mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	Correctly sort self-users (such as PHI nodes). I added a targeted test in `test/Bitcode/use-list-order.ll` and the final missing RUN line to tests in `test/Assembly`. This is part of PR5680. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214417 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			798 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			798 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- ValueEnumerator.cpp - Number values and types for bitcode writer --===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the ValueEnumerator class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "ValueEnumerator.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/UseListOrder.h"
 | |
| #include "llvm/IR/ValueSymbolTable.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
| struct OrderMap {
 | |
|   DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
 | |
|   unsigned LastGlobalConstantID;
 | |
|   unsigned LastGlobalValueID;
 | |
| 
 | |
|   OrderMap() : LastGlobalConstantID(0), LastGlobalValueID(0) {}
 | |
| 
 | |
|   bool isGlobalConstant(unsigned ID) const {
 | |
|     return ID <= LastGlobalConstantID;
 | |
|   }
 | |
|   bool isGlobalValue(unsigned ID) const {
 | |
|     return ID <= LastGlobalValueID && !isGlobalConstant(ID);
 | |
|   }
 | |
| 
 | |
|   unsigned size() const { return IDs.size(); }
 | |
|   std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
 | |
|   std::pair<unsigned, bool> lookup(const Value *V) const {
 | |
|     return IDs.lookup(V);
 | |
|   }
 | |
|   void index(const Value *V) {
 | |
|     // Explicitly sequence get-size and insert-value operations to avoid UB.
 | |
|     unsigned ID = IDs.size() + 1;
 | |
|     IDs[V].first = ID;
 | |
|   }
 | |
| };
 | |
| }
 | |
| 
 | |
| static void orderValue(const Value *V, OrderMap &OM) {
 | |
|   if (OM.lookup(V).first)
 | |
|     return;
 | |
| 
 | |
|   if (const Constant *C = dyn_cast<Constant>(V))
 | |
|     if (C->getNumOperands() && !isa<GlobalValue>(C))
 | |
|       for (const Value *Op : C->operands())
 | |
|         if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
 | |
|           orderValue(Op, OM);
 | |
| 
 | |
|   // Note: we cannot cache this lookup above, since inserting into the map
 | |
|   // changes the map's size, and thus affects the other IDs.
 | |
|   OM.index(V);
 | |
| }
 | |
| 
 | |
| static OrderMap orderModule(const Module *M) {
 | |
|   // This needs to match the order used by ValueEnumerator::ValueEnumerator()
 | |
|   // and ValueEnumerator::incorporateFunction().
 | |
|   OrderMap OM;
 | |
| 
 | |
|   // In the reader, initializers of GlobalValues are set *after* all the
 | |
|   // globals have been read.  Rather than awkwardly modeling this behaviour
 | |
|   // directly in predictValueUseListOrderImpl(), just assign IDs to
 | |
|   // initializers of GlobalValues before GlobalValues themselves to model this
 | |
|   // implicitly.
 | |
|   for (const GlobalVariable &G : M->globals())
 | |
|     if (G.hasInitializer())
 | |
|       if (!isa<GlobalValue>(G.getInitializer()))
 | |
|         orderValue(G.getInitializer(), OM);
 | |
|   for (const GlobalAlias &A : M->aliases())
 | |
|     if (!isa<GlobalValue>(A.getAliasee()))
 | |
|       orderValue(A.getAliasee(), OM);
 | |
|   for (const Function &F : *M)
 | |
|     if (F.hasPrefixData())
 | |
|       if (!isa<GlobalValue>(F.getPrefixData()))
 | |
|         orderValue(F.getPrefixData(), OM);
 | |
|   OM.LastGlobalConstantID = OM.size();
 | |
| 
 | |
|   // Initializers of GlobalValues are processed in
 | |
|   // BitcodeReader::ResolveGlobalAndAliasInits().  Match the order there rather
 | |
|   // than ValueEnumerator, and match the code in predictValueUseListOrderImpl()
 | |
|   // by giving IDs in reverse order.
 | |
|   //
 | |
|   // Since GlobalValues never reference each other directly (just through
 | |
|   // initializers), their relative IDs only matter for determining order of
 | |
|   // uses in their initializers.
 | |
|   for (const Function &F : *M)
 | |
|     orderValue(&F, OM);
 | |
|   for (const GlobalAlias &A : M->aliases())
 | |
|     orderValue(&A, OM);
 | |
|   for (const GlobalVariable &G : M->globals())
 | |
|     orderValue(&G, OM);
 | |
|   OM.LastGlobalValueID = OM.size();
 | |
| 
 | |
|   for (const Function &F : *M) {
 | |
|     if (F.isDeclaration())
 | |
|       continue;
 | |
|     // Here we need to match the union of ValueEnumerator::incorporateFunction()
 | |
|     // and WriteFunction().  Basic blocks are implicitly declared before
 | |
|     // anything else (by declaring their size).
 | |
|     for (const BasicBlock &BB : F)
 | |
|       orderValue(&BB, OM);
 | |
|     for (const Argument &A : F.args())
 | |
|       orderValue(&A, OM);
 | |
|     for (const BasicBlock &BB : F)
 | |
|       for (const Instruction &I : BB)
 | |
|         for (const Value *Op : I.operands())
 | |
|           if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
 | |
|               isa<InlineAsm>(*Op))
 | |
|             orderValue(Op, OM);
 | |
|     for (const BasicBlock &BB : F)
 | |
|       for (const Instruction &I : BB)
 | |
|         orderValue(&I, OM);
 | |
|   }
 | |
|   return OM;
 | |
| }
 | |
| 
 | |
| static void predictValueUseListOrderImpl(const Value *V, const Function *F,
 | |
|                                          unsigned ID, const OrderMap &OM,
 | |
|                                          UseListOrderStack &Stack) {
 | |
|   // Predict use-list order for this one.
 | |
|   typedef std::pair<const Use *, unsigned> Entry;
 | |
|   SmallVector<Entry, 64> List;
 | |
|   for (const Use &U : V->uses())
 | |
|     // Check if this user will be serialized.
 | |
|     if (OM.lookup(U.getUser()).first)
 | |
|       List.push_back(std::make_pair(&U, List.size()));
 | |
| 
 | |
|   if (List.size() < 2)
 | |
|     // We may have lost some users.
 | |
|     return;
 | |
| 
 | |
|   bool IsGlobalValue = OM.isGlobalValue(ID);
 | |
|   std::sort(List.begin(), List.end(), [&](const Entry &L, const Entry &R) {
 | |
|     const Use *LU = L.first;
 | |
|     const Use *RU = R.first;
 | |
|     if (LU == RU)
 | |
|       return false;
 | |
| 
 | |
|     auto LID = OM.lookup(LU->getUser()).first;
 | |
|     auto RID = OM.lookup(RU->getUser()).first;
 | |
| 
 | |
|     // Global values are processed in reverse order.
 | |
|     //
 | |
|     // Moreover, initializers of GlobalValues are set *after* all the globals
 | |
|     // have been read (despite having earlier IDs).  Rather than awkwardly
 | |
|     // modeling this behaviour here, orderModule() has assigned IDs to
 | |
|     // initializers of GlobalValues before GlobalValues themselves.
 | |
|     if (OM.isGlobalValue(LID) && OM.isGlobalValue(RID))
 | |
|       return LID < RID;
 | |
| 
 | |
|     // If ID is 4, then expect: 7 6 5 1 2 3.
 | |
|     if (LID < RID) {
 | |
|       if (RID <= ID)
 | |
|         if (!IsGlobalValue) // GlobalValue uses don't get reversed.
 | |
|           return true;
 | |
|       return false;
 | |
|     }
 | |
|     if (RID < LID) {
 | |
|       if (LID <= ID)
 | |
|         if (!IsGlobalValue) // GlobalValue uses don't get reversed.
 | |
|           return false;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // LID and RID are equal, so we have different operands of the same user.
 | |
|     // Assume operands are added in order for all instructions.
 | |
|     if (LID <= ID)
 | |
|       if (!IsGlobalValue) // GlobalValue uses don't get reversed.
 | |
|         return LU->getOperandNo() < RU->getOperandNo();
 | |
|     return LU->getOperandNo() > RU->getOperandNo();
 | |
|   });
 | |
| 
 | |
|   if (std::is_sorted(
 | |
|           List.begin(), List.end(),
 | |
|           [](const Entry &L, const Entry &R) { return L.second < R.second; }))
 | |
|     // Order is already correct.
 | |
|     return;
 | |
| 
 | |
|   // Store the shuffle.
 | |
|   Stack.emplace_back(V, F, List.size());
 | |
|   assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
 | |
|   for (size_t I = 0, E = List.size(); I != E; ++I)
 | |
|     Stack.back().Shuffle[I] = List[I].second;
 | |
| }
 | |
| 
 | |
| static void predictValueUseListOrder(const Value *V, const Function *F,
 | |
|                                      OrderMap &OM, UseListOrderStack &Stack) {
 | |
|   auto &IDPair = OM[V];
 | |
|   assert(IDPair.first && "Unmapped value");
 | |
|   if (IDPair.second)
 | |
|     // Already predicted.
 | |
|     return;
 | |
| 
 | |
|   // Do the actual prediction.
 | |
|   IDPair.second = true;
 | |
|   if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
 | |
|     predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
 | |
| 
 | |
|   // Recursive descent into constants.
 | |
|   if (const Constant *C = dyn_cast<Constant>(V))
 | |
|     if (C->getNumOperands()) // Visit GlobalValues.
 | |
|       for (const Value *Op : C->operands())
 | |
|         if (isa<Constant>(Op)) // Visit GlobalValues.
 | |
|           predictValueUseListOrder(Op, F, OM, Stack);
 | |
| }
 | |
| 
 | |
| static UseListOrderStack predictUseListOrder(const Module *M) {
 | |
|   OrderMap OM = orderModule(M);
 | |
| 
 | |
|   // Use-list orders need to be serialized after all the users have been added
 | |
|   // to a value, or else the shuffles will be incomplete.  Store them per
 | |
|   // function in a stack.
 | |
|   //
 | |
|   // Aside from function order, the order of values doesn't matter much here.
 | |
|   UseListOrderStack Stack;
 | |
| 
 | |
|   // We want to visit the functions backward now so we can list function-local
 | |
|   // constants in the last Function they're used in.  Module-level constants
 | |
|   // have already been visited above.
 | |
|   for (auto I = M->rbegin(), E = M->rend(); I != E; ++I) {
 | |
|     const Function &F = *I;
 | |
|     if (F.isDeclaration())
 | |
|       continue;
 | |
|     for (const BasicBlock &BB : F)
 | |
|       predictValueUseListOrder(&BB, &F, OM, Stack);
 | |
|     for (const Argument &A : F.args())
 | |
|       predictValueUseListOrder(&A, &F, OM, Stack);
 | |
|     for (const BasicBlock &BB : F)
 | |
|       for (const Instruction &I : BB)
 | |
|         for (const Value *Op : I.operands())
 | |
|           if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
 | |
|             predictValueUseListOrder(Op, &F, OM, Stack);
 | |
|     for (const BasicBlock &BB : F)
 | |
|       for (const Instruction &I : BB)
 | |
|         predictValueUseListOrder(&I, &F, OM, Stack);
 | |
|   }
 | |
| 
 | |
|   // Visit globals last, since the module-level use-list block will be seen
 | |
|   // before the function bodies are processed.
 | |
|   for (const GlobalVariable &G : M->globals())
 | |
|     predictValueUseListOrder(&G, nullptr, OM, Stack);
 | |
|   for (const Function &F : *M)
 | |
|     predictValueUseListOrder(&F, nullptr, OM, Stack);
 | |
|   for (const GlobalAlias &A : M->aliases())
 | |
|     predictValueUseListOrder(&A, nullptr, OM, Stack);
 | |
|   for (const GlobalVariable &G : M->globals())
 | |
|     if (G.hasInitializer())
 | |
|       predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
 | |
|   for (const GlobalAlias &A : M->aliases())
 | |
|     predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
 | |
|   for (const Function &F : *M)
 | |
|     if (F.hasPrefixData())
 | |
|       predictValueUseListOrder(F.getPrefixData(), nullptr, OM, Stack);
 | |
| 
 | |
|   return Stack;
 | |
| }
 | |
| 
 | |
| static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) {
 | |
|   return V.first->getType()->isIntOrIntVectorTy();
 | |
| }
 | |
| 
 | |
| /// ValueEnumerator - Enumerate module-level information.
 | |
| ValueEnumerator::ValueEnumerator(const Module *M) {
 | |
|   if (shouldPreserveBitcodeUseListOrder())
 | |
|     UseListOrders = predictUseListOrder(M);
 | |
| 
 | |
|   // Enumerate the global variables.
 | |
|   for (Module::const_global_iterator I = M->global_begin(),
 | |
| 
 | |
|          E = M->global_end(); I != E; ++I)
 | |
|     EnumerateValue(I);
 | |
| 
 | |
|   // Enumerate the functions.
 | |
|   for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) {
 | |
|     EnumerateValue(I);
 | |
|     EnumerateAttributes(cast<Function>(I)->getAttributes());
 | |
|   }
 | |
| 
 | |
|   // Enumerate the aliases.
 | |
|   for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
 | |
|        I != E; ++I)
 | |
|     EnumerateValue(I);
 | |
| 
 | |
|   // Remember what is the cutoff between globalvalue's and other constants.
 | |
|   unsigned FirstConstant = Values.size();
 | |
| 
 | |
|   // Enumerate the global variable initializers.
 | |
|   for (Module::const_global_iterator I = M->global_begin(),
 | |
|          E = M->global_end(); I != E; ++I)
 | |
|     if (I->hasInitializer())
 | |
|       EnumerateValue(I->getInitializer());
 | |
| 
 | |
|   // Enumerate the aliasees.
 | |
|   for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
 | |
|        I != E; ++I)
 | |
|     EnumerateValue(I->getAliasee());
 | |
| 
 | |
|   // Enumerate the prefix data constants.
 | |
|   for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
 | |
|     if (I->hasPrefixData())
 | |
|       EnumerateValue(I->getPrefixData());
 | |
| 
 | |
|   // Insert constants and metadata that are named at module level into the slot
 | |
|   // pool so that the module symbol table can refer to them...
 | |
|   EnumerateValueSymbolTable(M->getValueSymbolTable());
 | |
|   EnumerateNamedMetadata(M);
 | |
| 
 | |
|   SmallVector<std::pair<unsigned, MDNode*>, 8> MDs;
 | |
| 
 | |
|   // Enumerate types used by function bodies and argument lists.
 | |
|   for (const Function &F : *M) {
 | |
|     for (const Argument &A : F.args())
 | |
|       EnumerateType(A.getType());
 | |
| 
 | |
|     for (const BasicBlock &BB : F)
 | |
|       for (const Instruction &I : BB) {
 | |
|         for (const Use &Op : I.operands()) {
 | |
|           if (MDNode *MD = dyn_cast<MDNode>(&Op))
 | |
|             if (MD->isFunctionLocal() && MD->getFunction())
 | |
|               // These will get enumerated during function-incorporation.
 | |
|               continue;
 | |
|           EnumerateOperandType(Op);
 | |
|         }
 | |
|         EnumerateType(I.getType());
 | |
|         if (const CallInst *CI = dyn_cast<CallInst>(&I))
 | |
|           EnumerateAttributes(CI->getAttributes());
 | |
|         else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I))
 | |
|           EnumerateAttributes(II->getAttributes());
 | |
| 
 | |
|         // Enumerate metadata attached with this instruction.
 | |
|         MDs.clear();
 | |
|         I.getAllMetadataOtherThanDebugLoc(MDs);
 | |
|         for (unsigned i = 0, e = MDs.size(); i != e; ++i)
 | |
|           EnumerateMetadata(MDs[i].second);
 | |
| 
 | |
|         if (!I.getDebugLoc().isUnknown()) {
 | |
|           MDNode *Scope, *IA;
 | |
|           I.getDebugLoc().getScopeAndInlinedAt(Scope, IA, I.getContext());
 | |
|           if (Scope) EnumerateMetadata(Scope);
 | |
|           if (IA) EnumerateMetadata(IA);
 | |
|         }
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // Optimize constant ordering.
 | |
|   OptimizeConstants(FirstConstant, Values.size());
 | |
| }
 | |
| 
 | |
| unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const {
 | |
|   InstructionMapType::const_iterator I = InstructionMap.find(Inst);
 | |
|   assert(I != InstructionMap.end() && "Instruction is not mapped!");
 | |
|   return I->second;
 | |
| }
 | |
| 
 | |
| unsigned ValueEnumerator::getComdatID(const Comdat *C) const {
 | |
|   unsigned ComdatID = Comdats.idFor(C);
 | |
|   assert(ComdatID && "Comdat not found!");
 | |
|   return ComdatID;
 | |
| }
 | |
| 
 | |
| void ValueEnumerator::setInstructionID(const Instruction *I) {
 | |
|   InstructionMap[I] = InstructionCount++;
 | |
| }
 | |
| 
 | |
| unsigned ValueEnumerator::getValueID(const Value *V) const {
 | |
|   if (isa<MDNode>(V) || isa<MDString>(V)) {
 | |
|     ValueMapType::const_iterator I = MDValueMap.find(V);
 | |
|     assert(I != MDValueMap.end() && "Value not in slotcalculator!");
 | |
|     return I->second-1;
 | |
|   }
 | |
| 
 | |
|   ValueMapType::const_iterator I = ValueMap.find(V);
 | |
|   assert(I != ValueMap.end() && "Value not in slotcalculator!");
 | |
|   return I->second-1;
 | |
| }
 | |
| 
 | |
| void ValueEnumerator::dump() const {
 | |
|   print(dbgs(), ValueMap, "Default");
 | |
|   dbgs() << '\n';
 | |
|   print(dbgs(), MDValueMap, "MetaData");
 | |
|   dbgs() << '\n';
 | |
| }
 | |
| 
 | |
| void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map,
 | |
|                             const char *Name) const {
 | |
| 
 | |
|   OS << "Map Name: " << Name << "\n";
 | |
|   OS << "Size: " << Map.size() << "\n";
 | |
|   for (ValueMapType::const_iterator I = Map.begin(),
 | |
|          E = Map.end(); I != E; ++I) {
 | |
| 
 | |
|     const Value *V = I->first;
 | |
|     if (V->hasName())
 | |
|       OS << "Value: " << V->getName();
 | |
|     else
 | |
|       OS << "Value: [null]\n";
 | |
|     V->dump();
 | |
| 
 | |
|     OS << " Uses(" << std::distance(V->use_begin(),V->use_end()) << "):";
 | |
|     for (const Use &U : V->uses()) {
 | |
|       if (&U != &*V->use_begin())
 | |
|         OS << ",";
 | |
|       if(U->hasName())
 | |
|         OS << " " << U->getName();
 | |
|       else
 | |
|         OS << " [null]";
 | |
| 
 | |
|     }
 | |
|     OS <<  "\n\n";
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// OptimizeConstants - Reorder constant pool for denser encoding.
 | |
| void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
 | |
|   if (CstStart == CstEnd || CstStart+1 == CstEnd) return;
 | |
| 
 | |
|   if (shouldPreserveBitcodeUseListOrder())
 | |
|     // Optimizing constants makes the use-list order difficult to predict.
 | |
|     // Disable it for now when trying to preserve the order.
 | |
|     return;
 | |
| 
 | |
|   std::stable_sort(Values.begin() + CstStart, Values.begin() + CstEnd,
 | |
|                    [this](const std::pair<const Value *, unsigned> &LHS,
 | |
|                           const std::pair<const Value *, unsigned> &RHS) {
 | |
|     // Sort by plane.
 | |
|     if (LHS.first->getType() != RHS.first->getType())
 | |
|       return getTypeID(LHS.first->getType()) < getTypeID(RHS.first->getType());
 | |
|     // Then by frequency.
 | |
|     return LHS.second > RHS.second;
 | |
|   });
 | |
| 
 | |
|   // Ensure that integer and vector of integer constants are at the start of the
 | |
|   // constant pool.  This is important so that GEP structure indices come before
 | |
|   // gep constant exprs.
 | |
|   std::partition(Values.begin()+CstStart, Values.begin()+CstEnd,
 | |
|                  isIntOrIntVectorValue);
 | |
| 
 | |
|   // Rebuild the modified portion of ValueMap.
 | |
|   for (; CstStart != CstEnd; ++CstStart)
 | |
|     ValueMap[Values[CstStart].first] = CstStart+1;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
 | |
| /// table into the values table.
 | |
| void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
 | |
|   for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
 | |
|        VI != VE; ++VI)
 | |
|     EnumerateValue(VI->getValue());
 | |
| }
 | |
| 
 | |
| /// EnumerateNamedMetadata - Insert all of the values referenced by
 | |
| /// named metadata in the specified module.
 | |
| void ValueEnumerator::EnumerateNamedMetadata(const Module *M) {
 | |
|   for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
 | |
|        E = M->named_metadata_end(); I != E; ++I)
 | |
|     EnumerateNamedMDNode(I);
 | |
| }
 | |
| 
 | |
| void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) {
 | |
|   for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i)
 | |
|     EnumerateMetadata(MD->getOperand(i));
 | |
| }
 | |
| 
 | |
| /// EnumerateMDNodeOperands - Enumerate all non-function-local values
 | |
| /// and types referenced by the given MDNode.
 | |
| void ValueEnumerator::EnumerateMDNodeOperands(const MDNode *N) {
 | |
|   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
 | |
|     if (Value *V = N->getOperand(i)) {
 | |
|       if (isa<MDNode>(V) || isa<MDString>(V))
 | |
|         EnumerateMetadata(V);
 | |
|       else if (!isa<Instruction>(V) && !isa<Argument>(V))
 | |
|         EnumerateValue(V);
 | |
|     } else
 | |
|       EnumerateType(Type::getVoidTy(N->getContext()));
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ValueEnumerator::EnumerateMetadata(const Value *MD) {
 | |
|   assert((isa<MDNode>(MD) || isa<MDString>(MD)) && "Invalid metadata kind");
 | |
| 
 | |
|   // Enumerate the type of this value.
 | |
|   EnumerateType(MD->getType());
 | |
| 
 | |
|   const MDNode *N = dyn_cast<MDNode>(MD);
 | |
| 
 | |
|   // In the module-level pass, skip function-local nodes themselves, but
 | |
|   // do walk their operands.
 | |
|   if (N && N->isFunctionLocal() && N->getFunction()) {
 | |
|     EnumerateMDNodeOperands(N);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Check to see if it's already in!
 | |
|   unsigned &MDValueID = MDValueMap[MD];
 | |
|   if (MDValueID) {
 | |
|     // Increment use count.
 | |
|     MDValues[MDValueID-1].second++;
 | |
|     return;
 | |
|   }
 | |
|   MDValues.push_back(std::make_pair(MD, 1U));
 | |
|   MDValueID = MDValues.size();
 | |
| 
 | |
|   // Enumerate all non-function-local operands.
 | |
|   if (N)
 | |
|     EnumerateMDNodeOperands(N);
 | |
| }
 | |
| 
 | |
| /// EnumerateFunctionLocalMetadataa - Incorporate function-local metadata
 | |
| /// information reachable from the given MDNode.
 | |
| void ValueEnumerator::EnumerateFunctionLocalMetadata(const MDNode *N) {
 | |
|   assert(N->isFunctionLocal() && N->getFunction() &&
 | |
|          "EnumerateFunctionLocalMetadata called on non-function-local mdnode!");
 | |
| 
 | |
|   // Enumerate the type of this value.
 | |
|   EnumerateType(N->getType());
 | |
| 
 | |
|   // Check to see if it's already in!
 | |
|   unsigned &MDValueID = MDValueMap[N];
 | |
|   if (MDValueID) {
 | |
|     // Increment use count.
 | |
|     MDValues[MDValueID-1].second++;
 | |
|     return;
 | |
|   }
 | |
|   MDValues.push_back(std::make_pair(N, 1U));
 | |
|   MDValueID = MDValues.size();
 | |
| 
 | |
|   // To incoroporate function-local information visit all function-local
 | |
|   // MDNodes and all function-local values they reference.
 | |
|   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
 | |
|     if (Value *V = N->getOperand(i)) {
 | |
|       if (MDNode *O = dyn_cast<MDNode>(V)) {
 | |
|         if (O->isFunctionLocal() && O->getFunction())
 | |
|           EnumerateFunctionLocalMetadata(O);
 | |
|       } else if (isa<Instruction>(V) || isa<Argument>(V))
 | |
|         EnumerateValue(V);
 | |
|     }
 | |
| 
 | |
|   // Also, collect all function-local MDNodes for easy access.
 | |
|   FunctionLocalMDs.push_back(N);
 | |
| }
 | |
| 
 | |
| void ValueEnumerator::EnumerateValue(const Value *V) {
 | |
|   assert(!V->getType()->isVoidTy() && "Can't insert void values!");
 | |
|   assert(!isa<MDNode>(V) && !isa<MDString>(V) &&
 | |
|          "EnumerateValue doesn't handle Metadata!");
 | |
| 
 | |
|   // Check to see if it's already in!
 | |
|   unsigned &ValueID = ValueMap[V];
 | |
|   if (ValueID) {
 | |
|     // Increment use count.
 | |
|     Values[ValueID-1].second++;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (auto *GO = dyn_cast<GlobalObject>(V))
 | |
|     if (const Comdat *C = GO->getComdat())
 | |
|       Comdats.insert(C);
 | |
| 
 | |
|   // Enumerate the type of this value.
 | |
|   EnumerateType(V->getType());
 | |
| 
 | |
|   if (const Constant *C = dyn_cast<Constant>(V)) {
 | |
|     if (isa<GlobalValue>(C)) {
 | |
|       // Initializers for globals are handled explicitly elsewhere.
 | |
|     } else if (C->getNumOperands()) {
 | |
|       // If a constant has operands, enumerate them.  This makes sure that if a
 | |
|       // constant has uses (for example an array of const ints), that they are
 | |
|       // inserted also.
 | |
| 
 | |
|       // We prefer to enumerate them with values before we enumerate the user
 | |
|       // itself.  This makes it more likely that we can avoid forward references
 | |
|       // in the reader.  We know that there can be no cycles in the constants
 | |
|       // graph that don't go through a global variable.
 | |
|       for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
 | |
|            I != E; ++I)
 | |
|         if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress.
 | |
|           EnumerateValue(*I);
 | |
| 
 | |
|       // Finally, add the value.  Doing this could make the ValueID reference be
 | |
|       // dangling, don't reuse it.
 | |
|       Values.push_back(std::make_pair(V, 1U));
 | |
|       ValueMap[V] = Values.size();
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Add the value.
 | |
|   Values.push_back(std::make_pair(V, 1U));
 | |
|   ValueID = Values.size();
 | |
| }
 | |
| 
 | |
| 
 | |
| void ValueEnumerator::EnumerateType(Type *Ty) {
 | |
|   unsigned *TypeID = &TypeMap[Ty];
 | |
| 
 | |
|   // We've already seen this type.
 | |
|   if (*TypeID)
 | |
|     return;
 | |
| 
 | |
|   // If it is a non-anonymous struct, mark the type as being visited so that we
 | |
|   // don't recursively visit it.  This is safe because we allow forward
 | |
|   // references of these in the bitcode reader.
 | |
|   if (StructType *STy = dyn_cast<StructType>(Ty))
 | |
|     if (!STy->isLiteral())
 | |
|       *TypeID = ~0U;
 | |
| 
 | |
|   // Enumerate all of the subtypes before we enumerate this type.  This ensures
 | |
|   // that the type will be enumerated in an order that can be directly built.
 | |
|   for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
 | |
|        I != E; ++I)
 | |
|     EnumerateType(*I);
 | |
| 
 | |
|   // Refresh the TypeID pointer in case the table rehashed.
 | |
|   TypeID = &TypeMap[Ty];
 | |
| 
 | |
|   // Check to see if we got the pointer another way.  This can happen when
 | |
|   // enumerating recursive types that hit the base case deeper than they start.
 | |
|   //
 | |
|   // If this is actually a struct that we are treating as forward ref'able,
 | |
|   // then emit the definition now that all of its contents are available.
 | |
|   if (*TypeID && *TypeID != ~0U)
 | |
|     return;
 | |
| 
 | |
|   // Add this type now that its contents are all happily enumerated.
 | |
|   Types.push_back(Ty);
 | |
| 
 | |
|   *TypeID = Types.size();
 | |
| }
 | |
| 
 | |
| // Enumerate the types for the specified value.  If the value is a constant,
 | |
| // walk through it, enumerating the types of the constant.
 | |
| void ValueEnumerator::EnumerateOperandType(const Value *V) {
 | |
|   EnumerateType(V->getType());
 | |
| 
 | |
|   if (const Constant *C = dyn_cast<Constant>(V)) {
 | |
|     // If this constant is already enumerated, ignore it, we know its type must
 | |
|     // be enumerated.
 | |
|     if (ValueMap.count(V)) return;
 | |
| 
 | |
|     // This constant may have operands, make sure to enumerate the types in
 | |
|     // them.
 | |
|     for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
 | |
|       const Value *Op = C->getOperand(i);
 | |
| 
 | |
|       // Don't enumerate basic blocks here, this happens as operands to
 | |
|       // blockaddress.
 | |
|       if (isa<BasicBlock>(Op)) continue;
 | |
| 
 | |
|       EnumerateOperandType(Op);
 | |
|     }
 | |
| 
 | |
|     if (const MDNode *N = dyn_cast<MDNode>(V)) {
 | |
|       for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
 | |
|         if (Value *Elem = N->getOperand(i))
 | |
|           EnumerateOperandType(Elem);
 | |
|     }
 | |
|   } else if (isa<MDString>(V) || isa<MDNode>(V))
 | |
|     EnumerateMetadata(V);
 | |
| }
 | |
| 
 | |
| void ValueEnumerator::EnumerateAttributes(AttributeSet PAL) {
 | |
|   if (PAL.isEmpty()) return;  // null is always 0.
 | |
| 
 | |
|   // Do a lookup.
 | |
|   unsigned &Entry = AttributeMap[PAL];
 | |
|   if (Entry == 0) {
 | |
|     // Never saw this before, add it.
 | |
|     Attribute.push_back(PAL);
 | |
|     Entry = Attribute.size();
 | |
|   }
 | |
| 
 | |
|   // Do lookups for all attribute groups.
 | |
|   for (unsigned i = 0, e = PAL.getNumSlots(); i != e; ++i) {
 | |
|     AttributeSet AS = PAL.getSlotAttributes(i);
 | |
|     unsigned &Entry = AttributeGroupMap[AS];
 | |
|     if (Entry == 0) {
 | |
|       AttributeGroups.push_back(AS);
 | |
|       Entry = AttributeGroups.size();
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ValueEnumerator::incorporateFunction(const Function &F) {
 | |
|   InstructionCount = 0;
 | |
|   NumModuleValues = Values.size();
 | |
|   NumModuleMDValues = MDValues.size();
 | |
| 
 | |
|   // Adding function arguments to the value table.
 | |
|   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
 | |
|        I != E; ++I)
 | |
|     EnumerateValue(I);
 | |
| 
 | |
|   FirstFuncConstantID = Values.size();
 | |
| 
 | |
|   // Add all function-level constants to the value table.
 | |
|   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
 | |
|     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I)
 | |
|       for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
 | |
|            OI != E; ++OI) {
 | |
|         if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) ||
 | |
|             isa<InlineAsm>(*OI))
 | |
|           EnumerateValue(*OI);
 | |
|       }
 | |
|     BasicBlocks.push_back(BB);
 | |
|     ValueMap[BB] = BasicBlocks.size();
 | |
|   }
 | |
| 
 | |
|   // Optimize the constant layout.
 | |
|   OptimizeConstants(FirstFuncConstantID, Values.size());
 | |
| 
 | |
|   // Add the function's parameter attributes so they are available for use in
 | |
|   // the function's instruction.
 | |
|   EnumerateAttributes(F.getAttributes());
 | |
| 
 | |
|   FirstInstID = Values.size();
 | |
| 
 | |
|   SmallVector<MDNode *, 8> FnLocalMDVector;
 | |
|   // Add all of the instructions.
 | |
|   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
 | |
|     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) {
 | |
|       for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
 | |
|            OI != E; ++OI) {
 | |
|         if (MDNode *MD = dyn_cast<MDNode>(*OI))
 | |
|           if (MD->isFunctionLocal() && MD->getFunction())
 | |
|             // Enumerate metadata after the instructions they might refer to.
 | |
|             FnLocalMDVector.push_back(MD);
 | |
|       }
 | |
| 
 | |
|       SmallVector<std::pair<unsigned, MDNode*>, 8> MDs;
 | |
|       I->getAllMetadataOtherThanDebugLoc(MDs);
 | |
|       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
 | |
|         MDNode *N = MDs[i].second;
 | |
|         if (N->isFunctionLocal() && N->getFunction())
 | |
|           FnLocalMDVector.push_back(N);
 | |
|       }
 | |
| 
 | |
|       if (!I->getType()->isVoidTy())
 | |
|         EnumerateValue(I);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Add all of the function-local metadata.
 | |
|   for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i)
 | |
|     EnumerateFunctionLocalMetadata(FnLocalMDVector[i]);
 | |
| }
 | |
| 
 | |
| void ValueEnumerator::purgeFunction() {
 | |
|   /// Remove purged values from the ValueMap.
 | |
|   for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i)
 | |
|     ValueMap.erase(Values[i].first);
 | |
|   for (unsigned i = NumModuleMDValues, e = MDValues.size(); i != e; ++i)
 | |
|     MDValueMap.erase(MDValues[i].first);
 | |
|   for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i)
 | |
|     ValueMap.erase(BasicBlocks[i]);
 | |
| 
 | |
|   Values.resize(NumModuleValues);
 | |
|   MDValues.resize(NumModuleMDValues);
 | |
|   BasicBlocks.clear();
 | |
|   FunctionLocalMDs.clear();
 | |
| }
 | |
| 
 | |
| static void IncorporateFunctionInfoGlobalBBIDs(const Function *F,
 | |
|                                  DenseMap<const BasicBlock*, unsigned> &IDMap) {
 | |
|   unsigned Counter = 0;
 | |
|   for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
 | |
|     IDMap[BB] = ++Counter;
 | |
| }
 | |
| 
 | |
| /// getGlobalBasicBlockID - This returns the function-specific ID for the
 | |
| /// specified basic block.  This is relatively expensive information, so it
 | |
| /// should only be used by rare constructs such as address-of-label.
 | |
| unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const {
 | |
|   unsigned &Idx = GlobalBasicBlockIDs[BB];
 | |
|   if (Idx != 0)
 | |
|     return Idx-1;
 | |
| 
 | |
|   IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs);
 | |
|   return getGlobalBasicBlockID(BB);
 | |
| }
 | |
| 
 |