mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@28752 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			809 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			809 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file describes how to lower LLVM code to machine code.  This has two
 | |
| // main components:
 | |
| //
 | |
| //  1. Which ValueTypes are natively supported by the target.
 | |
| //  2. Which operations are supported for supported ValueTypes.
 | |
| //  3. Cost thresholds for alternative implementations of certain operations.
 | |
| //
 | |
| // In addition it has a few other components, like information about FP
 | |
| // immediates.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_TARGET_TARGETLOWERING_H
 | |
| #define LLVM_TARGET_TARGETLOWERING_H
 | |
| 
 | |
| #include "llvm/Type.h"
 | |
| #include "llvm/CodeGen/SelectionDAGNodes.h"
 | |
| #include <map>
 | |
| 
 | |
| namespace llvm {
 | |
|   class Value;
 | |
|   class Function;
 | |
|   class TargetMachine;
 | |
|   class TargetData;
 | |
|   class TargetRegisterClass;
 | |
|   class SDNode;
 | |
|   class SDOperand;
 | |
|   class SelectionDAG;
 | |
|   class MachineBasicBlock;
 | |
|   class MachineInstr;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// TargetLowering - This class defines information used to lower LLVM code to
 | |
| /// legal SelectionDAG operators that the target instruction selector can accept
 | |
| /// natively.
 | |
| ///
 | |
| /// This class also defines callbacks that targets must implement to lower
 | |
| /// target-specific constructs to SelectionDAG operators.
 | |
| ///
 | |
| class TargetLowering {
 | |
| public:
 | |
|   /// LegalizeAction - This enum indicates whether operations are valid for a
 | |
|   /// target, and if not, what action should be used to make them valid.
 | |
|   enum LegalizeAction {
 | |
|     Legal,      // The target natively supports this operation.
 | |
|     Promote,    // This operation should be executed in a larger type.
 | |
|     Expand,     // Try to expand this to other ops, otherwise use a libcall.
 | |
|     Custom      // Use the LowerOperation hook to implement custom lowering.
 | |
|   };
 | |
| 
 | |
|   enum OutOfRangeShiftAmount {
 | |
|     Undefined,  // Oversized shift amounts are undefined (default).
 | |
|     Mask,       // Shift amounts are auto masked (anded) to value size.
 | |
|     Extend      // Oversized shift pulls in zeros or sign bits.
 | |
|   };
 | |
| 
 | |
|   enum SetCCResultValue {
 | |
|     UndefinedSetCCResult,          // SetCC returns a garbage/unknown extend.
 | |
|     ZeroOrOneSetCCResult,          // SetCC returns a zero extended result.
 | |
|     ZeroOrNegativeOneSetCCResult   // SetCC returns a sign extended result.
 | |
|   };
 | |
| 
 | |
|   enum SchedPreference {
 | |
|     SchedulingForLatency,          // Scheduling for shortest total latency.
 | |
|     SchedulingForRegPressure       // Scheduling for lowest register pressure.
 | |
|   };
 | |
| 
 | |
|   TargetLowering(TargetMachine &TM);
 | |
|   virtual ~TargetLowering();
 | |
| 
 | |
|   TargetMachine &getTargetMachine() const { return TM; }
 | |
|   const TargetData *getTargetData() const { return TD; }
 | |
| 
 | |
|   bool isLittleEndian() const { return IsLittleEndian; }
 | |
|   MVT::ValueType getPointerTy() const { return PointerTy; }
 | |
|   MVT::ValueType getShiftAmountTy() const { return ShiftAmountTy; }
 | |
|   OutOfRangeShiftAmount getShiftAmountFlavor() const {return ShiftAmtHandling; }
 | |
| 
 | |
|   /// isSetCCExpensive - Return true if the setcc operation is expensive for
 | |
|   /// this target.
 | |
|   bool isSetCCExpensive() const { return SetCCIsExpensive; }
 | |
|   
 | |
|   /// isIntDivCheap() - Return true if integer divide is usually cheaper than
 | |
|   /// a sequence of several shifts, adds, and multiplies for this target.
 | |
|   bool isIntDivCheap() const { return IntDivIsCheap; }
 | |
| 
 | |
|   /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
 | |
|   /// srl/add/sra.
 | |
|   bool isPow2DivCheap() const { return Pow2DivIsCheap; }
 | |
|   
 | |
|   /// getSetCCResultTy - Return the ValueType of the result of setcc operations.
 | |
|   ///
 | |
|   MVT::ValueType getSetCCResultTy() const { return SetCCResultTy; }
 | |
| 
 | |
|   /// getSetCCResultContents - For targets without boolean registers, this flag
 | |
|   /// returns information about the contents of the high-bits in the setcc
 | |
|   /// result register.
 | |
|   SetCCResultValue getSetCCResultContents() const { return SetCCResultContents;}
 | |
| 
 | |
|   /// getSchedulingPreference - Return target scheduling preference.
 | |
|   SchedPreference getSchedulingPreference() const {
 | |
|     return SchedPreferenceInfo;
 | |
|   }
 | |
| 
 | |
|   /// getRegClassFor - Return the register class that should be used for the
 | |
|   /// specified value type.  This may only be called on legal types.
 | |
|   TargetRegisterClass *getRegClassFor(MVT::ValueType VT) const {
 | |
|     TargetRegisterClass *RC = RegClassForVT[VT];
 | |
|     assert(RC && "This value type is not natively supported!");
 | |
|     return RC;
 | |
|   }
 | |
|   
 | |
|   /// isTypeLegal - Return true if the target has native support for the
 | |
|   /// specified value type.  This means that it has a register that directly
 | |
|   /// holds it without promotions or expansions.
 | |
|   bool isTypeLegal(MVT::ValueType VT) const {
 | |
|     return RegClassForVT[VT] != 0;
 | |
|   }
 | |
| 
 | |
|   class ValueTypeActionImpl {
 | |
|     /// ValueTypeActions - This is a bitvector that contains two bits for each
 | |
|     /// value type, where the two bits correspond to the LegalizeAction enum.
 | |
|     /// This can be queried with "getTypeAction(VT)".
 | |
|     uint32_t ValueTypeActions[2];
 | |
|   public:
 | |
|     ValueTypeActionImpl() {
 | |
|       ValueTypeActions[0] = ValueTypeActions[1] = 0;
 | |
|     }
 | |
|     ValueTypeActionImpl(const ValueTypeActionImpl &RHS) {
 | |
|       ValueTypeActions[0] = RHS.ValueTypeActions[0];
 | |
|       ValueTypeActions[1] = RHS.ValueTypeActions[1];
 | |
|     }
 | |
|     
 | |
|     LegalizeAction getTypeAction(MVT::ValueType VT) const {
 | |
|       return (LegalizeAction)((ValueTypeActions[VT>>4] >> ((2*VT) & 31)) & 3);
 | |
|     }
 | |
|     void setTypeAction(MVT::ValueType VT, LegalizeAction Action) {
 | |
|       assert(unsigned(VT >> 4) < 
 | |
|              sizeof(ValueTypeActions)/sizeof(ValueTypeActions[0]));
 | |
|       ValueTypeActions[VT>>4] |= Action << ((VT*2) & 31);
 | |
|     }
 | |
|   };
 | |
|   
 | |
|   const ValueTypeActionImpl &getValueTypeActions() const {
 | |
|     return ValueTypeActions;
 | |
|   }
 | |
|   
 | |
|   /// getTypeAction - Return how we should legalize values of this type, either
 | |
|   /// it is already legal (return 'Legal') or we need to promote it to a larger
 | |
|   /// type (return 'Promote'), or we need to expand it into multiple registers
 | |
|   /// of smaller integer type (return 'Expand').  'Custom' is not an option.
 | |
|   LegalizeAction getTypeAction(MVT::ValueType VT) const {
 | |
|     return ValueTypeActions.getTypeAction(VT);
 | |
|   }
 | |
| 
 | |
|   /// getTypeToTransformTo - For types supported by the target, this is an
 | |
|   /// identity function.  For types that must be promoted to larger types, this
 | |
|   /// returns the larger type to promote to.  For types that are larger than the
 | |
|   /// largest integer register, this contains one step in the expansion to get
 | |
|   /// to the smaller register.
 | |
|   MVT::ValueType getTypeToTransformTo(MVT::ValueType VT) const {
 | |
|     return TransformToType[VT];
 | |
|   }
 | |
|   
 | |
|   /// getPackedTypeBreakdown - Packed types are broken down into some number of
 | |
|   /// legal first class types.  For example, <8 x float> maps to 2 MVT::v4f32
 | |
|   /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
 | |
|   /// Similarly, <2 x long> turns into 4 MVT::i32 values with both PPC and X86.
 | |
|   ///
 | |
|   /// This method returns the number of registers needed, and the VT for each
 | |
|   /// register.  It also returns the VT of the PackedType elements before they
 | |
|   /// are promoted/expanded.
 | |
|   ///
 | |
|   unsigned getPackedTypeBreakdown(const PackedType *PTy, 
 | |
|                                   MVT::ValueType &PTyElementVT,
 | |
|                                   MVT::ValueType &PTyLegalElementVT) const;
 | |
|   
 | |
|   typedef std::vector<double>::const_iterator legal_fpimm_iterator;
 | |
|   legal_fpimm_iterator legal_fpimm_begin() const {
 | |
|     return LegalFPImmediates.begin();
 | |
|   }
 | |
|   legal_fpimm_iterator legal_fpimm_end() const {
 | |
|     return LegalFPImmediates.end();
 | |
|   }
 | |
|   
 | |
|   /// isShuffleMaskLegal - Targets can use this to indicate that they only
 | |
|   /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
 | |
|   /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
 | |
|   /// are assumed to be legal.
 | |
|   virtual bool isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
 | |
|   /// used by Targets can use this to indicate if there is a suitable
 | |
|   /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
 | |
|   /// pool entry.
 | |
|   virtual bool isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
 | |
|                                       MVT::ValueType EVT,
 | |
|                                       SelectionDAG &DAG) const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// getOperationAction - Return how this operation should be treated: either
 | |
|   /// it is legal, needs to be promoted to a larger size, needs to be
 | |
|   /// expanded to some other code sequence, or the target has a custom expander
 | |
|   /// for it.
 | |
|   LegalizeAction getOperationAction(unsigned Op, MVT::ValueType VT) const {
 | |
|     return (LegalizeAction)((OpActions[Op] >> (2*VT)) & 3);
 | |
|   }
 | |
|   
 | |
|   /// isOperationLegal - Return true if the specified operation is legal on this
 | |
|   /// target.
 | |
|   bool isOperationLegal(unsigned Op, MVT::ValueType VT) const {
 | |
|     return getOperationAction(Op, VT) == Legal ||
 | |
|            getOperationAction(Op, VT) == Custom;
 | |
|   }
 | |
|   
 | |
|   /// getTypeToPromoteTo - If the action for this operation is to promote, this
 | |
|   /// method returns the ValueType to promote to.
 | |
|   MVT::ValueType getTypeToPromoteTo(unsigned Op, MVT::ValueType VT) const {
 | |
|     assert(getOperationAction(Op, VT) == Promote &&
 | |
|            "This operation isn't promoted!");
 | |
| 
 | |
|     // See if this has an explicit type specified.
 | |
|     std::map<std::pair<unsigned, MVT::ValueType>, 
 | |
|              MVT::ValueType>::const_iterator PTTI =
 | |
|       PromoteToType.find(std::make_pair(Op, VT));
 | |
|     if (PTTI != PromoteToType.end()) return PTTI->second;
 | |
|     
 | |
|     assert((MVT::isInteger(VT) || MVT::isFloatingPoint(VT)) &&
 | |
|            "Cannot autopromote this type, add it with AddPromotedToType.");
 | |
|     
 | |
|     MVT::ValueType NVT = VT;
 | |
|     do {
 | |
|       NVT = (MVT::ValueType)(NVT+1);
 | |
|       assert(MVT::isInteger(NVT) == MVT::isInteger(VT) && NVT != MVT::isVoid &&
 | |
|              "Didn't find type to promote to!");
 | |
|     } while (!isTypeLegal(NVT) ||
 | |
|               getOperationAction(Op, NVT) == Promote);
 | |
|     return NVT;
 | |
|   }
 | |
| 
 | |
|   /// getValueType - Return the MVT::ValueType corresponding to this LLVM type.
 | |
|   /// This is fixed by the LLVM operations except for the pointer size.
 | |
|   MVT::ValueType getValueType(const Type *Ty) const {
 | |
|     switch (Ty->getTypeID()) {
 | |
|     default: assert(0 && "Unknown type!");
 | |
|     case Type::VoidTyID:    return MVT::isVoid;
 | |
|     case Type::BoolTyID:    return MVT::i1;
 | |
|     case Type::UByteTyID:
 | |
|     case Type::SByteTyID:   return MVT::i8;
 | |
|     case Type::ShortTyID:
 | |
|     case Type::UShortTyID:  return MVT::i16;
 | |
|     case Type::IntTyID:
 | |
|     case Type::UIntTyID:    return MVT::i32;
 | |
|     case Type::LongTyID:
 | |
|     case Type::ULongTyID:   return MVT::i64;
 | |
|     case Type::FloatTyID:   return MVT::f32;
 | |
|     case Type::DoubleTyID:  return MVT::f64;
 | |
|     case Type::PointerTyID: return PointerTy;
 | |
|     case Type::PackedTyID:  return MVT::Vector;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// getNumElements - Return the number of registers that this ValueType will
 | |
|   /// eventually require.  This is always one for all non-integer types, is
 | |
|   /// one for any types promoted to live in larger registers, but may be more
 | |
|   /// than one for types (like i64) that are split into pieces.
 | |
|   unsigned getNumElements(MVT::ValueType VT) const {
 | |
|     return NumElementsForVT[VT];
 | |
|   }
 | |
|   
 | |
|   /// hasTargetDAGCombine - If true, the target has custom DAG combine
 | |
|   /// transformations that it can perform for the specified node.
 | |
|   bool hasTargetDAGCombine(ISD::NodeType NT) const {
 | |
|     return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
 | |
|   }
 | |
| 
 | |
|   /// This function returns the maximum number of store operations permitted
 | |
|   /// to replace a call to llvm.memset. The value is set by the target at the
 | |
|   /// performance threshold for such a replacement.
 | |
|   /// @brief Get maximum # of store operations permitted for llvm.memset
 | |
|   unsigned getMaxStoresPerMemset() const { return maxStoresPerMemset; }
 | |
| 
 | |
|   /// This function returns the maximum number of store operations permitted
 | |
|   /// to replace a call to llvm.memcpy. The value is set by the target at the
 | |
|   /// performance threshold for such a replacement.
 | |
|   /// @brief Get maximum # of store operations permitted for llvm.memcpy
 | |
|   unsigned getMaxStoresPerMemcpy() const { return maxStoresPerMemcpy; }
 | |
| 
 | |
|   /// This function returns the maximum number of store operations permitted
 | |
|   /// to replace a call to llvm.memmove. The value is set by the target at the
 | |
|   /// performance threshold for such a replacement.
 | |
|   /// @brief Get maximum # of store operations permitted for llvm.memmove
 | |
|   unsigned getMaxStoresPerMemmove() const { return maxStoresPerMemmove; }
 | |
| 
 | |
|   /// This function returns true if the target allows unaligned memory accesses.
 | |
|   /// This is used, for example, in situations where an array copy/move/set is 
 | |
|   /// converted to a sequence of store operations. It's use helps to ensure that
 | |
|   /// such replacements don't generate code that causes an alignment error 
 | |
|   /// (trap) on the target machine. 
 | |
|   /// @brief Determine if the target supports unaligned memory accesses.
 | |
|   bool allowsUnalignedMemoryAccesses() const {
 | |
|     return allowUnalignedMemoryAccesses;
 | |
|   }
 | |
|   
 | |
|   /// usesUnderscoreSetJmpLongJmp - Determine if we should use _setjmp or setjmp
 | |
|   /// to implement llvm.setjmp.
 | |
|   bool usesUnderscoreSetJmpLongJmp() const {
 | |
|     return UseUnderscoreSetJmpLongJmp;
 | |
|   }
 | |
|   
 | |
|   /// getStackPointerRegisterToSaveRestore - If a physical register, this
 | |
|   /// specifies the register that llvm.savestack/llvm.restorestack should save
 | |
|   /// and restore.
 | |
|   unsigned getStackPointerRegisterToSaveRestore() const {
 | |
|     return StackPointerRegisterToSaveRestore;
 | |
|   }
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // TargetLowering Optimization Methods
 | |
|   //
 | |
|   
 | |
|   /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
 | |
|   /// SDOperands for returning information from TargetLowering to its clients
 | |
|   /// that want to combine 
 | |
|   struct TargetLoweringOpt {
 | |
|     SelectionDAG &DAG;
 | |
|     SDOperand Old;
 | |
|     SDOperand New;
 | |
| 
 | |
|     TargetLoweringOpt(SelectionDAG &InDAG) : DAG(InDAG) {}
 | |
|     
 | |
|     bool CombineTo(SDOperand O, SDOperand N) { 
 | |
|       Old = O; 
 | |
|       New = N; 
 | |
|       return true;
 | |
|     }
 | |
|     
 | |
|     /// ShrinkDemandedConstant - Check to see if the specified operand of the 
 | |
|     /// specified instruction is a constant integer.  If so, check to see if there
 | |
|     /// are any bits set in the constant that are not demanded.  If so, shrink the
 | |
|     /// constant and return true.
 | |
|     bool ShrinkDemandedConstant(SDOperand Op, uint64_t Demanded);
 | |
|   };
 | |
|                                                 
 | |
|   /// MaskedValueIsZero - Return true if 'Op & Mask' is known to be zero.  We
 | |
|   /// use this predicate to simplify operations downstream.  Op and Mask are
 | |
|   /// known to be the same type.
 | |
|   bool MaskedValueIsZero(SDOperand Op, uint64_t Mask, unsigned Depth = 0)
 | |
|     const;
 | |
|   
 | |
|   /// ComputeMaskedBits - Determine which of the bits specified in Mask are
 | |
|   /// known to be either zero or one and return them in the KnownZero/KnownOne
 | |
|   /// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
 | |
|   /// processing.  Targets can implement the computeMaskedBitsForTargetNode 
 | |
|   /// method, to allow target nodes to be understood.
 | |
|   void ComputeMaskedBits(SDOperand Op, uint64_t Mask, uint64_t &KnownZero,
 | |
|                          uint64_t &KnownOne, unsigned Depth = 0) const;
 | |
|     
 | |
|   /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
 | |
|   /// DemandedMask bits of the result of Op are ever used downstream.  If we can
 | |
|   /// use this information to simplify Op, create a new simplified DAG node and
 | |
|   /// return true, returning the original and new nodes in Old and New. 
 | |
|   /// Otherwise, analyze the expression and return a mask of KnownOne and 
 | |
|   /// KnownZero bits for the expression (used to simplify the caller).  
 | |
|   /// The KnownZero/One bits may only be accurate for those bits in the 
 | |
|   /// DemandedMask.
 | |
|   bool SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask, 
 | |
|                             uint64_t &KnownZero, uint64_t &KnownOne,
 | |
|                             TargetLoweringOpt &TLO, unsigned Depth = 0) const;
 | |
|   
 | |
|   /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
 | |
|   /// Mask are known to be either zero or one and return them in the 
 | |
|   /// KnownZero/KnownOne bitsets.
 | |
|   virtual void computeMaskedBitsForTargetNode(const SDOperand Op,
 | |
|                                               uint64_t Mask,
 | |
|                                               uint64_t &KnownZero, 
 | |
|                                               uint64_t &KnownOne,
 | |
|                                               unsigned Depth = 0) const;
 | |
| 
 | |
|   /// ComputeNumSignBits - Return the number of times the sign bit of the
 | |
|   /// register is replicated into the other bits.  We know that at least 1 bit
 | |
|   /// is always equal to the sign bit (itself), but other cases can give us
 | |
|   /// information.  For example, immediately after an "SRA X, 2", we know that
 | |
|   /// the top 3 bits are all equal to each other, so we return 3.
 | |
|   unsigned ComputeNumSignBits(SDOperand Op, unsigned Depth = 0) const;
 | |
|   
 | |
|   /// ComputeNumSignBitsForTargetNode - This method can be implemented by
 | |
|   /// targets that want to expose additional information about sign bits to the
 | |
|   /// DAG Combiner.
 | |
|   virtual unsigned ComputeNumSignBitsForTargetNode(SDOperand Op,
 | |
|                                                    unsigned Depth = 0) const;
 | |
|   
 | |
|   struct DAGCombinerInfo {
 | |
|     void *DC;  // The DAG Combiner object.
 | |
|     bool BeforeLegalize;
 | |
|   public:
 | |
|     SelectionDAG &DAG;
 | |
|     
 | |
|     DAGCombinerInfo(SelectionDAG &dag, bool bl, void *dc)
 | |
|       : DC(dc), BeforeLegalize(bl), DAG(dag) {}
 | |
|     
 | |
|     bool isBeforeLegalize() const { return BeforeLegalize; }
 | |
|     
 | |
|     void AddToWorklist(SDNode *N);
 | |
|     SDOperand CombineTo(SDNode *N, const std::vector<SDOperand> &To);
 | |
|     SDOperand CombineTo(SDNode *N, SDOperand Res);
 | |
|     SDOperand CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1);
 | |
|   };
 | |
| 
 | |
|   /// PerformDAGCombine - This method will be invoked for all target nodes and
 | |
|   /// for any target-independent nodes that the target has registered with
 | |
|   /// invoke it for.
 | |
|   ///
 | |
|   /// The semantics are as follows:
 | |
|   /// Return Value:
 | |
|   ///   SDOperand.Val == 0   - No change was made
 | |
|   ///   SDOperand.Val == N   - N was replaced, is dead, and is already handled.
 | |
|   ///   otherwise            - N should be replaced by the returned Operand.
 | |
|   ///
 | |
|   /// In addition, methods provided by DAGCombinerInfo may be used to perform
 | |
|   /// more complex transformations.
 | |
|   ///
 | |
|   virtual SDOperand PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
 | |
|   
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // TargetLowering Configuration Methods - These methods should be invoked by
 | |
|   // the derived class constructor to configure this object for the target.
 | |
|   //
 | |
| 
 | |
| protected:
 | |
| 
 | |
|   /// setShiftAmountType - Describe the type that should be used for shift
 | |
|   /// amounts.  This type defaults to the pointer type.
 | |
|   void setShiftAmountType(MVT::ValueType VT) { ShiftAmountTy = VT; }
 | |
| 
 | |
|   /// setSetCCResultType - Describe the type that shoudl be used as the result
 | |
|   /// of a setcc operation.  This defaults to the pointer type.
 | |
|   void setSetCCResultType(MVT::ValueType VT) { SetCCResultTy = VT; }
 | |
| 
 | |
|   /// setSetCCResultContents - Specify how the target extends the result of a
 | |
|   /// setcc operation in a register.
 | |
|   void setSetCCResultContents(SetCCResultValue Ty) { SetCCResultContents = Ty; }
 | |
| 
 | |
|   /// setSchedulingPreference - Specify the target scheduling preference.
 | |
|   void setSchedulingPreference(SchedPreference Pref) {
 | |
|     SchedPreferenceInfo = Pref;
 | |
|   }
 | |
| 
 | |
|   /// setShiftAmountFlavor - Describe how the target handles out of range shift
 | |
|   /// amounts.
 | |
|   void setShiftAmountFlavor(OutOfRangeShiftAmount OORSA) {
 | |
|     ShiftAmtHandling = OORSA;
 | |
|   }
 | |
| 
 | |
|   /// setUseUnderscoreSetJmpLongJmp - Indicate whether this target prefers to
 | |
|   /// use _setjmp and _longjmp to or implement llvm.setjmp/llvm.longjmp or
 | |
|   /// the non _ versions.  Defaults to false.
 | |
|   void setUseUnderscoreSetJmpLongJmp(bool Val) {
 | |
|     UseUnderscoreSetJmpLongJmp = Val;
 | |
|   }
 | |
|   
 | |
|   /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
 | |
|   /// specifies the register that llvm.savestack/llvm.restorestack should save
 | |
|   /// and restore.
 | |
|   void setStackPointerRegisterToSaveRestore(unsigned R) {
 | |
|     StackPointerRegisterToSaveRestore = R;
 | |
|   }
 | |
|   
 | |
|   /// setSetCCIxExpensive - This is a short term hack for targets that codegen
 | |
|   /// setcc as a conditional branch.  This encourages the code generator to fold
 | |
|   /// setcc operations into other operations if possible.
 | |
|   void setSetCCIsExpensive() { SetCCIsExpensive = true; }
 | |
| 
 | |
|   /// setIntDivIsCheap - Tells the code generator that integer divide is
 | |
|   /// expensive, and if possible, should be replaced by an alternate sequence
 | |
|   /// of instructions not containing an integer divide.
 | |
|   void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
 | |
|   
 | |
|   /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
 | |
|   /// srl/add/sra for a signed divide by power of two, and let the target handle
 | |
|   /// it.
 | |
|   void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
 | |
|   
 | |
|   /// addRegisterClass - Add the specified register class as an available
 | |
|   /// regclass for the specified value type.  This indicates the selector can
 | |
|   /// handle values of that class natively.
 | |
|   void addRegisterClass(MVT::ValueType VT, TargetRegisterClass *RC) {
 | |
|     AvailableRegClasses.push_back(std::make_pair(VT, RC));
 | |
|     RegClassForVT[VT] = RC;
 | |
|   }
 | |
| 
 | |
|   /// computeRegisterProperties - Once all of the register classes are added,
 | |
|   /// this allows us to compute derived properties we expose.
 | |
|   void computeRegisterProperties();
 | |
| 
 | |
|   /// setOperationAction - Indicate that the specified operation does not work
 | |
|   /// with the specified type and indicate what to do about it.
 | |
|   void setOperationAction(unsigned Op, MVT::ValueType VT,
 | |
|                           LegalizeAction Action) {
 | |
|     assert(VT < 32 && Op < sizeof(OpActions)/sizeof(OpActions[0]) &&
 | |
|            "Table isn't big enough!");
 | |
|     OpActions[Op] &= ~(uint64_t(3UL) << VT*2);
 | |
|     OpActions[Op] |= (uint64_t)Action << VT*2;
 | |
|   }
 | |
|   
 | |
|   /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
 | |
|   /// promotion code defaults to trying a larger integer/fp until it can find
 | |
|   /// one that works.  If that default is insufficient, this method can be used
 | |
|   /// by the target to override the default.
 | |
|   void AddPromotedToType(unsigned Opc, MVT::ValueType OrigVT, 
 | |
|                          MVT::ValueType DestVT) {
 | |
|     PromoteToType[std::make_pair(Opc, OrigVT)] = DestVT;
 | |
|   }
 | |
| 
 | |
|   /// addLegalFPImmediate - Indicate that this target can instruction select
 | |
|   /// the specified FP immediate natively.
 | |
|   void addLegalFPImmediate(double Imm) {
 | |
|     LegalFPImmediates.push_back(Imm);
 | |
|   }
 | |
| 
 | |
|   /// setTargetDAGCombine - Targets should invoke this method for each target
 | |
|   /// independent node that they want to provide a custom DAG combiner for by
 | |
|   /// implementing the PerformDAGCombine virtual method.
 | |
|   void setTargetDAGCombine(ISD::NodeType NT) {
 | |
|     TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
 | |
|   }
 | |
|   
 | |
| public:
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Lowering methods - These methods must be implemented by targets so that
 | |
|   // the SelectionDAGLowering code knows how to lower these.
 | |
|   //
 | |
| 
 | |
|   /// LowerArguments - This hook must be implemented to indicate how we should
 | |
|   /// lower the arguments for the specified function, into the specified DAG.
 | |
|   virtual std::vector<SDOperand>
 | |
|   LowerArguments(Function &F, SelectionDAG &DAG);
 | |
| 
 | |
|   /// LowerCallTo - This hook lowers an abstract call to a function into an
 | |
|   /// actual call.  This returns a pair of operands.  The first element is the
 | |
|   /// return value for the function (if RetTy is not VoidTy).  The second
 | |
|   /// element is the outgoing token chain.
 | |
|   typedef std::vector<std::pair<SDOperand, const Type*> > ArgListTy;
 | |
|   virtual std::pair<SDOperand, SDOperand>
 | |
|   LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg,
 | |
|               unsigned CallingConv, bool isTailCall, SDOperand Callee,
 | |
|               ArgListTy &Args, SelectionDAG &DAG);
 | |
| 
 | |
|   /// LowerFrameReturnAddress - This hook lowers a call to llvm.returnaddress or
 | |
|   /// llvm.frameaddress (depending on the value of the first argument).  The
 | |
|   /// return values are the result pointer and the resultant token chain.  If
 | |
|   /// not implemented, both of these intrinsics will return null.
 | |
|   virtual std::pair<SDOperand, SDOperand>
 | |
|   LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain, unsigned Depth,
 | |
|                           SelectionDAG &DAG);
 | |
| 
 | |
|   /// LowerOperation - This callback is invoked for operations that are 
 | |
|   /// unsupported by the target, which are registered to use 'custom' lowering,
 | |
|   /// and whose defined values are all legal.
 | |
|   /// If the target has no operations that require custom lowering, it need not
 | |
|   /// implement this.  The default implementation of this aborts.
 | |
|   virtual SDOperand LowerOperation(SDOperand Op, SelectionDAG &DAG);
 | |
| 
 | |
|   /// CustomPromoteOperation - This callback is invoked for operations that are
 | |
|   /// unsupported by the target, are registered to use 'custom' lowering, and
 | |
|   /// whose type needs to be promoted.
 | |
|   virtual SDOperand CustomPromoteOperation(SDOperand Op, SelectionDAG &DAG);
 | |
|   
 | |
|   /// getTargetNodeName() - This method returns the name of a target specific
 | |
|   /// DAG node.
 | |
|   virtual const char *getTargetNodeName(unsigned Opcode) const;
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Inline Asm Support hooks
 | |
|   //
 | |
|   
 | |
|   enum ConstraintType {
 | |
|     C_Register,            // Constraint represents a single register.
 | |
|     C_RegisterClass,       // Constraint represents one or more registers.
 | |
|     C_Memory,              // Memory constraint.
 | |
|     C_Other,               // Something else.
 | |
|     C_Unknown              // Unsupported constraint.
 | |
|   };
 | |
|   
 | |
|   /// getConstraintType - Given a constraint letter, return the type of
 | |
|   /// constraint it is for this target.
 | |
|   virtual ConstraintType getConstraintType(char ConstraintLetter) const;
 | |
|   
 | |
|   
 | |
|   /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
 | |
|   /// return a list of registers that can be used to satisfy the constraint.
 | |
|   /// This should only be used for C_RegisterClass constraints.
 | |
|   virtual std::vector<unsigned> 
 | |
|   getRegClassForInlineAsmConstraint(const std::string &Constraint,
 | |
|                                     MVT::ValueType VT) const;
 | |
| 
 | |
|   /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
 | |
|   /// {edx}), return the register number and the register class for the
 | |
|   /// register.  This should only be used for C_Register constraints.  On error,
 | |
|   /// this returns a register number of 0.
 | |
|   virtual std::pair<unsigned, const TargetRegisterClass*> 
 | |
|     getRegForInlineAsmConstraint(const std::string &Constraint,
 | |
|                                  MVT::ValueType VT) const;
 | |
|   
 | |
|   
 | |
|   /// isOperandValidForConstraint - Return true if the specified SDOperand is
 | |
|   /// valid for the specified target constraint letter.
 | |
|   virtual bool isOperandValidForConstraint(SDOperand Op, char ConstraintLetter);
 | |
|   
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Scheduler hooks
 | |
|   //
 | |
|   
 | |
|   // InsertAtEndOfBasicBlock - This method should be implemented by targets that
 | |
|   // mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
 | |
|   // instructions are special in various ways, which require special support to
 | |
|   // insert.  The specified MachineInstr is created but not inserted into any
 | |
|   // basic blocks, and the scheduler passes ownership of it to this method.
 | |
|   virtual MachineBasicBlock *InsertAtEndOfBasicBlock(MachineInstr *MI,
 | |
|                                                      MachineBasicBlock *MBB);
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Loop Strength Reduction hooks
 | |
|   //
 | |
|   
 | |
|   /// isLegalAddressImmediate - Return true if the integer value or GlobalValue
 | |
|   /// can be used as the offset of the target addressing mode.
 | |
|   virtual bool isLegalAddressImmediate(int64_t V) const;
 | |
|   virtual bool isLegalAddressImmediate(GlobalValue *GV) const;
 | |
| 
 | |
|   typedef std::vector<unsigned>::const_iterator legal_am_scale_iterator;
 | |
|   legal_am_scale_iterator legal_am_scale_begin() const {
 | |
|     return LegalAddressScales.begin();
 | |
|   }
 | |
|   legal_am_scale_iterator legal_am_scale_end() const {
 | |
|     return LegalAddressScales.end();
 | |
|   }
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Div utility functions
 | |
|   //
 | |
|   SDOperand BuildSDIV(SDNode *N, SelectionDAG &DAG, 
 | |
| 		      std::vector<SDNode*>* Created) const;
 | |
|   SDOperand BuildUDIV(SDNode *N, SelectionDAG &DAG, 
 | |
| 		      std::vector<SDNode*>* Created) const;
 | |
| 
 | |
| 
 | |
| protected:
 | |
|   /// addLegalAddressScale - Add a integer (> 1) value which can be used as
 | |
|   /// scale in the target addressing mode. Note: the ordering matters so the
 | |
|   /// least efficient ones should be entered first.
 | |
|   void addLegalAddressScale(unsigned Scale) {
 | |
|     LegalAddressScales.push_back(Scale);
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   std::vector<unsigned> LegalAddressScales;
 | |
|   
 | |
|   TargetMachine &TM;
 | |
|   const TargetData *TD;
 | |
| 
 | |
|   /// IsLittleEndian - True if this is a little endian target.
 | |
|   ///
 | |
|   bool IsLittleEndian;
 | |
| 
 | |
|   /// PointerTy - The type to use for pointers, usually i32 or i64.
 | |
|   ///
 | |
|   MVT::ValueType PointerTy;
 | |
| 
 | |
|   /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
 | |
|   /// PointerTy is.
 | |
|   MVT::ValueType ShiftAmountTy;
 | |
| 
 | |
|   OutOfRangeShiftAmount ShiftAmtHandling;
 | |
| 
 | |
|   /// SetCCIsExpensive - This is a short term hack for targets that codegen
 | |
|   /// setcc as a conditional branch.  This encourages the code generator to fold
 | |
|   /// setcc operations into other operations if possible.
 | |
|   bool SetCCIsExpensive;
 | |
| 
 | |
|   /// IntDivIsCheap - Tells the code generator not to expand integer divides by
 | |
|   /// constants into a sequence of muls, adds, and shifts.  This is a hack until
 | |
|   /// a real cost model is in place.  If we ever optimize for size, this will be
 | |
|   /// set to true unconditionally.
 | |
|   bool IntDivIsCheap;
 | |
|   
 | |
|   /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
 | |
|   /// srl/add/sra for a signed divide by power of two, and let the target handle
 | |
|   /// it.
 | |
|   bool Pow2DivIsCheap;
 | |
|   
 | |
|   /// SetCCResultTy - The type that SetCC operations use.  This defaults to the
 | |
|   /// PointerTy.
 | |
|   MVT::ValueType SetCCResultTy;
 | |
| 
 | |
|   /// SetCCResultContents - Information about the contents of the high-bits in
 | |
|   /// the result of a setcc comparison operation.
 | |
|   SetCCResultValue SetCCResultContents;
 | |
| 
 | |
|   /// SchedPreferenceInfo - The target scheduling preference: shortest possible
 | |
|   /// total cycles or lowest register usage.
 | |
|   SchedPreference SchedPreferenceInfo;
 | |
|   
 | |
|   /// UseUnderscoreSetJmpLongJmp - This target prefers to use _setjmp and
 | |
|   /// _longjmp to implement llvm.setjmp/llvm.longjmp.  Defaults to false.
 | |
|   bool UseUnderscoreSetJmpLongJmp;
 | |
|   
 | |
|   /// StackPointerRegisterToSaveRestore - If set to a physical register, this
 | |
|   /// specifies the register that llvm.savestack/llvm.restorestack should save
 | |
|   /// and restore.
 | |
|   unsigned StackPointerRegisterToSaveRestore;
 | |
| 
 | |
|   /// RegClassForVT - This indicates the default register class to use for
 | |
|   /// each ValueType the target supports natively.
 | |
|   TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
 | |
|   unsigned char NumElementsForVT[MVT::LAST_VALUETYPE];
 | |
| 
 | |
|   /// TransformToType - For any value types we are promoting or expanding, this
 | |
|   /// contains the value type that we are changing to.  For Expanded types, this
 | |
|   /// contains one step of the expand (e.g. i64 -> i32), even if there are
 | |
|   /// multiple steps required (e.g. i64 -> i16).  For types natively supported
 | |
|   /// by the system, this holds the same type (e.g. i32 -> i32).
 | |
|   MVT::ValueType TransformToType[MVT::LAST_VALUETYPE];
 | |
| 
 | |
|   /// OpActions - For each operation and each value type, keep a LegalizeAction
 | |
|   /// that indicates how instruction selection should deal with the operation.
 | |
|   /// Most operations are Legal (aka, supported natively by the target), but
 | |
|   /// operations that are not should be described.  Note that operations on
 | |
|   /// non-legal value types are not described here.
 | |
|   uint64_t OpActions[156];
 | |
|   
 | |
|   ValueTypeActionImpl ValueTypeActions;
 | |
| 
 | |
|   std::vector<double> LegalFPImmediates;
 | |
| 
 | |
|   std::vector<std::pair<MVT::ValueType,
 | |
|                         TargetRegisterClass*> > AvailableRegClasses;
 | |
| 
 | |
|   /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
 | |
|   /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
 | |
|   /// which sets a bit in this array.
 | |
|   unsigned char TargetDAGCombineArray[156/(sizeof(unsigned char)*8)];
 | |
|   
 | |
|   /// PromoteToType - For operations that must be promoted to a specific type,
 | |
|   /// this holds the destination type.  This map should be sparse, so don't hold
 | |
|   /// it as an array.
 | |
|   ///
 | |
|   /// Targets add entries to this map with AddPromotedToType(..), clients access
 | |
|   /// this with getTypeToPromoteTo(..).
 | |
|   std::map<std::pair<unsigned, MVT::ValueType>, MVT::ValueType> PromoteToType;
 | |
|   
 | |
| protected:
 | |
|   /// When lowering %llvm.memset this field specifies the maximum number of
 | |
|   /// store operations that may be substituted for the call to memset. Targets
 | |
|   /// must set this value based on the cost threshold for that target. Targets
 | |
|   /// should assume that the memset will be done using as many of the largest
 | |
|   /// store operations first, followed by smaller ones, if necessary, per
 | |
|   /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
 | |
|   /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
 | |
|   /// store.  This only applies to setting a constant array of a constant size.
 | |
|   /// @brief Specify maximum number of store instructions per memset call.
 | |
|   unsigned maxStoresPerMemset;
 | |
| 
 | |
|   /// When lowering %llvm.memcpy this field specifies the maximum number of
 | |
|   /// store operations that may be substituted for a call to memcpy. Targets
 | |
|   /// must set this value based on the cost threshold for that target. Targets
 | |
|   /// should assume that the memcpy will be done using as many of the largest
 | |
|   /// store operations first, followed by smaller ones, if necessary, per
 | |
|   /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
 | |
|   /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
 | |
|   /// and one 1-byte store. This only applies to copying a constant array of
 | |
|   /// constant size.
 | |
|   /// @brief Specify maximum bytes of store instructions per memcpy call.
 | |
|   unsigned maxStoresPerMemcpy;
 | |
| 
 | |
|   /// When lowering %llvm.memmove this field specifies the maximum number of
 | |
|   /// store instructions that may be substituted for a call to memmove. Targets
 | |
|   /// must set this value based on the cost threshold for that target. Targets
 | |
|   /// should assume that the memmove will be done using as many of the largest
 | |
|   /// store operations first, followed by smaller ones, if necessary, per
 | |
|   /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
 | |
|   /// with 8-bit alignment would result in nine 1-byte stores.  This only
 | |
|   /// applies to copying a constant array of constant size.
 | |
|   /// @brief Specify maximum bytes of store instructions per memmove call.
 | |
|   unsigned maxStoresPerMemmove;
 | |
| 
 | |
|   /// This field specifies whether the target machine permits unaligned memory
 | |
|   /// accesses.  This is used, for example, to determine the size of store 
 | |
|   /// operations when copying small arrays and other similar tasks.
 | |
|   /// @brief Indicate whether the target permits unaligned memory accesses.
 | |
|   bool allowUnalignedMemoryAccesses;
 | |
| };
 | |
| } // end llvm namespace
 | |
| 
 | |
| #endif
 |