mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	MIOperands/ConstMIOperands are classes iterating over the MachineOperand of a MachineInstr, however MachineInstr::mop_iterator does the same thing. I assume these two iterators exist to have a uniform interface to iterate over the operands of a machine instruction bundle and a single machine instruction. However in practice I find it more confusing to have 2 different iterator classes, so this patch transforms (nearly all) the code to use mop_iterators. The only exception being MIOperands::anlayzePhysReg() and MIOperands::analyzeVirtReg() still needing an equivalent, I leave that as an exercise for the next patch. Differential Revision: http://reviews.llvm.org/D9932 This version is slightly modified from the proposed revision in that it introduces MachineInstr::getOperandNo to avoid the extra counting variable in the few loops that previously used MIOperands::getOperandNo. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238539 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1471 lines
		
	
	
		
			53 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1471 lines
		
	
	
		
			53 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ---------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass performs loop invariant code motion on machine instructions. We
 | 
						|
// attempt to remove as much code from the body of a loop as possible.
 | 
						|
//
 | 
						|
// This pass is not intended to be a replacement or a complete alternative
 | 
						|
// for the LLVM-IR-level LICM pass. It is only designed to hoist simple
 | 
						|
// constructs that are not exposed before lowering and instruction selection.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/CodeGen/MachineDominators.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineLoopInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineMemOperand.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/PseudoSourceValue.h"
 | 
						|
#include "llvm/MC/MCInstrItineraries.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetLowering.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Target/TargetRegisterInfo.h"
 | 
						|
#include "llvm/Target/TargetSubtargetInfo.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "machine-licm"
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
AvoidSpeculation("avoid-speculation",
 | 
						|
                 cl::desc("MachineLICM should avoid speculation"),
 | 
						|
                 cl::init(true), cl::Hidden);
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
HoistCheapInsts("hoist-cheap-insts",
 | 
						|
                cl::desc("MachineLICM should hoist even cheap instructions"),
 | 
						|
                cl::init(false), cl::Hidden);
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
SinkInstsToAvoidSpills("sink-insts-to-avoid-spills",
 | 
						|
                       cl::desc("MachineLICM should sink instructions into "
 | 
						|
                                "loops to avoid register spills"),
 | 
						|
                       cl::init(false), cl::Hidden);
 | 
						|
 | 
						|
STATISTIC(NumHoisted,
 | 
						|
          "Number of machine instructions hoisted out of loops");
 | 
						|
STATISTIC(NumLowRP,
 | 
						|
          "Number of instructions hoisted in low reg pressure situation");
 | 
						|
STATISTIC(NumHighLatency,
 | 
						|
          "Number of high latency instructions hoisted");
 | 
						|
STATISTIC(NumCSEed,
 | 
						|
          "Number of hoisted machine instructions CSEed");
 | 
						|
STATISTIC(NumPostRAHoisted,
 | 
						|
          "Number of machine instructions hoisted out of loops post regalloc");
 | 
						|
 | 
						|
namespace {
 | 
						|
  class MachineLICM : public MachineFunctionPass {
 | 
						|
    const TargetInstrInfo *TII;
 | 
						|
    const TargetLoweringBase *TLI;
 | 
						|
    const TargetRegisterInfo *TRI;
 | 
						|
    const MachineFrameInfo *MFI;
 | 
						|
    MachineRegisterInfo *MRI;
 | 
						|
    const InstrItineraryData *InstrItins;
 | 
						|
    bool PreRegAlloc;
 | 
						|
 | 
						|
    // Various analyses that we use...
 | 
						|
    AliasAnalysis        *AA;      // Alias analysis info.
 | 
						|
    MachineLoopInfo      *MLI;     // Current MachineLoopInfo
 | 
						|
    MachineDominatorTree *DT;      // Machine dominator tree for the cur loop
 | 
						|
 | 
						|
    // State that is updated as we process loops
 | 
						|
    bool         Changed;          // True if a loop is changed.
 | 
						|
    bool         FirstInLoop;      // True if it's the first LICM in the loop.
 | 
						|
    MachineLoop *CurLoop;          // The current loop we are working on.
 | 
						|
    MachineBasicBlock *CurPreheader; // The preheader for CurLoop.
 | 
						|
 | 
						|
    // Exit blocks for CurLoop.
 | 
						|
    SmallVector<MachineBasicBlock*, 8> ExitBlocks;
 | 
						|
 | 
						|
    bool isExitBlock(const MachineBasicBlock *MBB) const {
 | 
						|
      return std::find(ExitBlocks.begin(), ExitBlocks.end(), MBB) !=
 | 
						|
        ExitBlocks.end();
 | 
						|
    }
 | 
						|
 | 
						|
    // Track 'estimated' register pressure.
 | 
						|
    SmallSet<unsigned, 32> RegSeen;
 | 
						|
    SmallVector<unsigned, 8> RegPressure;
 | 
						|
 | 
						|
    // Register pressure "limit" per register pressure set. If the pressure
 | 
						|
    // is higher than the limit, then it's considered high.
 | 
						|
    SmallVector<unsigned, 8> RegLimit;
 | 
						|
 | 
						|
    // Register pressure on path leading from loop preheader to current BB.
 | 
						|
    SmallVector<SmallVector<unsigned, 8>, 16> BackTrace;
 | 
						|
 | 
						|
    // For each opcode, keep a list of potential CSE instructions.
 | 
						|
    DenseMap<unsigned, std::vector<const MachineInstr*> > CSEMap;
 | 
						|
 | 
						|
    enum {
 | 
						|
      SpeculateFalse   = 0,
 | 
						|
      SpeculateTrue    = 1,
 | 
						|
      SpeculateUnknown = 2
 | 
						|
    };
 | 
						|
 | 
						|
    // If a MBB does not dominate loop exiting blocks then it may not safe
 | 
						|
    // to hoist loads from this block.
 | 
						|
    // Tri-state: 0 - false, 1 - true, 2 - unknown
 | 
						|
    unsigned SpeculationState;
 | 
						|
 | 
						|
  public:
 | 
						|
    static char ID; // Pass identification, replacement for typeid
 | 
						|
    MachineLICM() :
 | 
						|
      MachineFunctionPass(ID), PreRegAlloc(true) {
 | 
						|
        initializeMachineLICMPass(*PassRegistry::getPassRegistry());
 | 
						|
      }
 | 
						|
 | 
						|
    explicit MachineLICM(bool PreRA) :
 | 
						|
      MachineFunctionPass(ID), PreRegAlloc(PreRA) {
 | 
						|
        initializeMachineLICMPass(*PassRegistry::getPassRegistry());
 | 
						|
      }
 | 
						|
 | 
						|
    bool runOnMachineFunction(MachineFunction &MF) override;
 | 
						|
 | 
						|
    void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
      AU.addRequired<MachineLoopInfo>();
 | 
						|
      AU.addRequired<MachineDominatorTree>();
 | 
						|
      AU.addRequired<AliasAnalysis>();
 | 
						|
      AU.addPreserved<MachineLoopInfo>();
 | 
						|
      AU.addPreserved<MachineDominatorTree>();
 | 
						|
      MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
    }
 | 
						|
 | 
						|
    void releaseMemory() override {
 | 
						|
      RegSeen.clear();
 | 
						|
      RegPressure.clear();
 | 
						|
      RegLimit.clear();
 | 
						|
      BackTrace.clear();
 | 
						|
      CSEMap.clear();
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
    /// CandidateInfo - Keep track of information about hoisting candidates.
 | 
						|
    struct CandidateInfo {
 | 
						|
      MachineInstr *MI;
 | 
						|
      unsigned      Def;
 | 
						|
      int           FI;
 | 
						|
      CandidateInfo(MachineInstr *mi, unsigned def, int fi)
 | 
						|
        : MI(mi), Def(def), FI(fi) {}
 | 
						|
    };
 | 
						|
 | 
						|
    /// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop
 | 
						|
    /// invariants out to the preheader.
 | 
						|
    void HoistRegionPostRA();
 | 
						|
 | 
						|
    /// HoistPostRA - When an instruction is found to only use loop invariant
 | 
						|
    /// operands that is safe to hoist, this instruction is called to do the
 | 
						|
    /// dirty work.
 | 
						|
    void HoistPostRA(MachineInstr *MI, unsigned Def);
 | 
						|
 | 
						|
    /// ProcessMI - Examine the instruction for potentai LICM candidate. Also
 | 
						|
    /// gather register def and frame object update information.
 | 
						|
    void ProcessMI(MachineInstr *MI,
 | 
						|
                   BitVector &PhysRegDefs,
 | 
						|
                   BitVector &PhysRegClobbers,
 | 
						|
                   SmallSet<int, 32> &StoredFIs,
 | 
						|
                   SmallVectorImpl<CandidateInfo> &Candidates);
 | 
						|
 | 
						|
    /// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the
 | 
						|
    /// current loop.
 | 
						|
    void AddToLiveIns(unsigned Reg);
 | 
						|
 | 
						|
    /// IsLICMCandidate - Returns true if the instruction may be a suitable
 | 
						|
    /// candidate for LICM. e.g. If the instruction is a call, then it's
 | 
						|
    /// obviously not safe to hoist it.
 | 
						|
    bool IsLICMCandidate(MachineInstr &I);
 | 
						|
 | 
						|
    /// IsLoopInvariantInst - Returns true if the instruction is loop
 | 
						|
    /// invariant. I.e., all virtual register operands are defined outside of
 | 
						|
    /// the loop, physical registers aren't accessed (explicitly or implicitly),
 | 
						|
    /// and the instruction is hoistable.
 | 
						|
    ///
 | 
						|
    bool IsLoopInvariantInst(MachineInstr &I);
 | 
						|
 | 
						|
    /// HasLoopPHIUse - Return true if the specified instruction is used by any
 | 
						|
    /// phi node in the current loop.
 | 
						|
    bool HasLoopPHIUse(const MachineInstr *MI) const;
 | 
						|
 | 
						|
    /// HasHighOperandLatency - Compute operand latency between a def of 'Reg'
 | 
						|
    /// and an use in the current loop, return true if the target considered
 | 
						|
    /// it 'high'.
 | 
						|
    bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx,
 | 
						|
                               unsigned Reg) const;
 | 
						|
 | 
						|
    bool IsCheapInstruction(MachineInstr &MI) const;
 | 
						|
 | 
						|
    /// CanCauseHighRegPressure - Visit BBs from header to current BB,
 | 
						|
    /// check if hoisting an instruction of the given cost matrix can cause high
 | 
						|
    /// register pressure.
 | 
						|
    bool CanCauseHighRegPressure(const DenseMap<unsigned, int> &Cost,
 | 
						|
                                 bool Cheap);
 | 
						|
 | 
						|
    /// UpdateBackTraceRegPressure - Traverse the back trace from header to
 | 
						|
    /// the current block and update their register pressures to reflect the
 | 
						|
    /// effect of hoisting MI from the current block to the preheader.
 | 
						|
    void UpdateBackTraceRegPressure(const MachineInstr *MI);
 | 
						|
 | 
						|
    /// IsProfitableToHoist - Return true if it is potentially profitable to
 | 
						|
    /// hoist the given loop invariant.
 | 
						|
    bool IsProfitableToHoist(MachineInstr &MI);
 | 
						|
 | 
						|
    /// IsGuaranteedToExecute - Check if this mbb is guaranteed to execute.
 | 
						|
    /// If not then a load from this mbb may not be safe to hoist.
 | 
						|
    bool IsGuaranteedToExecute(MachineBasicBlock *BB);
 | 
						|
 | 
						|
    void EnterScope(MachineBasicBlock *MBB);
 | 
						|
 | 
						|
    void ExitScope(MachineBasicBlock *MBB);
 | 
						|
 | 
						|
    /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to given
 | 
						|
    /// dominator tree node if its a leaf or all of its children are done. Walk
 | 
						|
    /// up the dominator tree to destroy ancestors which are now done.
 | 
						|
    void ExitScopeIfDone(MachineDomTreeNode *Node,
 | 
						|
                DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
 | 
						|
                DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap);
 | 
						|
 | 
						|
    /// HoistOutOfLoop - Walk the specified loop in the CFG (defined by all
 | 
						|
    /// blocks dominated by the specified header block, and that are in the
 | 
						|
    /// current loop) in depth first order w.r.t the DominatorTree. This allows
 | 
						|
    /// us to visit definitions before uses, allowing us to hoist a loop body in
 | 
						|
    /// one pass without iteration.
 | 
						|
    ///
 | 
						|
    void HoistOutOfLoop(MachineDomTreeNode *LoopHeaderNode);
 | 
						|
    void HoistRegion(MachineDomTreeNode *N, bool IsHeader);
 | 
						|
 | 
						|
    /// SinkIntoLoop - Sink instructions into loops if profitable. This
 | 
						|
    /// especially tries to prevent register spills caused by register pressure
 | 
						|
    /// if there is little to no overhead moving instructions into loops.
 | 
						|
    void SinkIntoLoop();
 | 
						|
 | 
						|
    /// InitRegPressure - Find all virtual register references that are liveout
 | 
						|
    /// of the preheader to initialize the starting "register pressure". Note
 | 
						|
    /// this does not count live through (livein but not used) registers.
 | 
						|
    void InitRegPressure(MachineBasicBlock *BB);
 | 
						|
 | 
						|
    /// calcRegisterCost - Calculate the additional register pressure that the
 | 
						|
    /// registers used in MI cause.
 | 
						|
    ///
 | 
						|
    /// If 'ConsiderSeen' is true, updates 'RegSeen' and uses the information to
 | 
						|
    /// figure out which usages are live-ins.
 | 
						|
    /// FIXME: Figure out a way to consider 'RegSeen' from all code paths.
 | 
						|
    DenseMap<unsigned, int> calcRegisterCost(const MachineInstr *MI,
 | 
						|
                                             bool ConsiderSeen,
 | 
						|
                                             bool ConsiderUnseenAsDef);
 | 
						|
 | 
						|
    /// UpdateRegPressure - Update estimate of register pressure after the
 | 
						|
    /// specified instruction.
 | 
						|
    void UpdateRegPressure(const MachineInstr *MI,
 | 
						|
                           bool ConsiderUnseenAsDef = false);
 | 
						|
 | 
						|
    /// ExtractHoistableLoad - Unfold a load from the given machineinstr if
 | 
						|
    /// the load itself could be hoisted. Return the unfolded and hoistable
 | 
						|
    /// load, or null if the load couldn't be unfolded or if it wouldn't
 | 
						|
    /// be hoistable.
 | 
						|
    MachineInstr *ExtractHoistableLoad(MachineInstr *MI);
 | 
						|
 | 
						|
    /// LookForDuplicate - Find an instruction amount PrevMIs that is a
 | 
						|
    /// duplicate of MI. Return this instruction if it's found.
 | 
						|
    const MachineInstr *LookForDuplicate(const MachineInstr *MI,
 | 
						|
                                     std::vector<const MachineInstr*> &PrevMIs);
 | 
						|
 | 
						|
    /// EliminateCSE - Given a LICM'ed instruction, look for an instruction on
 | 
						|
    /// the preheader that compute the same value. If it's found, do a RAU on
 | 
						|
    /// with the definition of the existing instruction rather than hoisting
 | 
						|
    /// the instruction to the preheader.
 | 
						|
    bool EliminateCSE(MachineInstr *MI,
 | 
						|
           DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI);
 | 
						|
 | 
						|
    /// MayCSE - Return true if the given instruction will be CSE'd if it's
 | 
						|
    /// hoisted out of the loop.
 | 
						|
    bool MayCSE(MachineInstr *MI);
 | 
						|
 | 
						|
    /// Hoist - When an instruction is found to only use loop invariant operands
 | 
						|
    /// that is safe to hoist, this instruction is called to do the dirty work.
 | 
						|
    /// It returns true if the instruction is hoisted.
 | 
						|
    bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader);
 | 
						|
 | 
						|
    /// InitCSEMap - Initialize the CSE map with instructions that are in the
 | 
						|
    /// current loop preheader that may become duplicates of instructions that
 | 
						|
    /// are hoisted out of the loop.
 | 
						|
    void InitCSEMap(MachineBasicBlock *BB);
 | 
						|
 | 
						|
    /// getCurPreheader - Get the preheader for the current loop, splitting
 | 
						|
    /// a critical edge if needed.
 | 
						|
    MachineBasicBlock *getCurPreheader();
 | 
						|
  };
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
char MachineLICM::ID = 0;
 | 
						|
char &llvm::MachineLICMID = MachineLICM::ID;
 | 
						|
INITIALIZE_PASS_BEGIN(MachineLICM, "machinelicm",
 | 
						|
                "Machine Loop Invariant Code Motion", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
 | 
						|
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
 | 
						|
INITIALIZE_PASS_END(MachineLICM, "machinelicm",
 | 
						|
                "Machine Loop Invariant Code Motion", false, false)
 | 
						|
 | 
						|
/// LoopIsOuterMostWithPredecessor - Test if the given loop is the outer-most
 | 
						|
/// loop that has a unique predecessor.
 | 
						|
static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) {
 | 
						|
  // Check whether this loop even has a unique predecessor.
 | 
						|
  if (!CurLoop->getLoopPredecessor())
 | 
						|
    return false;
 | 
						|
  // Ok, now check to see if any of its outer loops do.
 | 
						|
  for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop())
 | 
						|
    if (L->getLoopPredecessor())
 | 
						|
      return false;
 | 
						|
  // None of them did, so this is the outermost with a unique predecessor.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool MachineLICM::runOnMachineFunction(MachineFunction &MF) {
 | 
						|
  if (skipOptnoneFunction(*MF.getFunction()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  Changed = FirstInLoop = false;
 | 
						|
  TII = MF.getSubtarget().getInstrInfo();
 | 
						|
  TLI = MF.getSubtarget().getTargetLowering();
 | 
						|
  TRI = MF.getSubtarget().getRegisterInfo();
 | 
						|
  MFI = MF.getFrameInfo();
 | 
						|
  MRI = &MF.getRegInfo();
 | 
						|
  InstrItins = MF.getSubtarget().getInstrItineraryData();
 | 
						|
 | 
						|
  PreRegAlloc = MRI->isSSA();
 | 
						|
 | 
						|
  if (PreRegAlloc)
 | 
						|
    DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: ");
 | 
						|
  else
 | 
						|
    DEBUG(dbgs() << "******** Post-regalloc Machine LICM: ");
 | 
						|
  DEBUG(dbgs() << MF.getName() << " ********\n");
 | 
						|
 | 
						|
  if (PreRegAlloc) {
 | 
						|
    // Estimate register pressure during pre-regalloc pass.
 | 
						|
    unsigned NumRPS = TRI->getNumRegPressureSets();
 | 
						|
    RegPressure.resize(NumRPS);
 | 
						|
    std::fill(RegPressure.begin(), RegPressure.end(), 0);
 | 
						|
    RegLimit.resize(NumRPS);
 | 
						|
    for (unsigned i = 0, e = NumRPS; i != e; ++i)
 | 
						|
      RegLimit[i] = TRI->getRegPressureSetLimit(MF, i);
 | 
						|
  }
 | 
						|
 | 
						|
  // Get our Loop information...
 | 
						|
  MLI = &getAnalysis<MachineLoopInfo>();
 | 
						|
  DT  = &getAnalysis<MachineDominatorTree>();
 | 
						|
  AA  = &getAnalysis<AliasAnalysis>();
 | 
						|
 | 
						|
  SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end());
 | 
						|
  while (!Worklist.empty()) {
 | 
						|
    CurLoop = Worklist.pop_back_val();
 | 
						|
    CurPreheader = nullptr;
 | 
						|
    ExitBlocks.clear();
 | 
						|
 | 
						|
    // If this is done before regalloc, only visit outer-most preheader-sporting
 | 
						|
    // loops.
 | 
						|
    if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) {
 | 
						|
      Worklist.append(CurLoop->begin(), CurLoop->end());
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    CurLoop->getExitBlocks(ExitBlocks);
 | 
						|
 | 
						|
    if (!PreRegAlloc)
 | 
						|
      HoistRegionPostRA();
 | 
						|
    else {
 | 
						|
      // CSEMap is initialized for loop header when the first instruction is
 | 
						|
      // being hoisted.
 | 
						|
      MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader());
 | 
						|
      FirstInLoop = true;
 | 
						|
      HoistOutOfLoop(N);
 | 
						|
      CSEMap.clear();
 | 
						|
 | 
						|
      if (SinkInstsToAvoidSpills)
 | 
						|
        SinkIntoLoop();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// InstructionStoresToFI - Return true if instruction stores to the
 | 
						|
/// specified frame.
 | 
						|
static bool InstructionStoresToFI(const MachineInstr *MI, int FI) {
 | 
						|
  for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
 | 
						|
         oe = MI->memoperands_end(); o != oe; ++o) {
 | 
						|
    if (!(*o)->isStore() || !(*o)->getPseudoValue())
 | 
						|
      continue;
 | 
						|
    if (const FixedStackPseudoSourceValue *Value =
 | 
						|
        dyn_cast<FixedStackPseudoSourceValue>((*o)->getPseudoValue())) {
 | 
						|
      if (Value->getFrameIndex() == FI)
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// ProcessMI - Examine the instruction for potentai LICM candidate. Also
 | 
						|
/// gather register def and frame object update information.
 | 
						|
void MachineLICM::ProcessMI(MachineInstr *MI,
 | 
						|
                            BitVector &PhysRegDefs,
 | 
						|
                            BitVector &PhysRegClobbers,
 | 
						|
                            SmallSet<int, 32> &StoredFIs,
 | 
						|
                            SmallVectorImpl<CandidateInfo> &Candidates) {
 | 
						|
  bool RuledOut = false;
 | 
						|
  bool HasNonInvariantUse = false;
 | 
						|
  unsigned Def = 0;
 | 
						|
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
    const MachineOperand &MO = MI->getOperand(i);
 | 
						|
    if (MO.isFI()) {
 | 
						|
      // Remember if the instruction stores to the frame index.
 | 
						|
      int FI = MO.getIndex();
 | 
						|
      if (!StoredFIs.count(FI) &&
 | 
						|
          MFI->isSpillSlotObjectIndex(FI) &&
 | 
						|
          InstructionStoresToFI(MI, FI))
 | 
						|
        StoredFIs.insert(FI);
 | 
						|
      HasNonInvariantUse = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // We can't hoist an instruction defining a physreg that is clobbered in
 | 
						|
    // the loop.
 | 
						|
    if (MO.isRegMask()) {
 | 
						|
      PhysRegClobbers.setBitsNotInMask(MO.getRegMask());
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!MO.isReg())
 | 
						|
      continue;
 | 
						|
    unsigned Reg = MO.getReg();
 | 
						|
    if (!Reg)
 | 
						|
      continue;
 | 
						|
    assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
 | 
						|
           "Not expecting virtual register!");
 | 
						|
 | 
						|
    if (!MO.isDef()) {
 | 
						|
      if (Reg && (PhysRegDefs.test(Reg) || PhysRegClobbers.test(Reg)))
 | 
						|
        // If it's using a non-loop-invariant register, then it's obviously not
 | 
						|
        // safe to hoist.
 | 
						|
        HasNonInvariantUse = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (MO.isImplicit()) {
 | 
						|
      for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
 | 
						|
        PhysRegClobbers.set(*AI);
 | 
						|
      if (!MO.isDead())
 | 
						|
        // Non-dead implicit def? This cannot be hoisted.
 | 
						|
        RuledOut = true;
 | 
						|
      // No need to check if a dead implicit def is also defined by
 | 
						|
      // another instruction.
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // FIXME: For now, avoid instructions with multiple defs, unless
 | 
						|
    // it's a dead implicit def.
 | 
						|
    if (Def)
 | 
						|
      RuledOut = true;
 | 
						|
    else
 | 
						|
      Def = Reg;
 | 
						|
 | 
						|
    // If we have already seen another instruction that defines the same
 | 
						|
    // register, then this is not safe.  Two defs is indicated by setting a
 | 
						|
    // PhysRegClobbers bit.
 | 
						|
    for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) {
 | 
						|
      if (PhysRegDefs.test(*AS))
 | 
						|
        PhysRegClobbers.set(*AS);
 | 
						|
      PhysRegDefs.set(*AS);
 | 
						|
    }
 | 
						|
    if (PhysRegClobbers.test(Reg))
 | 
						|
      // MI defined register is seen defined by another instruction in
 | 
						|
      // the loop, it cannot be a LICM candidate.
 | 
						|
      RuledOut = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Only consider reloads for now and remats which do not have register
 | 
						|
  // operands. FIXME: Consider unfold load folding instructions.
 | 
						|
  if (Def && !RuledOut) {
 | 
						|
    int FI = INT_MIN;
 | 
						|
    if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) ||
 | 
						|
        (TII->isLoadFromStackSlot(MI, FI) && MFI->isSpillSlotObjectIndex(FI)))
 | 
						|
      Candidates.push_back(CandidateInfo(MI, Def, FI));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop
 | 
						|
/// invariants out to the preheader.
 | 
						|
void MachineLICM::HoistRegionPostRA() {
 | 
						|
  MachineBasicBlock *Preheader = getCurPreheader();
 | 
						|
  if (!Preheader)
 | 
						|
    return;
 | 
						|
 | 
						|
  unsigned NumRegs = TRI->getNumRegs();
 | 
						|
  BitVector PhysRegDefs(NumRegs); // Regs defined once in the loop.
 | 
						|
  BitVector PhysRegClobbers(NumRegs); // Regs defined more than once.
 | 
						|
 | 
						|
  SmallVector<CandidateInfo, 32> Candidates;
 | 
						|
  SmallSet<int, 32> StoredFIs;
 | 
						|
 | 
						|
  // Walk the entire region, count number of defs for each register, and
 | 
						|
  // collect potential LICM candidates.
 | 
						|
  const std::vector<MachineBasicBlock *> &Blocks = CurLoop->getBlocks();
 | 
						|
  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
 | 
						|
    MachineBasicBlock *BB = Blocks[i];
 | 
						|
 | 
						|
    // If the header of the loop containing this basic block is a landing pad,
 | 
						|
    // then don't try to hoist instructions out of this loop.
 | 
						|
    const MachineLoop *ML = MLI->getLoopFor(BB);
 | 
						|
    if (ML && ML->getHeader()->isLandingPad()) continue;
 | 
						|
 | 
						|
    // Conservatively treat live-in's as an external def.
 | 
						|
    // FIXME: That means a reload that're reused in successor block(s) will not
 | 
						|
    // be LICM'ed.
 | 
						|
    for (MachineBasicBlock::livein_iterator I = BB->livein_begin(),
 | 
						|
           E = BB->livein_end(); I != E; ++I) {
 | 
						|
      unsigned Reg = *I;
 | 
						|
      for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
 | 
						|
        PhysRegDefs.set(*AI);
 | 
						|
    }
 | 
						|
 | 
						|
    SpeculationState = SpeculateUnknown;
 | 
						|
    for (MachineBasicBlock::iterator
 | 
						|
           MII = BB->begin(), E = BB->end(); MII != E; ++MII) {
 | 
						|
      MachineInstr *MI = &*MII;
 | 
						|
      ProcessMI(MI, PhysRegDefs, PhysRegClobbers, StoredFIs, Candidates);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Gather the registers read / clobbered by the terminator.
 | 
						|
  BitVector TermRegs(NumRegs);
 | 
						|
  MachineBasicBlock::iterator TI = Preheader->getFirstTerminator();
 | 
						|
  if (TI != Preheader->end()) {
 | 
						|
    for (unsigned i = 0, e = TI->getNumOperands(); i != e; ++i) {
 | 
						|
      const MachineOperand &MO = TI->getOperand(i);
 | 
						|
      if (!MO.isReg())
 | 
						|
        continue;
 | 
						|
      unsigned Reg = MO.getReg();
 | 
						|
      if (!Reg)
 | 
						|
        continue;
 | 
						|
      for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
 | 
						|
        TermRegs.set(*AI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Now evaluate whether the potential candidates qualify.
 | 
						|
  // 1. Check if the candidate defined register is defined by another
 | 
						|
  //    instruction in the loop.
 | 
						|
  // 2. If the candidate is a load from stack slot (always true for now),
 | 
						|
  //    check if the slot is stored anywhere in the loop.
 | 
						|
  // 3. Make sure candidate def should not clobber
 | 
						|
  //    registers read by the terminator. Similarly its def should not be
 | 
						|
  //    clobbered by the terminator.
 | 
						|
  for (unsigned i = 0, e = Candidates.size(); i != e; ++i) {
 | 
						|
    if (Candidates[i].FI != INT_MIN &&
 | 
						|
        StoredFIs.count(Candidates[i].FI))
 | 
						|
      continue;
 | 
						|
 | 
						|
    unsigned Def = Candidates[i].Def;
 | 
						|
    if (!PhysRegClobbers.test(Def) && !TermRegs.test(Def)) {
 | 
						|
      bool Safe = true;
 | 
						|
      MachineInstr *MI = Candidates[i].MI;
 | 
						|
      for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) {
 | 
						|
        const MachineOperand &MO = MI->getOperand(j);
 | 
						|
        if (!MO.isReg() || MO.isDef() || !MO.getReg())
 | 
						|
          continue;
 | 
						|
        unsigned Reg = MO.getReg();
 | 
						|
        if (PhysRegDefs.test(Reg) ||
 | 
						|
            PhysRegClobbers.test(Reg)) {
 | 
						|
          // If it's using a non-loop-invariant register, then it's obviously
 | 
						|
          // not safe to hoist.
 | 
						|
          Safe = false;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (Safe)
 | 
						|
        HoistPostRA(MI, Candidates[i].Def);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the current
 | 
						|
/// loop, and make sure it is not killed by any instructions in the loop.
 | 
						|
void MachineLICM::AddToLiveIns(unsigned Reg) {
 | 
						|
  const std::vector<MachineBasicBlock *> &Blocks = CurLoop->getBlocks();
 | 
						|
  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
 | 
						|
    MachineBasicBlock *BB = Blocks[i];
 | 
						|
    if (!BB->isLiveIn(Reg))
 | 
						|
      BB->addLiveIn(Reg);
 | 
						|
    for (MachineBasicBlock::iterator
 | 
						|
           MII = BB->begin(), E = BB->end(); MII != E; ++MII) {
 | 
						|
      MachineInstr *MI = &*MII;
 | 
						|
      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
        MachineOperand &MO = MI->getOperand(i);
 | 
						|
        if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue;
 | 
						|
        if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg()))
 | 
						|
          MO.setIsKill(false);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// HoistPostRA - When an instruction is found to only use loop invariant
 | 
						|
/// operands that is safe to hoist, this instruction is called to do the
 | 
						|
/// dirty work.
 | 
						|
void MachineLICM::HoistPostRA(MachineInstr *MI, unsigned Def) {
 | 
						|
  MachineBasicBlock *Preheader = getCurPreheader();
 | 
						|
 | 
						|
  // Now move the instructions to the predecessor, inserting it before any
 | 
						|
  // terminator instructions.
 | 
						|
  DEBUG(dbgs() << "Hoisting to BB#" << Preheader->getNumber() << " from BB#"
 | 
						|
               << MI->getParent()->getNumber() << ": " << *MI);
 | 
						|
 | 
						|
  // Splice the instruction to the preheader.
 | 
						|
  MachineBasicBlock *MBB = MI->getParent();
 | 
						|
  Preheader->splice(Preheader->getFirstTerminator(), MBB, MI);
 | 
						|
 | 
						|
  // Add register to livein list to all the BBs in the current loop since a
 | 
						|
  // loop invariant must be kept live throughout the whole loop. This is
 | 
						|
  // important to ensure later passes do not scavenge the def register.
 | 
						|
  AddToLiveIns(Def);
 | 
						|
 | 
						|
  ++NumPostRAHoisted;
 | 
						|
  Changed = true;
 | 
						|
}
 | 
						|
 | 
						|
// IsGuaranteedToExecute - Check if this mbb is guaranteed to execute.
 | 
						|
// If not then a load from this mbb may not be safe to hoist.
 | 
						|
bool MachineLICM::IsGuaranteedToExecute(MachineBasicBlock *BB) {
 | 
						|
  if (SpeculationState != SpeculateUnknown)
 | 
						|
    return SpeculationState == SpeculateFalse;
 | 
						|
 | 
						|
  if (BB != CurLoop->getHeader()) {
 | 
						|
    // Check loop exiting blocks.
 | 
						|
    SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks;
 | 
						|
    CurLoop->getExitingBlocks(CurrentLoopExitingBlocks);
 | 
						|
    for (unsigned i = 0, e = CurrentLoopExitingBlocks.size(); i != e; ++i)
 | 
						|
      if (!DT->dominates(BB, CurrentLoopExitingBlocks[i])) {
 | 
						|
        SpeculationState = SpeculateTrue;
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  SpeculationState = SpeculateFalse;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void MachineLICM::EnterScope(MachineBasicBlock *MBB) {
 | 
						|
  DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
 | 
						|
 | 
						|
  // Remember livein register pressure.
 | 
						|
  BackTrace.push_back(RegPressure);
 | 
						|
}
 | 
						|
 | 
						|
void MachineLICM::ExitScope(MachineBasicBlock *MBB) {
 | 
						|
  DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
 | 
						|
  BackTrace.pop_back();
 | 
						|
}
 | 
						|
 | 
						|
/// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
 | 
						|
/// dominator tree node if its a leaf or all of its children are done. Walk
 | 
						|
/// up the dominator tree to destroy ancestors which are now done.
 | 
						|
void MachineLICM::ExitScopeIfDone(MachineDomTreeNode *Node,
 | 
						|
                DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
 | 
						|
                DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) {
 | 
						|
  if (OpenChildren[Node])
 | 
						|
    return;
 | 
						|
 | 
						|
  // Pop scope.
 | 
						|
  ExitScope(Node->getBlock());
 | 
						|
 | 
						|
  // Now traverse upwards to pop ancestors whose offsprings are all done.
 | 
						|
  while (MachineDomTreeNode *Parent = ParentMap[Node]) {
 | 
						|
    unsigned Left = --OpenChildren[Parent];
 | 
						|
    if (Left != 0)
 | 
						|
      break;
 | 
						|
    ExitScope(Parent->getBlock());
 | 
						|
    Node = Parent;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// HoistOutOfLoop - Walk the specified loop in the CFG (defined by all
 | 
						|
/// blocks dominated by the specified header block, and that are in the
 | 
						|
/// current loop) in depth first order w.r.t the DominatorTree. This allows
 | 
						|
/// us to visit definitions before uses, allowing us to hoist a loop body in
 | 
						|
/// one pass without iteration.
 | 
						|
///
 | 
						|
void MachineLICM::HoistOutOfLoop(MachineDomTreeNode *HeaderN) {
 | 
						|
  MachineBasicBlock *Preheader = getCurPreheader();
 | 
						|
  if (!Preheader)
 | 
						|
    return;
 | 
						|
 | 
						|
  SmallVector<MachineDomTreeNode*, 32> Scopes;
 | 
						|
  SmallVector<MachineDomTreeNode*, 8> WorkList;
 | 
						|
  DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap;
 | 
						|
  DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
 | 
						|
 | 
						|
  // Perform a DFS walk to determine the order of visit.
 | 
						|
  WorkList.push_back(HeaderN);
 | 
						|
  while (!WorkList.empty()) {
 | 
						|
    MachineDomTreeNode *Node = WorkList.pop_back_val();
 | 
						|
    assert(Node && "Null dominator tree node?");
 | 
						|
    MachineBasicBlock *BB = Node->getBlock();
 | 
						|
 | 
						|
    // If the header of the loop containing this basic block is a landing pad,
 | 
						|
    // then don't try to hoist instructions out of this loop.
 | 
						|
    const MachineLoop *ML = MLI->getLoopFor(BB);
 | 
						|
    if (ML && ML->getHeader()->isLandingPad())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If this subregion is not in the top level loop at all, exit.
 | 
						|
    if (!CurLoop->contains(BB))
 | 
						|
      continue;
 | 
						|
 | 
						|
    Scopes.push_back(Node);
 | 
						|
    const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
 | 
						|
    unsigned NumChildren = Children.size();
 | 
						|
 | 
						|
    // Don't hoist things out of a large switch statement.  This often causes
 | 
						|
    // code to be hoisted that wasn't going to be executed, and increases
 | 
						|
    // register pressure in a situation where it's likely to matter.
 | 
						|
    if (BB->succ_size() >= 25)
 | 
						|
      NumChildren = 0;
 | 
						|
 | 
						|
    OpenChildren[Node] = NumChildren;
 | 
						|
    // Add children in reverse order as then the next popped worklist node is
 | 
						|
    // the first child of this node.  This means we ultimately traverse the
 | 
						|
    // DOM tree in exactly the same order as if we'd recursed.
 | 
						|
    for (int i = (int)NumChildren-1; i >= 0; --i) {
 | 
						|
      MachineDomTreeNode *Child = Children[i];
 | 
						|
      ParentMap[Child] = Node;
 | 
						|
      WorkList.push_back(Child);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Scopes.size() == 0)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Compute registers which are livein into the loop headers.
 | 
						|
  RegSeen.clear();
 | 
						|
  BackTrace.clear();
 | 
						|
  InitRegPressure(Preheader);
 | 
						|
 | 
						|
  // Now perform LICM.
 | 
						|
  for (unsigned i = 0, e = Scopes.size(); i != e; ++i) {
 | 
						|
    MachineDomTreeNode *Node = Scopes[i];
 | 
						|
    MachineBasicBlock *MBB = Node->getBlock();
 | 
						|
 | 
						|
    EnterScope(MBB);
 | 
						|
 | 
						|
    // Process the block
 | 
						|
    SpeculationState = SpeculateUnknown;
 | 
						|
    for (MachineBasicBlock::iterator
 | 
						|
         MII = MBB->begin(), E = MBB->end(); MII != E; ) {
 | 
						|
      MachineBasicBlock::iterator NextMII = MII; ++NextMII;
 | 
						|
      MachineInstr *MI = &*MII;
 | 
						|
      if (!Hoist(MI, Preheader))
 | 
						|
        UpdateRegPressure(MI);
 | 
						|
      MII = NextMII;
 | 
						|
    }
 | 
						|
 | 
						|
    // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
 | 
						|
    ExitScopeIfDone(Node, OpenChildren, ParentMap);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void MachineLICM::SinkIntoLoop() {
 | 
						|
  MachineBasicBlock *Preheader = getCurPreheader();
 | 
						|
  if (!Preheader)
 | 
						|
    return;
 | 
						|
 | 
						|
  SmallVector<MachineInstr *, 8> Candidates;
 | 
						|
  for (MachineBasicBlock::instr_iterator I = Preheader->instr_begin();
 | 
						|
       I != Preheader->instr_end(); ++I) {
 | 
						|
    // We need to ensure that we can safely move this instruction into the loop.
 | 
						|
    // As such, it must not have side-effects, e.g. such as a call has.  
 | 
						|
    if (IsLoopInvariantInst(*I) && !HasLoopPHIUse(I))
 | 
						|
      Candidates.push_back(I);
 | 
						|
  }
 | 
						|
 | 
						|
  for (MachineInstr *I : Candidates) {
 | 
						|
    const MachineOperand &MO = I->getOperand(0);
 | 
						|
    if (!MO.isDef() || !MO.isReg() || !MO.getReg())
 | 
						|
      continue;
 | 
						|
    if (!MRI->hasOneDef(MO.getReg()))
 | 
						|
      continue;
 | 
						|
    bool CanSink = true;
 | 
						|
    MachineBasicBlock *B = nullptr;
 | 
						|
    for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) {
 | 
						|
      // FIXME: Come up with a proper cost model that estimates whether sinking
 | 
						|
      // the instruction (and thus possibly executing it on every loop
 | 
						|
      // iteration) is more expensive than a register.
 | 
						|
      // For now assumes that copies are cheap and thus almost always worth it.
 | 
						|
      if (!MI.isCopy()) {
 | 
						|
        CanSink = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      if (!B) {
 | 
						|
        B = MI.getParent();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      B = DT->findNearestCommonDominator(B, MI.getParent());
 | 
						|
      if (!B) {
 | 
						|
        CanSink = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (!CanSink || !B || B == Preheader)
 | 
						|
      continue;
 | 
						|
    B->splice(B->getFirstNonPHI(), Preheader, I);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) {
 | 
						|
  return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg());
 | 
						|
}
 | 
						|
 | 
						|
/// InitRegPressure - Find all virtual register references that are liveout of
 | 
						|
/// the preheader to initialize the starting "register pressure". Note this
 | 
						|
/// does not count live through (livein but not used) registers.
 | 
						|
void MachineLICM::InitRegPressure(MachineBasicBlock *BB) {
 | 
						|
  std::fill(RegPressure.begin(), RegPressure.end(), 0);
 | 
						|
 | 
						|
  // If the preheader has only a single predecessor and it ends with a
 | 
						|
  // fallthrough or an unconditional branch, then scan its predecessor for live
 | 
						|
  // defs as well. This happens whenever the preheader is created by splitting
 | 
						|
  // the critical edge from the loop predecessor to the loop header.
 | 
						|
  if (BB->pred_size() == 1) {
 | 
						|
    MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
 | 
						|
    SmallVector<MachineOperand, 4> Cond;
 | 
						|
    if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty())
 | 
						|
      InitRegPressure(*BB->pred_begin());
 | 
						|
  }
 | 
						|
 | 
						|
  for (const MachineInstr &MI : *BB)
 | 
						|
    UpdateRegPressure(&MI, /*ConsiderUnseenAsDef=*/true);
 | 
						|
}
 | 
						|
 | 
						|
/// UpdateRegPressure - Update estimate of register pressure after the
 | 
						|
/// specified instruction.
 | 
						|
void MachineLICM::UpdateRegPressure(const MachineInstr *MI,
 | 
						|
                                    bool ConsiderUnseenAsDef) {
 | 
						|
  auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/true, ConsiderUnseenAsDef);
 | 
						|
  for (const auto &RPIdAndCost : Cost) {
 | 
						|
    unsigned Class = RPIdAndCost.first;
 | 
						|
    if (static_cast<int>(RegPressure[Class]) < -RPIdAndCost.second)
 | 
						|
      RegPressure[Class] = 0;
 | 
						|
    else
 | 
						|
      RegPressure[Class] += RPIdAndCost.second;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
DenseMap<unsigned, int>
 | 
						|
MachineLICM::calcRegisterCost(const MachineInstr *MI, bool ConsiderSeen,
 | 
						|
                              bool ConsiderUnseenAsDef) {
 | 
						|
  DenseMap<unsigned, int> Cost;
 | 
						|
  if (MI->isImplicitDef())
 | 
						|
    return Cost;
 | 
						|
  for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
 | 
						|
    const MachineOperand &MO = MI->getOperand(i);
 | 
						|
    if (!MO.isReg() || MO.isImplicit())
 | 
						|
      continue;
 | 
						|
    unsigned Reg = MO.getReg();
 | 
						|
    if (!TargetRegisterInfo::isVirtualRegister(Reg))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // FIXME: It seems bad to use RegSeen only for some of these calculations.
 | 
						|
    bool isNew = ConsiderSeen ? RegSeen.insert(Reg).second : false;
 | 
						|
    const TargetRegisterClass *RC = MRI->getRegClass(Reg);
 | 
						|
 | 
						|
    RegClassWeight W = TRI->getRegClassWeight(RC);
 | 
						|
    int RCCost = 0;
 | 
						|
    if (MO.isDef())
 | 
						|
      RCCost = W.RegWeight;
 | 
						|
    else {
 | 
						|
      bool isKill = isOperandKill(MO, MRI);
 | 
						|
      if (isNew && !isKill && ConsiderUnseenAsDef)
 | 
						|
        // Haven't seen this, it must be a livein.
 | 
						|
        RCCost = W.RegWeight;
 | 
						|
      else if (!isNew && isKill)
 | 
						|
        RCCost = -W.RegWeight;
 | 
						|
    }
 | 
						|
    if (RCCost == 0)
 | 
						|
      continue;
 | 
						|
    const int *PS = TRI->getRegClassPressureSets(RC);
 | 
						|
    for (; *PS != -1; ++PS) {
 | 
						|
      if (Cost.find(*PS) == Cost.end())
 | 
						|
        Cost[*PS] = RCCost;
 | 
						|
      else
 | 
						|
        Cost[*PS] += RCCost;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Cost;
 | 
						|
}
 | 
						|
 | 
						|
/// isLoadFromGOTOrConstantPool - Return true if this machine instruction
 | 
						|
/// loads from global offset table or constant pool.
 | 
						|
static bool isLoadFromGOTOrConstantPool(MachineInstr &MI) {
 | 
						|
  assert (MI.mayLoad() && "Expected MI that loads!");
 | 
						|
  for (MachineInstr::mmo_iterator I = MI.memoperands_begin(),
 | 
						|
         E = MI.memoperands_end(); I != E; ++I) {
 | 
						|
    if (const PseudoSourceValue *PSV = (*I)->getPseudoValue()) {
 | 
						|
      if (PSV == PSV->getGOT() || PSV == PSV->getConstantPool())
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// IsLICMCandidate - Returns true if the instruction may be a suitable
 | 
						|
/// candidate for LICM. e.g. If the instruction is a call, then it's obviously
 | 
						|
/// not safe to hoist it.
 | 
						|
bool MachineLICM::IsLICMCandidate(MachineInstr &I) {
 | 
						|
  // Check if it's safe to move the instruction.
 | 
						|
  bool DontMoveAcrossStore = true;
 | 
						|
  if (!I.isSafeToMove(AA, DontMoveAcrossStore))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If it is load then check if it is guaranteed to execute by making sure that
 | 
						|
  // it dominates all exiting blocks. If it doesn't, then there is a path out of
 | 
						|
  // the loop which does not execute this load, so we can't hoist it. Loads
 | 
						|
  // from constant memory are not safe to speculate all the time, for example
 | 
						|
  // indexed load from a jump table.
 | 
						|
  // Stores and side effects are already checked by isSafeToMove.
 | 
						|
  if (I.mayLoad() && !isLoadFromGOTOrConstantPool(I) &&
 | 
						|
      !IsGuaranteedToExecute(I.getParent()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// IsLoopInvariantInst - Returns true if the instruction is loop
 | 
						|
/// invariant. I.e., all virtual register operands are defined outside of the
 | 
						|
/// loop, physical registers aren't accessed explicitly, and there are no side
 | 
						|
/// effects that aren't captured by the operands or other flags.
 | 
						|
///
 | 
						|
bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) {
 | 
						|
  if (!IsLICMCandidate(I))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // The instruction is loop invariant if all of its operands are.
 | 
						|
  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
 | 
						|
    const MachineOperand &MO = I.getOperand(i);
 | 
						|
 | 
						|
    if (!MO.isReg())
 | 
						|
      continue;
 | 
						|
 | 
						|
    unsigned Reg = MO.getReg();
 | 
						|
    if (Reg == 0) continue;
 | 
						|
 | 
						|
    // Don't hoist an instruction that uses or defines a physical register.
 | 
						|
    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
 | 
						|
      if (MO.isUse()) {
 | 
						|
        // If the physreg has no defs anywhere, it's just an ambient register
 | 
						|
        // and we can freely move its uses. Alternatively, if it's allocatable,
 | 
						|
        // it could get allocated to something with a def during allocation.
 | 
						|
        if (!MRI->isConstantPhysReg(Reg, *I.getParent()->getParent()))
 | 
						|
          return false;
 | 
						|
        // Otherwise it's safe to move.
 | 
						|
        continue;
 | 
						|
      } else if (!MO.isDead()) {
 | 
						|
        // A def that isn't dead. We can't move it.
 | 
						|
        return false;
 | 
						|
      } else if (CurLoop->getHeader()->isLiveIn(Reg)) {
 | 
						|
        // If the reg is live into the loop, we can't hoist an instruction
 | 
						|
        // which would clobber it.
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!MO.isUse())
 | 
						|
      continue;
 | 
						|
 | 
						|
    assert(MRI->getVRegDef(Reg) &&
 | 
						|
           "Machine instr not mapped for this vreg?!");
 | 
						|
 | 
						|
    // If the loop contains the definition of an operand, then the instruction
 | 
						|
    // isn't loop invariant.
 | 
						|
    if (CurLoop->contains(MRI->getVRegDef(Reg)))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we got this far, the instruction is loop invariant!
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// HasLoopPHIUse - Return true if the specified instruction is used by a
 | 
						|
/// phi node and hoisting it could cause a copy to be inserted.
 | 
						|
bool MachineLICM::HasLoopPHIUse(const MachineInstr *MI) const {
 | 
						|
  SmallVector<const MachineInstr*, 8> Work(1, MI);
 | 
						|
  do {
 | 
						|
    MI = Work.pop_back_val();
 | 
						|
    for (const MachineOperand &MO : MI->operands()) {
 | 
						|
      if (!MO.isReg() || !MO.isDef())
 | 
						|
        continue;
 | 
						|
      unsigned Reg = MO.getReg();
 | 
						|
      if (!TargetRegisterInfo::isVirtualRegister(Reg))
 | 
						|
        continue;
 | 
						|
      for (MachineInstr &UseMI : MRI->use_instructions(Reg)) {
 | 
						|
        // A PHI may cause a copy to be inserted.
 | 
						|
        if (UseMI.isPHI()) {
 | 
						|
          // A PHI inside the loop causes a copy because the live range of Reg is
 | 
						|
          // extended across the PHI.
 | 
						|
          if (CurLoop->contains(&UseMI))
 | 
						|
            return true;
 | 
						|
          // A PHI in an exit block can cause a copy to be inserted if the PHI
 | 
						|
          // has multiple predecessors in the loop with different values.
 | 
						|
          // For now, approximate by rejecting all exit blocks.
 | 
						|
          if (isExitBlock(UseMI.getParent()))
 | 
						|
            return true;
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        // Look past copies as well.
 | 
						|
        if (UseMI.isCopy() && CurLoop->contains(&UseMI))
 | 
						|
          Work.push_back(&UseMI);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } while (!Work.empty());
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// HasHighOperandLatency - Compute operand latency between a def of 'Reg'
 | 
						|
/// and an use in the current loop, return true if the target considered
 | 
						|
/// it 'high'.
 | 
						|
bool MachineLICM::HasHighOperandLatency(MachineInstr &MI,
 | 
						|
                                        unsigned DefIdx, unsigned Reg) const {
 | 
						|
  if (!InstrItins || InstrItins->isEmpty() || MRI->use_nodbg_empty(Reg))
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) {
 | 
						|
    if (UseMI.isCopyLike())
 | 
						|
      continue;
 | 
						|
    if (!CurLoop->contains(UseMI.getParent()))
 | 
						|
      continue;
 | 
						|
    for (unsigned i = 0, e = UseMI.getNumOperands(); i != e; ++i) {
 | 
						|
      const MachineOperand &MO = UseMI.getOperand(i);
 | 
						|
      if (!MO.isReg() || !MO.isUse())
 | 
						|
        continue;
 | 
						|
      unsigned MOReg = MO.getReg();
 | 
						|
      if (MOReg != Reg)
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (TII->hasHighOperandLatency(InstrItins, MRI, &MI, DefIdx, &UseMI, i))
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Only look at the first in loop use.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// IsCheapInstruction - Return true if the instruction is marked "cheap" or
 | 
						|
/// the operand latency between its def and a use is one or less.
 | 
						|
bool MachineLICM::IsCheapInstruction(MachineInstr &MI) const {
 | 
						|
  if (TII->isAsCheapAsAMove(&MI) || MI.isCopyLike())
 | 
						|
    return true;
 | 
						|
  if (!InstrItins || InstrItins->isEmpty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool isCheap = false;
 | 
						|
  unsigned NumDefs = MI.getDesc().getNumDefs();
 | 
						|
  for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) {
 | 
						|
    MachineOperand &DefMO = MI.getOperand(i);
 | 
						|
    if (!DefMO.isReg() || !DefMO.isDef())
 | 
						|
      continue;
 | 
						|
    --NumDefs;
 | 
						|
    unsigned Reg = DefMO.getReg();
 | 
						|
    if (TargetRegisterInfo::isPhysicalRegister(Reg))
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (!TII->hasLowDefLatency(InstrItins, &MI, i))
 | 
						|
      return false;
 | 
						|
    isCheap = true;
 | 
						|
  }
 | 
						|
 | 
						|
  return isCheap;
 | 
						|
}
 | 
						|
 | 
						|
/// CanCauseHighRegPressure - Visit BBs from header to current BB, check
 | 
						|
/// if hoisting an instruction of the given cost matrix can cause high
 | 
						|
/// register pressure.
 | 
						|
bool MachineLICM::CanCauseHighRegPressure(const DenseMap<unsigned, int>& Cost,
 | 
						|
                                          bool CheapInstr) {
 | 
						|
  for (const auto &RPIdAndCost : Cost) {
 | 
						|
    if (RPIdAndCost.second <= 0)
 | 
						|
      continue;
 | 
						|
 | 
						|
    unsigned Class = RPIdAndCost.first;
 | 
						|
    int Limit = RegLimit[Class];
 | 
						|
 | 
						|
    // Don't hoist cheap instructions if they would increase register pressure,
 | 
						|
    // even if we're under the limit.
 | 
						|
    if (CheapInstr && !HoistCheapInsts)
 | 
						|
      return true;
 | 
						|
 | 
						|
    for (const auto &RP : BackTrace)
 | 
						|
      if (static_cast<int>(RP[Class]) + RPIdAndCost.second >= Limit)
 | 
						|
        return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// UpdateBackTraceRegPressure - Traverse the back trace from header to the
 | 
						|
/// current block and update their register pressures to reflect the effect
 | 
						|
/// of hoisting MI from the current block to the preheader.
 | 
						|
void MachineLICM::UpdateBackTraceRegPressure(const MachineInstr *MI) {
 | 
						|
  // First compute the 'cost' of the instruction, i.e. its contribution
 | 
						|
  // to register pressure.
 | 
						|
  auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/false,
 | 
						|
                               /*ConsiderUnseenAsDef=*/false);
 | 
						|
 | 
						|
  // Update register pressure of blocks from loop header to current block.
 | 
						|
  for (auto &RP : BackTrace)
 | 
						|
    for (const auto &RPIdAndCost : Cost)
 | 
						|
      RP[RPIdAndCost.first] += RPIdAndCost.second;
 | 
						|
}
 | 
						|
 | 
						|
/// IsProfitableToHoist - Return true if it is potentially profitable to hoist
 | 
						|
/// the given loop invariant.
 | 
						|
bool MachineLICM::IsProfitableToHoist(MachineInstr &MI) {
 | 
						|
  if (MI.isImplicitDef())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Besides removing computation from the loop, hoisting an instruction has
 | 
						|
  // these effects:
 | 
						|
  //
 | 
						|
  // - The value defined by the instruction becomes live across the entire
 | 
						|
  //   loop. This increases register pressure in the loop.
 | 
						|
  //
 | 
						|
  // - If the value is used by a PHI in the loop, a copy will be required for
 | 
						|
  //   lowering the PHI after extending the live range.
 | 
						|
  //
 | 
						|
  // - When hoisting the last use of a value in the loop, that value no longer
 | 
						|
  //   needs to be live in the loop. This lowers register pressure in the loop.
 | 
						|
 | 
						|
  bool CheapInstr = IsCheapInstruction(MI);
 | 
						|
  bool CreatesCopy = HasLoopPHIUse(&MI);
 | 
						|
 | 
						|
  // Don't hoist a cheap instruction if it would create a copy in the loop.
 | 
						|
  if (CheapInstr && CreatesCopy) {
 | 
						|
    DEBUG(dbgs() << "Won't hoist cheap instr with loop PHI use: " << MI);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Rematerializable instructions should always be hoisted since the register
 | 
						|
  // allocator can just pull them down again when needed.
 | 
						|
  if (TII->isTriviallyReMaterializable(&MI, AA))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // FIXME: If there are long latency loop-invariant instructions inside the
 | 
						|
  // loop at this point, why didn't the optimizer's LICM hoist them?
 | 
						|
  for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
 | 
						|
    const MachineOperand &MO = MI.getOperand(i);
 | 
						|
    if (!MO.isReg() || MO.isImplicit())
 | 
						|
      continue;
 | 
						|
    unsigned Reg = MO.getReg();
 | 
						|
    if (!TargetRegisterInfo::isVirtualRegister(Reg))
 | 
						|
      continue;
 | 
						|
    if (MO.isDef() && HasHighOperandLatency(MI, i, Reg)) {
 | 
						|
      DEBUG(dbgs() << "Hoist High Latency: " << MI);
 | 
						|
      ++NumHighLatency;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Estimate register pressure to determine whether to LICM the instruction.
 | 
						|
  // In low register pressure situation, we can be more aggressive about
 | 
						|
  // hoisting. Also, favors hoisting long latency instructions even in
 | 
						|
  // moderately high pressure situation.
 | 
						|
  // Cheap instructions will only be hoisted if they don't increase register
 | 
						|
  // pressure at all.
 | 
						|
  auto Cost = calcRegisterCost(&MI, /*ConsiderSeen=*/false,
 | 
						|
                               /*ConsiderUnseenAsDef=*/false);
 | 
						|
 | 
						|
  // Visit BBs from header to current BB, if hoisting this doesn't cause
 | 
						|
  // high register pressure, then it's safe to proceed.
 | 
						|
  if (!CanCauseHighRegPressure(Cost, CheapInstr)) {
 | 
						|
    DEBUG(dbgs() << "Hoist non-reg-pressure: " << MI);
 | 
						|
    ++NumLowRP;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Don't risk increasing register pressure if it would create copies.
 | 
						|
  if (CreatesCopy) {
 | 
						|
    DEBUG(dbgs() << "Won't hoist instr with loop PHI use: " << MI);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Do not "speculate" in high register pressure situation. If an
 | 
						|
  // instruction is not guaranteed to be executed in the loop, it's best to be
 | 
						|
  // conservative.
 | 
						|
  if (AvoidSpeculation &&
 | 
						|
      (!IsGuaranteedToExecute(MI.getParent()) && !MayCSE(&MI))) {
 | 
						|
    DEBUG(dbgs() << "Won't speculate: " << MI);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // High register pressure situation, only hoist if the instruction is going
 | 
						|
  // to be remat'ed.
 | 
						|
  if (!TII->isTriviallyReMaterializable(&MI, AA) &&
 | 
						|
      !MI.isInvariantLoad(AA)) {
 | 
						|
    DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
MachineInstr *MachineLICM::ExtractHoistableLoad(MachineInstr *MI) {
 | 
						|
  // Don't unfold simple loads.
 | 
						|
  if (MI->canFoldAsLoad())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // If not, we may be able to unfold a load and hoist that.
 | 
						|
  // First test whether the instruction is loading from an amenable
 | 
						|
  // memory location.
 | 
						|
  if (!MI->isInvariantLoad(AA))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Next determine the register class for a temporary register.
 | 
						|
  unsigned LoadRegIndex;
 | 
						|
  unsigned NewOpc =
 | 
						|
    TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(),
 | 
						|
                                    /*UnfoldLoad=*/true,
 | 
						|
                                    /*UnfoldStore=*/false,
 | 
						|
                                    &LoadRegIndex);
 | 
						|
  if (NewOpc == 0) return nullptr;
 | 
						|
  const MCInstrDesc &MID = TII->get(NewOpc);
 | 
						|
  if (MID.getNumDefs() != 1) return nullptr;
 | 
						|
  MachineFunction &MF = *MI->getParent()->getParent();
 | 
						|
  const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI, MF);
 | 
						|
  // Ok, we're unfolding. Create a temporary register and do the unfold.
 | 
						|
  unsigned Reg = MRI->createVirtualRegister(RC);
 | 
						|
 | 
						|
  SmallVector<MachineInstr *, 2> NewMIs;
 | 
						|
  bool Success =
 | 
						|
    TII->unfoldMemoryOperand(MF, MI, Reg,
 | 
						|
                             /*UnfoldLoad=*/true, /*UnfoldStore=*/false,
 | 
						|
                             NewMIs);
 | 
						|
  (void)Success;
 | 
						|
  assert(Success &&
 | 
						|
         "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
 | 
						|
         "succeeded!");
 | 
						|
  assert(NewMIs.size() == 2 &&
 | 
						|
         "Unfolded a load into multiple instructions!");
 | 
						|
  MachineBasicBlock *MBB = MI->getParent();
 | 
						|
  MachineBasicBlock::iterator Pos = MI;
 | 
						|
  MBB->insert(Pos, NewMIs[0]);
 | 
						|
  MBB->insert(Pos, NewMIs[1]);
 | 
						|
  // If unfolding produced a load that wasn't loop-invariant or profitable to
 | 
						|
  // hoist, discard the new instructions and bail.
 | 
						|
  if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) {
 | 
						|
    NewMIs[0]->eraseFromParent();
 | 
						|
    NewMIs[1]->eraseFromParent();
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // Update register pressure for the unfolded instruction.
 | 
						|
  UpdateRegPressure(NewMIs[1]);
 | 
						|
 | 
						|
  // Otherwise we successfully unfolded a load that we can hoist.
 | 
						|
  MI->eraseFromParent();
 | 
						|
  return NewMIs[0];
 | 
						|
}
 | 
						|
 | 
						|
void MachineLICM::InitCSEMap(MachineBasicBlock *BB) {
 | 
						|
  for (MachineBasicBlock::iterator I = BB->begin(),E = BB->end(); I != E; ++I) {
 | 
						|
    const MachineInstr *MI = &*I;
 | 
						|
    unsigned Opcode = MI->getOpcode();
 | 
						|
    CSEMap[Opcode].push_back(MI);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
const MachineInstr*
 | 
						|
MachineLICM::LookForDuplicate(const MachineInstr *MI,
 | 
						|
                              std::vector<const MachineInstr*> &PrevMIs) {
 | 
						|
  for (unsigned i = 0, e = PrevMIs.size(); i != e; ++i) {
 | 
						|
    const MachineInstr *PrevMI = PrevMIs[i];
 | 
						|
    if (TII->produceSameValue(MI, PrevMI, (PreRegAlloc ? MRI : nullptr)))
 | 
						|
      return PrevMI;
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
bool MachineLICM::EliminateCSE(MachineInstr *MI,
 | 
						|
          DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI) {
 | 
						|
  // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
 | 
						|
  // the undef property onto uses.
 | 
						|
  if (CI == CSEMap.end() || MI->isImplicitDef())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) {
 | 
						|
    DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup);
 | 
						|
 | 
						|
    // Replace virtual registers defined by MI by their counterparts defined
 | 
						|
    // by Dup.
 | 
						|
    SmallVector<unsigned, 2> Defs;
 | 
						|
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
      const MachineOperand &MO = MI->getOperand(i);
 | 
						|
 | 
						|
      // Physical registers may not differ here.
 | 
						|
      assert((!MO.isReg() || MO.getReg() == 0 ||
 | 
						|
              !TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
 | 
						|
              MO.getReg() == Dup->getOperand(i).getReg()) &&
 | 
						|
             "Instructions with different phys regs are not identical!");
 | 
						|
 | 
						|
      if (MO.isReg() && MO.isDef() &&
 | 
						|
          !TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
 | 
						|
        Defs.push_back(i);
 | 
						|
    }
 | 
						|
 | 
						|
    SmallVector<const TargetRegisterClass*, 2> OrigRCs;
 | 
						|
    for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
 | 
						|
      unsigned Idx = Defs[i];
 | 
						|
      unsigned Reg = MI->getOperand(Idx).getReg();
 | 
						|
      unsigned DupReg = Dup->getOperand(Idx).getReg();
 | 
						|
      OrigRCs.push_back(MRI->getRegClass(DupReg));
 | 
						|
 | 
						|
      if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) {
 | 
						|
        // Restore old RCs if more than one defs.
 | 
						|
        for (unsigned j = 0; j != i; ++j)
 | 
						|
          MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]);
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
 | 
						|
      unsigned Idx = Defs[i];
 | 
						|
      unsigned Reg = MI->getOperand(Idx).getReg();
 | 
						|
      unsigned DupReg = Dup->getOperand(Idx).getReg();
 | 
						|
      MRI->replaceRegWith(Reg, DupReg);
 | 
						|
      MRI->clearKillFlags(DupReg);
 | 
						|
    }
 | 
						|
 | 
						|
    MI->eraseFromParent();
 | 
						|
    ++NumCSEed;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// MayCSE - Return true if the given instruction will be CSE'd if it's
 | 
						|
/// hoisted out of the loop.
 | 
						|
bool MachineLICM::MayCSE(MachineInstr *MI) {
 | 
						|
  unsigned Opcode = MI->getOpcode();
 | 
						|
  DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
 | 
						|
    CI = CSEMap.find(Opcode);
 | 
						|
  // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
 | 
						|
  // the undef property onto uses.
 | 
						|
  if (CI == CSEMap.end() || MI->isImplicitDef())
 | 
						|
    return false;
 | 
						|
 | 
						|
  return LookForDuplicate(MI, CI->second) != nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Hoist - When an instruction is found to use only loop invariant operands
 | 
						|
/// that are safe to hoist, this instruction is called to do the dirty work.
 | 
						|
///
 | 
						|
bool MachineLICM::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) {
 | 
						|
  // First check whether we should hoist this instruction.
 | 
						|
  if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) {
 | 
						|
    // If not, try unfolding a hoistable load.
 | 
						|
    MI = ExtractHoistableLoad(MI);
 | 
						|
    if (!MI) return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Now move the instructions to the predecessor, inserting it before any
 | 
						|
  // terminator instructions.
 | 
						|
  DEBUG({
 | 
						|
      dbgs() << "Hoisting " << *MI;
 | 
						|
      if (Preheader->getBasicBlock())
 | 
						|
        dbgs() << " to MachineBasicBlock "
 | 
						|
               << Preheader->getName();
 | 
						|
      if (MI->getParent()->getBasicBlock())
 | 
						|
        dbgs() << " from MachineBasicBlock "
 | 
						|
               << MI->getParent()->getName();
 | 
						|
      dbgs() << "\n";
 | 
						|
    });
 | 
						|
 | 
						|
  // If this is the first instruction being hoisted to the preheader,
 | 
						|
  // initialize the CSE map with potential common expressions.
 | 
						|
  if (FirstInLoop) {
 | 
						|
    InitCSEMap(Preheader);
 | 
						|
    FirstInLoop = false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Look for opportunity to CSE the hoisted instruction.
 | 
						|
  unsigned Opcode = MI->getOpcode();
 | 
						|
  DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
 | 
						|
    CI = CSEMap.find(Opcode);
 | 
						|
  if (!EliminateCSE(MI, CI)) {
 | 
						|
    // Otherwise, splice the instruction to the preheader.
 | 
						|
    Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI);
 | 
						|
 | 
						|
    // Update register pressure for BBs from header to this block.
 | 
						|
    UpdateBackTraceRegPressure(MI);
 | 
						|
 | 
						|
    // Clear the kill flags of any register this instruction defines,
 | 
						|
    // since they may need to be live throughout the entire loop
 | 
						|
    // rather than just live for part of it.
 | 
						|
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
      MachineOperand &MO = MI->getOperand(i);
 | 
						|
      if (MO.isReg() && MO.isDef() && !MO.isDead())
 | 
						|
        MRI->clearKillFlags(MO.getReg());
 | 
						|
    }
 | 
						|
 | 
						|
    // Add to the CSE map.
 | 
						|
    if (CI != CSEMap.end())
 | 
						|
      CI->second.push_back(MI);
 | 
						|
    else
 | 
						|
      CSEMap[Opcode].push_back(MI);
 | 
						|
  }
 | 
						|
 | 
						|
  ++NumHoisted;
 | 
						|
  Changed = true;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
MachineBasicBlock *MachineLICM::getCurPreheader() {
 | 
						|
  // Determine the block to which to hoist instructions. If we can't find a
 | 
						|
  // suitable loop predecessor, we can't do any hoisting.
 | 
						|
 | 
						|
  // If we've tried to get a preheader and failed, don't try again.
 | 
						|
  if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  if (!CurPreheader) {
 | 
						|
    CurPreheader = CurLoop->getLoopPreheader();
 | 
						|
    if (!CurPreheader) {
 | 
						|
      MachineBasicBlock *Pred = CurLoop->getLoopPredecessor();
 | 
						|
      if (!Pred) {
 | 
						|
        CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
 | 
						|
        return nullptr;
 | 
						|
      }
 | 
						|
 | 
						|
      CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), this);
 | 
						|
      if (!CurPreheader) {
 | 
						|
        CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
 | 
						|
        return nullptr;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return CurPreheader;
 | 
						|
}
 |