mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-04 22:07:27 +00:00
7d821db958
the exit node. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@4038 91177308-0d34-0410-b5e6-96231b3b80d8
202 lines
7.7 KiB
C++
202 lines
7.7 KiB
C++
//===- PostDominators.cpp - Post-Dominator Calculation --------------------===//
|
|
//
|
|
// This file implements the post-dominator construction algorithms.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/PostDominators.h"
|
|
#include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "Support/DepthFirstIterator.h"
|
|
#include "Support/SetOperations.h"
|
|
using std::set;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PostDominatorSet Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static RegisterAnalysis<PostDominatorSet>
|
|
B("postdomset", "Post-Dominator Set Construction", true);
|
|
|
|
// Postdominator set construction. This converts the specified function to only
|
|
// have a single exit node (return stmt), then calculates the post dominance
|
|
// sets for the function.
|
|
//
|
|
bool PostDominatorSet::runOnFunction(Function &F) {
|
|
Doms.clear(); // Reset from the last time we were run...
|
|
// Since we require that the unify all exit nodes pass has been run, we know
|
|
// that there can be at most one return instruction in the function left.
|
|
// Get it.
|
|
//
|
|
Root = getAnalysis<UnifyFunctionExitNodes>().getExitNode();
|
|
|
|
if (Root == 0) { // No exit node for the function? Postdomsets are all empty
|
|
for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
|
|
Doms[FI] = DomSetType();
|
|
return false;
|
|
}
|
|
|
|
bool Changed;
|
|
do {
|
|
Changed = false;
|
|
|
|
set<const BasicBlock*> Visited;
|
|
DomSetType WorkingSet;
|
|
idf_iterator<BasicBlock*> It = idf_begin(Root), End = idf_end(Root);
|
|
for ( ; It != End; ++It) {
|
|
BasicBlock *BB = *It;
|
|
succ_iterator PI = succ_begin(BB), PEnd = succ_end(BB);
|
|
if (PI != PEnd) { // Is there SOME predecessor?
|
|
// Loop until we get to a successor that has had it's dom set filled
|
|
// in at least once. We are guaranteed to have this because we are
|
|
// traversing the graph in DFO and have handled start nodes specially.
|
|
//
|
|
while (Doms[*PI].size() == 0) ++PI;
|
|
WorkingSet = Doms[*PI];
|
|
|
|
for (++PI; PI != PEnd; ++PI) { // Intersect all of the successor sets
|
|
DomSetType &PredSet = Doms[*PI];
|
|
if (PredSet.size())
|
|
set_intersect(WorkingSet, PredSet);
|
|
}
|
|
} else if (BB != Root) {
|
|
// If this isn't the root basic block and it has no successors, it must
|
|
// be an non-returning block. Fib a bit by saying that the root node
|
|
// postdominates this unreachable node. This isn't exactly true,
|
|
// because there is no path from this node to the root node, but it is
|
|
// sorta true because any paths to the exit node would have to go
|
|
// through this node.
|
|
//
|
|
// This allows for postdominator properties to be built for code that
|
|
// doesn't return in a reasonable manner.
|
|
//
|
|
WorkingSet = Doms[Root];
|
|
}
|
|
|
|
WorkingSet.insert(BB); // A block always dominates itself
|
|
DomSetType &BBSet = Doms[BB];
|
|
if (BBSet != WorkingSet) {
|
|
BBSet.swap(WorkingSet); // Constant time operation!
|
|
Changed = true; // The sets changed.
|
|
}
|
|
WorkingSet.clear(); // Clear out the set for next iteration
|
|
}
|
|
} while (Changed);
|
|
return false;
|
|
}
|
|
|
|
// getAnalysisUsage - This obviously provides a post-dominator set, but it also
|
|
// requires the UnifyFunctionExitNodes pass.
|
|
//
|
|
void PostDominatorSet::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesAll();
|
|
AU.addRequired<UnifyFunctionExitNodes>();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ImmediatePostDominators Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static RegisterAnalysis<ImmediatePostDominators>
|
|
D("postidom", "Immediate Post-Dominators Construction", true);
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PostDominatorTree Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static RegisterAnalysis<PostDominatorTree>
|
|
F("postdomtree", "Post-Dominator Tree Construction", true);
|
|
|
|
void PostDominatorTree::calculate(const PostDominatorSet &DS) {
|
|
Nodes[Root] = new Node(Root, 0); // Add a node for the root...
|
|
|
|
if (Root) {
|
|
// Iterate over all nodes in depth first order...
|
|
for (idf_iterator<BasicBlock*> I = idf_begin(Root), E = idf_end(Root);
|
|
I != E; ++I) {
|
|
BasicBlock *BB = *I;
|
|
const DominatorSet::DomSetType &Dominators = DS.getDominators(BB);
|
|
unsigned DomSetSize = Dominators.size();
|
|
if (DomSetSize == 1) continue; // Root node... IDom = null
|
|
|
|
// Loop over all dominators of this node. This corresponds to looping
|
|
// over nodes in the dominator chain, looking for a node whose dominator
|
|
// set is equal to the current nodes, except that the current node does
|
|
// not exist in it. This means that it is one level higher in the dom
|
|
// chain than the current node, and it is our idom! We know that we have
|
|
// already added a DominatorTree node for our idom, because the idom must
|
|
// be a predecessor in the depth first order that we are iterating through
|
|
// the function.
|
|
//
|
|
DominatorSet::DomSetType::const_iterator I = Dominators.begin();
|
|
DominatorSet::DomSetType::const_iterator End = Dominators.end();
|
|
for (; I != End; ++I) { // Iterate over dominators...
|
|
// All of our dominators should form a chain, where the number
|
|
// of elements in the dominator set indicates what level the
|
|
// node is at in the chain. We want the node immediately
|
|
// above us, so it will have an identical dominator set,
|
|
// except that BB will not dominate it... therefore it's
|
|
// dominator set size will be one less than BB's...
|
|
//
|
|
if (DS.getDominators(*I).size() == DomSetSize - 1) {
|
|
// We know that the immediate dominator should already have a node,
|
|
// because we are traversing the CFG in depth first order!
|
|
//
|
|
Node *IDomNode = Nodes[*I];
|
|
assert(IDomNode && "No node for IDOM?");
|
|
|
|
// Add a new tree node for this BasicBlock, and link it as a child of
|
|
// IDomNode
|
|
Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PostDominanceFrontier Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static RegisterAnalysis<PostDominanceFrontier>
|
|
H("postdomfrontier", "Post-Dominance Frontier Construction", true);
|
|
|
|
const DominanceFrontier::DomSetType &
|
|
PostDominanceFrontier::calculate(const PostDominatorTree &DT,
|
|
const DominatorTree::Node *Node) {
|
|
// Loop over CFG successors to calculate DFlocal[Node]
|
|
BasicBlock *BB = Node->getNode();
|
|
DomSetType &S = Frontiers[BB]; // The new set to fill in...
|
|
if (!Root) return S;
|
|
|
|
for (pred_iterator SI = pred_begin(BB), SE = pred_end(BB);
|
|
SI != SE; ++SI) {
|
|
// Does Node immediately dominate this predeccessor?
|
|
if (DT[*SI]->getIDom() != Node)
|
|
S.insert(*SI);
|
|
}
|
|
|
|
// At this point, S is DFlocal. Now we union in DFup's of our children...
|
|
// Loop through and visit the nodes that Node immediately dominates (Node's
|
|
// children in the IDomTree)
|
|
//
|
|
for (PostDominatorTree::Node::const_iterator
|
|
NI = Node->begin(), NE = Node->end(); NI != NE; ++NI) {
|
|
DominatorTree::Node *IDominee = *NI;
|
|
const DomSetType &ChildDF = calculate(DT, IDominee);
|
|
|
|
DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end();
|
|
for (; CDFI != CDFE; ++CDFI) {
|
|
if (!Node->dominates(DT[*CDFI]))
|
|
S.insert(*CDFI);
|
|
}
|
|
}
|
|
|
|
return S;
|
|
}
|
|
|
|
// stub - a dummy function to make linking work ok.
|
|
void PostDominanceFrontier::stub() {
|
|
}
|