mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	This reverts commit r200058 and adds the using directive for ARMTargetTransformInfo to silence two g++ overload warnings. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200062 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			792 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			792 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// \file
 | 
						|
/// This file implements a TargetTransformInfo analysis pass specific to the
 | 
						|
/// X86 target machine. It uses the target's detailed information to provide
 | 
						|
/// more precise answers to certain TTI queries, while letting the target
 | 
						|
/// independent and default TTI implementations handle the rest.
 | 
						|
///
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "x86tti"
 | 
						|
#include "X86.h"
 | 
						|
#include "X86TargetMachine.h"
 | 
						|
#include "llvm/Analysis/TargetTransformInfo.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Target/CostTable.h"
 | 
						|
#include "llvm/Target/TargetLowering.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
// Declare the pass initialization routine locally as target-specific passes
 | 
						|
// don't havve a target-wide initialization entry point, and so we rely on the
 | 
						|
// pass constructor initialization.
 | 
						|
namespace llvm {
 | 
						|
void initializeX86TTIPass(PassRegistry &);
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
class X86TTI LLVM_FINAL : public ImmutablePass, public TargetTransformInfo {
 | 
						|
  const X86Subtarget *ST;
 | 
						|
  const X86TargetLowering *TLI;
 | 
						|
 | 
						|
  /// Estimate the overhead of scalarizing an instruction. Insert and Extract
 | 
						|
  /// are set if the result needs to be inserted and/or extracted from vectors.
 | 
						|
  unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
 | 
						|
 | 
						|
public:
 | 
						|
  X86TTI() : ImmutablePass(ID), ST(0), TLI(0) {
 | 
						|
    llvm_unreachable("This pass cannot be directly constructed");
 | 
						|
  }
 | 
						|
 | 
						|
  X86TTI(const X86TargetMachine *TM)
 | 
						|
    : ImmutablePass(ID), ST(TM->getSubtargetImpl()),
 | 
						|
      TLI(TM->getTargetLowering()) {
 | 
						|
    initializeX86TTIPass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
  virtual void initializePass() LLVM_OVERRIDE {
 | 
						|
    pushTTIStack(this);
 | 
						|
  }
 | 
						|
 | 
						|
  virtual void finalizePass() {
 | 
						|
    popTTIStack();
 | 
						|
  }
 | 
						|
 | 
						|
  virtual void getAnalysisUsage(AnalysisUsage &AU) const LLVM_OVERRIDE {
 | 
						|
    TargetTransformInfo::getAnalysisUsage(AU);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Pass identification.
 | 
						|
  static char ID;
 | 
						|
 | 
						|
  /// Provide necessary pointer adjustments for the two base classes.
 | 
						|
  virtual void *getAdjustedAnalysisPointer(const void *ID) LLVM_OVERRIDE {
 | 
						|
    if (ID == &TargetTransformInfo::ID)
 | 
						|
      return (TargetTransformInfo*)this;
 | 
						|
    return this;
 | 
						|
  }
 | 
						|
 | 
						|
  /// \name Scalar TTI Implementations
 | 
						|
  /// @{
 | 
						|
  virtual PopcntSupportKind
 | 
						|
  getPopcntSupport(unsigned TyWidth) const LLVM_OVERRIDE;
 | 
						|
 | 
						|
  /// @}
 | 
						|
 | 
						|
  /// \name Vector TTI Implementations
 | 
						|
  /// @{
 | 
						|
 | 
						|
  virtual unsigned getNumberOfRegisters(bool Vector) const LLVM_OVERRIDE;
 | 
						|
  virtual unsigned getRegisterBitWidth(bool Vector) const LLVM_OVERRIDE;
 | 
						|
  virtual unsigned getMaximumUnrollFactor() const LLVM_OVERRIDE;
 | 
						|
  virtual unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty,
 | 
						|
                                          OperandValueKind,
 | 
						|
                                          OperandValueKind) const LLVM_OVERRIDE;
 | 
						|
  virtual unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
 | 
						|
                                  int Index, Type *SubTp) const LLVM_OVERRIDE;
 | 
						|
  virtual unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
 | 
						|
                                    Type *Src) const LLVM_OVERRIDE;
 | 
						|
  virtual unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
 | 
						|
                                      Type *CondTy) const LLVM_OVERRIDE;
 | 
						|
  virtual unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
 | 
						|
                                      unsigned Index) const LLVM_OVERRIDE;
 | 
						|
  virtual unsigned getMemoryOpCost(unsigned Opcode, Type *Src,
 | 
						|
                                   unsigned Alignment,
 | 
						|
                                   unsigned AddressSpace) const LLVM_OVERRIDE;
 | 
						|
 | 
						|
  virtual unsigned
 | 
						|
  getAddressComputationCost(Type *PtrTy, bool IsComplex) const LLVM_OVERRIDE;
 | 
						|
  
 | 
						|
  virtual unsigned getReductionCost(unsigned Opcode, Type *Ty,
 | 
						|
                                    bool IsPairwiseForm) const LLVM_OVERRIDE;
 | 
						|
 | 
						|
  virtual unsigned getIntImmCost(const APInt &Imm,
 | 
						|
                                 Type *Ty) const LLVM_OVERRIDE;
 | 
						|
 | 
						|
  virtual unsigned getIntImmCost(unsigned Opcode, const APInt &Imm,
 | 
						|
                                 Type *Ty) const LLVM_OVERRIDE;
 | 
						|
  virtual unsigned getIntImmCost(Intrinsic::ID IID, const APInt &Imm,
 | 
						|
                                 Type *Ty) const LLVM_OVERRIDE;
 | 
						|
 | 
						|
  /// @}
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
INITIALIZE_AG_PASS(X86TTI, TargetTransformInfo, "x86tti",
 | 
						|
                   "X86 Target Transform Info", true, true, false)
 | 
						|
char X86TTI::ID = 0;
 | 
						|
 | 
						|
ImmutablePass *
 | 
						|
llvm::createX86TargetTransformInfoPass(const X86TargetMachine *TM) {
 | 
						|
  return new X86TTI(TM);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// X86 cost model.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
X86TTI::PopcntSupportKind X86TTI::getPopcntSupport(unsigned TyWidth) const {
 | 
						|
  assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
 | 
						|
  // TODO: Currently the __builtin_popcount() implementation using SSE3
 | 
						|
  //   instructions is inefficient. Once the problem is fixed, we should
 | 
						|
  //   call ST->hasSSE3() instead of ST->hasPOPCNT().
 | 
						|
  return ST->hasPOPCNT() ? PSK_FastHardware : PSK_Software;
 | 
						|
}
 | 
						|
 | 
						|
unsigned X86TTI::getNumberOfRegisters(bool Vector) const {
 | 
						|
  if (Vector && !ST->hasSSE1())
 | 
						|
    return 0;
 | 
						|
 | 
						|
  if (ST->is64Bit())
 | 
						|
    return 16;
 | 
						|
  return 8;
 | 
						|
}
 | 
						|
 | 
						|
unsigned X86TTI::getRegisterBitWidth(bool Vector) const {
 | 
						|
  if (Vector) {
 | 
						|
    if (ST->hasAVX()) return 256;
 | 
						|
    if (ST->hasSSE1()) return 128;
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ST->is64Bit())
 | 
						|
    return 64;
 | 
						|
  return 32;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
unsigned X86TTI::getMaximumUnrollFactor() const {
 | 
						|
  if (ST->isAtom())
 | 
						|
    return 1;
 | 
						|
 | 
						|
  // Sandybridge and Haswell have multiple execution ports and pipelined
 | 
						|
  // vector units.
 | 
						|
  if (ST->hasAVX())
 | 
						|
    return 4;
 | 
						|
 | 
						|
  return 2;
 | 
						|
}
 | 
						|
 | 
						|
unsigned X86TTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
 | 
						|
                                        OperandValueKind Op1Info,
 | 
						|
                                        OperandValueKind Op2Info) const {
 | 
						|
  // Legalize the type.
 | 
						|
  std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
 | 
						|
 | 
						|
  int ISD = TLI->InstructionOpcodeToISD(Opcode);
 | 
						|
  assert(ISD && "Invalid opcode");
 | 
						|
 | 
						|
  static const CostTblEntry<MVT::SimpleValueType> AVX2CostTable[] = {
 | 
						|
    // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
 | 
						|
    // customize them to detect the cases where shift amount is a scalar one.
 | 
						|
    { ISD::SHL,     MVT::v4i32,    1 },
 | 
						|
    { ISD::SRL,     MVT::v4i32,    1 },
 | 
						|
    { ISD::SRA,     MVT::v4i32,    1 },
 | 
						|
    { ISD::SHL,     MVT::v8i32,    1 },
 | 
						|
    { ISD::SRL,     MVT::v8i32,    1 },
 | 
						|
    { ISD::SRA,     MVT::v8i32,    1 },
 | 
						|
    { ISD::SHL,     MVT::v2i64,    1 },
 | 
						|
    { ISD::SRL,     MVT::v2i64,    1 },
 | 
						|
    { ISD::SHL,     MVT::v4i64,    1 },
 | 
						|
    { ISD::SRL,     MVT::v4i64,    1 },
 | 
						|
 | 
						|
    { ISD::SHL,  MVT::v32i8,  42 }, // cmpeqb sequence.
 | 
						|
    { ISD::SHL,  MVT::v16i16,  16*10 }, // Scalarized.
 | 
						|
 | 
						|
    { ISD::SRL,  MVT::v32i8,  32*10 }, // Scalarized.
 | 
						|
    { ISD::SRL,  MVT::v16i16,  8*10 }, // Scalarized.
 | 
						|
 | 
						|
    { ISD::SRA,  MVT::v32i8,  32*10 }, // Scalarized.
 | 
						|
    { ISD::SRA,  MVT::v16i16,  16*10 }, // Scalarized.
 | 
						|
    { ISD::SRA,  MVT::v4i64,  4*10 }, // Scalarized.
 | 
						|
 | 
						|
    // Vectorizing division is a bad idea. See the SSE2 table for more comments.
 | 
						|
    { ISD::SDIV,  MVT::v32i8,  32*20 },
 | 
						|
    { ISD::SDIV,  MVT::v16i16, 16*20 },
 | 
						|
    { ISD::SDIV,  MVT::v8i32,  8*20 },
 | 
						|
    { ISD::SDIV,  MVT::v4i64,  4*20 },
 | 
						|
    { ISD::UDIV,  MVT::v32i8,  32*20 },
 | 
						|
    { ISD::UDIV,  MVT::v16i16, 16*20 },
 | 
						|
    { ISD::UDIV,  MVT::v8i32,  8*20 },
 | 
						|
    { ISD::UDIV,  MVT::v4i64,  4*20 },
 | 
						|
  };
 | 
						|
 | 
						|
  // Look for AVX2 lowering tricks.
 | 
						|
  if (ST->hasAVX2()) {
 | 
						|
    int Idx = CostTableLookup(AVX2CostTable, ISD, LT.second);
 | 
						|
    if (Idx != -1)
 | 
						|
      return LT.first * AVX2CostTable[Idx].Cost;
 | 
						|
  }
 | 
						|
 | 
						|
  static const CostTblEntry<MVT::SimpleValueType>
 | 
						|
  SSE2UniformConstCostTable[] = {
 | 
						|
    // We don't correctly identify costs of casts because they are marked as
 | 
						|
    // custom.
 | 
						|
    // Constant splats are cheaper for the following instructions.
 | 
						|
    { ISD::SHL,  MVT::v16i8,  1 }, // psllw.
 | 
						|
    { ISD::SHL,  MVT::v8i16,  1 }, // psllw.
 | 
						|
    { ISD::SHL,  MVT::v4i32,  1 }, // pslld
 | 
						|
    { ISD::SHL,  MVT::v2i64,  1 }, // psllq.
 | 
						|
 | 
						|
    { ISD::SRL,  MVT::v16i8,  1 }, // psrlw.
 | 
						|
    { ISD::SRL,  MVT::v8i16,  1 }, // psrlw.
 | 
						|
    { ISD::SRL,  MVT::v4i32,  1 }, // psrld.
 | 
						|
    { ISD::SRL,  MVT::v2i64,  1 }, // psrlq.
 | 
						|
 | 
						|
    { ISD::SRA,  MVT::v16i8,  4 }, // psrlw, pand, pxor, psubb.
 | 
						|
    { ISD::SRA,  MVT::v8i16,  1 }, // psraw.
 | 
						|
    { ISD::SRA,  MVT::v4i32,  1 }, // psrad.
 | 
						|
  };
 | 
						|
 | 
						|
  if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
 | 
						|
      ST->hasSSE2()) {
 | 
						|
    int Idx = CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second);
 | 
						|
    if (Idx != -1)
 | 
						|
      return LT.first * SSE2UniformConstCostTable[Idx].Cost;
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  static const CostTblEntry<MVT::SimpleValueType> SSE2CostTable[] = {
 | 
						|
    // We don't correctly identify costs of casts because they are marked as
 | 
						|
    // custom.
 | 
						|
    // For some cases, where the shift amount is a scalar we would be able
 | 
						|
    // to generate better code. Unfortunately, when this is the case the value
 | 
						|
    // (the splat) will get hoisted out of the loop, thereby making it invisible
 | 
						|
    // to ISel. The cost model must return worst case assumptions because it is
 | 
						|
    // used for vectorization and we don't want to make vectorized code worse
 | 
						|
    // than scalar code.
 | 
						|
    { ISD::SHL,  MVT::v16i8,  30 }, // cmpeqb sequence.
 | 
						|
    { ISD::SHL,  MVT::v8i16,  8*10 }, // Scalarized.
 | 
						|
    { ISD::SHL,  MVT::v4i32,  2*5 }, // We optimized this using mul.
 | 
						|
    { ISD::SHL,  MVT::v2i64,  2*10 }, // Scalarized.
 | 
						|
 | 
						|
    { ISD::SRL,  MVT::v16i8,  16*10 }, // Scalarized.
 | 
						|
    { ISD::SRL,  MVT::v8i16,  8*10 }, // Scalarized.
 | 
						|
    { ISD::SRL,  MVT::v4i32,  4*10 }, // Scalarized.
 | 
						|
    { ISD::SRL,  MVT::v2i64,  2*10 }, // Scalarized.
 | 
						|
 | 
						|
    { ISD::SRA,  MVT::v16i8,  16*10 }, // Scalarized.
 | 
						|
    { ISD::SRA,  MVT::v8i16,  8*10 }, // Scalarized.
 | 
						|
    { ISD::SRA,  MVT::v4i32,  4*10 }, // Scalarized.
 | 
						|
    { ISD::SRA,  MVT::v2i64,  2*10 }, // Scalarized.
 | 
						|
 | 
						|
    // It is not a good idea to vectorize division. We have to scalarize it and
 | 
						|
    // in the process we will often end up having to spilling regular
 | 
						|
    // registers. The overhead of division is going to dominate most kernels
 | 
						|
    // anyways so try hard to prevent vectorization of division - it is
 | 
						|
    // generally a bad idea. Assume somewhat arbitrarily that we have to be able
 | 
						|
    // to hide "20 cycles" for each lane.
 | 
						|
    { ISD::SDIV,  MVT::v16i8,  16*20 },
 | 
						|
    { ISD::SDIV,  MVT::v8i16,  8*20 },
 | 
						|
    { ISD::SDIV,  MVT::v4i32,  4*20 },
 | 
						|
    { ISD::SDIV,  MVT::v2i64,  2*20 },
 | 
						|
    { ISD::UDIV,  MVT::v16i8,  16*20 },
 | 
						|
    { ISD::UDIV,  MVT::v8i16,  8*20 },
 | 
						|
    { ISD::UDIV,  MVT::v4i32,  4*20 },
 | 
						|
    { ISD::UDIV,  MVT::v2i64,  2*20 },
 | 
						|
  };
 | 
						|
 | 
						|
  if (ST->hasSSE2()) {
 | 
						|
    int Idx = CostTableLookup(SSE2CostTable, ISD, LT.second);
 | 
						|
    if (Idx != -1)
 | 
						|
      return LT.first * SSE2CostTable[Idx].Cost;
 | 
						|
  }
 | 
						|
 | 
						|
  static const CostTblEntry<MVT::SimpleValueType> AVX1CostTable[] = {
 | 
						|
    // We don't have to scalarize unsupported ops. We can issue two half-sized
 | 
						|
    // operations and we only need to extract the upper YMM half.
 | 
						|
    // Two ops + 1 extract + 1 insert = 4.
 | 
						|
    { ISD::MUL,     MVT::v8i32,    4 },
 | 
						|
    { ISD::SUB,     MVT::v8i32,    4 },
 | 
						|
    { ISD::ADD,     MVT::v8i32,    4 },
 | 
						|
    { ISD::SUB,     MVT::v4i64,    4 },
 | 
						|
    { ISD::ADD,     MVT::v4i64,    4 },
 | 
						|
    // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
 | 
						|
    // are lowered as a series of long multiplies(3), shifts(4) and adds(2)
 | 
						|
    // Because we believe v4i64 to be a legal type, we must also include the
 | 
						|
    // split factor of two in the cost table. Therefore, the cost here is 18
 | 
						|
    // instead of 9.
 | 
						|
    { ISD::MUL,     MVT::v4i64,    18 },
 | 
						|
  };
 | 
						|
 | 
						|
  // Look for AVX1 lowering tricks.
 | 
						|
  if (ST->hasAVX() && !ST->hasAVX2()) {
 | 
						|
    int Idx = CostTableLookup(AVX1CostTable, ISD, LT.second);
 | 
						|
    if (Idx != -1)
 | 
						|
      return LT.first * AVX1CostTable[Idx].Cost;
 | 
						|
  }
 | 
						|
 | 
						|
  // Custom lowering of vectors.
 | 
						|
  static const CostTblEntry<MVT::SimpleValueType> CustomLowered[] = {
 | 
						|
    // A v2i64/v4i64 and multiply is custom lowered as a series of long
 | 
						|
    // multiplies(3), shifts(4) and adds(2).
 | 
						|
    { ISD::MUL,     MVT::v2i64,    9 },
 | 
						|
    { ISD::MUL,     MVT::v4i64,    9 },
 | 
						|
  };
 | 
						|
  int Idx = CostTableLookup(CustomLowered, ISD, LT.second);
 | 
						|
  if (Idx != -1)
 | 
						|
    return LT.first * CustomLowered[Idx].Cost;
 | 
						|
 | 
						|
  // Special lowering of v4i32 mul on sse2, sse3: Lower v4i32 mul as 2x shuffle,
 | 
						|
  // 2x pmuludq, 2x shuffle.
 | 
						|
  if (ISD == ISD::MUL && LT.second == MVT::v4i32 && ST->hasSSE2() &&
 | 
						|
      !ST->hasSSE41())
 | 
						|
    return 6;
 | 
						|
 | 
						|
  // Fallback to the default implementation.
 | 
						|
  return TargetTransformInfo::getArithmeticInstrCost(Opcode, Ty, Op1Info,
 | 
						|
                                                     Op2Info);
 | 
						|
}
 | 
						|
 | 
						|
unsigned X86TTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
 | 
						|
                                Type *SubTp) const {
 | 
						|
  // We only estimate the cost of reverse shuffles.
 | 
						|
  if (Kind != SK_Reverse)
 | 
						|
    return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
 | 
						|
 | 
						|
  std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp);
 | 
						|
  unsigned Cost = 1;
 | 
						|
  if (LT.second.getSizeInBits() > 128)
 | 
						|
    Cost = 3; // Extract + insert + copy.
 | 
						|
 | 
						|
  // Multiple by the number of parts.
 | 
						|
  return Cost * LT.first;
 | 
						|
}
 | 
						|
 | 
						|
unsigned X86TTI::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const {
 | 
						|
  int ISD = TLI->InstructionOpcodeToISD(Opcode);
 | 
						|
  assert(ISD && "Invalid opcode");
 | 
						|
 | 
						|
  std::pair<unsigned, MVT> LTSrc = TLI->getTypeLegalizationCost(Src);
 | 
						|
  std::pair<unsigned, MVT> LTDest = TLI->getTypeLegalizationCost(Dst);
 | 
						|
 | 
						|
  static const TypeConversionCostTblEntry<MVT::SimpleValueType>
 | 
						|
  SSE2ConvTbl[] = {
 | 
						|
    // These are somewhat magic numbers justified by looking at the output of
 | 
						|
    // Intel's IACA, running some kernels and making sure when we take
 | 
						|
    // legalization into account the throughput will be overestimated.
 | 
						|
    { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
 | 
						|
    { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
 | 
						|
    { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
 | 
						|
    { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
 | 
						|
    { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
 | 
						|
    { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
 | 
						|
    { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
 | 
						|
    { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
 | 
						|
    // There are faster sequences for float conversions.
 | 
						|
    { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
 | 
						|
    { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 15 },
 | 
						|
    { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
 | 
						|
    { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
 | 
						|
    { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
 | 
						|
    { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 15 },
 | 
						|
    { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
 | 
						|
    { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
 | 
						|
  };
 | 
						|
 | 
						|
  if (ST->hasSSE2() && !ST->hasAVX()) {
 | 
						|
    int Idx =
 | 
						|
        ConvertCostTableLookup(SSE2ConvTbl, ISD, LTDest.second, LTSrc.second);
 | 
						|
    if (Idx != -1)
 | 
						|
      return LTSrc.first * SSE2ConvTbl[Idx].Cost;
 | 
						|
  }
 | 
						|
 | 
						|
  EVT SrcTy = TLI->getValueType(Src);
 | 
						|
  EVT DstTy = TLI->getValueType(Dst);
 | 
						|
 | 
						|
  // The function getSimpleVT only handles simple value types.
 | 
						|
  if (!SrcTy.isSimple() || !DstTy.isSimple())
 | 
						|
    return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
 | 
						|
 | 
						|
  static const TypeConversionCostTblEntry<MVT::SimpleValueType>
 | 
						|
  AVXConversionTbl[] = {
 | 
						|
    { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
 | 
						|
    { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
 | 
						|
    { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
 | 
						|
    { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
 | 
						|
    { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
 | 
						|
    { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
 | 
						|
    { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64, 1 },
 | 
						|
    { ISD::TRUNCATE,    MVT::v8i16, MVT::v8i32, 1 },
 | 
						|
    { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i16, 2 },
 | 
						|
 | 
						|
    { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i1,  8 },
 | 
						|
    { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i8,  8 },
 | 
						|
    { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
 | 
						|
    { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 1 },
 | 
						|
    { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1,  3 },
 | 
						|
    { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8,  3 },
 | 
						|
    { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 3 },
 | 
						|
    { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
 | 
						|
    { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i1,  3 },
 | 
						|
    { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i8,  3 },
 | 
						|
    { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i16, 3 },
 | 
						|
    { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i32, 1 },
 | 
						|
 | 
						|
    { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i1,  6 },
 | 
						|
    { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i8,  5 },
 | 
						|
    { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
 | 
						|
    { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 9 },
 | 
						|
    { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1,  7 },
 | 
						|
    { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8,  2 },
 | 
						|
    { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
 | 
						|
    { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 6 },
 | 
						|
    { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i1,  7 },
 | 
						|
    { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i8,  2 },
 | 
						|
    { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i16, 2 },
 | 
						|
    { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i32, 6 },
 | 
						|
 | 
						|
    { ISD::FP_TO_SINT,  MVT::v8i8,  MVT::v8f32, 1 },
 | 
						|
    { ISD::FP_TO_SINT,  MVT::v4i8,  MVT::v4f32, 1 },
 | 
						|
    { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1,  6 },
 | 
						|
    { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1,  9 },
 | 
						|
    { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1,  8 },
 | 
						|
    { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8,  6 },
 | 
						|
    { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 6 },
 | 
						|
    { ISD::TRUNCATE,    MVT::v8i32, MVT::v8i64, 3 },
 | 
						|
  };
 | 
						|
 | 
						|
  if (ST->hasAVX()) {
 | 
						|
    int Idx = ConvertCostTableLookup(AVXConversionTbl, ISD, DstTy.getSimpleVT(),
 | 
						|
                                     SrcTy.getSimpleVT());
 | 
						|
    if (Idx != -1)
 | 
						|
      return AVXConversionTbl[Idx].Cost;
 | 
						|
  }
 | 
						|
 | 
						|
  return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
 | 
						|
}
 | 
						|
 | 
						|
unsigned X86TTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
 | 
						|
                                    Type *CondTy) const {
 | 
						|
  // Legalize the type.
 | 
						|
  std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
 | 
						|
 | 
						|
  MVT MTy = LT.second;
 | 
						|
 | 
						|
  int ISD = TLI->InstructionOpcodeToISD(Opcode);
 | 
						|
  assert(ISD && "Invalid opcode");
 | 
						|
 | 
						|
  static const CostTblEntry<MVT::SimpleValueType> SSE42CostTbl[] = {
 | 
						|
    { ISD::SETCC,   MVT::v2f64,   1 },
 | 
						|
    { ISD::SETCC,   MVT::v4f32,   1 },
 | 
						|
    { ISD::SETCC,   MVT::v2i64,   1 },
 | 
						|
    { ISD::SETCC,   MVT::v4i32,   1 },
 | 
						|
    { ISD::SETCC,   MVT::v8i16,   1 },
 | 
						|
    { ISD::SETCC,   MVT::v16i8,   1 },
 | 
						|
  };
 | 
						|
 | 
						|
  static const CostTblEntry<MVT::SimpleValueType> AVX1CostTbl[] = {
 | 
						|
    { ISD::SETCC,   MVT::v4f64,   1 },
 | 
						|
    { ISD::SETCC,   MVT::v8f32,   1 },
 | 
						|
    // AVX1 does not support 8-wide integer compare.
 | 
						|
    { ISD::SETCC,   MVT::v4i64,   4 },
 | 
						|
    { ISD::SETCC,   MVT::v8i32,   4 },
 | 
						|
    { ISD::SETCC,   MVT::v16i16,  4 },
 | 
						|
    { ISD::SETCC,   MVT::v32i8,   4 },
 | 
						|
  };
 | 
						|
 | 
						|
  static const CostTblEntry<MVT::SimpleValueType> AVX2CostTbl[] = {
 | 
						|
    { ISD::SETCC,   MVT::v4i64,   1 },
 | 
						|
    { ISD::SETCC,   MVT::v8i32,   1 },
 | 
						|
    { ISD::SETCC,   MVT::v16i16,  1 },
 | 
						|
    { ISD::SETCC,   MVT::v32i8,   1 },
 | 
						|
  };
 | 
						|
 | 
						|
  if (ST->hasAVX2()) {
 | 
						|
    int Idx = CostTableLookup(AVX2CostTbl, ISD, MTy);
 | 
						|
    if (Idx != -1)
 | 
						|
      return LT.first * AVX2CostTbl[Idx].Cost;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ST->hasAVX()) {
 | 
						|
    int Idx = CostTableLookup(AVX1CostTbl, ISD, MTy);
 | 
						|
    if (Idx != -1)
 | 
						|
      return LT.first * AVX1CostTbl[Idx].Cost;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ST->hasSSE42()) {
 | 
						|
    int Idx = CostTableLookup(SSE42CostTbl, ISD, MTy);
 | 
						|
    if (Idx != -1)
 | 
						|
      return LT.first * SSE42CostTbl[Idx].Cost;
 | 
						|
  }
 | 
						|
 | 
						|
  return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy);
 | 
						|
}
 | 
						|
 | 
						|
unsigned X86TTI::getVectorInstrCost(unsigned Opcode, Type *Val,
 | 
						|
                                    unsigned Index) const {
 | 
						|
  assert(Val->isVectorTy() && "This must be a vector type");
 | 
						|
 | 
						|
  if (Index != -1U) {
 | 
						|
    // Legalize the type.
 | 
						|
    std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Val);
 | 
						|
 | 
						|
    // This type is legalized to a scalar type.
 | 
						|
    if (!LT.second.isVector())
 | 
						|
      return 0;
 | 
						|
 | 
						|
    // The type may be split. Normalize the index to the new type.
 | 
						|
    unsigned Width = LT.second.getVectorNumElements();
 | 
						|
    Index = Index % Width;
 | 
						|
 | 
						|
    // Floating point scalars are already located in index #0.
 | 
						|
    if (Val->getScalarType()->isFloatingPointTy() && Index == 0)
 | 
						|
      return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  return TargetTransformInfo::getVectorInstrCost(Opcode, Val, Index);
 | 
						|
}
 | 
						|
 | 
						|
unsigned X86TTI::getScalarizationOverhead(Type *Ty, bool Insert,
 | 
						|
                                            bool Extract) const {
 | 
						|
  assert (Ty->isVectorTy() && "Can only scalarize vectors");
 | 
						|
  unsigned Cost = 0;
 | 
						|
 | 
						|
  for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
 | 
						|
    if (Insert)
 | 
						|
      Cost += TopTTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
 | 
						|
    if (Extract)
 | 
						|
      Cost += TopTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
 | 
						|
  }
 | 
						|
 | 
						|
  return Cost;
 | 
						|
}
 | 
						|
 | 
						|
unsigned X86TTI::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
 | 
						|
                                 unsigned AddressSpace) const {
 | 
						|
  // Handle non-power-of-two vectors such as <3 x float>
 | 
						|
  if (VectorType *VTy = dyn_cast<VectorType>(Src)) {
 | 
						|
    unsigned NumElem = VTy->getVectorNumElements();
 | 
						|
 | 
						|
    // Handle a few common cases:
 | 
						|
    // <3 x float>
 | 
						|
    if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
 | 
						|
      // Cost = 64 bit store + extract + 32 bit store.
 | 
						|
      return 3;
 | 
						|
 | 
						|
    // <3 x double>
 | 
						|
    if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
 | 
						|
      // Cost = 128 bit store + unpack + 64 bit store.
 | 
						|
      return 3;
 | 
						|
 | 
						|
    // Assume that all other non-power-of-two numbers are scalarized.
 | 
						|
    if (!isPowerOf2_32(NumElem)) {
 | 
						|
      unsigned Cost = TargetTransformInfo::getMemoryOpCost(Opcode,
 | 
						|
                                                           VTy->getScalarType(),
 | 
						|
                                                           Alignment,
 | 
						|
                                                           AddressSpace);
 | 
						|
      unsigned SplitCost = getScalarizationOverhead(Src,
 | 
						|
                                                    Opcode == Instruction::Load,
 | 
						|
                                                    Opcode==Instruction::Store);
 | 
						|
      return NumElem * Cost + SplitCost;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Legalize the type.
 | 
						|
  std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
 | 
						|
  assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
 | 
						|
         "Invalid Opcode");
 | 
						|
 | 
						|
  // Each load/store unit costs 1.
 | 
						|
  unsigned Cost = LT.first * 1;
 | 
						|
 | 
						|
  // On Sandybridge 256bit load/stores are double pumped
 | 
						|
  // (but not on Haswell).
 | 
						|
  if (LT.second.getSizeInBits() > 128 && !ST->hasAVX2())
 | 
						|
    Cost*=2;
 | 
						|
 | 
						|
  return Cost;
 | 
						|
}
 | 
						|
 | 
						|
unsigned X86TTI::getAddressComputationCost(Type *Ty, bool IsComplex) const {
 | 
						|
  // Address computations in vectorized code with non-consecutive addresses will
 | 
						|
  // likely result in more instructions compared to scalar code where the
 | 
						|
  // computation can more often be merged into the index mode. The resulting
 | 
						|
  // extra micro-ops can significantly decrease throughput.
 | 
						|
  unsigned NumVectorInstToHideOverhead = 10;
 | 
						|
 | 
						|
  if (Ty->isVectorTy() && IsComplex)
 | 
						|
    return NumVectorInstToHideOverhead;
 | 
						|
 | 
						|
  return TargetTransformInfo::getAddressComputationCost(Ty, IsComplex);
 | 
						|
}
 | 
						|
 | 
						|
unsigned X86TTI::getReductionCost(unsigned Opcode, Type *ValTy,
 | 
						|
                                  bool IsPairwise) const {
 | 
						|
  
 | 
						|
  std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
 | 
						|
  
 | 
						|
  MVT MTy = LT.second;
 | 
						|
  
 | 
						|
  int ISD = TLI->InstructionOpcodeToISD(Opcode);
 | 
						|
  assert(ISD && "Invalid opcode");
 | 
						|
 
 | 
						|
  // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput 
 | 
						|
  // and make it as the cost. 
 | 
						|
 
 | 
						|
  static const CostTblEntry<MVT::SimpleValueType> SSE42CostTblPairWise[] = {
 | 
						|
    { ISD::FADD,  MVT::v2f64,   2 },
 | 
						|
    { ISD::FADD,  MVT::v4f32,   4 },
 | 
						|
    { ISD::ADD,   MVT::v2i64,   2 },      // The data reported by the IACA tool is "1.6".
 | 
						|
    { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.5".
 | 
						|
    { ISD::ADD,   MVT::v8i16,   5 },
 | 
						|
  };
 | 
						|
 
 | 
						|
  static const CostTblEntry<MVT::SimpleValueType> AVX1CostTblPairWise[] = {
 | 
						|
    { ISD::FADD,  MVT::v4f32,   4 },
 | 
						|
    { ISD::FADD,  MVT::v4f64,   5 },
 | 
						|
    { ISD::FADD,  MVT::v8f32,   7 },
 | 
						|
    { ISD::ADD,   MVT::v2i64,   1 },      // The data reported by the IACA tool is "1.5".
 | 
						|
    { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.5".
 | 
						|
    { ISD::ADD,   MVT::v4i64,   5 },      // The data reported by the IACA tool is "4.8".
 | 
						|
    { ISD::ADD,   MVT::v8i16,   5 },
 | 
						|
    { ISD::ADD,   MVT::v8i32,   5 },
 | 
						|
  };
 | 
						|
 | 
						|
  static const CostTblEntry<MVT::SimpleValueType> SSE42CostTblNoPairWise[] = {
 | 
						|
    { ISD::FADD,  MVT::v2f64,   2 },
 | 
						|
    { ISD::FADD,  MVT::v4f32,   4 },
 | 
						|
    { ISD::ADD,   MVT::v2i64,   2 },      // The data reported by the IACA tool is "1.6".
 | 
						|
    { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.3".
 | 
						|
    { ISD::ADD,   MVT::v8i16,   4 },      // The data reported by the IACA tool is "4.3".
 | 
						|
  };
 | 
						|
  
 | 
						|
  static const CostTblEntry<MVT::SimpleValueType> AVX1CostTblNoPairWise[] = {
 | 
						|
    { ISD::FADD,  MVT::v4f32,   3 },
 | 
						|
    { ISD::FADD,  MVT::v4f64,   3 },
 | 
						|
    { ISD::FADD,  MVT::v8f32,   4 },
 | 
						|
    { ISD::ADD,   MVT::v2i64,   1 },      // The data reported by the IACA tool is "1.5".
 | 
						|
    { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "2.8".
 | 
						|
    { ISD::ADD,   MVT::v4i64,   3 },
 | 
						|
    { ISD::ADD,   MVT::v8i16,   4 },
 | 
						|
    { ISD::ADD,   MVT::v8i32,   5 },
 | 
						|
  };
 | 
						|
  
 | 
						|
  if (IsPairwise) {
 | 
						|
    if (ST->hasAVX()) {
 | 
						|
      int Idx = CostTableLookup(AVX1CostTblPairWise, ISD, MTy);
 | 
						|
      if (Idx != -1)
 | 
						|
        return LT.first * AVX1CostTblPairWise[Idx].Cost;
 | 
						|
    }
 | 
						|
  
 | 
						|
    if (ST->hasSSE42()) {
 | 
						|
      int Idx = CostTableLookup(SSE42CostTblPairWise, ISD, MTy);
 | 
						|
      if (Idx != -1)
 | 
						|
        return LT.first * SSE42CostTblPairWise[Idx].Cost;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    if (ST->hasAVX()) {
 | 
						|
      int Idx = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy);
 | 
						|
      if (Idx != -1)
 | 
						|
        return LT.first * AVX1CostTblNoPairWise[Idx].Cost;
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (ST->hasSSE42()) {
 | 
						|
      int Idx = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy);
 | 
						|
      if (Idx != -1)
 | 
						|
        return LT.first * SSE42CostTblNoPairWise[Idx].Cost;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return TargetTransformInfo::getReductionCost(Opcode, ValTy, IsPairwise);
 | 
						|
}
 | 
						|
 | 
						|
unsigned X86TTI::getIntImmCost(const APInt &Imm, Type *Ty) const {
 | 
						|
  assert(Ty->isIntegerTy());
 | 
						|
 | 
						|
  unsigned BitSize = Ty->getPrimitiveSizeInBits();
 | 
						|
  if (BitSize == 0)
 | 
						|
    return ~0U;
 | 
						|
 | 
						|
  if (Imm.getBitWidth() <= 64 &&
 | 
						|
      (isInt<32>(Imm.getSExtValue()) || isUInt<32>(Imm.getZExtValue())))
 | 
						|
    return TCC_Basic;
 | 
						|
  else
 | 
						|
    return 2 * TCC_Basic;
 | 
						|
}
 | 
						|
 | 
						|
unsigned X86TTI::getIntImmCost(unsigned Opcode, const APInt &Imm,
 | 
						|
                               Type *Ty) const {
 | 
						|
  assert(Ty->isIntegerTy());
 | 
						|
 | 
						|
  unsigned BitSize = Ty->getPrimitiveSizeInBits();
 | 
						|
  if (BitSize == 0)
 | 
						|
    return ~0U;
 | 
						|
 | 
						|
  switch (Opcode) {
 | 
						|
  case Instruction::Add:
 | 
						|
  case Instruction::Sub:
 | 
						|
  case Instruction::Mul:
 | 
						|
  case Instruction::UDiv:
 | 
						|
  case Instruction::SDiv:
 | 
						|
  case Instruction::URem:
 | 
						|
  case Instruction::SRem:
 | 
						|
  case Instruction::Shl:
 | 
						|
  case Instruction::LShr:
 | 
						|
  case Instruction::AShr:
 | 
						|
  case Instruction::And:
 | 
						|
  case Instruction::Or:
 | 
						|
  case Instruction::Xor:
 | 
						|
  case Instruction::ICmp:
 | 
						|
    if (Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
 | 
						|
      return TCC_Free;
 | 
						|
    else
 | 
						|
      return X86TTI::getIntImmCost(Imm, Ty);
 | 
						|
  case Instruction::Trunc:
 | 
						|
  case Instruction::ZExt:
 | 
						|
  case Instruction::SExt:
 | 
						|
  case Instruction::IntToPtr:
 | 
						|
  case Instruction::PtrToInt:
 | 
						|
  case Instruction::BitCast:
 | 
						|
  case Instruction::Call:
 | 
						|
  case Instruction::Select:
 | 
						|
  case Instruction::Ret:
 | 
						|
  case Instruction::Load:
 | 
						|
  case Instruction::Store:
 | 
						|
    return X86TTI::getIntImmCost(Imm, Ty);
 | 
						|
  }
 | 
						|
  return TargetTransformInfo::getIntImmCost(Opcode, Imm, Ty);
 | 
						|
}
 | 
						|
 | 
						|
unsigned X86TTI::getIntImmCost(Intrinsic::ID IID, const APInt &Imm,
 | 
						|
                               Type *Ty) const {
 | 
						|
  assert(Ty->isIntegerTy());
 | 
						|
 | 
						|
  unsigned BitSize = Ty->getPrimitiveSizeInBits();
 | 
						|
  if (BitSize == 0)
 | 
						|
    return ~0U;
 | 
						|
 | 
						|
  switch (IID) {
 | 
						|
  default: return TargetTransformInfo::getIntImmCost(IID, Imm, Ty);
 | 
						|
  case Intrinsic::sadd_with_overflow:
 | 
						|
  case Intrinsic::uadd_with_overflow:
 | 
						|
  case Intrinsic::ssub_with_overflow:
 | 
						|
  case Intrinsic::usub_with_overflow:
 | 
						|
  case Intrinsic::smul_with_overflow:
 | 
						|
  case Intrinsic::umul_with_overflow:
 | 
						|
    if (Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
 | 
						|
      return TCC_Free;
 | 
						|
    else
 | 
						|
      return X86TTI::getIntImmCost(Imm, Ty);
 | 
						|
  case Intrinsic::experimental_stackmap:
 | 
						|
  case Intrinsic::experimental_patchpoint_void:
 | 
						|
  case Intrinsic::experimental_patchpoint_i64:
 | 
						|
    if (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))
 | 
						|
      return TCC_Free;
 | 
						|
    else
 | 
						|
      return X86TTI::getIntImmCost(Imm, Ty);
 | 
						|
  }
 | 
						|
}
 |