mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-21 19:32:16 +00:00
e4d5c441e0
using Function::arg_{iterator|begin|end}. Likewise Module::g* -> Module::global_*. This patch is contributed by Gabor Greif, thanks! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@20597 91177308-0d34-0410-b5e6-96231b3b80d8
909 lines
38 KiB
C++
909 lines
38 KiB
C++
//===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the LLVM module linker.
|
|
//
|
|
// Specifically, this:
|
|
// * Merges global variables between the two modules
|
|
// * Uninit + Uninit = Init, Init + Uninit = Init, Init + Init = Error if !=
|
|
// * Merges functions between two modules
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Linker.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/SymbolTable.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Assembly/Writer.h"
|
|
#include "llvm/System/Path.h"
|
|
#include <iostream>
|
|
#include <sstream>
|
|
using namespace llvm;
|
|
|
|
// Error - Simple wrapper function to conditionally assign to E and return true.
|
|
// This just makes error return conditions a little bit simpler...
|
|
static inline bool Error(std::string *E, const std::string &Message) {
|
|
if (E) *E = Message;
|
|
return true;
|
|
}
|
|
|
|
// ToStr - Simple wrapper function to convert a type to a string.
|
|
static std::string ToStr(const Type *Ty, const Module *M) {
|
|
std::ostringstream OS;
|
|
WriteTypeSymbolic(OS, Ty, M);
|
|
return OS.str();
|
|
}
|
|
|
|
//
|
|
// Function: ResolveTypes()
|
|
//
|
|
// Description:
|
|
// Attempt to link the two specified types together.
|
|
//
|
|
// Inputs:
|
|
// DestTy - The type to which we wish to resolve.
|
|
// SrcTy - The original type which we want to resolve.
|
|
// Name - The name of the type.
|
|
//
|
|
// Outputs:
|
|
// DestST - The symbol table in which the new type should be placed.
|
|
//
|
|
// Return value:
|
|
// true - There is an error and the types cannot yet be linked.
|
|
// false - No errors.
|
|
//
|
|
static bool ResolveTypes(const Type *DestTy, const Type *SrcTy,
|
|
SymbolTable *DestST, const std::string &Name) {
|
|
if (DestTy == SrcTy) return false; // If already equal, noop
|
|
|
|
// Does the type already exist in the module?
|
|
if (DestTy && !isa<OpaqueType>(DestTy)) { // Yup, the type already exists...
|
|
if (const OpaqueType *OT = dyn_cast<OpaqueType>(SrcTy)) {
|
|
const_cast<OpaqueType*>(OT)->refineAbstractTypeTo(DestTy);
|
|
} else {
|
|
return true; // Cannot link types... neither is opaque and not-equal
|
|
}
|
|
} else { // Type not in dest module. Add it now.
|
|
if (DestTy) // Type _is_ in module, just opaque...
|
|
const_cast<OpaqueType*>(cast<OpaqueType>(DestTy))
|
|
->refineAbstractTypeTo(SrcTy);
|
|
else if (!Name.empty())
|
|
DestST->insert(Name, const_cast<Type*>(SrcTy));
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static const FunctionType *getFT(const PATypeHolder &TH) {
|
|
return cast<FunctionType>(TH.get());
|
|
}
|
|
static const StructType *getST(const PATypeHolder &TH) {
|
|
return cast<StructType>(TH.get());
|
|
}
|
|
|
|
// RecursiveResolveTypes - This is just like ResolveTypes, except that it
|
|
// recurses down into derived types, merging the used types if the parent types
|
|
// are compatible.
|
|
static bool RecursiveResolveTypesI(const PATypeHolder &DestTy,
|
|
const PATypeHolder &SrcTy,
|
|
SymbolTable *DestST, const std::string &Name,
|
|
std::vector<std::pair<PATypeHolder, PATypeHolder> > &Pointers) {
|
|
const Type *SrcTyT = SrcTy.get();
|
|
const Type *DestTyT = DestTy.get();
|
|
if (DestTyT == SrcTyT) return false; // If already equal, noop
|
|
|
|
// If we found our opaque type, resolve it now!
|
|
if (isa<OpaqueType>(DestTyT) || isa<OpaqueType>(SrcTyT))
|
|
return ResolveTypes(DestTyT, SrcTyT, DestST, Name);
|
|
|
|
// Two types cannot be resolved together if they are of different primitive
|
|
// type. For example, we cannot resolve an int to a float.
|
|
if (DestTyT->getTypeID() != SrcTyT->getTypeID()) return true;
|
|
|
|
// Otherwise, resolve the used type used by this derived type...
|
|
switch (DestTyT->getTypeID()) {
|
|
case Type::FunctionTyID: {
|
|
if (cast<FunctionType>(DestTyT)->isVarArg() !=
|
|
cast<FunctionType>(SrcTyT)->isVarArg() ||
|
|
cast<FunctionType>(DestTyT)->getNumContainedTypes() !=
|
|
cast<FunctionType>(SrcTyT)->getNumContainedTypes())
|
|
return true;
|
|
for (unsigned i = 0, e = getFT(DestTy)->getNumContainedTypes(); i != e; ++i)
|
|
if (RecursiveResolveTypesI(getFT(DestTy)->getContainedType(i),
|
|
getFT(SrcTy)->getContainedType(i), DestST, "",
|
|
Pointers))
|
|
return true;
|
|
return false;
|
|
}
|
|
case Type::StructTyID: {
|
|
if (getST(DestTy)->getNumContainedTypes() !=
|
|
getST(SrcTy)->getNumContainedTypes()) return 1;
|
|
for (unsigned i = 0, e = getST(DestTy)->getNumContainedTypes(); i != e; ++i)
|
|
if (RecursiveResolveTypesI(getST(DestTy)->getContainedType(i),
|
|
getST(SrcTy)->getContainedType(i), DestST, "",
|
|
Pointers))
|
|
return true;
|
|
return false;
|
|
}
|
|
case Type::ArrayTyID: {
|
|
const ArrayType *DAT = cast<ArrayType>(DestTy.get());
|
|
const ArrayType *SAT = cast<ArrayType>(SrcTy.get());
|
|
if (DAT->getNumElements() != SAT->getNumElements()) return true;
|
|
return RecursiveResolveTypesI(DAT->getElementType(), SAT->getElementType(),
|
|
DestST, "", Pointers);
|
|
}
|
|
case Type::PointerTyID: {
|
|
// If this is a pointer type, check to see if we have already seen it. If
|
|
// so, we are in a recursive branch. Cut off the search now. We cannot use
|
|
// an associative container for this search, because the type pointers (keys
|
|
// in the container) change whenever types get resolved...
|
|
for (unsigned i = 0, e = Pointers.size(); i != e; ++i)
|
|
if (Pointers[i].first == DestTy)
|
|
return Pointers[i].second != SrcTy;
|
|
|
|
// Otherwise, add the current pointers to the vector to stop recursion on
|
|
// this pair.
|
|
Pointers.push_back(std::make_pair(DestTyT, SrcTyT));
|
|
bool Result =
|
|
RecursiveResolveTypesI(cast<PointerType>(DestTy.get())->getElementType(),
|
|
cast<PointerType>(SrcTy.get())->getElementType(),
|
|
DestST, "", Pointers);
|
|
Pointers.pop_back();
|
|
return Result;
|
|
}
|
|
default: assert(0 && "Unexpected type!"); return true;
|
|
}
|
|
}
|
|
|
|
static bool RecursiveResolveTypes(const PATypeHolder &DestTy,
|
|
const PATypeHolder &SrcTy,
|
|
SymbolTable *DestST, const std::string &Name){
|
|
std::vector<std::pair<PATypeHolder, PATypeHolder> > PointerTypes;
|
|
return RecursiveResolveTypesI(DestTy, SrcTy, DestST, Name, PointerTypes);
|
|
}
|
|
|
|
|
|
// LinkTypes - Go through the symbol table of the Src module and see if any
|
|
// types are named in the src module that are not named in the Dst module.
|
|
// Make sure there are no type name conflicts.
|
|
static bool LinkTypes(Module *Dest, const Module *Src, std::string *Err) {
|
|
SymbolTable *DestST = &Dest->getSymbolTable();
|
|
const SymbolTable *SrcST = &Src->getSymbolTable();
|
|
|
|
// Look for a type plane for Type's...
|
|
SymbolTable::type_const_iterator TI = SrcST->type_begin();
|
|
SymbolTable::type_const_iterator TE = SrcST->type_end();
|
|
if (TI == TE) return false; // No named types, do nothing.
|
|
|
|
// Some types cannot be resolved immediately because they depend on other
|
|
// types being resolved to each other first. This contains a list of types we
|
|
// are waiting to recheck.
|
|
std::vector<std::string> DelayedTypesToResolve;
|
|
|
|
for ( ; TI != TE; ++TI ) {
|
|
const std::string &Name = TI->first;
|
|
const Type *RHS = TI->second;
|
|
|
|
// Check to see if this type name is already in the dest module...
|
|
Type *Entry = DestST->lookupType(Name);
|
|
|
|
if (ResolveTypes(Entry, RHS, DestST, Name)) {
|
|
// They look different, save the types 'till later to resolve.
|
|
DelayedTypesToResolve.push_back(Name);
|
|
}
|
|
}
|
|
|
|
// Iteratively resolve types while we can...
|
|
while (!DelayedTypesToResolve.empty()) {
|
|
// Loop over all of the types, attempting to resolve them if possible...
|
|
unsigned OldSize = DelayedTypesToResolve.size();
|
|
|
|
// Try direct resolution by name...
|
|
for (unsigned i = 0; i != DelayedTypesToResolve.size(); ++i) {
|
|
const std::string &Name = DelayedTypesToResolve[i];
|
|
Type *T1 = SrcST->lookupType(Name);
|
|
Type *T2 = DestST->lookupType(Name);
|
|
if (!ResolveTypes(T2, T1, DestST, Name)) {
|
|
// We are making progress!
|
|
DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
|
|
--i;
|
|
}
|
|
}
|
|
|
|
// Did we not eliminate any types?
|
|
if (DelayedTypesToResolve.size() == OldSize) {
|
|
// Attempt to resolve subelements of types. This allows us to merge these
|
|
// two types: { int* } and { opaque* }
|
|
for (unsigned i = 0, e = DelayedTypesToResolve.size(); i != e; ++i) {
|
|
const std::string &Name = DelayedTypesToResolve[i];
|
|
PATypeHolder T1(SrcST->lookupType(Name));
|
|
PATypeHolder T2(DestST->lookupType(Name));
|
|
|
|
if (!RecursiveResolveTypes(T2, T1, DestST, Name)) {
|
|
// We are making progress!
|
|
DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
|
|
|
|
// Go back to the main loop, perhaps we can resolve directly by name
|
|
// now...
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If we STILL cannot resolve the types, then there is something wrong.
|
|
if (DelayedTypesToResolve.size() == OldSize) {
|
|
// Remove the symbol name from the destination.
|
|
DelayedTypesToResolve.pop_back();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
return false;
|
|
}
|
|
|
|
static void PrintMap(const std::map<const Value*, Value*> &M) {
|
|
for (std::map<const Value*, Value*>::const_iterator I = M.begin(), E =M.end();
|
|
I != E; ++I) {
|
|
std::cerr << " Fr: " << (void*)I->first << " ";
|
|
I->first->dump();
|
|
std::cerr << " To: " << (void*)I->second << " ";
|
|
I->second->dump();
|
|
std::cerr << "\n";
|
|
}
|
|
}
|
|
|
|
|
|
// RemapOperand - Use ValueMap to convert references from one module to another.
|
|
// This is somewhat sophisticated in that it can automatically handle constant
|
|
// references correctly as well...
|
|
static Value *RemapOperand(const Value *In,
|
|
std::map<const Value*, Value*> &ValueMap) {
|
|
std::map<const Value*,Value*>::const_iterator I = ValueMap.find(In);
|
|
if (I != ValueMap.end()) return I->second;
|
|
|
|
// Check to see if it's a constant that we are interesting in transforming.
|
|
if (const Constant *CPV = dyn_cast<Constant>(In)) {
|
|
if ((!isa<DerivedType>(CPV->getType()) && !isa<ConstantExpr>(CPV)) ||
|
|
isa<ConstantAggregateZero>(CPV))
|
|
return const_cast<Constant*>(CPV); // Simple constants stay identical.
|
|
|
|
Constant *Result = 0;
|
|
|
|
if (const ConstantArray *CPA = dyn_cast<ConstantArray>(CPV)) {
|
|
std::vector<Constant*> Operands(CPA->getNumOperands());
|
|
for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
|
|
Operands[i] =cast<Constant>(RemapOperand(CPA->getOperand(i), ValueMap));
|
|
Result = ConstantArray::get(cast<ArrayType>(CPA->getType()), Operands);
|
|
} else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(CPV)) {
|
|
std::vector<Constant*> Operands(CPS->getNumOperands());
|
|
for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
|
|
Operands[i] =cast<Constant>(RemapOperand(CPS->getOperand(i), ValueMap));
|
|
Result = ConstantStruct::get(cast<StructType>(CPS->getType()), Operands);
|
|
} else if (isa<ConstantPointerNull>(CPV) || isa<UndefValue>(CPV)) {
|
|
Result = const_cast<Constant*>(CPV);
|
|
} else if (isa<GlobalValue>(CPV)) {
|
|
Result = cast<Constant>(RemapOperand(CPV, ValueMap));
|
|
} else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
|
|
if (CE->getOpcode() == Instruction::GetElementPtr) {
|
|
Value *Ptr = RemapOperand(CE->getOperand(0), ValueMap);
|
|
std::vector<Constant*> Indices;
|
|
Indices.reserve(CE->getNumOperands()-1);
|
|
for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
|
|
Indices.push_back(cast<Constant>(RemapOperand(CE->getOperand(i),
|
|
ValueMap)));
|
|
|
|
Result = ConstantExpr::getGetElementPtr(cast<Constant>(Ptr), Indices);
|
|
} else if (CE->getNumOperands() == 1) {
|
|
// Cast instruction
|
|
assert(CE->getOpcode() == Instruction::Cast);
|
|
Value *V = RemapOperand(CE->getOperand(0), ValueMap);
|
|
Result = ConstantExpr::getCast(cast<Constant>(V), CE->getType());
|
|
} else if (CE->getNumOperands() == 3) {
|
|
// Select instruction
|
|
assert(CE->getOpcode() == Instruction::Select);
|
|
Value *V1 = RemapOperand(CE->getOperand(0), ValueMap);
|
|
Value *V2 = RemapOperand(CE->getOperand(1), ValueMap);
|
|
Value *V3 = RemapOperand(CE->getOperand(2), ValueMap);
|
|
Result = ConstantExpr::getSelect(cast<Constant>(V1), cast<Constant>(V2),
|
|
cast<Constant>(V3));
|
|
} else if (CE->getNumOperands() == 2) {
|
|
// Binary operator...
|
|
Value *V1 = RemapOperand(CE->getOperand(0), ValueMap);
|
|
Value *V2 = RemapOperand(CE->getOperand(1), ValueMap);
|
|
|
|
Result = ConstantExpr::get(CE->getOpcode(), cast<Constant>(V1),
|
|
cast<Constant>(V2));
|
|
} else {
|
|
assert(0 && "Unknown constant expr type!");
|
|
}
|
|
|
|
} else {
|
|
assert(0 && "Unknown type of derived type constant value!");
|
|
}
|
|
|
|
// Cache the mapping in our local map structure...
|
|
ValueMap.insert(std::make_pair(In, Result));
|
|
return Result;
|
|
}
|
|
|
|
std::cerr << "LinkModules ValueMap: \n";
|
|
PrintMap(ValueMap);
|
|
|
|
std::cerr << "Couldn't remap value: " << (void*)In << " " << *In << "\n";
|
|
assert(0 && "Couldn't remap value!");
|
|
return 0;
|
|
}
|
|
|
|
/// ForceRenaming - The LLVM SymbolTable class autorenames globals that conflict
|
|
/// in the symbol table. This is good for all clients except for us. Go
|
|
/// through the trouble to force this back.
|
|
static void ForceRenaming(GlobalValue *GV, const std::string &Name) {
|
|
assert(GV->getName() != Name && "Can't force rename to self");
|
|
SymbolTable &ST = GV->getParent()->getSymbolTable();
|
|
|
|
// If there is a conflict, rename the conflict.
|
|
Value *ConflictVal = ST.lookup(GV->getType(), Name);
|
|
assert(ConflictVal&&"Why do we have to force rename if there is no conflic?");
|
|
GlobalValue *ConflictGV = cast<GlobalValue>(ConflictVal);
|
|
assert(ConflictGV->hasInternalLinkage() &&
|
|
"Not conflicting with a static global, should link instead!");
|
|
|
|
ConflictGV->setName(""); // Eliminate the conflict
|
|
GV->setName(Name); // Force the name back
|
|
ConflictGV->setName(Name); // This will cause ConflictGV to get renamed
|
|
assert(GV->getName() == Name && ConflictGV->getName() != Name &&
|
|
"ForceRenaming didn't work");
|
|
}
|
|
|
|
/// GetLinkageResult - This analyzes the two global values and determines what
|
|
/// the result will look like in the destination module. In particular, it
|
|
/// computes the resultant linkage type, computes whether the global in the
|
|
/// source should be copied over to the destination (replacing the existing
|
|
/// one), and computes whether this linkage is an error or not.
|
|
static bool GetLinkageResult(GlobalValue *Dest, GlobalValue *Src,
|
|
GlobalValue::LinkageTypes <, bool &LinkFromSrc,
|
|
std::string *Err) {
|
|
assert((!Dest || !Src->hasInternalLinkage()) &&
|
|
"If Src has internal linkage, Dest shouldn't be set!");
|
|
if (!Dest) {
|
|
// Linking something to nothing.
|
|
LinkFromSrc = true;
|
|
LT = Src->getLinkage();
|
|
} else if (Src->isExternal()) {
|
|
// If Src is external or if both Src & Drc are external.. Just link the
|
|
// external globals, we aren't adding anything.
|
|
LinkFromSrc = false;
|
|
LT = Dest->getLinkage();
|
|
} else if (Dest->isExternal()) {
|
|
// If Dest is external but Src is not:
|
|
LinkFromSrc = true;
|
|
LT = Src->getLinkage();
|
|
} else if (Src->hasAppendingLinkage() || Dest->hasAppendingLinkage()) {
|
|
if (Src->getLinkage() != Dest->getLinkage())
|
|
return Error(Err, "Linking globals named '" + Src->getName() +
|
|
"': can only link appending global with another appending global!");
|
|
LinkFromSrc = true; // Special cased.
|
|
LT = Src->getLinkage();
|
|
} else if (Src->hasWeakLinkage() || Src->hasLinkOnceLinkage()) {
|
|
// At this point we know that Dest has LinkOnce, External or Weak linkage.
|
|
if (Dest->hasLinkOnceLinkage() && Src->hasWeakLinkage()) {
|
|
LinkFromSrc = true;
|
|
LT = Src->getLinkage();
|
|
} else {
|
|
LinkFromSrc = false;
|
|
LT = Dest->getLinkage();
|
|
}
|
|
} else if (Dest->hasWeakLinkage() || Dest->hasLinkOnceLinkage()) {
|
|
// At this point we know that Src has External linkage.
|
|
LinkFromSrc = true;
|
|
LT = GlobalValue::ExternalLinkage;
|
|
} else {
|
|
assert(Dest->hasExternalLinkage() && Src->hasExternalLinkage() &&
|
|
"Unexpected linkage type!");
|
|
return Error(Err, "Linking globals named '" + Src->getName() +
|
|
"': symbol multiply defined!");
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// LinkGlobals - Loop through the global variables in the src module and merge
|
|
// them into the dest module.
|
|
static bool LinkGlobals(Module *Dest, Module *Src,
|
|
std::map<const Value*, Value*> &ValueMap,
|
|
std::multimap<std::string, GlobalVariable *> &AppendingVars,
|
|
std::map<std::string, GlobalValue*> &GlobalsByName,
|
|
std::string *Err) {
|
|
// We will need a module level symbol table if the src module has a module
|
|
// level symbol table...
|
|
SymbolTable *ST = (SymbolTable*)&Dest->getSymbolTable();
|
|
|
|
// Loop over all of the globals in the src module, mapping them over as we go
|
|
for (Module::global_iterator I = Src->global_begin(), E = Src->global_end(); I != E; ++I) {
|
|
GlobalVariable *SGV = I;
|
|
GlobalVariable *DGV = 0;
|
|
// Check to see if may have to link the global.
|
|
if (SGV->hasName() && !SGV->hasInternalLinkage())
|
|
if (!(DGV = Dest->getGlobalVariable(SGV->getName(),
|
|
SGV->getType()->getElementType()))) {
|
|
std::map<std::string, GlobalValue*>::iterator EGV =
|
|
GlobalsByName.find(SGV->getName());
|
|
if (EGV != GlobalsByName.end())
|
|
DGV = dyn_cast<GlobalVariable>(EGV->second);
|
|
if (DGV)
|
|
// If types don't agree due to opaque types, try to resolve them.
|
|
RecursiveResolveTypes(SGV->getType(), DGV->getType(),ST, "");
|
|
}
|
|
|
|
if (DGV && DGV->hasInternalLinkage())
|
|
DGV = 0;
|
|
|
|
assert(SGV->hasInitializer() || SGV->hasExternalLinkage() &&
|
|
"Global must either be external or have an initializer!");
|
|
|
|
GlobalValue::LinkageTypes NewLinkage;
|
|
bool LinkFromSrc;
|
|
if (GetLinkageResult(DGV, SGV, NewLinkage, LinkFromSrc, Err))
|
|
return true;
|
|
|
|
if (!DGV) {
|
|
// No linking to be performed, simply create an identical version of the
|
|
// symbol over in the dest module... the initializer will be filled in
|
|
// later by LinkGlobalInits...
|
|
GlobalVariable *NewDGV =
|
|
new GlobalVariable(SGV->getType()->getElementType(),
|
|
SGV->isConstant(), SGV->getLinkage(), /*init*/0,
|
|
SGV->getName(), Dest);
|
|
|
|
// If the LLVM runtime renamed the global, but it is an externally visible
|
|
// symbol, DGV must be an existing global with internal linkage. Rename
|
|
// it.
|
|
if (NewDGV->getName() != SGV->getName() && !NewDGV->hasInternalLinkage())
|
|
ForceRenaming(NewDGV, SGV->getName());
|
|
|
|
// Make sure to remember this mapping...
|
|
ValueMap.insert(std::make_pair(SGV, NewDGV));
|
|
if (SGV->hasAppendingLinkage())
|
|
// Keep track that this is an appending variable...
|
|
AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
|
|
} else if (DGV->hasAppendingLinkage()) {
|
|
// No linking is performed yet. Just insert a new copy of the global, and
|
|
// keep track of the fact that it is an appending variable in the
|
|
// AppendingVars map. The name is cleared out so that no linkage is
|
|
// performed.
|
|
GlobalVariable *NewDGV =
|
|
new GlobalVariable(SGV->getType()->getElementType(),
|
|
SGV->isConstant(), SGV->getLinkage(), /*init*/0,
|
|
"", Dest);
|
|
|
|
// Make sure to remember this mapping...
|
|
ValueMap.insert(std::make_pair(SGV, NewDGV));
|
|
|
|
// Keep track that this is an appending variable...
|
|
AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
|
|
} else {
|
|
// Otherwise, perform the mapping as instructed by GetLinkageResult. If
|
|
// the types don't match, and if we are to link from the source, nuke DGV
|
|
// and create a new one of the appropriate type.
|
|
if (SGV->getType() != DGV->getType() && LinkFromSrc) {
|
|
GlobalVariable *NewDGV =
|
|
new GlobalVariable(SGV->getType()->getElementType(),
|
|
DGV->isConstant(), DGV->getLinkage());
|
|
Dest->getGlobalList().insert(DGV, NewDGV);
|
|
DGV->replaceAllUsesWith(ConstantExpr::getCast(NewDGV, DGV->getType()));
|
|
DGV->eraseFromParent();
|
|
NewDGV->setName(SGV->getName());
|
|
DGV = NewDGV;
|
|
}
|
|
|
|
DGV->setLinkage(NewLinkage);
|
|
|
|
if (LinkFromSrc) {
|
|
// Inherit const as appropriate
|
|
DGV->setConstant(SGV->isConstant());
|
|
DGV->setInitializer(0);
|
|
} else {
|
|
if (SGV->isConstant() && !DGV->isConstant()) {
|
|
if (DGV->isExternal())
|
|
DGV->setConstant(true);
|
|
}
|
|
SGV->setLinkage(GlobalValue::ExternalLinkage);
|
|
SGV->setInitializer(0);
|
|
}
|
|
|
|
ValueMap.insert(std::make_pair(SGV,
|
|
ConstantExpr::getCast(DGV,
|
|
SGV->getType())));
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
// LinkGlobalInits - Update the initializers in the Dest module now that all
|
|
// globals that may be referenced are in Dest.
|
|
static bool LinkGlobalInits(Module *Dest, const Module *Src,
|
|
std::map<const Value*, Value*> &ValueMap,
|
|
std::string *Err) {
|
|
|
|
// Loop over all of the globals in the src module, mapping them over as we go
|
|
for (Module::const_global_iterator I = Src->global_begin(), E = Src->global_end(); I != E; ++I){
|
|
const GlobalVariable *SGV = I;
|
|
|
|
if (SGV->hasInitializer()) { // Only process initialized GV's
|
|
// Figure out what the initializer looks like in the dest module...
|
|
Constant *SInit =
|
|
cast<Constant>(RemapOperand(SGV->getInitializer(), ValueMap));
|
|
|
|
GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[SGV]);
|
|
if (DGV->hasInitializer()) {
|
|
if (SGV->hasExternalLinkage()) {
|
|
if (DGV->getInitializer() != SInit)
|
|
return Error(Err, "Global Variable Collision on '" +
|
|
ToStr(SGV->getType(), Src) +"':%"+SGV->getName()+
|
|
" - Global variables have different initializers");
|
|
} else if (DGV->hasLinkOnceLinkage() || DGV->hasWeakLinkage()) {
|
|
// Nothing is required, mapped values will take the new global
|
|
// automatically.
|
|
} else if (SGV->hasLinkOnceLinkage() || SGV->hasWeakLinkage()) {
|
|
// Nothing is required, mapped values will take the new global
|
|
// automatically.
|
|
} else if (DGV->hasAppendingLinkage()) {
|
|
assert(0 && "Appending linkage unimplemented!");
|
|
} else {
|
|
assert(0 && "Unknown linkage!");
|
|
}
|
|
} else {
|
|
// Copy the initializer over now...
|
|
DGV->setInitializer(SInit);
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// LinkFunctionProtos - Link the functions together between the two modules,
|
|
// without doing function bodies... this just adds external function prototypes
|
|
// to the Dest function...
|
|
//
|
|
static bool LinkFunctionProtos(Module *Dest, const Module *Src,
|
|
std::map<const Value*, Value*> &ValueMap,
|
|
std::map<std::string, GlobalValue*> &GlobalsByName,
|
|
std::string *Err) {
|
|
SymbolTable *ST = (SymbolTable*)&Dest->getSymbolTable();
|
|
|
|
// Loop over all of the functions in the src module, mapping them over as we
|
|
// go
|
|
for (Module::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) {
|
|
const Function *SF = I; // SrcFunction
|
|
Function *DF = 0;
|
|
if (SF->hasName() && !SF->hasInternalLinkage()) {
|
|
// Check to see if may have to link the function.
|
|
if (!(DF = Dest->getFunction(SF->getName(), SF->getFunctionType()))) {
|
|
std::map<std::string, GlobalValue*>::iterator EF =
|
|
GlobalsByName.find(SF->getName());
|
|
if (EF != GlobalsByName.end())
|
|
DF = dyn_cast<Function>(EF->second);
|
|
if (DF && RecursiveResolveTypes(SF->getType(), DF->getType(), ST, ""))
|
|
DF = 0; // FIXME: gross.
|
|
}
|
|
}
|
|
|
|
if (!DF || SF->hasInternalLinkage() || DF->hasInternalLinkage()) {
|
|
// Function does not already exist, simply insert an function signature
|
|
// identical to SF into the dest module...
|
|
Function *NewDF = new Function(SF->getFunctionType(), SF->getLinkage(),
|
|
SF->getName(), Dest);
|
|
|
|
// If the LLVM runtime renamed the function, but it is an externally
|
|
// visible symbol, DF must be an existing function with internal linkage.
|
|
// Rename it.
|
|
if (NewDF->getName() != SF->getName() && !NewDF->hasInternalLinkage())
|
|
ForceRenaming(NewDF, SF->getName());
|
|
|
|
// ... and remember this mapping...
|
|
ValueMap.insert(std::make_pair(SF, NewDF));
|
|
} else if (SF->isExternal()) {
|
|
// If SF is external or if both SF & DF are external.. Just link the
|
|
// external functions, we aren't adding anything.
|
|
ValueMap.insert(std::make_pair(SF, DF));
|
|
} else if (DF->isExternal()) { // If DF is external but SF is not...
|
|
// Link the external functions, update linkage qualifiers
|
|
ValueMap.insert(std::make_pair(SF, DF));
|
|
DF->setLinkage(SF->getLinkage());
|
|
|
|
} else if (SF->hasWeakLinkage() || SF->hasLinkOnceLinkage()) {
|
|
// At this point we know that DF has LinkOnce, Weak, or External linkage.
|
|
ValueMap.insert(std::make_pair(SF, DF));
|
|
|
|
// Linkonce+Weak = Weak
|
|
if (DF->hasLinkOnceLinkage() && SF->hasWeakLinkage())
|
|
DF->setLinkage(SF->getLinkage());
|
|
|
|
} else if (DF->hasWeakLinkage() || DF->hasLinkOnceLinkage()) {
|
|
// At this point we know that SF has LinkOnce or External linkage.
|
|
ValueMap.insert(std::make_pair(SF, DF));
|
|
if (!SF->hasLinkOnceLinkage()) // Don't inherit linkonce linkage
|
|
DF->setLinkage(SF->getLinkage());
|
|
|
|
} else if (SF->getLinkage() != DF->getLinkage()) {
|
|
return Error(Err, "Functions named '" + SF->getName() +
|
|
"' have different linkage specifiers!");
|
|
} else if (SF->hasExternalLinkage()) {
|
|
// The function is defined in both modules!!
|
|
return Error(Err, "Function '" +
|
|
ToStr(SF->getFunctionType(), Src) + "':\"" +
|
|
SF->getName() + "\" - Function is already defined!");
|
|
} else {
|
|
assert(0 && "Unknown linkage configuration found!");
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// LinkFunctionBody - Copy the source function over into the dest function and
|
|
// fix up references to values. At this point we know that Dest is an external
|
|
// function, and that Src is not.
|
|
static bool LinkFunctionBody(Function *Dest, Function *Src,
|
|
std::map<const Value*, Value*> &GlobalMap,
|
|
std::string *Err) {
|
|
assert(Src && Dest && Dest->isExternal() && !Src->isExternal());
|
|
|
|
// Go through and convert function arguments over, remembering the mapping.
|
|
Function::arg_iterator DI = Dest->arg_begin();
|
|
for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
|
|
I != E; ++I, ++DI) {
|
|
DI->setName(I->getName()); // Copy the name information over...
|
|
|
|
// Add a mapping to our local map
|
|
GlobalMap.insert(std::make_pair(I, DI));
|
|
}
|
|
|
|
// Splice the body of the source function into the dest function.
|
|
Dest->getBasicBlockList().splice(Dest->end(), Src->getBasicBlockList());
|
|
|
|
// At this point, all of the instructions and values of the function are now
|
|
// copied over. The only problem is that they are still referencing values in
|
|
// the Source function as operands. Loop through all of the operands of the
|
|
// functions and patch them up to point to the local versions...
|
|
//
|
|
for (Function::iterator BB = Dest->begin(), BE = Dest->end(); BB != BE; ++BB)
|
|
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
|
|
for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
|
|
OI != OE; ++OI)
|
|
if (!isa<Instruction>(*OI) && !isa<BasicBlock>(*OI))
|
|
*OI = RemapOperand(*OI, GlobalMap);
|
|
|
|
// There is no need to map the arguments anymore.
|
|
for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end(); I != E; ++I)
|
|
GlobalMap.erase(I);
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
// LinkFunctionBodies - Link in the function bodies that are defined in the
|
|
// source module into the DestModule. This consists basically of copying the
|
|
// function over and fixing up references to values.
|
|
static bool LinkFunctionBodies(Module *Dest, Module *Src,
|
|
std::map<const Value*, Value*> &ValueMap,
|
|
std::string *Err) {
|
|
|
|
// Loop over all of the functions in the src module, mapping them over as we
|
|
// go
|
|
for (Module::iterator SF = Src->begin(), E = Src->end(); SF != E; ++SF) {
|
|
if (!SF->isExternal()) { // No body if function is external
|
|
Function *DF = cast<Function>(ValueMap[SF]); // Destination function
|
|
|
|
// DF not external SF external?
|
|
if (DF->isExternal()) {
|
|
// Only provide the function body if there isn't one already.
|
|
if (LinkFunctionBody(DF, SF, ValueMap, Err))
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// LinkAppendingVars - If there were any appending global variables, link them
|
|
// together now. Return true on error.
|
|
static bool LinkAppendingVars(Module *M,
|
|
std::multimap<std::string, GlobalVariable *> &AppendingVars,
|
|
std::string *ErrorMsg) {
|
|
if (AppendingVars.empty()) return false; // Nothing to do.
|
|
|
|
// Loop over the multimap of appending vars, processing any variables with the
|
|
// same name, forming a new appending global variable with both of the
|
|
// initializers merged together, then rewrite references to the old variables
|
|
// and delete them.
|
|
std::vector<Constant*> Inits;
|
|
while (AppendingVars.size() > 1) {
|
|
// Get the first two elements in the map...
|
|
std::multimap<std::string,
|
|
GlobalVariable*>::iterator Second = AppendingVars.begin(), First=Second++;
|
|
|
|
// If the first two elements are for different names, there is no pair...
|
|
// Otherwise there is a pair, so link them together...
|
|
if (First->first == Second->first) {
|
|
GlobalVariable *G1 = First->second, *G2 = Second->second;
|
|
const ArrayType *T1 = cast<ArrayType>(G1->getType()->getElementType());
|
|
const ArrayType *T2 = cast<ArrayType>(G2->getType()->getElementType());
|
|
|
|
// Check to see that they two arrays agree on type...
|
|
if (T1->getElementType() != T2->getElementType())
|
|
return Error(ErrorMsg,
|
|
"Appending variables with different element types need to be linked!");
|
|
if (G1->isConstant() != G2->isConstant())
|
|
return Error(ErrorMsg,
|
|
"Appending variables linked with different const'ness!");
|
|
|
|
unsigned NewSize = T1->getNumElements() + T2->getNumElements();
|
|
ArrayType *NewType = ArrayType::get(T1->getElementType(), NewSize);
|
|
|
|
// Create the new global variable...
|
|
GlobalVariable *NG =
|
|
new GlobalVariable(NewType, G1->isConstant(), G1->getLinkage(),
|
|
/*init*/0, First->first, M);
|
|
|
|
// Merge the initializer...
|
|
Inits.reserve(NewSize);
|
|
if (ConstantArray *I = dyn_cast<ConstantArray>(G1->getInitializer())) {
|
|
for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
|
|
Inits.push_back(I->getOperand(i));
|
|
} else {
|
|
assert(isa<ConstantAggregateZero>(G1->getInitializer()));
|
|
Constant *CV = Constant::getNullValue(T1->getElementType());
|
|
for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
|
|
Inits.push_back(CV);
|
|
}
|
|
if (ConstantArray *I = dyn_cast<ConstantArray>(G2->getInitializer())) {
|
|
for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
|
|
Inits.push_back(I->getOperand(i));
|
|
} else {
|
|
assert(isa<ConstantAggregateZero>(G2->getInitializer()));
|
|
Constant *CV = Constant::getNullValue(T2->getElementType());
|
|
for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
|
|
Inits.push_back(CV);
|
|
}
|
|
NG->setInitializer(ConstantArray::get(NewType, Inits));
|
|
Inits.clear();
|
|
|
|
// Replace any uses of the two global variables with uses of the new
|
|
// global...
|
|
|
|
// FIXME: This should rewrite simple/straight-forward uses such as
|
|
// getelementptr instructions to not use the Cast!
|
|
G1->replaceAllUsesWith(ConstantExpr::getCast(NG, G1->getType()));
|
|
G2->replaceAllUsesWith(ConstantExpr::getCast(NG, G2->getType()));
|
|
|
|
// Remove the two globals from the module now...
|
|
M->getGlobalList().erase(G1);
|
|
M->getGlobalList().erase(G2);
|
|
|
|
// Put the new global into the AppendingVars map so that we can handle
|
|
// linking of more than two vars...
|
|
Second->second = NG;
|
|
}
|
|
AppendingVars.erase(First);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
// LinkModules - This function links two modules together, with the resulting
|
|
// left module modified to be the composite of the two input modules. If an
|
|
// error occurs, true is returned and ErrorMsg (if not null) is set to indicate
|
|
// the problem. Upon failure, the Dest module could be in a modified state, and
|
|
// shouldn't be relied on to be consistent.
|
|
bool
|
|
Linker::LinkModules(Module *Dest, Module *Src, std::string *ErrorMsg) {
|
|
assert(Dest != 0 && "Invalid Destination module");
|
|
assert(Src != 0 && "Invalid Source Module");
|
|
|
|
if (Dest->getEndianness() == Module::AnyEndianness)
|
|
Dest->setEndianness(Src->getEndianness());
|
|
if (Dest->getPointerSize() == Module::AnyPointerSize)
|
|
Dest->setPointerSize(Src->getPointerSize());
|
|
if (Dest->getTargetTriple().empty())
|
|
Dest->setTargetTriple(Src->getTargetTriple());
|
|
|
|
if (Src->getEndianness() != Module::AnyEndianness &&
|
|
Dest->getEndianness() != Src->getEndianness())
|
|
std::cerr << "WARNING: Linking two modules of different endianness!\n";
|
|
if (Src->getPointerSize() != Module::AnyPointerSize &&
|
|
Dest->getPointerSize() != Src->getPointerSize())
|
|
std::cerr << "WARNING: Linking two modules of different pointer size!\n";
|
|
if (!Src->getTargetTriple().empty() &&
|
|
Dest->getTargetTriple() != Src->getTargetTriple())
|
|
std::cerr << "WARNING: Linking two modules of different target triples!\n";
|
|
|
|
// Update the destination module's dependent libraries list with the libraries
|
|
// from the source module. There's no opportunity for duplicates here as the
|
|
// Module ensures that duplicate insertions are discarded.
|
|
Module::lib_iterator SI = Src->lib_begin();
|
|
Module::lib_iterator SE = Src->lib_end();
|
|
while ( SI != SE ) {
|
|
Dest->addLibrary(*SI);
|
|
++SI;
|
|
}
|
|
|
|
// LinkTypes - Go through the symbol table of the Src module and see if any
|
|
// types are named in the src module that are not named in the Dst module.
|
|
// Make sure there are no type name conflicts.
|
|
if (LinkTypes(Dest, Src, ErrorMsg)) return true;
|
|
|
|
// ValueMap - Mapping of values from what they used to be in Src, to what they
|
|
// are now in Dest.
|
|
std::map<const Value*, Value*> ValueMap;
|
|
|
|
// AppendingVars - Keep track of global variables in the destination module
|
|
// with appending linkage. After the module is linked together, they are
|
|
// appended and the module is rewritten.
|
|
std::multimap<std::string, GlobalVariable *> AppendingVars;
|
|
|
|
// GlobalsByName - The LLVM SymbolTable class fights our best efforts at
|
|
// linking by separating globals by type. Until PR411 is fixed, we replicate
|
|
// it's functionality here.
|
|
std::map<std::string, GlobalValue*> GlobalsByName;
|
|
|
|
for (Module::global_iterator I = Dest->global_begin(), E = Dest->global_end(); I != E; ++I) {
|
|
// Add all of the appending globals already in the Dest module to
|
|
// AppendingVars.
|
|
if (I->hasAppendingLinkage())
|
|
AppendingVars.insert(std::make_pair(I->getName(), I));
|
|
|
|
// Keep track of all globals by name.
|
|
if (!I->hasInternalLinkage() && I->hasName())
|
|
GlobalsByName[I->getName()] = I;
|
|
}
|
|
|
|
// Keep track of all globals by name.
|
|
for (Module::iterator I = Dest->begin(), E = Dest->end(); I != E; ++I)
|
|
if (!I->hasInternalLinkage() && I->hasName())
|
|
GlobalsByName[I->getName()] = I;
|
|
|
|
// Insert all of the globals in src into the Dest module... without linking
|
|
// initializers (which could refer to functions not yet mapped over).
|
|
if (LinkGlobals(Dest, Src, ValueMap, AppendingVars, GlobalsByName, ErrorMsg))
|
|
return true;
|
|
|
|
// Link the functions together between the two modules, without doing function
|
|
// bodies... this just adds external function prototypes to the Dest
|
|
// function... We do this so that when we begin processing function bodies,
|
|
// all of the global values that may be referenced are available in our
|
|
// ValueMap.
|
|
if (LinkFunctionProtos(Dest, Src, ValueMap, GlobalsByName, ErrorMsg))
|
|
return true;
|
|
|
|
// Update the initializers in the Dest module now that all globals that may
|
|
// be referenced are in Dest.
|
|
if (LinkGlobalInits(Dest, Src, ValueMap, ErrorMsg)) return true;
|
|
|
|
// Link in the function bodies that are defined in the source module into the
|
|
// DestModule. This consists basically of copying the function over and
|
|
// fixing up references to values.
|
|
if (LinkFunctionBodies(Dest, Src, ValueMap, ErrorMsg)) return true;
|
|
|
|
// If there were any appending global variables, link them together now.
|
|
if (LinkAppendingVars(Dest, AppendingVars, ErrorMsg)) return true;
|
|
|
|
// If the source library's module id is in the dependent library list of the
|
|
// destination library, remove it since that module is now linked in.
|
|
sys::Path modId;
|
|
modId.setFile(Src->getModuleIdentifier());
|
|
if (!modId.isEmpty())
|
|
Dest->removeLibrary(modId.getBasename());
|
|
|
|
return false;
|
|
}
|
|
|
|
// vim: sw=2
|