mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-16 14:31:59 +00:00
e5bc8b0653
* Machine.h * InstInfo.h * SchedInfo.h TODO: Split out reg info stuff git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@567 91177308-0d34-0410-b5e6-96231b3b80d8
281 lines
8.4 KiB
C++
281 lines
8.4 KiB
C++
//===-- TargetMachine.cpp - General Target Information ---------------------==//
|
|
//
|
|
// This file describes the general parts of a Target machine.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Target/SchedInfo.h"
|
|
#include "llvm/Target/Machine.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
|
|
// External object describing the machine instructions
|
|
// Initialized only when the TargetMachine class is created
|
|
// and reset when that class is destroyed.
|
|
//
|
|
const MachineInstrDescriptor* TargetInstrDescriptors = NULL;
|
|
|
|
resourceId_t MachineResource::nextId = 0;
|
|
|
|
static cycles_t ComputeMinGap (const InstrRUsage& fromRU,
|
|
const InstrRUsage& toRU);
|
|
|
|
static bool RUConflict (const vector<resourceId_t>& fromRVec,
|
|
const vector<resourceId_t>& fromRVec);
|
|
|
|
//---------------------------------------------------------------------------
|
|
// class TargetMachine
|
|
//
|
|
// Purpose:
|
|
// Machine description.
|
|
//
|
|
//---------------------------------------------------------------------------
|
|
|
|
|
|
// function TargetMachine::findOptimalStorageSize
|
|
//
|
|
// Purpose:
|
|
// This default implementation assumes that all sub-word data items use
|
|
// space equal to optSizeForSubWordData, and all other primitive data
|
|
// items use space according to the type.
|
|
//
|
|
unsigned int TargetMachine::findOptimalStorageSize(const Type* ty) const {
|
|
switch(ty->getPrimitiveID()) {
|
|
case Type::BoolTyID:
|
|
case Type::UByteTyID:
|
|
case Type::SByteTyID:
|
|
case Type::UShortTyID:
|
|
case Type::ShortTyID:
|
|
return optSizeForSubWordData;
|
|
|
|
default:
|
|
return DataLayout.getTypeSize(ty);
|
|
}
|
|
}
|
|
|
|
|
|
//---------------------------------------------------------------------------
|
|
// class MachineInstructionInfo
|
|
// Interface to description of machine instructions
|
|
//---------------------------------------------------------------------------
|
|
|
|
|
|
/*ctor*/
|
|
MachineInstrInfo::MachineInstrInfo(const MachineInstrDescriptor* _desc,
|
|
unsigned int _descSize,
|
|
unsigned int _numRealOpCodes)
|
|
: desc(_desc), descSize(_descSize), numRealOpCodes(_numRealOpCodes)
|
|
{
|
|
assert(TargetInstrDescriptors == NULL && desc != NULL);
|
|
TargetInstrDescriptors = desc; // initialize global variable
|
|
}
|
|
|
|
|
|
/*dtor*/
|
|
MachineInstrInfo::~MachineInstrInfo()
|
|
{
|
|
TargetInstrDescriptors = NULL; // reset global variable
|
|
}
|
|
|
|
|
|
bool
|
|
MachineInstrInfo::constantFitsInImmedField(MachineOpCode opCode,
|
|
int64_t intValue) const
|
|
{
|
|
// First, check if opCode has an immed field.
|
|
bool isSignExtended;
|
|
uint64_t maxImmedValue = this->maxImmedConstant(opCode, isSignExtended);
|
|
if (maxImmedValue != 0)
|
|
{
|
|
// Now check if the constant fits
|
|
if (intValue <= (int64_t) maxImmedValue &&
|
|
intValue >= -((int64_t) maxImmedValue+1))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
//---------------------------------------------------------------------------
|
|
// class MachineSchedInfo
|
|
// Interface to machine description for instruction scheduling
|
|
//---------------------------------------------------------------------------
|
|
|
|
/*ctor*/
|
|
MachineSchedInfo::MachineSchedInfo(int _numSchedClasses,
|
|
const MachineInstrInfo* _mii,
|
|
const InstrClassRUsage* _classRUsages,
|
|
const InstrRUsageDelta* _usageDeltas,
|
|
const InstrIssueDelta* _issueDeltas,
|
|
unsigned int _numUsageDeltas,
|
|
unsigned int _numIssueDeltas)
|
|
: numSchedClasses(_numSchedClasses),
|
|
mii(_mii),
|
|
classRUsages(_classRUsages),
|
|
usageDeltas(_usageDeltas),
|
|
issueDeltas(_issueDeltas),
|
|
numUsageDeltas(_numUsageDeltas),
|
|
numIssueDeltas(_numIssueDeltas)
|
|
{
|
|
}
|
|
|
|
void
|
|
MachineSchedInfo::initializeResources()
|
|
{
|
|
assert(MAX_NUM_SLOTS >= (int) getMaxNumIssueTotal()
|
|
&& "Insufficient slots for static data! Increase MAX_NUM_SLOTS");
|
|
|
|
// First, compute common resource usage info for each class because
|
|
// most instructions will probably behave the same as their class.
|
|
// Cannot allocate a vector of InstrRUsage so new each one.
|
|
//
|
|
vector<InstrRUsage> instrRUForClasses;
|
|
instrRUForClasses.resize(numSchedClasses);
|
|
for (InstrSchedClass sc=0; sc < numSchedClasses; sc++)
|
|
{
|
|
// instrRUForClasses.push_back(new InstrRUsage);
|
|
instrRUForClasses[sc].setMaxSlots(getMaxNumIssueTotal());
|
|
instrRUForClasses[sc] = classRUsages[sc];
|
|
}
|
|
|
|
computeInstrResources(instrRUForClasses);
|
|
|
|
computeIssueGaps(instrRUForClasses);
|
|
}
|
|
|
|
|
|
void
|
|
MachineSchedInfo::computeInstrResources(const vector<InstrRUsage>& instrRUForClasses)
|
|
{
|
|
int numOpCodes = mii->getNumRealOpCodes();
|
|
instrRUsages.resize(numOpCodes);
|
|
|
|
// First get the resource usage information from the class resource usages.
|
|
for (MachineOpCode op=0; op < numOpCodes; op++)
|
|
{
|
|
InstrSchedClass sc = getSchedClass(op);
|
|
assert(sc >= 0 && sc < numSchedClasses);
|
|
instrRUsages[op] = instrRUForClasses[sc];
|
|
}
|
|
|
|
// Now, modify the resource usages as specified in the deltas.
|
|
for (unsigned i=0; i < numUsageDeltas; i++)
|
|
{
|
|
MachineOpCode op = usageDeltas[i].opCode;
|
|
assert(op < numOpCodes);
|
|
instrRUsages[op].addUsageDelta(usageDeltas[i]);
|
|
}
|
|
|
|
// Then modify the issue restrictions as specified in the deltas.
|
|
for (unsigned i=0; i < numIssueDeltas; i++)
|
|
{
|
|
MachineOpCode op = issueDeltas[i].opCode;
|
|
assert(op < numOpCodes);
|
|
instrRUsages[issueDeltas[i].opCode].addIssueDelta(issueDeltas[i]);
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
MachineSchedInfo::computeIssueGaps(const vector<InstrRUsage>& instrRUForClasses)
|
|
{
|
|
int numOpCodes = mii->getNumRealOpCodes();
|
|
instrRUsages.resize(numOpCodes);
|
|
|
|
assert(numOpCodes < (1 << MAX_OPCODE_SIZE) - 1
|
|
&& "numOpCodes invalid for implementation of class OpCodePair!");
|
|
|
|
// First, compute issue gaps between pairs of classes based on common
|
|
// resources usages for each class, because most instruction pairs will
|
|
// usually behave the same as their class.
|
|
//
|
|
int classPairGaps[numSchedClasses][numSchedClasses];
|
|
for (InstrSchedClass fromSC=0; fromSC < numSchedClasses; fromSC++)
|
|
for (InstrSchedClass toSC=0; toSC < numSchedClasses; toSC++)
|
|
{
|
|
int classPairGap = ComputeMinGap(instrRUForClasses[fromSC],
|
|
instrRUForClasses[toSC]);
|
|
classPairGaps[fromSC][toSC] = classPairGap;
|
|
}
|
|
|
|
// Now, for each pair of instructions, use the class pair gap if both
|
|
// instructions have identical resource usage as their respective classes.
|
|
// If not, recompute the gap for the pair from scratch.
|
|
|
|
longestIssueConflict = 0;
|
|
|
|
for (MachineOpCode fromOp=0; fromOp < numOpCodes; fromOp++)
|
|
for (MachineOpCode toOp=0; toOp < numOpCodes; toOp++)
|
|
{
|
|
int instrPairGap =
|
|
(instrRUsages[fromOp].sameAsClass && instrRUsages[toOp].sameAsClass)
|
|
? classPairGaps[getSchedClass(fromOp)][getSchedClass(toOp)]
|
|
: ComputeMinGap(instrRUsages[fromOp], instrRUsages[toOp]);
|
|
|
|
if (instrPairGap > 0)
|
|
{
|
|
issueGaps[OpCodePair(fromOp,toOp)] = instrPairGap;
|
|
conflictLists[fromOp].push_back(toOp);
|
|
longestIssueConflict = max(longestIssueConflict, instrPairGap);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Check if fromRVec and toRVec have *any* common entries.
|
|
// Assume the vectors are sorted in increasing order.
|
|
// Algorithm copied from function set_intersection() for sorted ranges (stl_algo.h).
|
|
inline static bool
|
|
RUConflict(const vector<resourceId_t>& fromRVec,
|
|
const vector<resourceId_t>& toRVec)
|
|
{
|
|
bool commonElementFound = false;
|
|
|
|
unsigned fN = fromRVec.size(), tN = toRVec.size();
|
|
unsigned fi = 0, ti = 0;
|
|
while (fi < fN && ti < tN)
|
|
if (fromRVec[fi] < toRVec[ti])
|
|
++fi;
|
|
else if (toRVec[ti] < fromRVec[fi])
|
|
++ti;
|
|
else
|
|
{
|
|
commonElementFound = true;
|
|
break;
|
|
}
|
|
|
|
return commonElementFound;
|
|
}
|
|
|
|
|
|
static cycles_t
|
|
ComputeMinGap(const InstrRUsage& fromRU, const InstrRUsage& toRU)
|
|
{
|
|
cycles_t minGap = 0;
|
|
|
|
if (fromRU.numBubbles > 0)
|
|
minGap = fromRU.numBubbles;
|
|
|
|
if (minGap < fromRU.numCycles)
|
|
{
|
|
// only need to check from cycle `minGap' onwards
|
|
for (cycles_t gap=minGap; gap <= fromRU.numCycles-1; gap++)
|
|
{
|
|
// check if instr. #2 can start executing `gap' cycles after #1
|
|
// by checking for resource conflicts in each overlapping cycle
|
|
cycles_t numOverlap = min(fromRU.numCycles - gap, toRU.numCycles);
|
|
for (cycles_t c = 0; c <= numOverlap-1; c++)
|
|
if (RUConflict(fromRU.resourcesByCycle[gap + c],
|
|
toRU.resourcesByCycle[c]))
|
|
{// conflict found so minGap must be more than `gap'
|
|
minGap = gap+1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return minGap;
|
|
}
|
|
|
|
//---------------------------------------------------------------------------
|