can be changed by another developers. Maybe best way is add
 | |
|           // a new symbol type ST_Section to SymbolRef and use it.
 | |
|           section_iterator si(Obj.end_sections());
 | |
|           Symbol->getSection(si);
 | |
|           if (si == Obj.end_sections())
 | |
|             llvm_unreachable("Symbol section not found, bad object file format!");
 | |
|           DEBUG(dbgs() << "\t\tThis is section symbol\n");
 | |
|           // Default to 'true' in case isText fails (though it never does).
 | |
|           bool isCode = true;
 | |
|           si->isText(isCode);
 | |
|           Value.SectionID = findOrEmitSection(Obj,
 | |
|                                               (*si),
 | |
|                                               isCode,
 | |
|                                               ObjSectionToID);
 | |
|           Value.Addend = Addend;
 | |
|           break;
 | |
|         }
 | |
|         case SymbolRef::ST_Data:
 | |
|         case SymbolRef::ST_Unknown: {
 | |
|           Value.SymbolName = TargetName.data();
 | |
|           Value.Addend = Addend;
 | |
| 
 | |
|           // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
 | |
|           // will manifest here as a NULL symbol name.
 | |
|           // We can set this as a valid (but empty) symbol name, and rely
 | |
|           // on addRelocationForSymbol to handle this.
 | |
|           if (!Value.SymbolName)
 | |
|               Value.SymbolName = "";
 | |
|           break;
 | |
|         }
 | |
|         default:
 | |
|           llvm_unreachable("Unresolved symbol type!");
 | |
|           break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   uint64_t Offset;
 | |
|   Check(RelI.getOffset(Offset));
 | |
| 
 | |
|   DEBUG(dbgs() << "\t\tSectionID: " << SectionID
 | |
|                << " Offset: " << Offset
 | |
|                << "\n");
 | |
|   if (Arch == Triple::aarch64 &&
 | |
|       (RelType == ELF::R_AARCH64_CALL26 ||
 | |
|        RelType == ELF::R_AARCH64_JUMP26)) {
 | |
|     // This is an AArch64 branch relocation, need to use a stub function.
 | |
|     DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
 | |
|     SectionEntry &Section = Sections[SectionID];
 | |
| 
 | |
|     // Look for an existing stub.
 | |
|     StubMap::const_iterator i = Stubs.find(Value);
 | |
|     if (i != Stubs.end()) {
 | |
|         resolveRelocation(Section, Offset,
 | |
|                           (uint64_t)Section.Address + i->second, RelType, 0);
 | |
|       DEBUG(dbgs() << " Stub function found\n");
 | |
|     } else {
 | |
|       // Create a new stub function.
 | |
|       DEBUG(dbgs() << " Create a new stub function\n");
 | |
|       Stubs[Value] = Section.StubOffset;
 | |
|       uint8_t *StubTargetAddr = createStubFunction(Section.Address +
 | |
|                                                    Section.StubOffset);
 | |
| 
 | |
|       RelocationEntry REmovz_g3(SectionID,
 | |
|                                 StubTargetAddr - Section.Address,
 | |
|                                 ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend);
 | |
|       RelocationEntry REmovk_g2(SectionID,
 | |
|                                 StubTargetAddr - Section.Address + 4,
 | |
|                                 ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend);
 | |
|       RelocationEntry REmovk_g1(SectionID,
 | |
|                                 StubTargetAddr - Section.Address + 8,
 | |
|                                 ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend);
 | |
|       RelocationEntry REmovk_g0(SectionID,
 | |
|                                 StubTargetAddr - Section.Address + 12,
 | |
|                                 ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend);
 | |
| 
 | |
|       if (Value.SymbolName) {
 | |
|         addRelocationForSymbol(REmovz_g3, Value.SymbolName);
 | |
|         addRelocationForSymbol(REmovk_g2, Value.SymbolName);
 | |
|         addRelocationForSymbol(REmovk_g1, Value.SymbolName);
 | |
|         addRelocationForSymbol(REmovk_g0, Value.SymbolName);
 | |
|       } else {
 | |
|         addRelocationForSection(REmovz_g3, Value.SectionID);
 | |
|         addRelocationForSection(REmovk_g2, Value.SectionID);
 | |
|         addRelocationForSection(REmovk_g1, Value.SectionID);
 | |
|         addRelocationForSection(REmovk_g0, Value.SectionID);
 | |
|       }
 | |
|       resolveRelocation(Section, Offset,
 | |
|                         (uint64_t)Section.Address + Section.StubOffset,
 | |
|                         RelType, 0);
 | |
|       Section.StubOffset += getMaxStubSize();
 | |
|     }
 | |
|   } else if (Arch == Triple::arm &&
 | |
|       (RelType == ELF::R_ARM_PC24 ||
 | |
|        RelType == ELF::R_ARM_CALL ||
 | |
|        RelType == ELF::R_ARM_JUMP24)) {
 | |
|     // This is an ARM branch relocation, need to use a stub function.
 | |
|     DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.");
 | |
|     SectionEntry &Section = Sections[SectionID];
 | |
| 
 | |
|     // Look for an existing stub.
 | |
|     StubMap::const_iterator i = Stubs.find(Value);
 | |
|     if (i != Stubs.end()) {
 | |
|         resolveRelocation(Section, Offset,
 | |
|                           (uint64_t)Section.Address + i->second, RelType, 0);
 | |
|       DEBUG(dbgs() << " Stub function found\n");
 | |
|     } else {
 | |
|       // Create a new stub function.
 | |
|       DEBUG(dbgs() << " Create a new stub function\n");
 | |
|       Stubs[Value] = Section.StubOffset;
 | |
|       uint8_t *StubTargetAddr = createStubFunction(Section.Address +
 | |
|                                                    Section.StubOffset);
 | |
|       RelocationEntry RE(SectionID, StubTargetAddr - Section.Address,
 | |
|                          ELF::R_ARM_PRIVATE_0, Value.Addend);
 | |
|       if (Value.SymbolName)
 | |
|         addRelocationForSymbol(RE, Value.SymbolName);
 | |
|       else
 | |
|         addRelocationForSection(RE, Value.SectionID);
 | |
| 
 | |
|       resolveRelocation(Section, Offset,
 | |
|                         (uint64_t)Section.Address + Section.StubOffset,
 | |
|                         RelType, 0);
 | |
|       Section.StubOffset += getMaxStubSize();
 | |
|     }
 | |
|   } else if ((Arch == Triple::mipsel || Arch == Triple::mips) &&
 | |
|              RelType == ELF::R_MIPS_26) {
 | |
|     // This is an Mips branch relocation, need to use a stub function.
 | |
|     DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
 | |
|     SectionEntry &Section = Sections[SectionID];
 | |
|     uint8_t *Target = Section.Address + Offset;
 | |
|     uint32_t *TargetAddress = (uint32_t *)Target;
 | |
| 
 | |
|     // Extract the addend from the instruction.
 | |
|     uint32_t Addend = ((*TargetAddress) & 0x03ffffff) << 2;
 | |
| 
 | |
|     Value.Addend += Addend;
 | |
| 
 | |
|     //  Look up for existing stub.
 | |
|     StubMap::const_iterator i = Stubs.find(Value);
 | |
|     if (i != Stubs.end()) {
 | |
|       RelocationEntry RE(SectionID, Offset, RelType, i->second);
 | |
|       addRelocationForSection(RE, SectionID);
 | |
|       DEBUG(dbgs() << " Stub function found\n");
 | |
|     } else {
 | |
|       // Create a new stub function.
 | |
|       DEBUG(dbgs() << " Create a new stub function\n");
 | |
|       Stubs[Value] = Section.StubOffset;
 | |
|       uint8_t *StubTargetAddr = createStubFunction(Section.Address +
 | |
|                                                    Section.StubOffset);
 | |
| 
 | |
|       // Creating Hi and Lo relocations for the filled stub instructions.
 | |
|       RelocationEntry REHi(SectionID,
 | |
|                            StubTargetAddr - Section.Address,
 | |
|                            ELF::R_MIPS_UNUSED1, Value.Addend);
 | |
|       RelocationEntry RELo(SectionID,
 | |
|                            StubTargetAddr - Section.Address + 4,
 | |
|                            ELF::R_MIPS_UNUSED2, Value.Addend);
 | |
| 
 | |
|       if (Value.SymbolName) {
 | |
|         addRelocationForSymbol(REHi, Value.SymbolName);
 | |
|         addRelocationForSymbol(RELo, Value.SymbolName);
 | |
|       } else {
 | |
|         addRelocationForSection(REHi, Value.SectionID);
 | |
|         addRelocationForSection(RELo, Value.SectionID);
 | |
|       }
 | |
| 
 | |
|       RelocationEntry RE(SectionID, Offset, RelType, Section.StubOffset);
 | |
|       addRelocationForSection(RE, SectionID);
 | |
|       Section.StubOffset += getMaxStubSize();
 | |
|     }
 | |
|   } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
 | |
|     if (RelType == ELF::R_PPC64_REL24) {
 | |
|       // A PPC branch relocation will need a stub function if the target is
 | |
|       // an external symbol (Symbol::ST_Unknown) or if the target address
 | |
|       // is not within the signed 24-bits branch address.
 | |
|       SectionEntry &Section = Sections[SectionID];
 | |
|       uint8_t *Target = Section.Address + Offset;
 | |
|       bool RangeOverflow = false;
 | |
|       if (SymType != SymbolRef::ST_Unknown) {
 | |
|         // A function call may points to the .opd entry, so the final symbol value
 | |
|         // in calculated based in the relocation values in .opd section.
 | |
|         findOPDEntrySection(Obj, ObjSectionToID, Value);
 | |
|         uint8_t *RelocTarget = Sections[Value.SectionID].Address + Value.Addend;
 | |
|         int32_t delta = static_cast<int32_t>(Target - RelocTarget);
 | |
|         // If it is within 24-bits branch range, just set the branch target
 | |
|         if (SignExtend32<24>(delta) == delta) {
 | |
|           RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
 | |
|           if (Value.SymbolName)
 | |
|             addRelocationForSymbol(RE, Value.SymbolName);
 | |
|           else
 | |
|             addRelocationForSection(RE, Value.SectionID);
 | |
|         } else {
 | |
|           RangeOverflow = true;
 | |
|         }
 | |
|       }
 | |
|       if (SymType == SymbolRef::ST_Unknown || RangeOverflow == true) {
 | |
|         // It is an external symbol (SymbolRef::ST_Unknown) or within a range
 | |
|         // larger than 24-bits.
 | |
|         StubMap::const_iterator i = Stubs.find(Value);
 | |
|         if (i != Stubs.end()) {
 | |
|           // Symbol function stub already created, just relocate to it
 | |
|           resolveRelocation(Section, Offset,
 | |
|                             (uint64_t)Section.Address + i->second, RelType, 0);
 | |
|           DEBUG(dbgs() << " Stub function found\n");
 | |
|         } else {
 | |
|           // Create a new stub function.
 | |
|           DEBUG(dbgs() << " Create a new stub function\n");
 | |
|           Stubs[Value] = Section.StubOffset;
 | |
|           uint8_t *StubTargetAddr = createStubFunction(Section.Address +
 | |
|                                                        Section.StubOffset);
 | |
|           RelocationEntry RE(SectionID, StubTargetAddr - Section.Address,
 | |
|                              ELF::R_PPC64_ADDR64, Value.Addend);
 | |
| 
 | |
|           // Generates the 64-bits address loads as exemplified in section
 | |
|           // 4.5.1 in PPC64 ELF ABI.
 | |
|           RelocationEntry REhst(SectionID,
 | |
|                                 StubTargetAddr - Section.Address + 2,
 | |
|                                 ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
 | |
|           RelocationEntry REhr(SectionID,
 | |
|                                StubTargetAddr - Section.Address + 6,
 | |
|                                ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
 | |
|           RelocationEntry REh(SectionID,
 | |
|                               StubTargetAddr - Section.Address + 14,
 | |
|                               ELF::R_PPC64_ADDR16_HI, Value.Addend);
 | |
|           RelocationEntry REl(SectionID,
 | |
|                               StubTargetAddr - Section.Address + 18,
 | |
|                               ELF::R_PPC64_ADDR16_LO, Value.Addend);
 | |
| 
 | |
|           if (Value.SymbolName) {
 | |
|             addRelocationForSymbol(REhst, Value.SymbolName);
 | |
|             addRelocationForSymbol(REhr,  Value.SymbolName);
 | |
|             addRelocationForSymbol(REh,   Value.SymbolName);
 | |
|             addRelocationForSymbol(REl,   Value.SymbolName);
 | |
|           } else {
 | |
|             addRelocationForSection(REhst, Value.SectionID);
 | |
|             addRelocationForSection(REhr,  Value.SectionID);
 | |
|             addRelocationForSection(REh,   Value.SectionID);
 | |
|             addRelocationForSection(REl,   Value.SectionID);
 | |
|           }
 | |
| 
 | |
|           resolveRelocation(Section, Offset,
 | |
|                             (uint64_t)Section.Address + Section.StubOffset,
 | |
|                             RelType, 0);
 | |
|           if (SymType == SymbolRef::ST_Unknown)
 | |
|             // Restore the TOC for external calls
 | |
|             writeInt32BE(Target+4, 0xE8410028); // ld r2,40(r1)
 | |
|           Section.StubOffset += getMaxStubSize();
 | |
|         }
 | |
|       }
 | |
|     } else {
 | |
|       RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
 | |
|       // Extra check to avoid relocation againt empty symbols (usually
 | |
|       // the R_PPC64_TOC).
 | |
|       if (SymType != SymbolRef::ST_Unknown && TargetName.empty())
 | |
|         Value.SymbolName = NULL;
 | |
| 
 | |
|       if (Value.SymbolName)
 | |
|         addRelocationForSymbol(RE, Value.SymbolName);
 | |
|       else
 | |
|         addRelocationForSection(RE, Value.SectionID);
 | |
|     }
 | |
|   } else if (Arch == Triple::systemz &&
 | |
|              (RelType == ELF::R_390_PLT32DBL ||
 | |
|               RelType == ELF::R_390_GOTENT)) {
 | |
|     // Create function stubs for both PLT and GOT references, regardless of
 | |
|     // whether the GOT reference is to data or code.  The stub contains the
 | |
|     // full address of the symbol, as needed by GOT references, and the
 | |
|     // executable part only adds an overhead of 8 bytes.
 | |
|     //
 | |
|     // We could try to conserve space by allocating the code and data
 | |
|     // parts of the stub separately.  However, as things stand, we allocate
 | |
|     // a stub for every relocation, so using a GOT in JIT code should be
 | |
|     // no less space efficient than using an explicit constant pool.
 | |
|     DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
 | |
|     SectionEntry &Section = Sections[SectionID];
 | |
| 
 | |
|     // Look for an existing stub.
 | |
|     StubMap::const_iterator i = Stubs.find(Value);
 | |
|     uintptr_t StubAddress;
 | |
|     if (i != Stubs.end()) {
 | |
|       StubAddress = uintptr_t(Section.Address) + i->second;
 | |
|       DEBUG(dbgs() << " Stub function found\n");
 | |
|     } else {
 | |
|       // Create a new stub function.
 | |
|       DEBUG(dbgs() << " Create a new stub function\n");
 | |
| 
 | |
|       uintptr_t BaseAddress = uintptr_t(Section.Address);
 | |
|       uintptr_t StubAlignment = getStubAlignment();
 | |
|       StubAddress = (BaseAddress + Section.StubOffset +
 | |
|                      StubAlignment - 1) & -StubAlignment;
 | |
|       unsigned StubOffset = StubAddress - BaseAddress;
 | |
| 
 | |
|       Stubs[Value] = StubOffset;
 | |
|       createStubFunction((uint8_t *)StubAddress);
 | |
|       RelocationEntry RE(SectionID, StubOffset + 8,
 | |
|                          ELF::R_390_64, Value.Addend - Addend);
 | |
|       if (Value.SymbolName)
 | |
|         addRelocationForSymbol(RE, Value.SymbolName);
 | |
|       else
 | |
|         addRelocationForSection(RE, Value.SectionID);
 | |
|       Section.StubOffset = StubOffset + getMaxStubSize();
 | |
|     }
 | |
| 
 | |
|     if (RelType == ELF::R_390_GOTENT)
 | |
|       resolveRelocation(Section, Offset, StubAddress + 8,
 | |
|                         ELF::R_390_PC32DBL, Addend);
 | |
|     else
 | |
|       resolveRelocation(Section, Offset, StubAddress, RelType, Addend);
 | |
|   } else if (Arch == Triple::x86_64 && RelType == ELF::R_X86_64_PLT32) {
 | |
|     // The way the PLT relocations normally work is that the linker allocates the
 | |
|     // PLT and this relocation makes a PC-relative call into the PLT.  The PLT
 | |
|     // entry will then jump to an address provided by the GOT.  On first call, the
 | |
|     // GOT address will point back into PLT code that resolves the symbol.  After
 | |
|     // the first call, the GOT entry points to the actual function.
 | |
|     //
 | |
|     // For local functions we're ignoring all of that here and just replacing
 | |
|     // the PLT32 relocation type with PC32, which will translate the relocation
 | |
|     // into a PC-relative call directly to the function. For external symbols we
 | |
|     // can't be sure the function will be within 2^32 bytes of the call site, so
 | |
|     // we need to create a stub, which calls into the GOT.  This case is
 | |
|     // equivalent to the usual PLT implementation except that we use the stub
 | |
|     // mechanism in RuntimeDyld (which puts stubs at the end of the section)
 | |
|     // rather than allocating a PLT section.
 | |
|     if (Value.SymbolName) {
 | |
|       // This is a call to an external function.
 | |
|       // Look for an existing stub.
 | |
|       SectionEntry &Section = Sections[SectionID];
 | |
|       StubMap::const_iterator i = Stubs.find(Value);
 | |
|       uintptr_t StubAddress;
 | |
|       if (i != Stubs.end()) {
 | |
|         StubAddress = uintptr_t(Section.Address) + i->second;
 | |
|         DEBUG(dbgs() << " Stub function found\n");
 | |
|       } else {
 | |
|         // Create a new stub function (equivalent to a PLT entry).
 | |
|         DEBUG(dbgs() << " Create a new stub function\n");
 | |
| 
 | |
|         uintptr_t BaseAddress = uintptr_t(Section.Address);
 | |
|         uintptr_t StubAlignment = getStubAlignment();
 | |
|         StubAddress = (BaseAddress + Section.StubOffset +
 | |
|                       StubAlignment - 1) & -StubAlignment;
 | |
|         unsigned StubOffset = StubAddress - BaseAddress;
 | |
|         Stubs[Value] = StubOffset;
 | |
|         createStubFunction((uint8_t *)StubAddress);
 | |
| 
 | |
|         // Create a GOT entry for the external function.
 | |
|         GOTEntries.push_back(Value);
 | |
| 
 | |
|         // Make our stub function a relative call to the GOT entry.
 | |
|         RelocationEntry RE(SectionID, StubOffset + 2,
 | |
|                            ELF::R_X86_64_GOTPCREL, -4);
 | |
|         addRelocationForSymbol(RE, Value.SymbolName);
 | |
| 
 | |
|         // Bump our stub offset counter
 | |
|         Section.StubOffset = StubOffset + getMaxStubSize();
 | |
|       }
 | |
| 
 | |
|       // Make the target call a call into the stub table.
 | |
|       resolveRelocation(Section, Offset, StubAddress,
 | |
|                       ELF::R_X86_64_PC32, Addend);
 | |
|     } else {
 | |
|       RelocationEntry RE(SectionID, Offset, ELF::R_X86_64_PC32, Value.Addend,
 | |
|                          Value.Offset);
 | |
|       addRelocationForSection(RE, Value.SectionID);
 | |
|     }
 | |
|   } else {
 | |
|     if (Arch == Triple::x86_64 && RelType == ELF::R_X86_64_GOTPCREL) {
 | |
|       GOTEntries.push_back(Value);
 | |
|     }
 | |
|     RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset);
 | |
|     if (Value.SymbolName)
 | |
|       addRelocationForSymbol(RE, Value.SymbolName);
 | |
|     else
 | |
|       addRelocationForSection(RE, Value.SectionID);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void RuntimeDyldELF::updateGOTEntries(StringRef Name, uint64_t Addr) {
 | |
| 
 | |
|   SmallVectorImpl<std::pair<SID, GOTRelocations> >::iterator it;
 | |
|   SmallVectorImpl<std::pair<SID, GOTRelocations> >::iterator end = GOTs.end();
 | |
| 
 | |
|   for (it = GOTs.begin(); it != end; ++it) {
 | |
|     GOTRelocations &GOTEntries = it->second;
 | |
|     for (int i = 0, e = GOTEntries.size(); i != e; ++i) {
 | |
|       if (GOTEntries[i].SymbolName != 0 && GOTEntries[i].SymbolName == Name) {
 | |
|         GOTEntries[i].Offset = Addr;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| size_t RuntimeDyldELF::getGOTEntrySize() {
 | |
|   // We don't use the GOT in all of these cases, but it's essentially free
 | |
|   // to put them all here.
 | |
|   size_t Result = 0;
 | |
|   switch (Arch) {
 | |
|   case Triple::x86_64:
 | |
|   case Triple::aarch64:
 | |
|   case Triple::ppc64:
 | |
|   case Triple::ppc64le:
 | |
|   case Triple::systemz:
 | |
|     Result = sizeof(uint64_t);
 | |
|     break;
 | |
|   case Triple::x86:
 | |
|   case Triple::arm:
 | |
|   case Triple::thumb:
 | |
|   case Triple::mips:
 | |
|   case Triple::mipsel:
 | |
|     Result = sizeof(uint32_t);
 | |
|     break;
 | |
|   default: llvm_unreachable("Unsupported CPU type!");
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| uint64_t RuntimeDyldELF::findGOTEntry(uint64_t LoadAddress,
 | |
|                                       uint64_t Offset) {
 | |
| 
 | |
|   const size_t GOTEntrySize = getGOTEntrySize();
 | |
| 
 | |
|   SmallVectorImpl<std::pair<SID, GOTRelocations> >::const_iterator it;
 | |
|   SmallVectorImpl<std::pair<SID, GOTRelocations> >::const_iterator end = GOTs.end();
 | |
| 
 | |
|   int GOTIndex = -1;
 | |
|   for (it = GOTs.begin(); it != end; ++it) {
 | |
|     SID GOTSectionID = it->first;
 | |
|     const GOTRelocations &GOTEntries = it->second;
 | |
| 
 | |
|     // Find the matching entry in our vector.
 | |
|     uint64_t SymbolOffset = 0;
 | |
|     for (int i = 0, e = GOTEntries.size(); i != e; ++i) {
 | |
|       if (GOTEntries[i].SymbolName == 0) {
 | |
|         if (getSectionLoadAddress(GOTEntries[i].SectionID) == LoadAddress &&
 | |
|             GOTEntries[i].Offset == Offset) {
 | |
|           GOTIndex = i;
 | |
|           SymbolOffset = GOTEntries[i].Offset;
 | |
|           break;
 | |
|         }
 | |
|       } else {
 | |
|         // GOT entries for external symbols use the addend as the address when
 | |
|         // the external symbol has been resolved.
 | |
|         if (GOTEntries[i].Offset == LoadAddress) {
 | |
|           GOTIndex = i;
 | |
|           // Don't use the Addend here.  The relocation handler will use it.
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (GOTIndex != -1) {
 | |
|       if (GOTEntrySize == sizeof(uint64_t)) {
 | |
|         uint64_t *LocalGOTAddr = (uint64_t*)getSectionAddress(GOTSectionID);
 | |
|         // Fill in this entry with the address of the symbol being referenced.
 | |
|         LocalGOTAddr[GOTIndex] = LoadAddress + SymbolOffset;
 | |
|       } else {
 | |
|         uint32_t *LocalGOTAddr = (uint32_t*)getSectionAddress(GOTSectionID);
 | |
|         // Fill in this entry with the address of the symbol being referenced.
 | |
|         LocalGOTAddr[GOTIndex] = (uint32_t)(LoadAddress + SymbolOffset);
 | |
|       }
 | |
| 
 | |
|       // Calculate the load address of this entry
 | |
|       return getSectionLoadAddress(GOTSectionID) + (GOTIndex * GOTEntrySize);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   assert(GOTIndex != -1 && "Unable to find requested GOT entry.");
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| void RuntimeDyldELF::finalizeLoad(ObjSectionToIDMap &SectionMap) {
 | |
|   // If necessary, allocate the global offset table
 | |
|   if (MemMgr) {
 | |
|     // Allocate the GOT if necessary
 | |
|     size_t numGOTEntries = GOTEntries.size();
 | |
|     if (numGOTEntries != 0) {
 | |
|       // Allocate memory for the section
 | |
|       unsigned SectionID = Sections.size();
 | |
|       size_t TotalSize = numGOTEntries * getGOTEntrySize();
 | |
|       uint8_t *Addr = MemMgr->allocateDataSection(TotalSize, getGOTEntrySize(),
 | |
|                                                   SectionID, ".got", false);
 | |
|       if (!Addr)
 | |
|         report_fatal_error("Unable to allocate memory for GOT!");
 | |
| 
 | |
|       GOTs.push_back(std::make_pair(SectionID, GOTEntries));
 | |
|       Sections.push_back(SectionEntry(".got", Addr, TotalSize, 0));
 | |
|       // For now, initialize all GOT entries to zero.  We'll fill them in as
 | |
|       // needed when GOT-based relocations are applied.
 | |
|       memset(Addr, 0, TotalSize);
 | |
|     }
 | |
|   }
 | |
|   else {
 | |
|     report_fatal_error("Unable to allocate memory for GOT!");
 | |
|   }
 | |
| 
 | |
|   // Look for and record the EH frame section.
 | |
|   ObjSectionToIDMap::iterator i, e;
 | |
|   for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
 | |
|     const SectionRef &Section = i->first;
 | |
|     StringRef Name;
 | |
|     Section.getName(Name);
 | |
|     if (Name == ".eh_frame") {
 | |
|       UnregisteredEHFrameSections.push_back(i->second);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool RuntimeDyldELF::isCompatibleFormat(const ObjectBuffer *Buffer) const {
 | |
|   if (Buffer->getBufferSize() < strlen(ELF::ElfMagic))
 | |
|     return false;
 | |
|   return (memcmp(Buffer->getBufferStart(), ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0;
 | |
| }
 | |
| 
 | |
| bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile *Obj) const {
 | |
|   return Obj->isELF();
 | |
| }
 | |
| 
 | |
| } // namespace llvm
 |