mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207196 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			3259 lines
		
	
	
		
			131 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			3259 lines
		
	
	
		
			131 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- BBVectorize.cpp - A Basic-Block Vectorizer -------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements a basic-block vectorization pass. The algorithm was
 | |
| // inspired by that used by the Vienna MAP Vectorizor by Franchetti and Kral,
 | |
| // et al. It works by looking for chains of pairable operations and then
 | |
| // pairing them.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define BBV_NAME "bb-vectorize"
 | |
| #include "llvm/Transforms/Vectorize.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/DenseSet.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/AliasSetTracker.h"
 | |
| #include "llvm/Analysis/ScalarEvolution.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Metadata.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/IR/ValueHandle.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE BBV_NAME
 | |
| 
 | |
| static cl::opt<bool>
 | |
| IgnoreTargetInfo("bb-vectorize-ignore-target-info",  cl::init(false),
 | |
|   cl::Hidden, cl::desc("Ignore target information"));
 | |
| 
 | |
| static cl::opt<unsigned>
 | |
| ReqChainDepth("bb-vectorize-req-chain-depth", cl::init(6), cl::Hidden,
 | |
|   cl::desc("The required chain depth for vectorization"));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| UseChainDepthWithTI("bb-vectorize-use-chain-depth",  cl::init(false),
 | |
|   cl::Hidden, cl::desc("Use the chain depth requirement with"
 | |
|                        " target information"));
 | |
| 
 | |
| static cl::opt<unsigned>
 | |
| SearchLimit("bb-vectorize-search-limit", cl::init(400), cl::Hidden,
 | |
|   cl::desc("The maximum search distance for instruction pairs"));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| SplatBreaksChain("bb-vectorize-splat-breaks-chain", cl::init(false), cl::Hidden,
 | |
|   cl::desc("Replicating one element to a pair breaks the chain"));
 | |
| 
 | |
| static cl::opt<unsigned>
 | |
| VectorBits("bb-vectorize-vector-bits", cl::init(128), cl::Hidden,
 | |
|   cl::desc("The size of the native vector registers"));
 | |
| 
 | |
| static cl::opt<unsigned>
 | |
| MaxIter("bb-vectorize-max-iter", cl::init(0), cl::Hidden,
 | |
|   cl::desc("The maximum number of pairing iterations"));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| Pow2LenOnly("bb-vectorize-pow2-len-only", cl::init(false), cl::Hidden,
 | |
|   cl::desc("Don't try to form non-2^n-length vectors"));
 | |
| 
 | |
| static cl::opt<unsigned>
 | |
| MaxInsts("bb-vectorize-max-instr-per-group", cl::init(500), cl::Hidden,
 | |
|   cl::desc("The maximum number of pairable instructions per group"));
 | |
| 
 | |
| static cl::opt<unsigned>
 | |
| MaxPairs("bb-vectorize-max-pairs-per-group", cl::init(3000), cl::Hidden,
 | |
|   cl::desc("The maximum number of candidate instruction pairs per group"));
 | |
| 
 | |
| static cl::opt<unsigned>
 | |
| MaxCandPairsForCycleCheck("bb-vectorize-max-cycle-check-pairs", cl::init(200),
 | |
|   cl::Hidden, cl::desc("The maximum number of candidate pairs with which to use"
 | |
|                        " a full cycle check"));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| NoBools("bb-vectorize-no-bools", cl::init(false), cl::Hidden,
 | |
|   cl::desc("Don't try to vectorize boolean (i1) values"));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| NoInts("bb-vectorize-no-ints", cl::init(false), cl::Hidden,
 | |
|   cl::desc("Don't try to vectorize integer values"));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| NoFloats("bb-vectorize-no-floats", cl::init(false), cl::Hidden,
 | |
|   cl::desc("Don't try to vectorize floating-point values"));
 | |
| 
 | |
| // FIXME: This should default to false once pointer vector support works.
 | |
| static cl::opt<bool>
 | |
| NoPointers("bb-vectorize-no-pointers", cl::init(/*false*/ true), cl::Hidden,
 | |
|   cl::desc("Don't try to vectorize pointer values"));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| NoCasts("bb-vectorize-no-casts", cl::init(false), cl::Hidden,
 | |
|   cl::desc("Don't try to vectorize casting (conversion) operations"));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| NoMath("bb-vectorize-no-math", cl::init(false), cl::Hidden,
 | |
|   cl::desc("Don't try to vectorize floating-point math intrinsics"));
 | |
| 
 | |
| static cl::opt<bool>
 | |
|   NoBitManipulation("bb-vectorize-no-bitmanip", cl::init(false), cl::Hidden,
 | |
|   cl::desc("Don't try to vectorize BitManipulation intrinsics"));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| NoFMA("bb-vectorize-no-fma", cl::init(false), cl::Hidden,
 | |
|   cl::desc("Don't try to vectorize the fused-multiply-add intrinsic"));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| NoSelect("bb-vectorize-no-select", cl::init(false), cl::Hidden,
 | |
|   cl::desc("Don't try to vectorize select instructions"));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| NoCmp("bb-vectorize-no-cmp", cl::init(false), cl::Hidden,
 | |
|   cl::desc("Don't try to vectorize comparison instructions"));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| NoGEP("bb-vectorize-no-gep", cl::init(false), cl::Hidden,
 | |
|   cl::desc("Don't try to vectorize getelementptr instructions"));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| NoMemOps("bb-vectorize-no-mem-ops", cl::init(false), cl::Hidden,
 | |
|   cl::desc("Don't try to vectorize loads and stores"));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| AlignedOnly("bb-vectorize-aligned-only", cl::init(false), cl::Hidden,
 | |
|   cl::desc("Only generate aligned loads and stores"));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| NoMemOpBoost("bb-vectorize-no-mem-op-boost",
 | |
|   cl::init(false), cl::Hidden,
 | |
|   cl::desc("Don't boost the chain-depth contribution of loads and stores"));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| FastDep("bb-vectorize-fast-dep", cl::init(false), cl::Hidden,
 | |
|   cl::desc("Use a fast instruction dependency analysis"));
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| static cl::opt<bool>
 | |
| DebugInstructionExamination("bb-vectorize-debug-instruction-examination",
 | |
|   cl::init(false), cl::Hidden,
 | |
|   cl::desc("When debugging is enabled, output information on the"
 | |
|            " instruction-examination process"));
 | |
| static cl::opt<bool>
 | |
| DebugCandidateSelection("bb-vectorize-debug-candidate-selection",
 | |
|   cl::init(false), cl::Hidden,
 | |
|   cl::desc("When debugging is enabled, output information on the"
 | |
|            " candidate-selection process"));
 | |
| static cl::opt<bool>
 | |
| DebugPairSelection("bb-vectorize-debug-pair-selection",
 | |
|   cl::init(false), cl::Hidden,
 | |
|   cl::desc("When debugging is enabled, output information on the"
 | |
|            " pair-selection process"));
 | |
| static cl::opt<bool>
 | |
| DebugCycleCheck("bb-vectorize-debug-cycle-check",
 | |
|   cl::init(false), cl::Hidden,
 | |
|   cl::desc("When debugging is enabled, output information on the"
 | |
|            " cycle-checking process"));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| PrintAfterEveryPair("bb-vectorize-debug-print-after-every-pair",
 | |
|   cl::init(false), cl::Hidden,
 | |
|   cl::desc("When debugging is enabled, dump the basic block after"
 | |
|            " every pair is fused"));
 | |
| #endif
 | |
| 
 | |
| STATISTIC(NumFusedOps, "Number of operations fused by bb-vectorize");
 | |
| 
 | |
| namespace {
 | |
|   struct BBVectorize : public BasicBlockPass {
 | |
|     static char ID; // Pass identification, replacement for typeid
 | |
| 
 | |
|     const VectorizeConfig Config;
 | |
| 
 | |
|     BBVectorize(const VectorizeConfig &C = VectorizeConfig())
 | |
|       : BasicBlockPass(ID), Config(C) {
 | |
|       initializeBBVectorizePass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
| 
 | |
|     BBVectorize(Pass *P, const VectorizeConfig &C)
 | |
|       : BasicBlockPass(ID), Config(C) {
 | |
|       AA = &P->getAnalysis<AliasAnalysis>();
 | |
|       DT = &P->getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | |
|       SE = &P->getAnalysis<ScalarEvolution>();
 | |
|       DataLayoutPass *DLP = P->getAnalysisIfAvailable<DataLayoutPass>();
 | |
|       DL = DLP ? &DLP->getDataLayout() : nullptr;
 | |
|       TTI = IgnoreTargetInfo ? nullptr : &P->getAnalysis<TargetTransformInfo>();
 | |
|     }
 | |
| 
 | |
|     typedef std::pair<Value *, Value *> ValuePair;
 | |
|     typedef std::pair<ValuePair, int> ValuePairWithCost;
 | |
|     typedef std::pair<ValuePair, size_t> ValuePairWithDepth;
 | |
|     typedef std::pair<ValuePair, ValuePair> VPPair; // A ValuePair pair
 | |
|     typedef std::pair<VPPair, unsigned> VPPairWithType;
 | |
| 
 | |
|     AliasAnalysis *AA;
 | |
|     DominatorTree *DT;
 | |
|     ScalarEvolution *SE;
 | |
|     const DataLayout *DL;
 | |
|     const TargetTransformInfo *TTI;
 | |
| 
 | |
|     // FIXME: const correct?
 | |
| 
 | |
|     bool vectorizePairs(BasicBlock &BB, bool NonPow2Len = false);
 | |
| 
 | |
|     bool getCandidatePairs(BasicBlock &BB,
 | |
|                        BasicBlock::iterator &Start,
 | |
|                        DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
 | |
|                        DenseSet<ValuePair> &FixedOrderPairs,
 | |
|                        DenseMap<ValuePair, int> &CandidatePairCostSavings,
 | |
|                        std::vector<Value *> &PairableInsts, bool NonPow2Len);
 | |
| 
 | |
|     // FIXME: The current implementation does not account for pairs that
 | |
|     // are connected in multiple ways. For example:
 | |
|     //   C1 = A1 / A2; C2 = A2 / A1 (which may be both direct and a swap)
 | |
|     enum PairConnectionType {
 | |
|       PairConnectionDirect,
 | |
|       PairConnectionSwap,
 | |
|       PairConnectionSplat
 | |
|     };
 | |
| 
 | |
|     void computeConnectedPairs(
 | |
|              DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
 | |
|              DenseSet<ValuePair> &CandidatePairsSet,
 | |
|              std::vector<Value *> &PairableInsts,
 | |
|              DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
 | |
|              DenseMap<VPPair, unsigned> &PairConnectionTypes);
 | |
| 
 | |
|     void buildDepMap(BasicBlock &BB,
 | |
|              DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
 | |
|              std::vector<Value *> &PairableInsts,
 | |
|              DenseSet<ValuePair> &PairableInstUsers);
 | |
| 
 | |
|     void choosePairs(DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
 | |
|              DenseSet<ValuePair> &CandidatePairsSet,
 | |
|              DenseMap<ValuePair, int> &CandidatePairCostSavings,
 | |
|              std::vector<Value *> &PairableInsts,
 | |
|              DenseSet<ValuePair> &FixedOrderPairs,
 | |
|              DenseMap<VPPair, unsigned> &PairConnectionTypes,
 | |
|              DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
 | |
|              DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps,
 | |
|              DenseSet<ValuePair> &PairableInstUsers,
 | |
|              DenseMap<Value *, Value *>& ChosenPairs);
 | |
| 
 | |
|     void fuseChosenPairs(BasicBlock &BB,
 | |
|              std::vector<Value *> &PairableInsts,
 | |
|              DenseMap<Value *, Value *>& ChosenPairs,
 | |
|              DenseSet<ValuePair> &FixedOrderPairs,
 | |
|              DenseMap<VPPair, unsigned> &PairConnectionTypes,
 | |
|              DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
 | |
|              DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps);
 | |
| 
 | |
| 
 | |
|     bool isInstVectorizable(Instruction *I, bool &IsSimpleLoadStore);
 | |
| 
 | |
|     bool areInstsCompatible(Instruction *I, Instruction *J,
 | |
|                        bool IsSimpleLoadStore, bool NonPow2Len,
 | |
|                        int &CostSavings, int &FixedOrder);
 | |
| 
 | |
|     bool trackUsesOfI(DenseSet<Value *> &Users,
 | |
|                       AliasSetTracker &WriteSet, Instruction *I,
 | |
|                       Instruction *J, bool UpdateUsers = true,
 | |
|                       DenseSet<ValuePair> *LoadMoveSetPairs = nullptr);
 | |
| 
 | |
|   void computePairsConnectedTo(
 | |
|              DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
 | |
|              DenseSet<ValuePair> &CandidatePairsSet,
 | |
|              std::vector<Value *> &PairableInsts,
 | |
|              DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
 | |
|              DenseMap<VPPair, unsigned> &PairConnectionTypes,
 | |
|              ValuePair P);
 | |
| 
 | |
|     bool pairsConflict(ValuePair P, ValuePair Q,
 | |
|              DenseSet<ValuePair> &PairableInstUsers,
 | |
|              DenseMap<ValuePair, std::vector<ValuePair> >
 | |
|                *PairableInstUserMap = nullptr,
 | |
|              DenseSet<VPPair> *PairableInstUserPairSet = nullptr);
 | |
| 
 | |
|     bool pairWillFormCycle(ValuePair P,
 | |
|              DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUsers,
 | |
|              DenseSet<ValuePair> &CurrentPairs);
 | |
| 
 | |
|     void pruneDAGFor(
 | |
|              DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
 | |
|              std::vector<Value *> &PairableInsts,
 | |
|              DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
 | |
|              DenseSet<ValuePair> &PairableInstUsers,
 | |
|              DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap,
 | |
|              DenseSet<VPPair> &PairableInstUserPairSet,
 | |
|              DenseMap<Value *, Value *> &ChosenPairs,
 | |
|              DenseMap<ValuePair, size_t> &DAG,
 | |
|              DenseSet<ValuePair> &PrunedDAG, ValuePair J,
 | |
|              bool UseCycleCheck);
 | |
| 
 | |
|     void buildInitialDAGFor(
 | |
|              DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
 | |
|              DenseSet<ValuePair> &CandidatePairsSet,
 | |
|              std::vector<Value *> &PairableInsts,
 | |
|              DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
 | |
|              DenseSet<ValuePair> &PairableInstUsers,
 | |
|              DenseMap<Value *, Value *> &ChosenPairs,
 | |
|              DenseMap<ValuePair, size_t> &DAG, ValuePair J);
 | |
| 
 | |
|     void findBestDAGFor(
 | |
|              DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
 | |
|              DenseSet<ValuePair> &CandidatePairsSet,
 | |
|              DenseMap<ValuePair, int> &CandidatePairCostSavings,
 | |
|              std::vector<Value *> &PairableInsts,
 | |
|              DenseSet<ValuePair> &FixedOrderPairs,
 | |
|              DenseMap<VPPair, unsigned> &PairConnectionTypes,
 | |
|              DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
 | |
|              DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps,
 | |
|              DenseSet<ValuePair> &PairableInstUsers,
 | |
|              DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap,
 | |
|              DenseSet<VPPair> &PairableInstUserPairSet,
 | |
|              DenseMap<Value *, Value *> &ChosenPairs,
 | |
|              DenseSet<ValuePair> &BestDAG, size_t &BestMaxDepth,
 | |
|              int &BestEffSize, Value *II, std::vector<Value *>&JJ,
 | |
|              bool UseCycleCheck);
 | |
| 
 | |
|     Value *getReplacementPointerInput(LLVMContext& Context, Instruction *I,
 | |
|                      Instruction *J, unsigned o);
 | |
| 
 | |
|     void fillNewShuffleMask(LLVMContext& Context, Instruction *J,
 | |
|                      unsigned MaskOffset, unsigned NumInElem,
 | |
|                      unsigned NumInElem1, unsigned IdxOffset,
 | |
|                      std::vector<Constant*> &Mask);
 | |
| 
 | |
|     Value *getReplacementShuffleMask(LLVMContext& Context, Instruction *I,
 | |
|                      Instruction *J);
 | |
| 
 | |
|     bool expandIEChain(LLVMContext& Context, Instruction *I, Instruction *J,
 | |
|                        unsigned o, Value *&LOp, unsigned numElemL,
 | |
|                        Type *ArgTypeL, Type *ArgTypeR, bool IBeforeJ,
 | |
|                        unsigned IdxOff = 0);
 | |
| 
 | |
|     Value *getReplacementInput(LLVMContext& Context, Instruction *I,
 | |
|                      Instruction *J, unsigned o, bool IBeforeJ);
 | |
| 
 | |
|     void getReplacementInputsForPair(LLVMContext& Context, Instruction *I,
 | |
|                      Instruction *J, SmallVectorImpl<Value *> &ReplacedOperands,
 | |
|                      bool IBeforeJ);
 | |
| 
 | |
|     void replaceOutputsOfPair(LLVMContext& Context, Instruction *I,
 | |
|                      Instruction *J, Instruction *K,
 | |
|                      Instruction *&InsertionPt, Instruction *&K1,
 | |
|                      Instruction *&K2);
 | |
| 
 | |
|     void collectPairLoadMoveSet(BasicBlock &BB,
 | |
|                      DenseMap<Value *, Value *> &ChosenPairs,
 | |
|                      DenseMap<Value *, std::vector<Value *> > &LoadMoveSet,
 | |
|                      DenseSet<ValuePair> &LoadMoveSetPairs,
 | |
|                      Instruction *I);
 | |
| 
 | |
|     void collectLoadMoveSet(BasicBlock &BB,
 | |
|                      std::vector<Value *> &PairableInsts,
 | |
|                      DenseMap<Value *, Value *> &ChosenPairs,
 | |
|                      DenseMap<Value *, std::vector<Value *> > &LoadMoveSet,
 | |
|                      DenseSet<ValuePair> &LoadMoveSetPairs);
 | |
| 
 | |
|     bool canMoveUsesOfIAfterJ(BasicBlock &BB,
 | |
|                      DenseSet<ValuePair> &LoadMoveSetPairs,
 | |
|                      Instruction *I, Instruction *J);
 | |
| 
 | |
|     void moveUsesOfIAfterJ(BasicBlock &BB,
 | |
|                      DenseSet<ValuePair> &LoadMoveSetPairs,
 | |
|                      Instruction *&InsertionPt,
 | |
|                      Instruction *I, Instruction *J);
 | |
| 
 | |
|     void combineMetadata(Instruction *K, const Instruction *J);
 | |
| 
 | |
|     bool vectorizeBB(BasicBlock &BB) {
 | |
|       if (skipOptnoneFunction(BB))
 | |
|         return false;
 | |
|       if (!DT->isReachableFromEntry(&BB)) {
 | |
|         DEBUG(dbgs() << "BBV: skipping unreachable " << BB.getName() <<
 | |
|               " in " << BB.getParent()->getName() << "\n");
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       DEBUG(if (TTI) dbgs() << "BBV: using target information\n");
 | |
| 
 | |
|       bool changed = false;
 | |
|       // Iterate a sufficient number of times to merge types of size 1 bit,
 | |
|       // then 2 bits, then 4, etc. up to half of the target vector width of the
 | |
|       // target vector register.
 | |
|       unsigned n = 1;
 | |
|       for (unsigned v = 2;
 | |
|            (TTI || v <= Config.VectorBits) &&
 | |
|            (!Config.MaxIter || n <= Config.MaxIter);
 | |
|            v *= 2, ++n) {
 | |
|         DEBUG(dbgs() << "BBV: fusing loop #" << n <<
 | |
|               " for " << BB.getName() << " in " <<
 | |
|               BB.getParent()->getName() << "...\n");
 | |
|         if (vectorizePairs(BB))
 | |
|           changed = true;
 | |
|         else
 | |
|           break;
 | |
|       }
 | |
| 
 | |
|       if (changed && !Pow2LenOnly) {
 | |
|         ++n;
 | |
|         for (; !Config.MaxIter || n <= Config.MaxIter; ++n) {
 | |
|           DEBUG(dbgs() << "BBV: fusing for non-2^n-length vectors loop #: " <<
 | |
|                 n << " for " << BB.getName() << " in " <<
 | |
|                 BB.getParent()->getName() << "...\n");
 | |
|           if (!vectorizePairs(BB, true)) break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       DEBUG(dbgs() << "BBV: done!\n");
 | |
|       return changed;
 | |
|     }
 | |
| 
 | |
|     bool runOnBasicBlock(BasicBlock &BB) override {
 | |
|       // OptimizeNone check deferred to vectorizeBB().
 | |
| 
 | |
|       AA = &getAnalysis<AliasAnalysis>();
 | |
|       DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | |
|       SE = &getAnalysis<ScalarEvolution>();
 | |
|       DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
 | |
|       DL = DLP ? &DLP->getDataLayout() : nullptr;
 | |
|       TTI = IgnoreTargetInfo ? nullptr : &getAnalysis<TargetTransformInfo>();
 | |
| 
 | |
|       return vectorizeBB(BB);
 | |
|     }
 | |
| 
 | |
|     void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|       BasicBlockPass::getAnalysisUsage(AU);
 | |
|       AU.addRequired<AliasAnalysis>();
 | |
|       AU.addRequired<DominatorTreeWrapperPass>();
 | |
|       AU.addRequired<ScalarEvolution>();
 | |
|       AU.addRequired<TargetTransformInfo>();
 | |
|       AU.addPreserved<AliasAnalysis>();
 | |
|       AU.addPreserved<DominatorTreeWrapperPass>();
 | |
|       AU.addPreserved<ScalarEvolution>();
 | |
|       AU.setPreservesCFG();
 | |
|     }
 | |
| 
 | |
|     static inline VectorType *getVecTypeForPair(Type *ElemTy, Type *Elem2Ty) {
 | |
|       assert(ElemTy->getScalarType() == Elem2Ty->getScalarType() &&
 | |
|              "Cannot form vector from incompatible scalar types");
 | |
|       Type *STy = ElemTy->getScalarType();
 | |
| 
 | |
|       unsigned numElem;
 | |
|       if (VectorType *VTy = dyn_cast<VectorType>(ElemTy)) {
 | |
|         numElem = VTy->getNumElements();
 | |
|       } else {
 | |
|         numElem = 1;
 | |
|       }
 | |
| 
 | |
|       if (VectorType *VTy = dyn_cast<VectorType>(Elem2Ty)) {
 | |
|         numElem += VTy->getNumElements();
 | |
|       } else {
 | |
|         numElem += 1;
 | |
|       }
 | |
| 
 | |
|       return VectorType::get(STy, numElem);
 | |
|     }
 | |
| 
 | |
|     static inline void getInstructionTypes(Instruction *I,
 | |
|                                            Type *&T1, Type *&T2) {
 | |
|       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
 | |
|         // For stores, it is the value type, not the pointer type that matters
 | |
|         // because the value is what will come from a vector register.
 | |
|   
 | |
|         Value *IVal = SI->getValueOperand();
 | |
|         T1 = IVal->getType();
 | |
|       } else {
 | |
|         T1 = I->getType();
 | |
|       }
 | |
|   
 | |
|       if (CastInst *CI = dyn_cast<CastInst>(I))
 | |
|         T2 = CI->getSrcTy();
 | |
|       else
 | |
|         T2 = T1;
 | |
| 
 | |
|       if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
 | |
|         T2 = SI->getCondition()->getType();
 | |
|       } else if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(I)) {
 | |
|         T2 = SI->getOperand(0)->getType();
 | |
|       } else if (CmpInst *CI = dyn_cast<CmpInst>(I)) {
 | |
|         T2 = CI->getOperand(0)->getType();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Returns the weight associated with the provided value. A chain of
 | |
|     // candidate pairs has a length given by the sum of the weights of its
 | |
|     // members (one weight per pair; the weight of each member of the pair
 | |
|     // is assumed to be the same). This length is then compared to the
 | |
|     // chain-length threshold to determine if a given chain is significant
 | |
|     // enough to be vectorized. The length is also used in comparing
 | |
|     // candidate chains where longer chains are considered to be better.
 | |
|     // Note: when this function returns 0, the resulting instructions are
 | |
|     // not actually fused.
 | |
|     inline size_t getDepthFactor(Value *V) {
 | |
|       // InsertElement and ExtractElement have a depth factor of zero. This is
 | |
|       // for two reasons: First, they cannot be usefully fused. Second, because
 | |
|       // the pass generates a lot of these, they can confuse the simple metric
 | |
|       // used to compare the dags in the next iteration. Thus, giving them a
 | |
|       // weight of zero allows the pass to essentially ignore them in
 | |
|       // subsequent iterations when looking for vectorization opportunities
 | |
|       // while still tracking dependency chains that flow through those
 | |
|       // instructions.
 | |
|       if (isa<InsertElementInst>(V) || isa<ExtractElementInst>(V))
 | |
|         return 0;
 | |
| 
 | |
|       // Give a load or store half of the required depth so that load/store
 | |
|       // pairs will vectorize.
 | |
|       if (!Config.NoMemOpBoost && (isa<LoadInst>(V) || isa<StoreInst>(V)))
 | |
|         return Config.ReqChainDepth/2;
 | |
| 
 | |
|       return 1;
 | |
|     }
 | |
| 
 | |
|     // Returns the cost of the provided instruction using TTI.
 | |
|     // This does not handle loads and stores.
 | |
|     unsigned getInstrCost(unsigned Opcode, Type *T1, Type *T2,
 | |
|                           TargetTransformInfo::OperandValueKind Op1VK = 
 | |
|                               TargetTransformInfo::OK_AnyValue,
 | |
|                           TargetTransformInfo::OperandValueKind Op2VK =
 | |
|                               TargetTransformInfo::OK_AnyValue) {
 | |
|       switch (Opcode) {
 | |
|       default: break;
 | |
|       case Instruction::GetElementPtr:
 | |
|         // We mark this instruction as zero-cost because scalar GEPs are usually
 | |
|         // lowered to the instruction addressing mode. At the moment we don't
 | |
|         // generate vector GEPs.
 | |
|         return 0;
 | |
|       case Instruction::Br:
 | |
|         return TTI->getCFInstrCost(Opcode);
 | |
|       case Instruction::PHI:
 | |
|         return 0;
 | |
|       case Instruction::Add:
 | |
|       case Instruction::FAdd:
 | |
|       case Instruction::Sub:
 | |
|       case Instruction::FSub:
 | |
|       case Instruction::Mul:
 | |
|       case Instruction::FMul:
 | |
|       case Instruction::UDiv:
 | |
|       case Instruction::SDiv:
 | |
|       case Instruction::FDiv:
 | |
|       case Instruction::URem:
 | |
|       case Instruction::SRem:
 | |
|       case Instruction::FRem:
 | |
|       case Instruction::Shl:
 | |
|       case Instruction::LShr:
 | |
|       case Instruction::AShr:
 | |
|       case Instruction::And:
 | |
|       case Instruction::Or:
 | |
|       case Instruction::Xor:
 | |
|         return TTI->getArithmeticInstrCost(Opcode, T1, Op1VK, Op2VK);
 | |
|       case Instruction::Select:
 | |
|       case Instruction::ICmp:
 | |
|       case Instruction::FCmp:
 | |
|         return TTI->getCmpSelInstrCost(Opcode, T1, T2);
 | |
|       case Instruction::ZExt:
 | |
|       case Instruction::SExt:
 | |
|       case Instruction::FPToUI:
 | |
|       case Instruction::FPToSI:
 | |
|       case Instruction::FPExt:
 | |
|       case Instruction::PtrToInt:
 | |
|       case Instruction::IntToPtr:
 | |
|       case Instruction::SIToFP:
 | |
|       case Instruction::UIToFP:
 | |
|       case Instruction::Trunc:
 | |
|       case Instruction::FPTrunc:
 | |
|       case Instruction::BitCast:
 | |
|       case Instruction::ShuffleVector:
 | |
|         return TTI->getCastInstrCost(Opcode, T1, T2);
 | |
|       }
 | |
| 
 | |
|       return 1;
 | |
|     }
 | |
| 
 | |
|     // This determines the relative offset of two loads or stores, returning
 | |
|     // true if the offset could be determined to be some constant value.
 | |
|     // For example, if OffsetInElmts == 1, then J accesses the memory directly
 | |
|     // after I; if OffsetInElmts == -1 then I accesses the memory
 | |
|     // directly after J.
 | |
|     bool getPairPtrInfo(Instruction *I, Instruction *J,
 | |
|         Value *&IPtr, Value *&JPtr, unsigned &IAlignment, unsigned &JAlignment,
 | |
|         unsigned &IAddressSpace, unsigned &JAddressSpace,
 | |
|         int64_t &OffsetInElmts, bool ComputeOffset = true) {
 | |
|       OffsetInElmts = 0;
 | |
|       if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
 | |
|         LoadInst *LJ = cast<LoadInst>(J);
 | |
|         IPtr = LI->getPointerOperand();
 | |
|         JPtr = LJ->getPointerOperand();
 | |
|         IAlignment = LI->getAlignment();
 | |
|         JAlignment = LJ->getAlignment();
 | |
|         IAddressSpace = LI->getPointerAddressSpace();
 | |
|         JAddressSpace = LJ->getPointerAddressSpace();
 | |
|       } else {
 | |
|         StoreInst *SI = cast<StoreInst>(I), *SJ = cast<StoreInst>(J);
 | |
|         IPtr = SI->getPointerOperand();
 | |
|         JPtr = SJ->getPointerOperand();
 | |
|         IAlignment = SI->getAlignment();
 | |
|         JAlignment = SJ->getAlignment();
 | |
|         IAddressSpace = SI->getPointerAddressSpace();
 | |
|         JAddressSpace = SJ->getPointerAddressSpace();
 | |
|       }
 | |
| 
 | |
|       if (!ComputeOffset)
 | |
|         return true;
 | |
| 
 | |
|       const SCEV *IPtrSCEV = SE->getSCEV(IPtr);
 | |
|       const SCEV *JPtrSCEV = SE->getSCEV(JPtr);
 | |
| 
 | |
|       // If this is a trivial offset, then we'll get something like
 | |
|       // 1*sizeof(type). With target data, which we need anyway, this will get
 | |
|       // constant folded into a number.
 | |
|       const SCEV *OffsetSCEV = SE->getMinusSCEV(JPtrSCEV, IPtrSCEV);
 | |
|       if (const SCEVConstant *ConstOffSCEV =
 | |
|             dyn_cast<SCEVConstant>(OffsetSCEV)) {
 | |
|         ConstantInt *IntOff = ConstOffSCEV->getValue();
 | |
|         int64_t Offset = IntOff->getSExtValue();
 | |
| 
 | |
|         Type *VTy = IPtr->getType()->getPointerElementType();
 | |
|         int64_t VTyTSS = (int64_t) DL->getTypeStoreSize(VTy);
 | |
| 
 | |
|         Type *VTy2 = JPtr->getType()->getPointerElementType();
 | |
|         if (VTy != VTy2 && Offset < 0) {
 | |
|           int64_t VTy2TSS = (int64_t) DL->getTypeStoreSize(VTy2);
 | |
|           OffsetInElmts = Offset/VTy2TSS;
 | |
|           return (abs64(Offset) % VTy2TSS) == 0;
 | |
|         }
 | |
| 
 | |
|         OffsetInElmts = Offset/VTyTSS;
 | |
|         return (abs64(Offset) % VTyTSS) == 0;
 | |
|       }
 | |
| 
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // Returns true if the provided CallInst represents an intrinsic that can
 | |
|     // be vectorized.
 | |
|     bool isVectorizableIntrinsic(CallInst* I) {
 | |
|       Function *F = I->getCalledFunction();
 | |
|       if (!F) return false;
 | |
| 
 | |
|       Intrinsic::ID IID = (Intrinsic::ID) F->getIntrinsicID();
 | |
|       if (!IID) return false;
 | |
| 
 | |
|       switch(IID) {
 | |
|       default:
 | |
|         return false;
 | |
|       case Intrinsic::sqrt:
 | |
|       case Intrinsic::powi:
 | |
|       case Intrinsic::sin:
 | |
|       case Intrinsic::cos:
 | |
|       case Intrinsic::log:
 | |
|       case Intrinsic::log2:
 | |
|       case Intrinsic::log10:
 | |
|       case Intrinsic::exp:
 | |
|       case Intrinsic::exp2:
 | |
|       case Intrinsic::pow:
 | |
|       case Intrinsic::round:
 | |
|       case Intrinsic::copysign:
 | |
|       case Intrinsic::ceil:
 | |
|       case Intrinsic::nearbyint:
 | |
|       case Intrinsic::rint:
 | |
|       case Intrinsic::trunc:
 | |
|       case Intrinsic::floor:
 | |
|       case Intrinsic::fabs:
 | |
|         return Config.VectorizeMath;
 | |
|       case Intrinsic::bswap:
 | |
|       case Intrinsic::ctpop:
 | |
|       case Intrinsic::ctlz:
 | |
|       case Intrinsic::cttz:
 | |
|         return Config.VectorizeBitManipulations;
 | |
|       case Intrinsic::fma:
 | |
|       case Intrinsic::fmuladd:
 | |
|         return Config.VectorizeFMA;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     bool isPureIEChain(InsertElementInst *IE) {
 | |
|       InsertElementInst *IENext = IE;
 | |
|       do {
 | |
|         if (!isa<UndefValue>(IENext->getOperand(0)) &&
 | |
|             !isa<InsertElementInst>(IENext->getOperand(0))) {
 | |
|           return false;
 | |
|         }
 | |
|       } while ((IENext =
 | |
|                  dyn_cast<InsertElementInst>(IENext->getOperand(0))));
 | |
| 
 | |
|       return true;
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   // This function implements one vectorization iteration on the provided
 | |
|   // basic block. It returns true if the block is changed.
 | |
|   bool BBVectorize::vectorizePairs(BasicBlock &BB, bool NonPow2Len) {
 | |
|     bool ShouldContinue;
 | |
|     BasicBlock::iterator Start = BB.getFirstInsertionPt();
 | |
| 
 | |
|     std::vector<Value *> AllPairableInsts;
 | |
|     DenseMap<Value *, Value *> AllChosenPairs;
 | |
|     DenseSet<ValuePair> AllFixedOrderPairs;
 | |
|     DenseMap<VPPair, unsigned> AllPairConnectionTypes;
 | |
|     DenseMap<ValuePair, std::vector<ValuePair> > AllConnectedPairs,
 | |
|                                                  AllConnectedPairDeps;
 | |
| 
 | |
|     do {
 | |
|       std::vector<Value *> PairableInsts;
 | |
|       DenseMap<Value *, std::vector<Value *> > CandidatePairs;
 | |
|       DenseSet<ValuePair> FixedOrderPairs;
 | |
|       DenseMap<ValuePair, int> CandidatePairCostSavings;
 | |
|       ShouldContinue = getCandidatePairs(BB, Start, CandidatePairs,
 | |
|                                          FixedOrderPairs,
 | |
|                                          CandidatePairCostSavings,
 | |
|                                          PairableInsts, NonPow2Len);
 | |
|       if (PairableInsts.empty()) continue;
 | |
| 
 | |
|       // Build the candidate pair set for faster lookups.
 | |
|       DenseSet<ValuePair> CandidatePairsSet;
 | |
|       for (DenseMap<Value *, std::vector<Value *> >::iterator I =
 | |
|            CandidatePairs.begin(), E = CandidatePairs.end(); I != E; ++I)
 | |
|         for (std::vector<Value *>::iterator J = I->second.begin(),
 | |
|              JE = I->second.end(); J != JE; ++J)
 | |
|           CandidatePairsSet.insert(ValuePair(I->first, *J));
 | |
| 
 | |
|       // Now we have a map of all of the pairable instructions and we need to
 | |
|       // select the best possible pairing. A good pairing is one such that the
 | |
|       // users of the pair are also paired. This defines a (directed) forest
 | |
|       // over the pairs such that two pairs are connected iff the second pair
 | |
|       // uses the first.
 | |
| 
 | |
|       // Note that it only matters that both members of the second pair use some
 | |
|       // element of the first pair (to allow for splatting).
 | |
| 
 | |
|       DenseMap<ValuePair, std::vector<ValuePair> > ConnectedPairs,
 | |
|                                                    ConnectedPairDeps;
 | |
|       DenseMap<VPPair, unsigned> PairConnectionTypes;
 | |
|       computeConnectedPairs(CandidatePairs, CandidatePairsSet,
 | |
|                             PairableInsts, ConnectedPairs, PairConnectionTypes);
 | |
|       if (ConnectedPairs.empty()) continue;
 | |
| 
 | |
|       for (DenseMap<ValuePair, std::vector<ValuePair> >::iterator
 | |
|            I = ConnectedPairs.begin(), IE = ConnectedPairs.end();
 | |
|            I != IE; ++I)
 | |
|         for (std::vector<ValuePair>::iterator J = I->second.begin(),
 | |
|              JE = I->second.end(); J != JE; ++J)
 | |
|           ConnectedPairDeps[*J].push_back(I->first);
 | |
| 
 | |
|       // Build the pairable-instruction dependency map
 | |
|       DenseSet<ValuePair> PairableInstUsers;
 | |
|       buildDepMap(BB, CandidatePairs, PairableInsts, PairableInstUsers);
 | |
| 
 | |
|       // There is now a graph of the connected pairs. For each variable, pick
 | |
|       // the pairing with the largest dag meeting the depth requirement on at
 | |
|       // least one branch. Then select all pairings that are part of that dag
 | |
|       // and remove them from the list of available pairings and pairable
 | |
|       // variables.
 | |
| 
 | |
|       DenseMap<Value *, Value *> ChosenPairs;
 | |
|       choosePairs(CandidatePairs, CandidatePairsSet,
 | |
|         CandidatePairCostSavings,
 | |
|         PairableInsts, FixedOrderPairs, PairConnectionTypes,
 | |
|         ConnectedPairs, ConnectedPairDeps,
 | |
|         PairableInstUsers, ChosenPairs);
 | |
| 
 | |
|       if (ChosenPairs.empty()) continue;
 | |
|       AllPairableInsts.insert(AllPairableInsts.end(), PairableInsts.begin(),
 | |
|                               PairableInsts.end());
 | |
|       AllChosenPairs.insert(ChosenPairs.begin(), ChosenPairs.end());
 | |
| 
 | |
|       // Only for the chosen pairs, propagate information on fixed-order pairs,
 | |
|       // pair connections, and their types to the data structures used by the
 | |
|       // pair fusion procedures.
 | |
|       for (DenseMap<Value *, Value *>::iterator I = ChosenPairs.begin(),
 | |
|            IE = ChosenPairs.end(); I != IE; ++I) {
 | |
|         if (FixedOrderPairs.count(*I))
 | |
|           AllFixedOrderPairs.insert(*I);
 | |
|         else if (FixedOrderPairs.count(ValuePair(I->second, I->first)))
 | |
|           AllFixedOrderPairs.insert(ValuePair(I->second, I->first));
 | |
| 
 | |
|         for (DenseMap<Value *, Value *>::iterator J = ChosenPairs.begin();
 | |
|              J != IE; ++J) {
 | |
|           DenseMap<VPPair, unsigned>::iterator K =
 | |
|             PairConnectionTypes.find(VPPair(*I, *J));
 | |
|           if (K != PairConnectionTypes.end()) {
 | |
|             AllPairConnectionTypes.insert(*K);
 | |
|           } else {
 | |
|             K = PairConnectionTypes.find(VPPair(*J, *I));
 | |
|             if (K != PairConnectionTypes.end())
 | |
|               AllPairConnectionTypes.insert(*K);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       for (DenseMap<ValuePair, std::vector<ValuePair> >::iterator
 | |
|            I = ConnectedPairs.begin(), IE = ConnectedPairs.end();
 | |
|            I != IE; ++I)
 | |
|         for (std::vector<ValuePair>::iterator J = I->second.begin(),
 | |
|           JE = I->second.end(); J != JE; ++J)
 | |
|           if (AllPairConnectionTypes.count(VPPair(I->first, *J))) {
 | |
|             AllConnectedPairs[I->first].push_back(*J);
 | |
|             AllConnectedPairDeps[*J].push_back(I->first);
 | |
|           }
 | |
|     } while (ShouldContinue);
 | |
| 
 | |
|     if (AllChosenPairs.empty()) return false;
 | |
|     NumFusedOps += AllChosenPairs.size();
 | |
| 
 | |
|     // A set of pairs has now been selected. It is now necessary to replace the
 | |
|     // paired instructions with vector instructions. For this procedure each
 | |
|     // operand must be replaced with a vector operand. This vector is formed
 | |
|     // by using build_vector on the old operands. The replaced values are then
 | |
|     // replaced with a vector_extract on the result.  Subsequent optimization
 | |
|     // passes should coalesce the build/extract combinations.
 | |
| 
 | |
|     fuseChosenPairs(BB, AllPairableInsts, AllChosenPairs, AllFixedOrderPairs,
 | |
|                     AllPairConnectionTypes,
 | |
|                     AllConnectedPairs, AllConnectedPairDeps);
 | |
| 
 | |
|     // It is important to cleanup here so that future iterations of this
 | |
|     // function have less work to do.
 | |
|     (void) SimplifyInstructionsInBlock(&BB, DL, AA->getTargetLibraryInfo());
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // This function returns true if the provided instruction is capable of being
 | |
|   // fused into a vector instruction. This determination is based only on the
 | |
|   // type and other attributes of the instruction.
 | |
|   bool BBVectorize::isInstVectorizable(Instruction *I,
 | |
|                                          bool &IsSimpleLoadStore) {
 | |
|     IsSimpleLoadStore = false;
 | |
| 
 | |
|     if (CallInst *C = dyn_cast<CallInst>(I)) {
 | |
|       if (!isVectorizableIntrinsic(C))
 | |
|         return false;
 | |
|     } else if (LoadInst *L = dyn_cast<LoadInst>(I)) {
 | |
|       // Vectorize simple loads if possbile:
 | |
|       IsSimpleLoadStore = L->isSimple();
 | |
|       if (!IsSimpleLoadStore || !Config.VectorizeMemOps)
 | |
|         return false;
 | |
|     } else if (StoreInst *S = dyn_cast<StoreInst>(I)) {
 | |
|       // Vectorize simple stores if possbile:
 | |
|       IsSimpleLoadStore = S->isSimple();
 | |
|       if (!IsSimpleLoadStore || !Config.VectorizeMemOps)
 | |
|         return false;
 | |
|     } else if (CastInst *C = dyn_cast<CastInst>(I)) {
 | |
|       // We can vectorize casts, but not casts of pointer types, etc.
 | |
|       if (!Config.VectorizeCasts)
 | |
|         return false;
 | |
| 
 | |
|       Type *SrcTy = C->getSrcTy();
 | |
|       if (!SrcTy->isSingleValueType())
 | |
|         return false;
 | |
| 
 | |
|       Type *DestTy = C->getDestTy();
 | |
|       if (!DestTy->isSingleValueType())
 | |
|         return false;
 | |
|     } else if (isa<SelectInst>(I)) {
 | |
|       if (!Config.VectorizeSelect)
 | |
|         return false;
 | |
|     } else if (isa<CmpInst>(I)) {
 | |
|       if (!Config.VectorizeCmp)
 | |
|         return false;
 | |
|     } else if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(I)) {
 | |
|       if (!Config.VectorizeGEP)
 | |
|         return false;
 | |
| 
 | |
|       // Currently, vector GEPs exist only with one index.
 | |
|       if (G->getNumIndices() != 1)
 | |
|         return false;
 | |
|     } else if (!(I->isBinaryOp() || isa<ShuffleVectorInst>(I) ||
 | |
|         isa<ExtractElementInst>(I) || isa<InsertElementInst>(I))) {
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // We can't vectorize memory operations without target data
 | |
|     if (!DL && IsSimpleLoadStore)
 | |
|       return false;
 | |
| 
 | |
|     Type *T1, *T2;
 | |
|     getInstructionTypes(I, T1, T2);
 | |
| 
 | |
|     // Not every type can be vectorized...
 | |
|     if (!(VectorType::isValidElementType(T1) || T1->isVectorTy()) ||
 | |
|         !(VectorType::isValidElementType(T2) || T2->isVectorTy()))
 | |
|       return false;
 | |
| 
 | |
|     if (T1->getScalarSizeInBits() == 1) {
 | |
|       if (!Config.VectorizeBools)
 | |
|         return false;
 | |
|     } else {
 | |
|       if (!Config.VectorizeInts && T1->isIntOrIntVectorTy())
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     if (T2->getScalarSizeInBits() == 1) {
 | |
|       if (!Config.VectorizeBools)
 | |
|         return false;
 | |
|     } else {
 | |
|       if (!Config.VectorizeInts && T2->isIntOrIntVectorTy())
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     if (!Config.VectorizeFloats
 | |
|         && (T1->isFPOrFPVectorTy() || T2->isFPOrFPVectorTy()))
 | |
|       return false;
 | |
| 
 | |
|     // Don't vectorize target-specific types.
 | |
|     if (T1->isX86_FP80Ty() || T1->isPPC_FP128Ty() || T1->isX86_MMXTy())
 | |
|       return false;
 | |
|     if (T2->isX86_FP80Ty() || T2->isPPC_FP128Ty() || T2->isX86_MMXTy())
 | |
|       return false;
 | |
| 
 | |
|     if ((!Config.VectorizePointers || !DL) &&
 | |
|         (T1->getScalarType()->isPointerTy() ||
 | |
|          T2->getScalarType()->isPointerTy()))
 | |
|       return false;
 | |
| 
 | |
|     if (!TTI && (T1->getPrimitiveSizeInBits() >= Config.VectorBits ||
 | |
|                  T2->getPrimitiveSizeInBits() >= Config.VectorBits))
 | |
|       return false;
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // This function returns true if the two provided instructions are compatible
 | |
|   // (meaning that they can be fused into a vector instruction). This assumes
 | |
|   // that I has already been determined to be vectorizable and that J is not
 | |
|   // in the use dag of I.
 | |
|   bool BBVectorize::areInstsCompatible(Instruction *I, Instruction *J,
 | |
|                        bool IsSimpleLoadStore, bool NonPow2Len,
 | |
|                        int &CostSavings, int &FixedOrder) {
 | |
|     DEBUG(if (DebugInstructionExamination) dbgs() << "BBV: looking at " << *I <<
 | |
|                      " <-> " << *J << "\n");
 | |
| 
 | |
|     CostSavings = 0;
 | |
|     FixedOrder = 0;
 | |
| 
 | |
|     // Loads and stores can be merged if they have different alignments,
 | |
|     // but are otherwise the same.
 | |
|     if (!J->isSameOperationAs(I, Instruction::CompareIgnoringAlignment |
 | |
|                       (NonPow2Len ? Instruction::CompareUsingScalarTypes : 0)))
 | |
|       return false;
 | |
| 
 | |
|     Type *IT1, *IT2, *JT1, *JT2;
 | |
|     getInstructionTypes(I, IT1, IT2);
 | |
|     getInstructionTypes(J, JT1, JT2);
 | |
|     unsigned MaxTypeBits = std::max(
 | |
|       IT1->getPrimitiveSizeInBits() + JT1->getPrimitiveSizeInBits(),
 | |
|       IT2->getPrimitiveSizeInBits() + JT2->getPrimitiveSizeInBits());
 | |
|     if (!TTI && MaxTypeBits > Config.VectorBits)
 | |
|       return false;
 | |
| 
 | |
|     // FIXME: handle addsub-type operations!
 | |
| 
 | |
|     if (IsSimpleLoadStore) {
 | |
|       Value *IPtr, *JPtr;
 | |
|       unsigned IAlignment, JAlignment, IAddressSpace, JAddressSpace;
 | |
|       int64_t OffsetInElmts = 0;
 | |
|       if (getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment,
 | |
|             IAddressSpace, JAddressSpace,
 | |
|             OffsetInElmts) && abs64(OffsetInElmts) == 1) {
 | |
|         FixedOrder = (int) OffsetInElmts;
 | |
|         unsigned BottomAlignment = IAlignment;
 | |
|         if (OffsetInElmts < 0) BottomAlignment = JAlignment;
 | |
| 
 | |
|         Type *aTypeI = isa<StoreInst>(I) ?
 | |
|           cast<StoreInst>(I)->getValueOperand()->getType() : I->getType();
 | |
|         Type *aTypeJ = isa<StoreInst>(J) ?
 | |
|           cast<StoreInst>(J)->getValueOperand()->getType() : J->getType();
 | |
|         Type *VType = getVecTypeForPair(aTypeI, aTypeJ);
 | |
| 
 | |
|         if (Config.AlignedOnly) {
 | |
|           // An aligned load or store is possible only if the instruction
 | |
|           // with the lower offset has an alignment suitable for the
 | |
|           // vector type.
 | |
| 
 | |
|           unsigned VecAlignment = DL->getPrefTypeAlignment(VType);
 | |
|           if (BottomAlignment < VecAlignment)
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         if (TTI) {
 | |
|           unsigned ICost = TTI->getMemoryOpCost(I->getOpcode(), aTypeI,
 | |
|                                                 IAlignment, IAddressSpace);
 | |
|           unsigned JCost = TTI->getMemoryOpCost(J->getOpcode(), aTypeJ,
 | |
|                                                 JAlignment, JAddressSpace);
 | |
|           unsigned VCost = TTI->getMemoryOpCost(I->getOpcode(), VType,
 | |
|                                                 BottomAlignment,
 | |
|                                                 IAddressSpace);
 | |
| 
 | |
|           ICost += TTI->getAddressComputationCost(aTypeI);
 | |
|           JCost += TTI->getAddressComputationCost(aTypeJ);
 | |
|           VCost += TTI->getAddressComputationCost(VType);
 | |
| 
 | |
|           if (VCost > ICost + JCost)
 | |
|             return false;
 | |
| 
 | |
|           // We don't want to fuse to a type that will be split, even
 | |
|           // if the two input types will also be split and there is no other
 | |
|           // associated cost.
 | |
|           unsigned VParts = TTI->getNumberOfParts(VType);
 | |
|           if (VParts > 1)
 | |
|             return false;
 | |
|           else if (!VParts && VCost == ICost + JCost)
 | |
|             return false;
 | |
| 
 | |
|           CostSavings = ICost + JCost - VCost;
 | |
|         }
 | |
|       } else {
 | |
|         return false;
 | |
|       }
 | |
|     } else if (TTI) {
 | |
|       unsigned ICost = getInstrCost(I->getOpcode(), IT1, IT2);
 | |
|       unsigned JCost = getInstrCost(J->getOpcode(), JT1, JT2);
 | |
|       Type *VT1 = getVecTypeForPair(IT1, JT1),
 | |
|            *VT2 = getVecTypeForPair(IT2, JT2);
 | |
|       TargetTransformInfo::OperandValueKind Op1VK =
 | |
|           TargetTransformInfo::OK_AnyValue;
 | |
|       TargetTransformInfo::OperandValueKind Op2VK =
 | |
|           TargetTransformInfo::OK_AnyValue;
 | |
| 
 | |
|       // On some targets (example X86) the cost of a vector shift may vary
 | |
|       // depending on whether the second operand is a Uniform or
 | |
|       // NonUniform Constant.
 | |
|       switch (I->getOpcode()) {
 | |
|       default : break;
 | |
|       case Instruction::Shl:
 | |
|       case Instruction::LShr:
 | |
|       case Instruction::AShr:
 | |
| 
 | |
|         // If both I and J are scalar shifts by constant, then the
 | |
|         // merged vector shift count would be either a constant splat value
 | |
|         // or a non-uniform vector of constants.
 | |
|         if (ConstantInt *CII = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | |
|           if (ConstantInt *CIJ = dyn_cast<ConstantInt>(J->getOperand(1)))
 | |
|             Op2VK = CII == CIJ ? TargetTransformInfo::OK_UniformConstantValue :
 | |
|                                TargetTransformInfo::OK_NonUniformConstantValue;
 | |
|         } else {
 | |
|           // Check for a splat of a constant or for a non uniform vector
 | |
|           // of constants.
 | |
|           Value *IOp = I->getOperand(1);
 | |
|           Value *JOp = J->getOperand(1);
 | |
|           if ((isa<ConstantVector>(IOp) || isa<ConstantDataVector>(IOp)) &&
 | |
|               (isa<ConstantVector>(JOp) || isa<ConstantDataVector>(JOp))) {
 | |
|             Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
 | |
|             Constant *SplatValue = cast<Constant>(IOp)->getSplatValue();
 | |
|             if (SplatValue != nullptr &&
 | |
|                 SplatValue == cast<Constant>(JOp)->getSplatValue())
 | |
|               Op2VK = TargetTransformInfo::OK_UniformConstantValue;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Note that this procedure is incorrect for insert and extract element
 | |
|       // instructions (because combining these often results in a shuffle),
 | |
|       // but this cost is ignored (because insert and extract element
 | |
|       // instructions are assigned a zero depth factor and are not really
 | |
|       // fused in general).
 | |
|       unsigned VCost = getInstrCost(I->getOpcode(), VT1, VT2, Op1VK, Op2VK);
 | |
| 
 | |
|       if (VCost > ICost + JCost)
 | |
|         return false;
 | |
| 
 | |
|       // We don't want to fuse to a type that will be split, even
 | |
|       // if the two input types will also be split and there is no other
 | |
|       // associated cost.
 | |
|       unsigned VParts1 = TTI->getNumberOfParts(VT1),
 | |
|                VParts2 = TTI->getNumberOfParts(VT2);
 | |
|       if (VParts1 > 1 || VParts2 > 1)
 | |
|         return false;
 | |
|       else if ((!VParts1 || !VParts2) && VCost == ICost + JCost)
 | |
|         return false;
 | |
| 
 | |
|       CostSavings = ICost + JCost - VCost;
 | |
|     }
 | |
| 
 | |
|     // The powi,ctlz,cttz intrinsics are special because only the first
 | |
|     // argument is vectorized, the second arguments must be equal.
 | |
|     CallInst *CI = dyn_cast<CallInst>(I);
 | |
|     Function *FI;
 | |
|     if (CI && (FI = CI->getCalledFunction())) {
 | |
|       Intrinsic::ID IID = (Intrinsic::ID) FI->getIntrinsicID();
 | |
|       if (IID == Intrinsic::powi || IID == Intrinsic::ctlz ||
 | |
|           IID == Intrinsic::cttz) {
 | |
|         Value *A1I = CI->getArgOperand(1),
 | |
|               *A1J = cast<CallInst>(J)->getArgOperand(1);
 | |
|         const SCEV *A1ISCEV = SE->getSCEV(A1I),
 | |
|                    *A1JSCEV = SE->getSCEV(A1J);
 | |
|         return (A1ISCEV == A1JSCEV);
 | |
|       }
 | |
| 
 | |
|       if (IID && TTI) {
 | |
|         SmallVector<Type*, 4> Tys;
 | |
|         for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i)
 | |
|           Tys.push_back(CI->getArgOperand(i)->getType());
 | |
|         unsigned ICost = TTI->getIntrinsicInstrCost(IID, IT1, Tys);
 | |
| 
 | |
|         Tys.clear();
 | |
|         CallInst *CJ = cast<CallInst>(J);
 | |
|         for (unsigned i = 0, ie = CJ->getNumArgOperands(); i != ie; ++i)
 | |
|           Tys.push_back(CJ->getArgOperand(i)->getType());
 | |
|         unsigned JCost = TTI->getIntrinsicInstrCost(IID, JT1, Tys);
 | |
| 
 | |
|         Tys.clear();
 | |
|         assert(CI->getNumArgOperands() == CJ->getNumArgOperands() &&
 | |
|                "Intrinsic argument counts differ");
 | |
|         for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
 | |
|           if ((IID == Intrinsic::powi || IID == Intrinsic::ctlz ||
 | |
|                IID == Intrinsic::cttz) && i == 1)
 | |
|             Tys.push_back(CI->getArgOperand(i)->getType());
 | |
|           else
 | |
|             Tys.push_back(getVecTypeForPair(CI->getArgOperand(i)->getType(),
 | |
|                                             CJ->getArgOperand(i)->getType()));
 | |
|         }
 | |
| 
 | |
|         Type *RetTy = getVecTypeForPair(IT1, JT1);
 | |
|         unsigned VCost = TTI->getIntrinsicInstrCost(IID, RetTy, Tys);
 | |
| 
 | |
|         if (VCost > ICost + JCost)
 | |
|           return false;
 | |
| 
 | |
|         // We don't want to fuse to a type that will be split, even
 | |
|         // if the two input types will also be split and there is no other
 | |
|         // associated cost.
 | |
|         unsigned RetParts = TTI->getNumberOfParts(RetTy);
 | |
|         if (RetParts > 1)
 | |
|           return false;
 | |
|         else if (!RetParts && VCost == ICost + JCost)
 | |
|           return false;
 | |
| 
 | |
|         for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
 | |
|           if (!Tys[i]->isVectorTy())
 | |
|             continue;
 | |
| 
 | |
|           unsigned NumParts = TTI->getNumberOfParts(Tys[i]);
 | |
|           if (NumParts > 1)
 | |
|             return false;
 | |
|           else if (!NumParts && VCost == ICost + JCost)
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         CostSavings = ICost + JCost - VCost;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Figure out whether or not J uses I and update the users and write-set
 | |
|   // structures associated with I. Specifically, Users represents the set of
 | |
|   // instructions that depend on I. WriteSet represents the set
 | |
|   // of memory locations that are dependent on I. If UpdateUsers is true,
 | |
|   // and J uses I, then Users is updated to contain J and WriteSet is updated
 | |
|   // to contain any memory locations to which J writes. The function returns
 | |
|   // true if J uses I. By default, alias analysis is used to determine
 | |
|   // whether J reads from memory that overlaps with a location in WriteSet.
 | |
|   // If LoadMoveSet is not null, then it is a previously-computed map
 | |
|   // where the key is the memory-based user instruction and the value is
 | |
|   // the instruction to be compared with I. So, if LoadMoveSet is provided,
 | |
|   // then the alias analysis is not used. This is necessary because this
 | |
|   // function is called during the process of moving instructions during
 | |
|   // vectorization and the results of the alias analysis are not stable during
 | |
|   // that process.
 | |
|   bool BBVectorize::trackUsesOfI(DenseSet<Value *> &Users,
 | |
|                        AliasSetTracker &WriteSet, Instruction *I,
 | |
|                        Instruction *J, bool UpdateUsers,
 | |
|                        DenseSet<ValuePair> *LoadMoveSetPairs) {
 | |
|     bool UsesI = false;
 | |
| 
 | |
|     // This instruction may already be marked as a user due, for example, to
 | |
|     // being a member of a selected pair.
 | |
|     if (Users.count(J))
 | |
|       UsesI = true;
 | |
| 
 | |
|     if (!UsesI)
 | |
|       for (User::op_iterator JU = J->op_begin(), JE = J->op_end();
 | |
|            JU != JE; ++JU) {
 | |
|         Value *V = *JU;
 | |
|         if (I == V || Users.count(V)) {
 | |
|           UsesI = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     if (!UsesI && J->mayReadFromMemory()) {
 | |
|       if (LoadMoveSetPairs) {
 | |
|         UsesI = LoadMoveSetPairs->count(ValuePair(J, I));
 | |
|       } else {
 | |
|         for (AliasSetTracker::iterator W = WriteSet.begin(),
 | |
|              WE = WriteSet.end(); W != WE; ++W) {
 | |
|           if (W->aliasesUnknownInst(J, *AA)) {
 | |
|             UsesI = true;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (UsesI && UpdateUsers) {
 | |
|       if (J->mayWriteToMemory()) WriteSet.add(J);
 | |
|       Users.insert(J);
 | |
|     }
 | |
| 
 | |
|     return UsesI;
 | |
|   }
 | |
| 
 | |
|   // This function iterates over all instruction pairs in the provided
 | |
|   // basic block and collects all candidate pairs for vectorization.
 | |
|   bool BBVectorize::getCandidatePairs(BasicBlock &BB,
 | |
|                        BasicBlock::iterator &Start,
 | |
|                        DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
 | |
|                        DenseSet<ValuePair> &FixedOrderPairs,
 | |
|                        DenseMap<ValuePair, int> &CandidatePairCostSavings,
 | |
|                        std::vector<Value *> &PairableInsts, bool NonPow2Len) {
 | |
|     size_t TotalPairs = 0;
 | |
|     BasicBlock::iterator E = BB.end();
 | |
|     if (Start == E) return false;
 | |
| 
 | |
|     bool ShouldContinue = false, IAfterStart = false;
 | |
|     for (BasicBlock::iterator I = Start++; I != E; ++I) {
 | |
|       if (I == Start) IAfterStart = true;
 | |
| 
 | |
|       bool IsSimpleLoadStore;
 | |
|       if (!isInstVectorizable(I, IsSimpleLoadStore)) continue;
 | |
| 
 | |
|       // Look for an instruction with which to pair instruction *I...
 | |
|       DenseSet<Value *> Users;
 | |
|       AliasSetTracker WriteSet(*AA);
 | |
|       if (I->mayWriteToMemory()) WriteSet.add(I);
 | |
| 
 | |
|       bool JAfterStart = IAfterStart;
 | |
|       BasicBlock::iterator J = std::next(I);
 | |
|       for (unsigned ss = 0; J != E && ss <= Config.SearchLimit; ++J, ++ss) {
 | |
|         if (J == Start) JAfterStart = true;
 | |
| 
 | |
|         // Determine if J uses I, if so, exit the loop.
 | |
|         bool UsesI = trackUsesOfI(Users, WriteSet, I, J, !Config.FastDep);
 | |
|         if (Config.FastDep) {
 | |
|           // Note: For this heuristic to be effective, independent operations
 | |
|           // must tend to be intermixed. This is likely to be true from some
 | |
|           // kinds of grouped loop unrolling (but not the generic LLVM pass),
 | |
|           // but otherwise may require some kind of reordering pass.
 | |
| 
 | |
|           // When using fast dependency analysis,
 | |
|           // stop searching after first use:
 | |
|           if (UsesI) break;
 | |
|         } else {
 | |
|           if (UsesI) continue;
 | |
|         }
 | |
| 
 | |
|         // J does not use I, and comes before the first use of I, so it can be
 | |
|         // merged with I if the instructions are compatible.
 | |
|         int CostSavings, FixedOrder;
 | |
|         if (!areInstsCompatible(I, J, IsSimpleLoadStore, NonPow2Len,
 | |
|             CostSavings, FixedOrder)) continue;
 | |
| 
 | |
|         // J is a candidate for merging with I.
 | |
|         if (!PairableInsts.size() ||
 | |
|              PairableInsts[PairableInsts.size()-1] != I) {
 | |
|           PairableInsts.push_back(I);
 | |
|         }
 | |
| 
 | |
|         CandidatePairs[I].push_back(J);
 | |
|         ++TotalPairs;
 | |
|         if (TTI)
 | |
|           CandidatePairCostSavings.insert(ValuePairWithCost(ValuePair(I, J),
 | |
|                                                             CostSavings));
 | |
| 
 | |
|         if (FixedOrder == 1)
 | |
|           FixedOrderPairs.insert(ValuePair(I, J));
 | |
|         else if (FixedOrder == -1)
 | |
|           FixedOrderPairs.insert(ValuePair(J, I));
 | |
| 
 | |
|         // The next call to this function must start after the last instruction
 | |
|         // selected during this invocation.
 | |
|         if (JAfterStart) {
 | |
|           Start = std::next(J);
 | |
|           IAfterStart = JAfterStart = false;
 | |
|         }
 | |
| 
 | |
|         DEBUG(if (DebugCandidateSelection) dbgs() << "BBV: candidate pair "
 | |
|                      << *I << " <-> " << *J << " (cost savings: " <<
 | |
|                      CostSavings << ")\n");
 | |
| 
 | |
|         // If we have already found too many pairs, break here and this function
 | |
|         // will be called again starting after the last instruction selected
 | |
|         // during this invocation.
 | |
|         if (PairableInsts.size() >= Config.MaxInsts ||
 | |
|             TotalPairs >= Config.MaxPairs) {
 | |
|           ShouldContinue = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (ShouldContinue)
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     DEBUG(dbgs() << "BBV: found " << PairableInsts.size()
 | |
|            << " instructions with candidate pairs\n");
 | |
| 
 | |
|     return ShouldContinue;
 | |
|   }
 | |
| 
 | |
|   // Finds candidate pairs connected to the pair P = <PI, PJ>. This means that
 | |
|   // it looks for pairs such that both members have an input which is an
 | |
|   // output of PI or PJ.
 | |
|   void BBVectorize::computePairsConnectedTo(
 | |
|                   DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
 | |
|                   DenseSet<ValuePair> &CandidatePairsSet,
 | |
|                   std::vector<Value *> &PairableInsts,
 | |
|                   DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
 | |
|                   DenseMap<VPPair, unsigned> &PairConnectionTypes,
 | |
|                   ValuePair P) {
 | |
|     StoreInst *SI, *SJ;
 | |
| 
 | |
|     // For each possible pairing for this variable, look at the uses of
 | |
|     // the first value...
 | |
|     for (Value::user_iterator I = P.first->user_begin(),
 | |
|                               E = P.first->user_end();
 | |
|          I != E; ++I) {
 | |
|       User *UI = *I;
 | |
|       if (isa<LoadInst>(UI)) {
 | |
|         // A pair cannot be connected to a load because the load only takes one
 | |
|         // operand (the address) and it is a scalar even after vectorization.
 | |
|         continue;
 | |
|       } else if ((SI = dyn_cast<StoreInst>(UI)) &&
 | |
|                  P.first == SI->getPointerOperand()) {
 | |
|         // Similarly, a pair cannot be connected to a store through its
 | |
|         // pointer operand.
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // For each use of the first variable, look for uses of the second
 | |
|       // variable...
 | |
|       for (User *UJ : P.second->users()) {
 | |
|         if ((SJ = dyn_cast<StoreInst>(UJ)) &&
 | |
|             P.second == SJ->getPointerOperand())
 | |
|           continue;
 | |
| 
 | |
|         // Look for <I, J>:
 | |
|         if (CandidatePairsSet.count(ValuePair(UI, UJ))) {
 | |
|           VPPair VP(P, ValuePair(UI, UJ));
 | |
|           ConnectedPairs[VP.first].push_back(VP.second);
 | |
|           PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionDirect));
 | |
|         }
 | |
| 
 | |
|         // Look for <J, I>:
 | |
|         if (CandidatePairsSet.count(ValuePair(UJ, UI))) {
 | |
|           VPPair VP(P, ValuePair(UJ, UI));
 | |
|           ConnectedPairs[VP.first].push_back(VP.second);
 | |
|           PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionSwap));
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (Config.SplatBreaksChain) continue;
 | |
|       // Look for cases where just the first value in the pair is used by
 | |
|       // both members of another pair (splatting).
 | |
|       for (Value::user_iterator J = P.first->user_begin(); J != E; ++J) {
 | |
|         User *UJ = *J;
 | |
|         if ((SJ = dyn_cast<StoreInst>(UJ)) &&
 | |
|             P.first == SJ->getPointerOperand())
 | |
|           continue;
 | |
| 
 | |
|         if (CandidatePairsSet.count(ValuePair(UI, UJ))) {
 | |
|           VPPair VP(P, ValuePair(UI, UJ));
 | |
|           ConnectedPairs[VP.first].push_back(VP.second);
 | |
|           PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionSplat));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (Config.SplatBreaksChain) return;
 | |
|     // Look for cases where just the second value in the pair is used by
 | |
|     // both members of another pair (splatting).
 | |
|     for (Value::user_iterator I = P.second->user_begin(),
 | |
|                               E = P.second->user_end();
 | |
|          I != E; ++I) {
 | |
|       User *UI = *I;
 | |
|       if (isa<LoadInst>(UI))
 | |
|         continue;
 | |
|       else if ((SI = dyn_cast<StoreInst>(UI)) &&
 | |
|                P.second == SI->getPointerOperand())
 | |
|         continue;
 | |
| 
 | |
|       for (Value::user_iterator J = P.second->user_begin(); J != E; ++J) {
 | |
|         User *UJ = *J;
 | |
|         if ((SJ = dyn_cast<StoreInst>(UJ)) &&
 | |
|             P.second == SJ->getPointerOperand())
 | |
|           continue;
 | |
| 
 | |
|         if (CandidatePairsSet.count(ValuePair(UI, UJ))) {
 | |
|           VPPair VP(P, ValuePair(UI, UJ));
 | |
|           ConnectedPairs[VP.first].push_back(VP.second);
 | |
|           PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionSplat));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // This function figures out which pairs are connected.  Two pairs are
 | |
|   // connected if some output of the first pair forms an input to both members
 | |
|   // of the second pair.
 | |
|   void BBVectorize::computeConnectedPairs(
 | |
|                   DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
 | |
|                   DenseSet<ValuePair> &CandidatePairsSet,
 | |
|                   std::vector<Value *> &PairableInsts,
 | |
|                   DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
 | |
|                   DenseMap<VPPair, unsigned> &PairConnectionTypes) {
 | |
|     for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
 | |
|          PE = PairableInsts.end(); PI != PE; ++PI) {
 | |
|       DenseMap<Value *, std::vector<Value *> >::iterator PP =
 | |
|         CandidatePairs.find(*PI);
 | |
|       if (PP == CandidatePairs.end())
 | |
|         continue;
 | |
| 
 | |
|       for (std::vector<Value *>::iterator P = PP->second.begin(),
 | |
|            E = PP->second.end(); P != E; ++P)
 | |
|         computePairsConnectedTo(CandidatePairs, CandidatePairsSet,
 | |
|                                 PairableInsts, ConnectedPairs,
 | |
|                                 PairConnectionTypes, ValuePair(*PI, *P));
 | |
|     }
 | |
| 
 | |
|     DEBUG(size_t TotalPairs = 0;
 | |
|           for (DenseMap<ValuePair, std::vector<ValuePair> >::iterator I =
 | |
|                ConnectedPairs.begin(), IE = ConnectedPairs.end(); I != IE; ++I)
 | |
|             TotalPairs += I->second.size();
 | |
|           dbgs() << "BBV: found " << TotalPairs
 | |
|                  << " pair connections.\n");
 | |
|   }
 | |
| 
 | |
|   // This function builds a set of use tuples such that <A, B> is in the set
 | |
|   // if B is in the use dag of A. If B is in the use dag of A, then B
 | |
|   // depends on the output of A.
 | |
|   void BBVectorize::buildDepMap(
 | |
|                       BasicBlock &BB,
 | |
|                       DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
 | |
|                       std::vector<Value *> &PairableInsts,
 | |
|                       DenseSet<ValuePair> &PairableInstUsers) {
 | |
|     DenseSet<Value *> IsInPair;
 | |
|     for (DenseMap<Value *, std::vector<Value *> >::iterator C =
 | |
|          CandidatePairs.begin(), E = CandidatePairs.end(); C != E; ++C) {
 | |
|       IsInPair.insert(C->first);
 | |
|       IsInPair.insert(C->second.begin(), C->second.end());
 | |
|     }
 | |
| 
 | |
|     // Iterate through the basic block, recording all users of each
 | |
|     // pairable instruction.
 | |
| 
 | |
|     BasicBlock::iterator E = BB.end(), EL =
 | |
|       BasicBlock::iterator(cast<Instruction>(PairableInsts.back()));
 | |
|     for (BasicBlock::iterator I = BB.getFirstInsertionPt(); I != E; ++I) {
 | |
|       if (IsInPair.find(I) == IsInPair.end()) continue;
 | |
| 
 | |
|       DenseSet<Value *> Users;
 | |
|       AliasSetTracker WriteSet(*AA);
 | |
|       if (I->mayWriteToMemory()) WriteSet.add(I);
 | |
| 
 | |
|       for (BasicBlock::iterator J = std::next(I); J != E; ++J) {
 | |
|         (void) trackUsesOfI(Users, WriteSet, I, J);
 | |
| 
 | |
|         if (J == EL)
 | |
|           break;
 | |
|       }
 | |
| 
 | |
|       for (DenseSet<Value *>::iterator U = Users.begin(), E = Users.end();
 | |
|            U != E; ++U) {
 | |
|         if (IsInPair.find(*U) == IsInPair.end()) continue;
 | |
|         PairableInstUsers.insert(ValuePair(I, *U));
 | |
|       }
 | |
| 
 | |
|       if (I == EL)
 | |
|         break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Returns true if an input to pair P is an output of pair Q and also an
 | |
|   // input of pair Q is an output of pair P. If this is the case, then these
 | |
|   // two pairs cannot be simultaneously fused.
 | |
|   bool BBVectorize::pairsConflict(ValuePair P, ValuePair Q,
 | |
|              DenseSet<ValuePair> &PairableInstUsers,
 | |
|              DenseMap<ValuePair, std::vector<ValuePair> > *PairableInstUserMap,
 | |
|              DenseSet<VPPair> *PairableInstUserPairSet) {
 | |
|     // Two pairs are in conflict if they are mutual Users of eachother.
 | |
|     bool QUsesP = PairableInstUsers.count(ValuePair(P.first,  Q.first))  ||
 | |
|                   PairableInstUsers.count(ValuePair(P.first,  Q.second)) ||
 | |
|                   PairableInstUsers.count(ValuePair(P.second, Q.first))  ||
 | |
|                   PairableInstUsers.count(ValuePair(P.second, Q.second));
 | |
|     bool PUsesQ = PairableInstUsers.count(ValuePair(Q.first,  P.first))  ||
 | |
|                   PairableInstUsers.count(ValuePair(Q.first,  P.second)) ||
 | |
|                   PairableInstUsers.count(ValuePair(Q.second, P.first))  ||
 | |
|                   PairableInstUsers.count(ValuePair(Q.second, P.second));
 | |
|     if (PairableInstUserMap) {
 | |
|       // FIXME: The expensive part of the cycle check is not so much the cycle
 | |
|       // check itself but this edge insertion procedure. This needs some
 | |
|       // profiling and probably a different data structure.
 | |
|       if (PUsesQ) {
 | |
|         if (PairableInstUserPairSet->insert(VPPair(Q, P)).second)
 | |
|           (*PairableInstUserMap)[Q].push_back(P);
 | |
|       }
 | |
|       if (QUsesP) {
 | |
|         if (PairableInstUserPairSet->insert(VPPair(P, Q)).second)
 | |
|           (*PairableInstUserMap)[P].push_back(Q);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return (QUsesP && PUsesQ);
 | |
|   }
 | |
| 
 | |
|   // This function walks the use graph of current pairs to see if, starting
 | |
|   // from P, the walk returns to P.
 | |
|   bool BBVectorize::pairWillFormCycle(ValuePair P,
 | |
|              DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap,
 | |
|              DenseSet<ValuePair> &CurrentPairs) {
 | |
|     DEBUG(if (DebugCycleCheck)
 | |
|             dbgs() << "BBV: starting cycle check for : " << *P.first << " <-> "
 | |
|                    << *P.second << "\n");
 | |
|     // A lookup table of visisted pairs is kept because the PairableInstUserMap
 | |
|     // contains non-direct associations.
 | |
|     DenseSet<ValuePair> Visited;
 | |
|     SmallVector<ValuePair, 32> Q;
 | |
|     // General depth-first post-order traversal:
 | |
|     Q.push_back(P);
 | |
|     do {
 | |
|       ValuePair QTop = Q.pop_back_val();
 | |
|       Visited.insert(QTop);
 | |
| 
 | |
|       DEBUG(if (DebugCycleCheck)
 | |
|               dbgs() << "BBV: cycle check visiting: " << *QTop.first << " <-> "
 | |
|                      << *QTop.second << "\n");
 | |
|       DenseMap<ValuePair, std::vector<ValuePair> >::iterator QQ =
 | |
|         PairableInstUserMap.find(QTop);
 | |
|       if (QQ == PairableInstUserMap.end())
 | |
|         continue;
 | |
| 
 | |
|       for (std::vector<ValuePair>::iterator C = QQ->second.begin(),
 | |
|            CE = QQ->second.end(); C != CE; ++C) {
 | |
|         if (*C == P) {
 | |
|           DEBUG(dbgs()
 | |
|                  << "BBV: rejected to prevent non-trivial cycle formation: "
 | |
|                  << QTop.first << " <-> " << C->second << "\n");
 | |
|           return true;
 | |
|         }
 | |
| 
 | |
|         if (CurrentPairs.count(*C) && !Visited.count(*C))
 | |
|           Q.push_back(*C);
 | |
|       }
 | |
|     } while (!Q.empty());
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // This function builds the initial dag of connected pairs with the
 | |
|   // pair J at the root.
 | |
|   void BBVectorize::buildInitialDAGFor(
 | |
|                   DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
 | |
|                   DenseSet<ValuePair> &CandidatePairsSet,
 | |
|                   std::vector<Value *> &PairableInsts,
 | |
|                   DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
 | |
|                   DenseSet<ValuePair> &PairableInstUsers,
 | |
|                   DenseMap<Value *, Value *> &ChosenPairs,
 | |
|                   DenseMap<ValuePair, size_t> &DAG, ValuePair J) {
 | |
|     // Each of these pairs is viewed as the root node of a DAG. The DAG
 | |
|     // is then walked (depth-first). As this happens, we keep track of
 | |
|     // the pairs that compose the DAG and the maximum depth of the DAG.
 | |
|     SmallVector<ValuePairWithDepth, 32> Q;
 | |
|     // General depth-first post-order traversal:
 | |
|     Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first)));
 | |
|     do {
 | |
|       ValuePairWithDepth QTop = Q.back();
 | |
| 
 | |
|       // Push each child onto the queue:
 | |
|       bool MoreChildren = false;
 | |
|       size_t MaxChildDepth = QTop.second;
 | |
|       DenseMap<ValuePair, std::vector<ValuePair> >::iterator QQ =
 | |
|         ConnectedPairs.find(QTop.first);
 | |
|       if (QQ != ConnectedPairs.end())
 | |
|         for (std::vector<ValuePair>::iterator k = QQ->second.begin(),
 | |
|              ke = QQ->second.end(); k != ke; ++k) {
 | |
|           // Make sure that this child pair is still a candidate:
 | |
|           if (CandidatePairsSet.count(*k)) {
 | |
|             DenseMap<ValuePair, size_t>::iterator C = DAG.find(*k);
 | |
|             if (C == DAG.end()) {
 | |
|               size_t d = getDepthFactor(k->first);
 | |
|               Q.push_back(ValuePairWithDepth(*k, QTop.second+d));
 | |
|               MoreChildren = true;
 | |
|             } else {
 | |
|               MaxChildDepth = std::max(MaxChildDepth, C->second);
 | |
|             }
 | |
|           }
 | |
|         }
 | |
| 
 | |
|       if (!MoreChildren) {
 | |
|         // Record the current pair as part of the DAG:
 | |
|         DAG.insert(ValuePairWithDepth(QTop.first, MaxChildDepth));
 | |
|         Q.pop_back();
 | |
|       }
 | |
|     } while (!Q.empty());
 | |
|   }
 | |
| 
 | |
|   // Given some initial dag, prune it by removing conflicting pairs (pairs
 | |
|   // that cannot be simultaneously chosen for vectorization).
 | |
|   void BBVectorize::pruneDAGFor(
 | |
|               DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
 | |
|               std::vector<Value *> &PairableInsts,
 | |
|               DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
 | |
|               DenseSet<ValuePair> &PairableInstUsers,
 | |
|               DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap,
 | |
|               DenseSet<VPPair> &PairableInstUserPairSet,
 | |
|               DenseMap<Value *, Value *> &ChosenPairs,
 | |
|               DenseMap<ValuePair, size_t> &DAG,
 | |
|               DenseSet<ValuePair> &PrunedDAG, ValuePair J,
 | |
|               bool UseCycleCheck) {
 | |
|     SmallVector<ValuePairWithDepth, 32> Q;
 | |
|     // General depth-first post-order traversal:
 | |
|     Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first)));
 | |
|     do {
 | |
|       ValuePairWithDepth QTop = Q.pop_back_val();
 | |
|       PrunedDAG.insert(QTop.first);
 | |
| 
 | |
|       // Visit each child, pruning as necessary...
 | |
|       SmallVector<ValuePairWithDepth, 8> BestChildren;
 | |
|       DenseMap<ValuePair, std::vector<ValuePair> >::iterator QQ =
 | |
|         ConnectedPairs.find(QTop.first);
 | |
|       if (QQ == ConnectedPairs.end())
 | |
|         continue;
 | |
| 
 | |
|       for (std::vector<ValuePair>::iterator K = QQ->second.begin(),
 | |
|            KE = QQ->second.end(); K != KE; ++K) {
 | |
|         DenseMap<ValuePair, size_t>::iterator C = DAG.find(*K);
 | |
|         if (C == DAG.end()) continue;
 | |
| 
 | |
|         // This child is in the DAG, now we need to make sure it is the
 | |
|         // best of any conflicting children. There could be multiple
 | |
|         // conflicting children, so first, determine if we're keeping
 | |
|         // this child, then delete conflicting children as necessary.
 | |
| 
 | |
|         // It is also necessary to guard against pairing-induced
 | |
|         // dependencies. Consider instructions a .. x .. y .. b
 | |
|         // such that (a,b) are to be fused and (x,y) are to be fused
 | |
|         // but a is an input to x and b is an output from y. This
 | |
|         // means that y cannot be moved after b but x must be moved
 | |
|         // after b for (a,b) to be fused. In other words, after
 | |
|         // fusing (a,b) we have y .. a/b .. x where y is an input
 | |
|         // to a/b and x is an output to a/b: x and y can no longer
 | |
|         // be legally fused. To prevent this condition, we must
 | |
|         // make sure that a child pair added to the DAG is not
 | |
|         // both an input and output of an already-selected pair.
 | |
| 
 | |
|         // Pairing-induced dependencies can also form from more complicated
 | |
|         // cycles. The pair vs. pair conflicts are easy to check, and so
 | |
|         // that is done explicitly for "fast rejection", and because for
 | |
|         // child vs. child conflicts, we may prefer to keep the current
 | |
|         // pair in preference to the already-selected child.
 | |
|         DenseSet<ValuePair> CurrentPairs;
 | |
| 
 | |
|         bool CanAdd = true;
 | |
|         for (SmallVectorImpl<ValuePairWithDepth>::iterator C2
 | |
|               = BestChildren.begin(), E2 = BestChildren.end();
 | |
|              C2 != E2; ++C2) {
 | |
|           if (C2->first.first == C->first.first ||
 | |
|               C2->first.first == C->first.second ||
 | |
|               C2->first.second == C->first.first ||
 | |
|               C2->first.second == C->first.second ||
 | |
|               pairsConflict(C2->first, C->first, PairableInstUsers,
 | |
|                             UseCycleCheck ? &PairableInstUserMap : nullptr,
 | |
|                             UseCycleCheck ? &PairableInstUserPairSet
 | |
|                                           : nullptr)) {
 | |
|             if (C2->second >= C->second) {
 | |
|               CanAdd = false;
 | |
|               break;
 | |
|             }
 | |
| 
 | |
|             CurrentPairs.insert(C2->first);
 | |
|           }
 | |
|         }
 | |
|         if (!CanAdd) continue;
 | |
| 
 | |
|         // Even worse, this child could conflict with another node already
 | |
|         // selected for the DAG. If that is the case, ignore this child.
 | |
|         for (DenseSet<ValuePair>::iterator T = PrunedDAG.begin(),
 | |
|              E2 = PrunedDAG.end(); T != E2; ++T) {
 | |
|           if (T->first == C->first.first ||
 | |
|               T->first == C->first.second ||
 | |
|               T->second == C->first.first ||
 | |
|               T->second == C->first.second ||
 | |
|               pairsConflict(*T, C->first, PairableInstUsers,
 | |
|                             UseCycleCheck ? &PairableInstUserMap : nullptr,
 | |
|                             UseCycleCheck ? &PairableInstUserPairSet
 | |
|                                           : nullptr)) {
 | |
|             CanAdd = false;
 | |
|             break;
 | |
|           }
 | |
| 
 | |
|           CurrentPairs.insert(*T);
 | |
|         }
 | |
|         if (!CanAdd) continue;
 | |
| 
 | |
|         // And check the queue too...
 | |
|         for (SmallVectorImpl<ValuePairWithDepth>::iterator C2 = Q.begin(),
 | |
|              E2 = Q.end(); C2 != E2; ++C2) {
 | |
|           if (C2->first.first == C->first.first ||
 | |
|               C2->first.first == C->first.second ||
 | |
|               C2->first.second == C->first.first ||
 | |
|               C2->first.second == C->first.second ||
 | |
|               pairsConflict(C2->first, C->first, PairableInstUsers,
 | |
|                             UseCycleCheck ? &PairableInstUserMap : nullptr,
 | |
|                             UseCycleCheck ? &PairableInstUserPairSet
 | |
|                                           : nullptr)) {
 | |
|             CanAdd = false;
 | |
|             break;
 | |
|           }
 | |
| 
 | |
|           CurrentPairs.insert(C2->first);
 | |
|         }
 | |
|         if (!CanAdd) continue;
 | |
| 
 | |
|         // Last but not least, check for a conflict with any of the
 | |
|         // already-chosen pairs.
 | |
|         for (DenseMap<Value *, Value *>::iterator C2 =
 | |
|               ChosenPairs.begin(), E2 = ChosenPairs.end();
 | |
|              C2 != E2; ++C2) {
 | |
|           if (pairsConflict(*C2, C->first, PairableInstUsers,
 | |
|                             UseCycleCheck ? &PairableInstUserMap : nullptr,
 | |
|                             UseCycleCheck ? &PairableInstUserPairSet
 | |
|                                           : nullptr)) {
 | |
|             CanAdd = false;
 | |
|             break;
 | |
|           }
 | |
| 
 | |
|           CurrentPairs.insert(*C2);
 | |
|         }
 | |
|         if (!CanAdd) continue;
 | |
| 
 | |
|         // To check for non-trivial cycles formed by the addition of the
 | |
|         // current pair we've formed a list of all relevant pairs, now use a
 | |
|         // graph walk to check for a cycle. We start from the current pair and
 | |
|         // walk the use dag to see if we again reach the current pair. If we
 | |
|         // do, then the current pair is rejected.
 | |
| 
 | |
|         // FIXME: It may be more efficient to use a topological-ordering
 | |
|         // algorithm to improve the cycle check. This should be investigated.
 | |
|         if (UseCycleCheck &&
 | |
|             pairWillFormCycle(C->first, PairableInstUserMap, CurrentPairs))
 | |
|           continue;
 | |
| 
 | |
|         // This child can be added, but we may have chosen it in preference
 | |
|         // to an already-selected child. Check for this here, and if a
 | |
|         // conflict is found, then remove the previously-selected child
 | |
|         // before adding this one in its place.
 | |
|         for (SmallVectorImpl<ValuePairWithDepth>::iterator C2
 | |
|               = BestChildren.begin(); C2 != BestChildren.end();) {
 | |
|           if (C2->first.first == C->first.first ||
 | |
|               C2->first.first == C->first.second ||
 | |
|               C2->first.second == C->first.first ||
 | |
|               C2->first.second == C->first.second ||
 | |
|               pairsConflict(C2->first, C->first, PairableInstUsers))
 | |
|             C2 = BestChildren.erase(C2);
 | |
|           else
 | |
|             ++C2;
 | |
|         }
 | |
| 
 | |
|         BestChildren.push_back(ValuePairWithDepth(C->first, C->second));
 | |
|       }
 | |
| 
 | |
|       for (SmallVectorImpl<ValuePairWithDepth>::iterator C
 | |
|             = BestChildren.begin(), E2 = BestChildren.end();
 | |
|            C != E2; ++C) {
 | |
|         size_t DepthF = getDepthFactor(C->first.first);
 | |
|         Q.push_back(ValuePairWithDepth(C->first, QTop.second+DepthF));
 | |
|       }
 | |
|     } while (!Q.empty());
 | |
|   }
 | |
| 
 | |
|   // This function finds the best dag of mututally-compatible connected
 | |
|   // pairs, given the choice of root pairs as an iterator range.
 | |
|   void BBVectorize::findBestDAGFor(
 | |
|               DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
 | |
|               DenseSet<ValuePair> &CandidatePairsSet,
 | |
|               DenseMap<ValuePair, int> &CandidatePairCostSavings,
 | |
|               std::vector<Value *> &PairableInsts,
 | |
|               DenseSet<ValuePair> &FixedOrderPairs,
 | |
|               DenseMap<VPPair, unsigned> &PairConnectionTypes,
 | |
|               DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
 | |
|               DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps,
 | |
|               DenseSet<ValuePair> &PairableInstUsers,
 | |
|               DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap,
 | |
|               DenseSet<VPPair> &PairableInstUserPairSet,
 | |
|               DenseMap<Value *, Value *> &ChosenPairs,
 | |
|               DenseSet<ValuePair> &BestDAG, size_t &BestMaxDepth,
 | |
|               int &BestEffSize, Value *II, std::vector<Value *>&JJ,
 | |
|               bool UseCycleCheck) {
 | |
|     for (std::vector<Value *>::iterator J = JJ.begin(), JE = JJ.end();
 | |
|          J != JE; ++J) {
 | |
|       ValuePair IJ(II, *J);
 | |
|       if (!CandidatePairsSet.count(IJ))
 | |
|         continue;
 | |
| 
 | |
|       // Before going any further, make sure that this pair does not
 | |
|       // conflict with any already-selected pairs (see comment below
 | |
|       // near the DAG pruning for more details).
 | |
|       DenseSet<ValuePair> ChosenPairSet;
 | |
|       bool DoesConflict = false;
 | |
|       for (DenseMap<Value *, Value *>::iterator C = ChosenPairs.begin(),
 | |
|            E = ChosenPairs.end(); C != E; ++C) {
 | |
|         if (pairsConflict(*C, IJ, PairableInstUsers,
 | |
|                           UseCycleCheck ? &PairableInstUserMap : nullptr,
 | |
|                           UseCycleCheck ? &PairableInstUserPairSet : nullptr)) {
 | |
|           DoesConflict = true;
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|         ChosenPairSet.insert(*C);
 | |
|       }
 | |
|       if (DoesConflict) continue;
 | |
| 
 | |
|       if (UseCycleCheck &&
 | |
|           pairWillFormCycle(IJ, PairableInstUserMap, ChosenPairSet))
 | |
|         continue;
 | |
| 
 | |
|       DenseMap<ValuePair, size_t> DAG;
 | |
|       buildInitialDAGFor(CandidatePairs, CandidatePairsSet,
 | |
|                           PairableInsts, ConnectedPairs,
 | |
|                           PairableInstUsers, ChosenPairs, DAG, IJ);
 | |
| 
 | |
|       // Because we'll keep the child with the largest depth, the largest
 | |
|       // depth is still the same in the unpruned DAG.
 | |
|       size_t MaxDepth = DAG.lookup(IJ);
 | |
| 
 | |
|       DEBUG(if (DebugPairSelection) dbgs() << "BBV: found DAG for pair {"
 | |
|                    << *IJ.first << " <-> " << *IJ.second << "} of depth " <<
 | |
|                    MaxDepth << " and size " << DAG.size() << "\n");
 | |
| 
 | |
|       // At this point the DAG has been constructed, but, may contain
 | |
|       // contradictory children (meaning that different children of
 | |
|       // some dag node may be attempting to fuse the same instruction).
 | |
|       // So now we walk the dag again, in the case of a conflict,
 | |
|       // keep only the child with the largest depth. To break a tie,
 | |
|       // favor the first child.
 | |
| 
 | |
|       DenseSet<ValuePair> PrunedDAG;
 | |
|       pruneDAGFor(CandidatePairs, PairableInsts, ConnectedPairs,
 | |
|                    PairableInstUsers, PairableInstUserMap,
 | |
|                    PairableInstUserPairSet,
 | |
|                    ChosenPairs, DAG, PrunedDAG, IJ, UseCycleCheck);
 | |
| 
 | |
|       int EffSize = 0;
 | |
|       if (TTI) {
 | |
|         DenseSet<Value *> PrunedDAGInstrs;
 | |
|         for (DenseSet<ValuePair>::iterator S = PrunedDAG.begin(),
 | |
|              E = PrunedDAG.end(); S != E; ++S) {
 | |
|           PrunedDAGInstrs.insert(S->first);
 | |
|           PrunedDAGInstrs.insert(S->second);
 | |
|         }
 | |
| 
 | |
|         // The set of pairs that have already contributed to the total cost.
 | |
|         DenseSet<ValuePair> IncomingPairs;
 | |
| 
 | |
|         // If the cost model were perfect, this might not be necessary; but we
 | |
|         // need to make sure that we don't get stuck vectorizing our own
 | |
|         // shuffle chains.
 | |
|         bool HasNontrivialInsts = false;
 | |
| 
 | |
|         // The node weights represent the cost savings associated with
 | |
|         // fusing the pair of instructions.
 | |
|         for (DenseSet<ValuePair>::iterator S = PrunedDAG.begin(),
 | |
|              E = PrunedDAG.end(); S != E; ++S) {
 | |
|           if (!isa<ShuffleVectorInst>(S->first) &&
 | |
|               !isa<InsertElementInst>(S->first) &&
 | |
|               !isa<ExtractElementInst>(S->first))
 | |
|             HasNontrivialInsts = true;
 | |
| 
 | |
|           bool FlipOrder = false;
 | |
| 
 | |
|           if (getDepthFactor(S->first)) {
 | |
|             int ESContrib = CandidatePairCostSavings.find(*S)->second;
 | |
|             DEBUG(if (DebugPairSelection) dbgs() << "\tweight {"
 | |
|                    << *S->first << " <-> " << *S->second << "} = " <<
 | |
|                    ESContrib << "\n");
 | |
|             EffSize += ESContrib;
 | |
|           }
 | |
| 
 | |
|           // The edge weights contribute in a negative sense: they represent
 | |
|           // the cost of shuffles.
 | |
|           DenseMap<ValuePair, std::vector<ValuePair> >::iterator SS =
 | |
|             ConnectedPairDeps.find(*S);
 | |
|           if (SS != ConnectedPairDeps.end()) {
 | |
|             unsigned NumDepsDirect = 0, NumDepsSwap = 0;
 | |
|             for (std::vector<ValuePair>::iterator T = SS->second.begin(),
 | |
|                  TE = SS->second.end(); T != TE; ++T) {
 | |
|               VPPair Q(*S, *T);
 | |
|               if (!PrunedDAG.count(Q.second))
 | |
|                 continue;
 | |
|               DenseMap<VPPair, unsigned>::iterator R =
 | |
|                 PairConnectionTypes.find(VPPair(Q.second, Q.first));
 | |
|               assert(R != PairConnectionTypes.end() &&
 | |
|                      "Cannot find pair connection type");
 | |
|               if (R->second == PairConnectionDirect)
 | |
|                 ++NumDepsDirect;
 | |
|               else if (R->second == PairConnectionSwap)
 | |
|                 ++NumDepsSwap;
 | |
|             }
 | |
| 
 | |
|             // If there are more swaps than direct connections, then
 | |
|             // the pair order will be flipped during fusion. So the real
 | |
|             // number of swaps is the minimum number.
 | |
|             FlipOrder = !FixedOrderPairs.count(*S) &&
 | |
|               ((NumDepsSwap > NumDepsDirect) ||
 | |
|                 FixedOrderPairs.count(ValuePair(S->second, S->first)));
 | |
| 
 | |
|             for (std::vector<ValuePair>::iterator T = SS->second.begin(),
 | |
|                  TE = SS->second.end(); T != TE; ++T) {
 | |
|               VPPair Q(*S, *T);
 | |
|               if (!PrunedDAG.count(Q.second))
 | |
|                 continue;
 | |
|               DenseMap<VPPair, unsigned>::iterator R =
 | |
|                 PairConnectionTypes.find(VPPair(Q.second, Q.first));
 | |
|               assert(R != PairConnectionTypes.end() &&
 | |
|                      "Cannot find pair connection type");
 | |
|               Type *Ty1 = Q.second.first->getType(),
 | |
|                    *Ty2 = Q.second.second->getType();
 | |
|               Type *VTy = getVecTypeForPair(Ty1, Ty2);
 | |
|               if ((R->second == PairConnectionDirect && FlipOrder) ||
 | |
|                   (R->second == PairConnectionSwap && !FlipOrder)  ||
 | |
|                   R->second == PairConnectionSplat) {
 | |
|                 int ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
 | |
|                                                    VTy, VTy);
 | |
| 
 | |
|                 if (VTy->getVectorNumElements() == 2) {
 | |
|                   if (R->second == PairConnectionSplat)
 | |
|                     ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost(
 | |
|                       TargetTransformInfo::SK_Broadcast, VTy));
 | |
|                   else
 | |
|                     ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost(
 | |
|                       TargetTransformInfo::SK_Reverse, VTy));
 | |
|                 }
 | |
| 
 | |
|                 DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" <<
 | |
|                   *Q.second.first << " <-> " << *Q.second.second <<
 | |
|                     "} -> {" <<
 | |
|                   *S->first << " <-> " << *S->second << "} = " <<
 | |
|                    ESContrib << "\n");
 | |
|                 EffSize -= ESContrib;
 | |
|               }
 | |
|             }
 | |
|           }
 | |
| 
 | |
|           // Compute the cost of outgoing edges. We assume that edges outgoing
 | |
|           // to shuffles, inserts or extracts can be merged, and so contribute
 | |
|           // no additional cost.
 | |
|           if (!S->first->getType()->isVoidTy()) {
 | |
|             Type *Ty1 = S->first->getType(),
 | |
|                  *Ty2 = S->second->getType();
 | |
|             Type *VTy = getVecTypeForPair(Ty1, Ty2);
 | |
| 
 | |
|             bool NeedsExtraction = false;
 | |
|             for (User *U : S->first->users()) {
 | |
|               if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(U)) {
 | |
|                 // Shuffle can be folded if it has no other input
 | |
|                 if (isa<UndefValue>(SI->getOperand(1)))
 | |
|                   continue;
 | |
|               }
 | |
|               if (isa<ExtractElementInst>(U))
 | |
|                 continue;
 | |
|               if (PrunedDAGInstrs.count(U))
 | |
|                 continue;
 | |
|               NeedsExtraction = true;
 | |
|               break;
 | |
|             }
 | |
| 
 | |
|             if (NeedsExtraction) {
 | |
|               int ESContrib;
 | |
|               if (Ty1->isVectorTy()) {
 | |
|                 ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
 | |
|                                                Ty1, VTy);
 | |
|                 ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost(
 | |
|                   TargetTransformInfo::SK_ExtractSubvector, VTy, 0, Ty1));
 | |
|               } else
 | |
|                 ESContrib = (int) TTI->getVectorInstrCost(
 | |
|                                     Instruction::ExtractElement, VTy, 0);
 | |
| 
 | |
|               DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" <<
 | |
|                 *S->first << "} = " << ESContrib << "\n");
 | |
|               EffSize -= ESContrib;
 | |
|             }
 | |
| 
 | |
|             NeedsExtraction = false;
 | |
|             for (User *U : S->second->users()) {
 | |
|               if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(U)) {
 | |
|                 // Shuffle can be folded if it has no other input
 | |
|                 if (isa<UndefValue>(SI->getOperand(1)))
 | |
|                   continue;
 | |
|               }
 | |
|               if (isa<ExtractElementInst>(U))
 | |
|                 continue;
 | |
|               if (PrunedDAGInstrs.count(U))
 | |
|                 continue;
 | |
|               NeedsExtraction = true;
 | |
|               break;
 | |
|             }
 | |
| 
 | |
|             if (NeedsExtraction) {
 | |
|               int ESContrib;
 | |
|               if (Ty2->isVectorTy()) {
 | |
|                 ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
 | |
|                                                Ty2, VTy);
 | |
|                 ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost(
 | |
|                   TargetTransformInfo::SK_ExtractSubvector, VTy,
 | |
|                   Ty1->isVectorTy() ? Ty1->getVectorNumElements() : 1, Ty2));
 | |
|               } else
 | |
|                 ESContrib = (int) TTI->getVectorInstrCost(
 | |
|                                     Instruction::ExtractElement, VTy, 1);
 | |
|               DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" <<
 | |
|                 *S->second << "} = " << ESContrib << "\n");
 | |
|               EffSize -= ESContrib;
 | |
|             }
 | |
|           }
 | |
| 
 | |
|           // Compute the cost of incoming edges.
 | |
|           if (!isa<LoadInst>(S->first) && !isa<StoreInst>(S->first)) {
 | |
|             Instruction *S1 = cast<Instruction>(S->first),
 | |
|                         *S2 = cast<Instruction>(S->second);
 | |
|             for (unsigned o = 0; o < S1->getNumOperands(); ++o) {
 | |
|               Value *O1 = S1->getOperand(o), *O2 = S2->getOperand(o);
 | |
| 
 | |
|               // Combining constants into vector constants (or small vector
 | |
|               // constants into larger ones are assumed free).
 | |
|               if (isa<Constant>(O1) && isa<Constant>(O2))
 | |
|                 continue;
 | |
| 
 | |
|               if (FlipOrder)
 | |
|                 std::swap(O1, O2);
 | |
| 
 | |
|               ValuePair VP  = ValuePair(O1, O2);
 | |
|               ValuePair VPR = ValuePair(O2, O1);
 | |
| 
 | |
|               // Internal edges are not handled here.
 | |
|               if (PrunedDAG.count(VP) || PrunedDAG.count(VPR))
 | |
|                 continue;
 | |
| 
 | |
|               Type *Ty1 = O1->getType(),
 | |
|                    *Ty2 = O2->getType();
 | |
|               Type *VTy = getVecTypeForPair(Ty1, Ty2);
 | |
| 
 | |
|               // Combining vector operations of the same type is also assumed
 | |
|               // folded with other operations.
 | |
|               if (Ty1 == Ty2) {
 | |
|                 // If both are insert elements, then both can be widened.
 | |
|                 InsertElementInst *IEO1 = dyn_cast<InsertElementInst>(O1),
 | |
|                                   *IEO2 = dyn_cast<InsertElementInst>(O2);
 | |
|                 if (IEO1 && IEO2 && isPureIEChain(IEO1) && isPureIEChain(IEO2))
 | |
|                   continue;
 | |
|                 // If both are extract elements, and both have the same input
 | |
|                 // type, then they can be replaced with a shuffle
 | |
|                 ExtractElementInst *EIO1 = dyn_cast<ExtractElementInst>(O1),
 | |
|                                    *EIO2 = dyn_cast<ExtractElementInst>(O2);
 | |
|                 if (EIO1 && EIO2 &&
 | |
|                     EIO1->getOperand(0)->getType() ==
 | |
|                       EIO2->getOperand(0)->getType())
 | |
|                   continue;
 | |
|                 // If both are a shuffle with equal operand types and only two
 | |
|                 // unqiue operands, then they can be replaced with a single
 | |
|                 // shuffle
 | |
|                 ShuffleVectorInst *SIO1 = dyn_cast<ShuffleVectorInst>(O1),
 | |
|                                   *SIO2 = dyn_cast<ShuffleVectorInst>(O2);
 | |
|                 if (SIO1 && SIO2 &&
 | |
|                     SIO1->getOperand(0)->getType() ==
 | |
|                       SIO2->getOperand(0)->getType()) {
 | |
|                   SmallSet<Value *, 4> SIOps;
 | |
|                   SIOps.insert(SIO1->getOperand(0));
 | |
|                   SIOps.insert(SIO1->getOperand(1));
 | |
|                   SIOps.insert(SIO2->getOperand(0));
 | |
|                   SIOps.insert(SIO2->getOperand(1));
 | |
|                   if (SIOps.size() <= 2)
 | |
|                     continue;
 | |
|                 }
 | |
|               }
 | |
| 
 | |
|               int ESContrib;
 | |
|               // This pair has already been formed.
 | |
|               if (IncomingPairs.count(VP)) {
 | |
|                 continue;
 | |
|               } else if (IncomingPairs.count(VPR)) {
 | |
|                 ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
 | |
|                                                VTy, VTy);
 | |
| 
 | |
|                 if (VTy->getVectorNumElements() == 2)
 | |
|                   ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost(
 | |
|                     TargetTransformInfo::SK_Reverse, VTy));
 | |
|               } else if (!Ty1->isVectorTy() && !Ty2->isVectorTy()) {
 | |
|                 ESContrib = (int) TTI->getVectorInstrCost(
 | |
|                                     Instruction::InsertElement, VTy, 0);
 | |
|                 ESContrib += (int) TTI->getVectorInstrCost(
 | |
|                                      Instruction::InsertElement, VTy, 1);
 | |
|               } else if (!Ty1->isVectorTy()) {
 | |
|                 // O1 needs to be inserted into a vector of size O2, and then
 | |
|                 // both need to be shuffled together.
 | |
|                 ESContrib = (int) TTI->getVectorInstrCost(
 | |
|                                     Instruction::InsertElement, Ty2, 0);
 | |
|                 ESContrib += (int) getInstrCost(Instruction::ShuffleVector,
 | |
|                                                 VTy, Ty2);
 | |
|               } else if (!Ty2->isVectorTy()) {
 | |
|                 // O2 needs to be inserted into a vector of size O1, and then
 | |
|                 // both need to be shuffled together.
 | |
|                 ESContrib = (int) TTI->getVectorInstrCost(
 | |
|                                     Instruction::InsertElement, Ty1, 0);
 | |
|                 ESContrib += (int) getInstrCost(Instruction::ShuffleVector,
 | |
|                                                 VTy, Ty1);
 | |
|               } else {
 | |
|                 Type *TyBig = Ty1, *TySmall = Ty2;
 | |
|                 if (Ty2->getVectorNumElements() > Ty1->getVectorNumElements())
 | |
|                   std::swap(TyBig, TySmall);
 | |
| 
 | |
|                 ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
 | |
|                                                VTy, TyBig);
 | |
|                 if (TyBig != TySmall)
 | |
|                   ESContrib += (int) getInstrCost(Instruction::ShuffleVector,
 | |
|                                                   TyBig, TySmall);
 | |
|               }
 | |
| 
 | |
|               DEBUG(if (DebugPairSelection) dbgs() << "\tcost {"
 | |
|                      << *O1 << " <-> " << *O2 << "} = " <<
 | |
|                      ESContrib << "\n");
 | |
|               EffSize -= ESContrib;
 | |
|               IncomingPairs.insert(VP);
 | |
|             }
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         if (!HasNontrivialInsts) {
 | |
|           DEBUG(if (DebugPairSelection) dbgs() <<
 | |
|                 "\tNo non-trivial instructions in DAG;"
 | |
|                 " override to zero effective size\n");
 | |
|           EffSize = 0;
 | |
|         }
 | |
|       } else {
 | |
|         for (DenseSet<ValuePair>::iterator S = PrunedDAG.begin(),
 | |
|              E = PrunedDAG.end(); S != E; ++S)
 | |
|           EffSize += (int) getDepthFactor(S->first);
 | |
|       }
 | |
| 
 | |
|       DEBUG(if (DebugPairSelection)
 | |
|              dbgs() << "BBV: found pruned DAG for pair {"
 | |
|              << *IJ.first << " <-> " << *IJ.second << "} of depth " <<
 | |
|              MaxDepth << " and size " << PrunedDAG.size() <<
 | |
|             " (effective size: " << EffSize << ")\n");
 | |
|       if (((TTI && !UseChainDepthWithTI) ||
 | |
|             MaxDepth >= Config.ReqChainDepth) &&
 | |
|           EffSize > 0 && EffSize > BestEffSize) {
 | |
|         BestMaxDepth = MaxDepth;
 | |
|         BestEffSize = EffSize;
 | |
|         BestDAG = PrunedDAG;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Given the list of candidate pairs, this function selects those
 | |
|   // that will be fused into vector instructions.
 | |
|   void BBVectorize::choosePairs(
 | |
|                 DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
 | |
|                 DenseSet<ValuePair> &CandidatePairsSet,
 | |
|                 DenseMap<ValuePair, int> &CandidatePairCostSavings,
 | |
|                 std::vector<Value *> &PairableInsts,
 | |
|                 DenseSet<ValuePair> &FixedOrderPairs,
 | |
|                 DenseMap<VPPair, unsigned> &PairConnectionTypes,
 | |
|                 DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
 | |
|                 DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps,
 | |
|                 DenseSet<ValuePair> &PairableInstUsers,
 | |
|                 DenseMap<Value *, Value *>& ChosenPairs) {
 | |
|     bool UseCycleCheck =
 | |
|      CandidatePairsSet.size() <= Config.MaxCandPairsForCycleCheck;
 | |
| 
 | |
|     DenseMap<Value *, std::vector<Value *> > CandidatePairs2;
 | |
|     for (DenseSet<ValuePair>::iterator I = CandidatePairsSet.begin(),
 | |
|          E = CandidatePairsSet.end(); I != E; ++I) {
 | |
|       std::vector<Value *> &JJ = CandidatePairs2[I->second];
 | |
|       if (JJ.empty()) JJ.reserve(32);
 | |
|       JJ.push_back(I->first);
 | |
|     }
 | |
| 
 | |
|     DenseMap<ValuePair, std::vector<ValuePair> > PairableInstUserMap;
 | |
|     DenseSet<VPPair> PairableInstUserPairSet;
 | |
|     for (std::vector<Value *>::iterator I = PairableInsts.begin(),
 | |
|          E = PairableInsts.end(); I != E; ++I) {
 | |
|       // The number of possible pairings for this variable:
 | |
|       size_t NumChoices = CandidatePairs.lookup(*I).size();
 | |
|       if (!NumChoices) continue;
 | |
| 
 | |
|       std::vector<Value *> &JJ = CandidatePairs[*I];
 | |
| 
 | |
|       // The best pair to choose and its dag:
 | |
|       size_t BestMaxDepth = 0;
 | |
|       int BestEffSize = 0;
 | |
|       DenseSet<ValuePair> BestDAG;
 | |
|       findBestDAGFor(CandidatePairs, CandidatePairsSet,
 | |
|                       CandidatePairCostSavings,
 | |
|                       PairableInsts, FixedOrderPairs, PairConnectionTypes,
 | |
|                       ConnectedPairs, ConnectedPairDeps,
 | |
|                       PairableInstUsers, PairableInstUserMap,
 | |
|                       PairableInstUserPairSet, ChosenPairs,
 | |
|                       BestDAG, BestMaxDepth, BestEffSize, *I, JJ,
 | |
|                       UseCycleCheck);
 | |
| 
 | |
|       if (BestDAG.empty())
 | |
|         continue;
 | |
| 
 | |
|       // A dag has been chosen (or not) at this point. If no dag was
 | |
|       // chosen, then this instruction, I, cannot be paired (and is no longer
 | |
|       // considered).
 | |
| 
 | |
|       DEBUG(dbgs() << "BBV: selected pairs in the best DAG for: "
 | |
|                    << *cast<Instruction>(*I) << "\n");
 | |
| 
 | |
|       for (DenseSet<ValuePair>::iterator S = BestDAG.begin(),
 | |
|            SE2 = BestDAG.end(); S != SE2; ++S) {
 | |
|         // Insert the members of this dag into the list of chosen pairs.
 | |
|         ChosenPairs.insert(ValuePair(S->first, S->second));
 | |
|         DEBUG(dbgs() << "BBV: selected pair: " << *S->first << " <-> " <<
 | |
|                *S->second << "\n");
 | |
| 
 | |
|         // Remove all candidate pairs that have values in the chosen dag.
 | |
|         std::vector<Value *> &KK = CandidatePairs[S->first];
 | |
|         for (std::vector<Value *>::iterator K = KK.begin(), KE = KK.end();
 | |
|              K != KE; ++K) {
 | |
|           if (*K == S->second)
 | |
|             continue;
 | |
| 
 | |
|           CandidatePairsSet.erase(ValuePair(S->first, *K));
 | |
|         }
 | |
| 
 | |
|         std::vector<Value *> &LL = CandidatePairs2[S->second];
 | |
|         for (std::vector<Value *>::iterator L = LL.begin(), LE = LL.end();
 | |
|              L != LE; ++L) {
 | |
|           if (*L == S->first)
 | |
|             continue;
 | |
| 
 | |
|           CandidatePairsSet.erase(ValuePair(*L, S->second));
 | |
|         }
 | |
| 
 | |
|         std::vector<Value *> &MM = CandidatePairs[S->second];
 | |
|         for (std::vector<Value *>::iterator M = MM.begin(), ME = MM.end();
 | |
|              M != ME; ++M) {
 | |
|           assert(*M != S->first && "Flipped pair in candidate list?");
 | |
|           CandidatePairsSet.erase(ValuePair(S->second, *M));
 | |
|         }
 | |
| 
 | |
|         std::vector<Value *> &NN = CandidatePairs2[S->first];
 | |
|         for (std::vector<Value *>::iterator N = NN.begin(), NE = NN.end();
 | |
|              N != NE; ++N) {
 | |
|           assert(*N != S->second && "Flipped pair in candidate list?");
 | |
|           CandidatePairsSet.erase(ValuePair(*N, S->first));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     DEBUG(dbgs() << "BBV: selected " << ChosenPairs.size() << " pairs.\n");
 | |
|   }
 | |
| 
 | |
|   std::string getReplacementName(Instruction *I, bool IsInput, unsigned o,
 | |
|                      unsigned n = 0) {
 | |
|     if (!I->hasName())
 | |
|       return "";
 | |
| 
 | |
|     return (I->getName() + (IsInput ? ".v.i" : ".v.r") + utostr(o) +
 | |
|              (n > 0 ? "." + utostr(n) : "")).str();
 | |
|   }
 | |
| 
 | |
|   // Returns the value that is to be used as the pointer input to the vector
 | |
|   // instruction that fuses I with J.
 | |
|   Value *BBVectorize::getReplacementPointerInput(LLVMContext& Context,
 | |
|                      Instruction *I, Instruction *J, unsigned o) {
 | |
|     Value *IPtr, *JPtr;
 | |
|     unsigned IAlignment, JAlignment, IAddressSpace, JAddressSpace;
 | |
|     int64_t OffsetInElmts;
 | |
| 
 | |
|     // Note: the analysis might fail here, that is why the pair order has
 | |
|     // been precomputed (OffsetInElmts must be unused here).
 | |
|     (void) getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment,
 | |
|                           IAddressSpace, JAddressSpace,
 | |
|                           OffsetInElmts, false);
 | |
| 
 | |
|     // The pointer value is taken to be the one with the lowest offset.
 | |
|     Value *VPtr = IPtr;
 | |
| 
 | |
|     Type *ArgTypeI = IPtr->getType()->getPointerElementType();
 | |
|     Type *ArgTypeJ = JPtr->getType()->getPointerElementType();
 | |
|     Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
 | |
|     Type *VArgPtrType
 | |
|       = PointerType::get(VArgType,
 | |
|                          IPtr->getType()->getPointerAddressSpace());
 | |
|     return new BitCastInst(VPtr, VArgPtrType, getReplacementName(I, true, o),
 | |
|                         /* insert before */ I);
 | |
|   }
 | |
| 
 | |
|   void BBVectorize::fillNewShuffleMask(LLVMContext& Context, Instruction *J,
 | |
|                      unsigned MaskOffset, unsigned NumInElem,
 | |
|                      unsigned NumInElem1, unsigned IdxOffset,
 | |
|                      std::vector<Constant*> &Mask) {
 | |
|     unsigned NumElem1 = J->getType()->getVectorNumElements();
 | |
|     for (unsigned v = 0; v < NumElem1; ++v) {
 | |
|       int m = cast<ShuffleVectorInst>(J)->getMaskValue(v);
 | |
|       if (m < 0) {
 | |
|         Mask[v+MaskOffset] = UndefValue::get(Type::getInt32Ty(Context));
 | |
|       } else {
 | |
|         unsigned mm = m + (int) IdxOffset;
 | |
|         if (m >= (int) NumInElem1)
 | |
|           mm += (int) NumInElem;
 | |
| 
 | |
|         Mask[v+MaskOffset] =
 | |
|           ConstantInt::get(Type::getInt32Ty(Context), mm);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Returns the value that is to be used as the vector-shuffle mask to the
 | |
|   // vector instruction that fuses I with J.
 | |
|   Value *BBVectorize::getReplacementShuffleMask(LLVMContext& Context,
 | |
|                      Instruction *I, Instruction *J) {
 | |
|     // This is the shuffle mask. We need to append the second
 | |
|     // mask to the first, and the numbers need to be adjusted.
 | |
| 
 | |
|     Type *ArgTypeI = I->getType();
 | |
|     Type *ArgTypeJ = J->getType();
 | |
|     Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
 | |
| 
 | |
|     unsigned NumElemI = ArgTypeI->getVectorNumElements();
 | |
| 
 | |
|     // Get the total number of elements in the fused vector type.
 | |
|     // By definition, this must equal the number of elements in
 | |
|     // the final mask.
 | |
|     unsigned NumElem = VArgType->getVectorNumElements();
 | |
|     std::vector<Constant*> Mask(NumElem);
 | |
| 
 | |
|     Type *OpTypeI = I->getOperand(0)->getType();
 | |
|     unsigned NumInElemI = OpTypeI->getVectorNumElements();
 | |
|     Type *OpTypeJ = J->getOperand(0)->getType();
 | |
|     unsigned NumInElemJ = OpTypeJ->getVectorNumElements();
 | |
| 
 | |
|     // The fused vector will be:
 | |
|     // -----------------------------------------------------
 | |
|     // | NumInElemI | NumInElemJ | NumInElemI | NumInElemJ |
 | |
|     // -----------------------------------------------------
 | |
|     // from which we'll extract NumElem total elements (where the first NumElemI
 | |
|     // of them come from the mask in I and the remainder come from the mask
 | |
|     // in J.
 | |
| 
 | |
|     // For the mask from the first pair...
 | |
|     fillNewShuffleMask(Context, I, 0,        NumInElemJ, NumInElemI,
 | |
|                        0,          Mask);
 | |
| 
 | |
|     // For the mask from the second pair...
 | |
|     fillNewShuffleMask(Context, J, NumElemI, NumInElemI, NumInElemJ,
 | |
|                        NumInElemI, Mask);
 | |
| 
 | |
|     return ConstantVector::get(Mask);
 | |
|   }
 | |
| 
 | |
|   bool BBVectorize::expandIEChain(LLVMContext& Context, Instruction *I,
 | |
|                                   Instruction *J, unsigned o, Value *&LOp,
 | |
|                                   unsigned numElemL,
 | |
|                                   Type *ArgTypeL, Type *ArgTypeH,
 | |
|                                   bool IBeforeJ, unsigned IdxOff) {
 | |
|     bool ExpandedIEChain = false;
 | |
|     if (InsertElementInst *LIE = dyn_cast<InsertElementInst>(LOp)) {
 | |
|       // If we have a pure insertelement chain, then this can be rewritten
 | |
|       // into a chain that directly builds the larger type.
 | |
|       if (isPureIEChain(LIE)) {
 | |
|         SmallVector<Value *, 8> VectElemts(numElemL,
 | |
|           UndefValue::get(ArgTypeL->getScalarType()));
 | |
|         InsertElementInst *LIENext = LIE;
 | |
|         do {
 | |
|           unsigned Idx =
 | |
|             cast<ConstantInt>(LIENext->getOperand(2))->getSExtValue();
 | |
|           VectElemts[Idx] = LIENext->getOperand(1);
 | |
|         } while ((LIENext =
 | |
|                    dyn_cast<InsertElementInst>(LIENext->getOperand(0))));
 | |
| 
 | |
|         LIENext = nullptr;
 | |
|         Value *LIEPrev = UndefValue::get(ArgTypeH);
 | |
|         for (unsigned i = 0; i < numElemL; ++i) {
 | |
|           if (isa<UndefValue>(VectElemts[i])) continue;
 | |
|           LIENext = InsertElementInst::Create(LIEPrev, VectElemts[i],
 | |
|                              ConstantInt::get(Type::getInt32Ty(Context),
 | |
|                                               i + IdxOff),
 | |
|                              getReplacementName(IBeforeJ ? I : J,
 | |
|                                                 true, o, i+1));
 | |
|           LIENext->insertBefore(IBeforeJ ? J : I);
 | |
|           LIEPrev = LIENext;
 | |
|         }
 | |
| 
 | |
|         LOp = LIENext ? (Value*) LIENext : UndefValue::get(ArgTypeH);
 | |
|         ExpandedIEChain = true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return ExpandedIEChain;
 | |
|   }
 | |
| 
 | |
|   static unsigned getNumScalarElements(Type *Ty) {
 | |
|     if (VectorType *VecTy = dyn_cast<VectorType>(Ty))
 | |
|       return VecTy->getNumElements();
 | |
|     return 1;
 | |
|   }
 | |
| 
 | |
|   // Returns the value to be used as the specified operand of the vector
 | |
|   // instruction that fuses I with J.
 | |
|   Value *BBVectorize::getReplacementInput(LLVMContext& Context, Instruction *I,
 | |
|                      Instruction *J, unsigned o, bool IBeforeJ) {
 | |
|     Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0);
 | |
|     Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), 1);
 | |
| 
 | |
|     // Compute the fused vector type for this operand
 | |
|     Type *ArgTypeI = I->getOperand(o)->getType();
 | |
|     Type *ArgTypeJ = J->getOperand(o)->getType();
 | |
|     VectorType *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
 | |
| 
 | |
|     Instruction *L = I, *H = J;
 | |
|     Type *ArgTypeL = ArgTypeI, *ArgTypeH = ArgTypeJ;
 | |
| 
 | |
|     unsigned numElemL = getNumScalarElements(ArgTypeL);
 | |
|     unsigned numElemH = getNumScalarElements(ArgTypeH);
 | |
| 
 | |
|     Value *LOp = L->getOperand(o);
 | |
|     Value *HOp = H->getOperand(o);
 | |
|     unsigned numElem = VArgType->getNumElements();
 | |
| 
 | |
|     // First, we check if we can reuse the "original" vector outputs (if these
 | |
|     // exist). We might need a shuffle.
 | |
|     ExtractElementInst *LEE = dyn_cast<ExtractElementInst>(LOp);
 | |
|     ExtractElementInst *HEE = dyn_cast<ExtractElementInst>(HOp);
 | |
|     ShuffleVectorInst *LSV = dyn_cast<ShuffleVectorInst>(LOp);
 | |
|     ShuffleVectorInst *HSV = dyn_cast<ShuffleVectorInst>(HOp);
 | |
| 
 | |
|     // FIXME: If we're fusing shuffle instructions, then we can't apply this
 | |
|     // optimization. The input vectors to the shuffle might be a different
 | |
|     // length from the shuffle outputs. Unfortunately, the replacement
 | |
|     // shuffle mask has already been formed, and the mask entries are sensitive
 | |
|     // to the sizes of the inputs.
 | |
|     bool IsSizeChangeShuffle =
 | |
|       isa<ShuffleVectorInst>(L) &&
 | |
|         (LOp->getType() != L->getType() || HOp->getType() != H->getType());
 | |
| 
 | |
|     if ((LEE || LSV) && (HEE || HSV) && !IsSizeChangeShuffle) {
 | |
|       // We can have at most two unique vector inputs.
 | |
|       bool CanUseInputs = true;
 | |
|       Value *I1, *I2 = nullptr;
 | |
|       if (LEE) {
 | |
|         I1 = LEE->getOperand(0);
 | |
|       } else {
 | |
|         I1 = LSV->getOperand(0);
 | |
|         I2 = LSV->getOperand(1);
 | |
|         if (I2 == I1 || isa<UndefValue>(I2))
 | |
|           I2 = nullptr;
 | |
|       }
 | |
|   
 | |
|       if (HEE) {
 | |
|         Value *I3 = HEE->getOperand(0);
 | |
|         if (!I2 && I3 != I1)
 | |
|           I2 = I3;
 | |
|         else if (I3 != I1 && I3 != I2)
 | |
|           CanUseInputs = false;
 | |
|       } else {
 | |
|         Value *I3 = HSV->getOperand(0);
 | |
|         if (!I2 && I3 != I1)
 | |
|           I2 = I3;
 | |
|         else if (I3 != I1 && I3 != I2)
 | |
|           CanUseInputs = false;
 | |
| 
 | |
|         if (CanUseInputs) {
 | |
|           Value *I4 = HSV->getOperand(1);
 | |
|           if (!isa<UndefValue>(I4)) {
 | |
|             if (!I2 && I4 != I1)
 | |
|               I2 = I4;
 | |
|             else if (I4 != I1 && I4 != I2)
 | |
|               CanUseInputs = false;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (CanUseInputs) {
 | |
|         unsigned LOpElem =
 | |
|           cast<Instruction>(LOp)->getOperand(0)->getType()
 | |
|             ->getVectorNumElements();
 | |
| 
 | |
|         unsigned HOpElem =
 | |
|           cast<Instruction>(HOp)->getOperand(0)->getType()
 | |
|             ->getVectorNumElements();
 | |
| 
 | |
|         // We have one or two input vectors. We need to map each index of the
 | |
|         // operands to the index of the original vector.
 | |
|         SmallVector<std::pair<int, int>, 8>  II(numElem);
 | |
|         for (unsigned i = 0; i < numElemL; ++i) {
 | |
|           int Idx, INum;
 | |
|           if (LEE) {
 | |
|             Idx =
 | |
|               cast<ConstantInt>(LEE->getOperand(1))->getSExtValue();
 | |
|             INum = LEE->getOperand(0) == I1 ? 0 : 1;
 | |
|           } else {
 | |
|             Idx = LSV->getMaskValue(i);
 | |
|             if (Idx < (int) LOpElem) {
 | |
|               INum = LSV->getOperand(0) == I1 ? 0 : 1;
 | |
|             } else {
 | |
|               Idx -= LOpElem;
 | |
|               INum = LSV->getOperand(1) == I1 ? 0 : 1;
 | |
|             }
 | |
|           }
 | |
| 
 | |
|           II[i] = std::pair<int, int>(Idx, INum);
 | |
|         }
 | |
|         for (unsigned i = 0; i < numElemH; ++i) {
 | |
|           int Idx, INum;
 | |
|           if (HEE) {
 | |
|             Idx =
 | |
|               cast<ConstantInt>(HEE->getOperand(1))->getSExtValue();
 | |
|             INum = HEE->getOperand(0) == I1 ? 0 : 1;
 | |
|           } else {
 | |
|             Idx = HSV->getMaskValue(i);
 | |
|             if (Idx < (int) HOpElem) {
 | |
|               INum = HSV->getOperand(0) == I1 ? 0 : 1;
 | |
|             } else {
 | |
|               Idx -= HOpElem;
 | |
|               INum = HSV->getOperand(1) == I1 ? 0 : 1;
 | |
|             }
 | |
|           }
 | |
| 
 | |
|           II[i + numElemL] = std::pair<int, int>(Idx, INum);
 | |
|         }
 | |
| 
 | |
|         // We now have an array which tells us from which index of which
 | |
|         // input vector each element of the operand comes.
 | |
|         VectorType *I1T = cast<VectorType>(I1->getType());
 | |
|         unsigned I1Elem = I1T->getNumElements();
 | |
| 
 | |
|         if (!I2) {
 | |
|           // In this case there is only one underlying vector input. Check for
 | |
|           // the trivial case where we can use the input directly.
 | |
|           if (I1Elem == numElem) {
 | |
|             bool ElemInOrder = true;
 | |
|             for (unsigned i = 0; i < numElem; ++i) {
 | |
|               if (II[i].first != (int) i && II[i].first != -1) {
 | |
|                 ElemInOrder = false;
 | |
|                 break;
 | |
|               }
 | |
|             }
 | |
| 
 | |
|             if (ElemInOrder)
 | |
|               return I1;
 | |
|           }
 | |
| 
 | |
|           // A shuffle is needed.
 | |
|           std::vector<Constant *> Mask(numElem);
 | |
|           for (unsigned i = 0; i < numElem; ++i) {
 | |
|             int Idx = II[i].first;
 | |
|             if (Idx == -1)
 | |
|               Mask[i] = UndefValue::get(Type::getInt32Ty(Context));
 | |
|             else
 | |
|               Mask[i] = ConstantInt::get(Type::getInt32Ty(Context), Idx);
 | |
|           }
 | |
| 
 | |
|           Instruction *S =
 | |
|             new ShuffleVectorInst(I1, UndefValue::get(I1T),
 | |
|                                   ConstantVector::get(Mask),
 | |
|                                   getReplacementName(IBeforeJ ? I : J,
 | |
|                                                      true, o));
 | |
|           S->insertBefore(IBeforeJ ? J : I);
 | |
|           return S;
 | |
|         }
 | |
| 
 | |
|         VectorType *I2T = cast<VectorType>(I2->getType());
 | |
|         unsigned I2Elem = I2T->getNumElements();
 | |
| 
 | |
|         // This input comes from two distinct vectors. The first step is to
 | |
|         // make sure that both vectors are the same length. If not, the
 | |
|         // smaller one will need to grow before they can be shuffled together.
 | |
|         if (I1Elem < I2Elem) {
 | |
|           std::vector<Constant *> Mask(I2Elem);
 | |
|           unsigned v = 0;
 | |
|           for (; v < I1Elem; ++v)
 | |
|             Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
 | |
|           for (; v < I2Elem; ++v)
 | |
|             Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
 | |
| 
 | |
|           Instruction *NewI1 =
 | |
|             new ShuffleVectorInst(I1, UndefValue::get(I1T),
 | |
|                                   ConstantVector::get(Mask),
 | |
|                                   getReplacementName(IBeforeJ ? I : J,
 | |
|                                                      true, o, 1));
 | |
|           NewI1->insertBefore(IBeforeJ ? J : I);
 | |
|           I1 = NewI1;
 | |
|           I1T = I2T;
 | |
|           I1Elem = I2Elem;
 | |
|         } else if (I1Elem > I2Elem) {
 | |
|           std::vector<Constant *> Mask(I1Elem);
 | |
|           unsigned v = 0;
 | |
|           for (; v < I2Elem; ++v)
 | |
|             Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
 | |
|           for (; v < I1Elem; ++v)
 | |
|             Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
 | |
| 
 | |
|           Instruction *NewI2 =
 | |
|             new ShuffleVectorInst(I2, UndefValue::get(I2T),
 | |
|                                   ConstantVector::get(Mask),
 | |
|                                   getReplacementName(IBeforeJ ? I : J,
 | |
|                                                      true, o, 1));
 | |
|           NewI2->insertBefore(IBeforeJ ? J : I);
 | |
|           I2 = NewI2;
 | |
|           I2T = I1T;
 | |
|           I2Elem = I1Elem;
 | |
|         }
 | |
| 
 | |
|         // Now that both I1 and I2 are the same length we can shuffle them
 | |
|         // together (and use the result).
 | |
|         std::vector<Constant *> Mask(numElem);
 | |
|         for (unsigned v = 0; v < numElem; ++v) {
 | |
|           if (II[v].first == -1) {
 | |
|             Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
 | |
|           } else {
 | |
|             int Idx = II[v].first + II[v].second * I1Elem;
 | |
|             Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), Idx);
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         Instruction *NewOp =
 | |
|           new ShuffleVectorInst(I1, I2, ConstantVector::get(Mask),
 | |
|                                 getReplacementName(IBeforeJ ? I : J, true, o));
 | |
|         NewOp->insertBefore(IBeforeJ ? J : I);
 | |
|         return NewOp;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     Type *ArgType = ArgTypeL;
 | |
|     if (numElemL < numElemH) {
 | |
|       if (numElemL == 1 && expandIEChain(Context, I, J, o, HOp, numElemH,
 | |
|                                          ArgTypeL, VArgType, IBeforeJ, 1)) {
 | |
|         // This is another short-circuit case: we're combining a scalar into
 | |
|         // a vector that is formed by an IE chain. We've just expanded the IE
 | |
|         // chain, now insert the scalar and we're done.
 | |
| 
 | |
|         Instruction *S = InsertElementInst::Create(HOp, LOp, CV0,
 | |
|                            getReplacementName(IBeforeJ ? I : J, true, o));
 | |
|         S->insertBefore(IBeforeJ ? J : I);
 | |
|         return S;
 | |
|       } else if (!expandIEChain(Context, I, J, o, LOp, numElemL, ArgTypeL,
 | |
|                                 ArgTypeH, IBeforeJ)) {
 | |
|         // The two vector inputs to the shuffle must be the same length,
 | |
|         // so extend the smaller vector to be the same length as the larger one.
 | |
|         Instruction *NLOp;
 | |
|         if (numElemL > 1) {
 | |
|   
 | |
|           std::vector<Constant *> Mask(numElemH);
 | |
|           unsigned v = 0;
 | |
|           for (; v < numElemL; ++v)
 | |
|             Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
 | |
|           for (; v < numElemH; ++v)
 | |
|             Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
 | |
|     
 | |
|           NLOp = new ShuffleVectorInst(LOp, UndefValue::get(ArgTypeL),
 | |
|                                        ConstantVector::get(Mask),
 | |
|                                        getReplacementName(IBeforeJ ? I : J,
 | |
|                                                           true, o, 1));
 | |
|         } else {
 | |
|           NLOp = InsertElementInst::Create(UndefValue::get(ArgTypeH), LOp, CV0,
 | |
|                                            getReplacementName(IBeforeJ ? I : J,
 | |
|                                                               true, o, 1));
 | |
|         }
 | |
|   
 | |
|         NLOp->insertBefore(IBeforeJ ? J : I);
 | |
|         LOp = NLOp;
 | |
|       }
 | |
| 
 | |
|       ArgType = ArgTypeH;
 | |
|     } else if (numElemL > numElemH) {
 | |
|       if (numElemH == 1 && expandIEChain(Context, I, J, o, LOp, numElemL,
 | |
|                                          ArgTypeH, VArgType, IBeforeJ)) {
 | |
|         Instruction *S =
 | |
|           InsertElementInst::Create(LOp, HOp, 
 | |
|                                     ConstantInt::get(Type::getInt32Ty(Context),
 | |
|                                                      numElemL),
 | |
|                                     getReplacementName(IBeforeJ ? I : J,
 | |
|                                                        true, o));
 | |
|         S->insertBefore(IBeforeJ ? J : I);
 | |
|         return S;
 | |
|       } else if (!expandIEChain(Context, I, J, o, HOp, numElemH, ArgTypeH,
 | |
|                                 ArgTypeL, IBeforeJ)) {
 | |
|         Instruction *NHOp;
 | |
|         if (numElemH > 1) {
 | |
|           std::vector<Constant *> Mask(numElemL);
 | |
|           unsigned v = 0;
 | |
|           for (; v < numElemH; ++v)
 | |
|             Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
 | |
|           for (; v < numElemL; ++v)
 | |
|             Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
 | |
|     
 | |
|           NHOp = new ShuffleVectorInst(HOp, UndefValue::get(ArgTypeH),
 | |
|                                        ConstantVector::get(Mask),
 | |
|                                        getReplacementName(IBeforeJ ? I : J,
 | |
|                                                           true, o, 1));
 | |
|         } else {
 | |
|           NHOp = InsertElementInst::Create(UndefValue::get(ArgTypeL), HOp, CV0,
 | |
|                                            getReplacementName(IBeforeJ ? I : J,
 | |
|                                                               true, o, 1));
 | |
|         }
 | |
| 
 | |
|         NHOp->insertBefore(IBeforeJ ? J : I);
 | |
|         HOp = NHOp;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (ArgType->isVectorTy()) {
 | |
|       unsigned numElem = VArgType->getVectorNumElements();
 | |
|       std::vector<Constant*> Mask(numElem);
 | |
|       for (unsigned v = 0; v < numElem; ++v) {
 | |
|         unsigned Idx = v;
 | |
|         // If the low vector was expanded, we need to skip the extra
 | |
|         // undefined entries.
 | |
|         if (v >= numElemL && numElemH > numElemL)
 | |
|           Idx += (numElemH - numElemL);
 | |
|         Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), Idx);
 | |
|       }
 | |
| 
 | |
|       Instruction *BV = new ShuffleVectorInst(LOp, HOp,
 | |
|                           ConstantVector::get(Mask),
 | |
|                           getReplacementName(IBeforeJ ? I : J, true, o));
 | |
|       BV->insertBefore(IBeforeJ ? J : I);
 | |
|       return BV;
 | |
|     }
 | |
| 
 | |
|     Instruction *BV1 = InsertElementInst::Create(
 | |
|                                           UndefValue::get(VArgType), LOp, CV0,
 | |
|                                           getReplacementName(IBeforeJ ? I : J,
 | |
|                                                              true, o, 1));
 | |
|     BV1->insertBefore(IBeforeJ ? J : I);
 | |
|     Instruction *BV2 = InsertElementInst::Create(BV1, HOp, CV1,
 | |
|                                           getReplacementName(IBeforeJ ? I : J,
 | |
|                                                              true, o, 2));
 | |
|     BV2->insertBefore(IBeforeJ ? J : I);
 | |
|     return BV2;
 | |
|   }
 | |
| 
 | |
|   // This function creates an array of values that will be used as the inputs
 | |
|   // to the vector instruction that fuses I with J.
 | |
|   void BBVectorize::getReplacementInputsForPair(LLVMContext& Context,
 | |
|                      Instruction *I, Instruction *J,
 | |
|                      SmallVectorImpl<Value *> &ReplacedOperands,
 | |
|                      bool IBeforeJ) {
 | |
|     unsigned NumOperands = I->getNumOperands();
 | |
| 
 | |
|     for (unsigned p = 0, o = NumOperands-1; p < NumOperands; ++p, --o) {
 | |
|       // Iterate backward so that we look at the store pointer
 | |
|       // first and know whether or not we need to flip the inputs.
 | |
| 
 | |
|       if (isa<LoadInst>(I) || (o == 1 && isa<StoreInst>(I))) {
 | |
|         // This is the pointer for a load/store instruction.
 | |
|         ReplacedOperands[o] = getReplacementPointerInput(Context, I, J, o);
 | |
|         continue;
 | |
|       } else if (isa<CallInst>(I)) {
 | |
|         Function *F = cast<CallInst>(I)->getCalledFunction();
 | |
|         Intrinsic::ID IID = (Intrinsic::ID) F->getIntrinsicID();
 | |
|         if (o == NumOperands-1) {
 | |
|           BasicBlock &BB = *I->getParent();
 | |
| 
 | |
|           Module *M = BB.getParent()->getParent();
 | |
|           Type *ArgTypeI = I->getType();
 | |
|           Type *ArgTypeJ = J->getType();
 | |
|           Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
 | |
| 
 | |
|           ReplacedOperands[o] = Intrinsic::getDeclaration(M, IID, VArgType);
 | |
|           continue;
 | |
|         } else if ((IID == Intrinsic::powi || IID == Intrinsic::ctlz ||
 | |
|                     IID == Intrinsic::cttz) && o == 1) {
 | |
|           // The second argument of powi/ctlz/cttz is a single integer/constant
 | |
|           // and we've already checked that both arguments are equal.
 | |
|           // As a result, we just keep I's second argument.
 | |
|           ReplacedOperands[o] = I->getOperand(o);
 | |
|           continue;
 | |
|         }
 | |
|       } else if (isa<ShuffleVectorInst>(I) && o == NumOperands-1) {
 | |
|         ReplacedOperands[o] = getReplacementShuffleMask(Context, I, J);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       ReplacedOperands[o] = getReplacementInput(Context, I, J, o, IBeforeJ);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // This function creates two values that represent the outputs of the
 | |
|   // original I and J instructions. These are generally vector shuffles
 | |
|   // or extracts. In many cases, these will end up being unused and, thus,
 | |
|   // eliminated by later passes.
 | |
|   void BBVectorize::replaceOutputsOfPair(LLVMContext& Context, Instruction *I,
 | |
|                      Instruction *J, Instruction *K,
 | |
|                      Instruction *&InsertionPt,
 | |
|                      Instruction *&K1, Instruction *&K2) {
 | |
|     if (isa<StoreInst>(I)) {
 | |
|       AA->replaceWithNewValue(I, K);
 | |
|       AA->replaceWithNewValue(J, K);
 | |
|     } else {
 | |
|       Type *IType = I->getType();
 | |
|       Type *JType = J->getType();
 | |
| 
 | |
|       VectorType *VType = getVecTypeForPair(IType, JType);
 | |
|       unsigned numElem = VType->getNumElements();
 | |
| 
 | |
|       unsigned numElemI = getNumScalarElements(IType);
 | |
|       unsigned numElemJ = getNumScalarElements(JType);
 | |
| 
 | |
|       if (IType->isVectorTy()) {
 | |
|         std::vector<Constant*> Mask1(numElemI), Mask2(numElemI);
 | |
|         for (unsigned v = 0; v < numElemI; ++v) {
 | |
|           Mask1[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
 | |
|           Mask2[v] = ConstantInt::get(Type::getInt32Ty(Context), numElemJ+v);
 | |
|         }
 | |
| 
 | |
|         K1 = new ShuffleVectorInst(K, UndefValue::get(VType),
 | |
|                                    ConstantVector::get( Mask1),
 | |
|                                    getReplacementName(K, false, 1));
 | |
|       } else {
 | |
|         Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0);
 | |
|         K1 = ExtractElementInst::Create(K, CV0,
 | |
|                                           getReplacementName(K, false, 1));
 | |
|       }
 | |
| 
 | |
|       if (JType->isVectorTy()) {
 | |
|         std::vector<Constant*> Mask1(numElemJ), Mask2(numElemJ);
 | |
|         for (unsigned v = 0; v < numElemJ; ++v) {
 | |
|           Mask1[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
 | |
|           Mask2[v] = ConstantInt::get(Type::getInt32Ty(Context), numElemI+v);
 | |
|         }
 | |
| 
 | |
|         K2 = new ShuffleVectorInst(K, UndefValue::get(VType),
 | |
|                                    ConstantVector::get( Mask2),
 | |
|                                    getReplacementName(K, false, 2));
 | |
|       } else {
 | |
|         Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), numElem-1);
 | |
|         K2 = ExtractElementInst::Create(K, CV1,
 | |
|                                           getReplacementName(K, false, 2));
 | |
|       }
 | |
| 
 | |
|       K1->insertAfter(K);
 | |
|       K2->insertAfter(K1);
 | |
|       InsertionPt = K2;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Move all uses of the function I (including pairing-induced uses) after J.
 | |
|   bool BBVectorize::canMoveUsesOfIAfterJ(BasicBlock &BB,
 | |
|                      DenseSet<ValuePair> &LoadMoveSetPairs,
 | |
|                      Instruction *I, Instruction *J) {
 | |
|     // Skip to the first instruction past I.
 | |
|     BasicBlock::iterator L = std::next(BasicBlock::iterator(I));
 | |
| 
 | |
|     DenseSet<Value *> Users;
 | |
|     AliasSetTracker WriteSet(*AA);
 | |
|     if (I->mayWriteToMemory()) WriteSet.add(I);
 | |
| 
 | |
|     for (; cast<Instruction>(L) != J; ++L)
 | |
|       (void) trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSetPairs);
 | |
| 
 | |
|     assert(cast<Instruction>(L) == J &&
 | |
|       "Tracking has not proceeded far enough to check for dependencies");
 | |
|     // If J is now in the use set of I, then trackUsesOfI will return true
 | |
|     // and we have a dependency cycle (and the fusing operation must abort).
 | |
|     return !trackUsesOfI(Users, WriteSet, I, J, true, &LoadMoveSetPairs);
 | |
|   }
 | |
| 
 | |
|   // Move all uses of the function I (including pairing-induced uses) after J.
 | |
|   void BBVectorize::moveUsesOfIAfterJ(BasicBlock &BB,
 | |
|                      DenseSet<ValuePair> &LoadMoveSetPairs,
 | |
|                      Instruction *&InsertionPt,
 | |
|                      Instruction *I, Instruction *J) {
 | |
|     // Skip to the first instruction past I.
 | |
|     BasicBlock::iterator L = std::next(BasicBlock::iterator(I));
 | |
| 
 | |
|     DenseSet<Value *> Users;
 | |
|     AliasSetTracker WriteSet(*AA);
 | |
|     if (I->mayWriteToMemory()) WriteSet.add(I);
 | |
| 
 | |
|     for (; cast<Instruction>(L) != J;) {
 | |
|       if (trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSetPairs)) {
 | |
|         // Move this instruction
 | |
|         Instruction *InstToMove = L; ++L;
 | |
| 
 | |
|         DEBUG(dbgs() << "BBV: moving: " << *InstToMove <<
 | |
|                         " to after " << *InsertionPt << "\n");
 | |
|         InstToMove->removeFromParent();
 | |
|         InstToMove->insertAfter(InsertionPt);
 | |
|         InsertionPt = InstToMove;
 | |
|       } else {
 | |
|         ++L;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Collect all load instruction that are in the move set of a given first
 | |
|   // pair member.  These loads depend on the first instruction, I, and so need
 | |
|   // to be moved after J (the second instruction) when the pair is fused.
 | |
|   void BBVectorize::collectPairLoadMoveSet(BasicBlock &BB,
 | |
|                      DenseMap<Value *, Value *> &ChosenPairs,
 | |
|                      DenseMap<Value *, std::vector<Value *> > &LoadMoveSet,
 | |
|                      DenseSet<ValuePair> &LoadMoveSetPairs,
 | |
|                      Instruction *I) {
 | |
|     // Skip to the first instruction past I.
 | |
|     BasicBlock::iterator L = std::next(BasicBlock::iterator(I));
 | |
| 
 | |
|     DenseSet<Value *> Users;
 | |
|     AliasSetTracker WriteSet(*AA);
 | |
|     if (I->mayWriteToMemory()) WriteSet.add(I);
 | |
| 
 | |
|     // Note: We cannot end the loop when we reach J because J could be moved
 | |
|     // farther down the use chain by another instruction pairing. Also, J
 | |
|     // could be before I if this is an inverted input.
 | |
|     for (BasicBlock::iterator E = BB.end(); cast<Instruction>(L) != E; ++L) {
 | |
|       if (trackUsesOfI(Users, WriteSet, I, L)) {
 | |
|         if (L->mayReadFromMemory()) {
 | |
|           LoadMoveSet[L].push_back(I);
 | |
|           LoadMoveSetPairs.insert(ValuePair(L, I));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // In cases where both load/stores and the computation of their pointers
 | |
|   // are chosen for vectorization, we can end up in a situation where the
 | |
|   // aliasing analysis starts returning different query results as the
 | |
|   // process of fusing instruction pairs continues. Because the algorithm
 | |
|   // relies on finding the same use dags here as were found earlier, we'll
 | |
|   // need to precompute the necessary aliasing information here and then
 | |
|   // manually update it during the fusion process.
 | |
|   void BBVectorize::collectLoadMoveSet(BasicBlock &BB,
 | |
|                      std::vector<Value *> &PairableInsts,
 | |
|                      DenseMap<Value *, Value *> &ChosenPairs,
 | |
|                      DenseMap<Value *, std::vector<Value *> > &LoadMoveSet,
 | |
|                      DenseSet<ValuePair> &LoadMoveSetPairs) {
 | |
|     for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
 | |
|          PIE = PairableInsts.end(); PI != PIE; ++PI) {
 | |
|       DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(*PI);
 | |
|       if (P == ChosenPairs.end()) continue;
 | |
| 
 | |
|       Instruction *I = cast<Instruction>(P->first);
 | |
|       collectPairLoadMoveSet(BB, ChosenPairs, LoadMoveSet,
 | |
|                              LoadMoveSetPairs, I);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // When the first instruction in each pair is cloned, it will inherit its
 | |
|   // parent's metadata. This metadata must be combined with that of the other
 | |
|   // instruction in a safe way.
 | |
|   void BBVectorize::combineMetadata(Instruction *K, const Instruction *J) {
 | |
|     SmallVector<std::pair<unsigned, MDNode*>, 4> Metadata;
 | |
|     K->getAllMetadataOtherThanDebugLoc(Metadata);
 | |
|     for (unsigned i = 0, n = Metadata.size(); i < n; ++i) {
 | |
|       unsigned Kind = Metadata[i].first;
 | |
|       MDNode *JMD = J->getMetadata(Kind);
 | |
|       MDNode *KMD = Metadata[i].second;
 | |
| 
 | |
|       switch (Kind) {
 | |
|       default:
 | |
|         K->setMetadata(Kind, nullptr); // Remove unknown metadata
 | |
|         break;
 | |
|       case LLVMContext::MD_tbaa:
 | |
|         K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
 | |
|         break;
 | |
|       case LLVMContext::MD_fpmath:
 | |
|         K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // This function fuses the chosen instruction pairs into vector instructions,
 | |
|   // taking care preserve any needed scalar outputs and, then, it reorders the
 | |
|   // remaining instructions as needed (users of the first member of the pair
 | |
|   // need to be moved to after the location of the second member of the pair
 | |
|   // because the vector instruction is inserted in the location of the pair's
 | |
|   // second member).
 | |
|   void BBVectorize::fuseChosenPairs(BasicBlock &BB,
 | |
|              std::vector<Value *> &PairableInsts,
 | |
|              DenseMap<Value *, Value *> &ChosenPairs,
 | |
|              DenseSet<ValuePair> &FixedOrderPairs,
 | |
|              DenseMap<VPPair, unsigned> &PairConnectionTypes,
 | |
|              DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
 | |
|              DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps) {
 | |
|     LLVMContext& Context = BB.getContext();
 | |
| 
 | |
|     // During the vectorization process, the order of the pairs to be fused
 | |
|     // could be flipped. So we'll add each pair, flipped, into the ChosenPairs
 | |
|     // list. After a pair is fused, the flipped pair is removed from the list.
 | |
|     DenseSet<ValuePair> FlippedPairs;
 | |
|     for (DenseMap<Value *, Value *>::iterator P = ChosenPairs.begin(),
 | |
|          E = ChosenPairs.end(); P != E; ++P)
 | |
|       FlippedPairs.insert(ValuePair(P->second, P->first));
 | |
|     for (DenseSet<ValuePair>::iterator P = FlippedPairs.begin(),
 | |
|          E = FlippedPairs.end(); P != E; ++P)
 | |
|       ChosenPairs.insert(*P);
 | |
| 
 | |
|     DenseMap<Value *, std::vector<Value *> > LoadMoveSet;
 | |
|     DenseSet<ValuePair> LoadMoveSetPairs;
 | |
|     collectLoadMoveSet(BB, PairableInsts, ChosenPairs,
 | |
|                        LoadMoveSet, LoadMoveSetPairs);
 | |
| 
 | |
|     DEBUG(dbgs() << "BBV: initial: \n" << BB << "\n");
 | |
| 
 | |
|     for (BasicBlock::iterator PI = BB.getFirstInsertionPt(); PI != BB.end();) {
 | |
|       DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(PI);
 | |
|       if (P == ChosenPairs.end()) {
 | |
|         ++PI;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if (getDepthFactor(P->first) == 0) {
 | |
|         // These instructions are not really fused, but are tracked as though
 | |
|         // they are. Any case in which it would be interesting to fuse them
 | |
|         // will be taken care of by InstCombine.
 | |
|         --NumFusedOps;
 | |
|         ++PI;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       Instruction *I = cast<Instruction>(P->first),
 | |
|         *J = cast<Instruction>(P->second);
 | |
| 
 | |
|       DEBUG(dbgs() << "BBV: fusing: " << *I <<
 | |
|              " <-> " << *J << "\n");
 | |
| 
 | |
|       // Remove the pair and flipped pair from the list.
 | |
|       DenseMap<Value *, Value *>::iterator FP = ChosenPairs.find(P->second);
 | |
|       assert(FP != ChosenPairs.end() && "Flipped pair not found in list");
 | |
|       ChosenPairs.erase(FP);
 | |
|       ChosenPairs.erase(P);
 | |
| 
 | |
|       if (!canMoveUsesOfIAfterJ(BB, LoadMoveSetPairs, I, J)) {
 | |
|         DEBUG(dbgs() << "BBV: fusion of: " << *I <<
 | |
|                " <-> " << *J <<
 | |
|                " aborted because of non-trivial dependency cycle\n");
 | |
|         --NumFusedOps;
 | |
|         ++PI;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // If the pair must have the other order, then flip it.
 | |
|       bool FlipPairOrder = FixedOrderPairs.count(ValuePair(J, I));
 | |
|       if (!FlipPairOrder && !FixedOrderPairs.count(ValuePair(I, J))) {
 | |
|         // This pair does not have a fixed order, and so we might want to
 | |
|         // flip it if that will yield fewer shuffles. We count the number
 | |
|         // of dependencies connected via swaps, and those directly connected,
 | |
|         // and flip the order if the number of swaps is greater.
 | |
|         bool OrigOrder = true;
 | |
|         DenseMap<ValuePair, std::vector<ValuePair> >::iterator IJ =
 | |
|           ConnectedPairDeps.find(ValuePair(I, J));
 | |
|         if (IJ == ConnectedPairDeps.end()) {
 | |
|           IJ = ConnectedPairDeps.find(ValuePair(J, I));
 | |
|           OrigOrder = false;
 | |
|         }
 | |
| 
 | |
|         if (IJ != ConnectedPairDeps.end()) {
 | |
|           unsigned NumDepsDirect = 0, NumDepsSwap = 0;
 | |
|           for (std::vector<ValuePair>::iterator T = IJ->second.begin(),
 | |
|                TE = IJ->second.end(); T != TE; ++T) {
 | |
|             VPPair Q(IJ->first, *T);
 | |
|             DenseMap<VPPair, unsigned>::iterator R =
 | |
|               PairConnectionTypes.find(VPPair(Q.second, Q.first));
 | |
|             assert(R != PairConnectionTypes.end() &&
 | |
|                    "Cannot find pair connection type");
 | |
|             if (R->second == PairConnectionDirect)
 | |
|               ++NumDepsDirect;
 | |
|             else if (R->second == PairConnectionSwap)
 | |
|               ++NumDepsSwap;
 | |
|           }
 | |
| 
 | |
|           if (!OrigOrder)
 | |
|             std::swap(NumDepsDirect, NumDepsSwap);
 | |
| 
 | |
|           if (NumDepsSwap > NumDepsDirect) {
 | |
|             FlipPairOrder = true;
 | |
|             DEBUG(dbgs() << "BBV: reordering pair: " << *I <<
 | |
|                             " <-> " << *J << "\n");
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       Instruction *L = I, *H = J;
 | |
|       if (FlipPairOrder)
 | |
|         std::swap(H, L);
 | |
| 
 | |
|       // If the pair being fused uses the opposite order from that in the pair
 | |
|       // connection map, then we need to flip the types.
 | |
|       DenseMap<ValuePair, std::vector<ValuePair> >::iterator HL =
 | |
|         ConnectedPairs.find(ValuePair(H, L));
 | |
|       if (HL != ConnectedPairs.end())
 | |
|         for (std::vector<ValuePair>::iterator T = HL->second.begin(),
 | |
|              TE = HL->second.end(); T != TE; ++T) {
 | |
|           VPPair Q(HL->first, *T);
 | |
|           DenseMap<VPPair, unsigned>::iterator R = PairConnectionTypes.find(Q);
 | |
|           assert(R != PairConnectionTypes.end() &&
 | |
|                  "Cannot find pair connection type");
 | |
|           if (R->second == PairConnectionDirect)
 | |
|             R->second = PairConnectionSwap;
 | |
|           else if (R->second == PairConnectionSwap)
 | |
|             R->second = PairConnectionDirect;
 | |
|         }
 | |
| 
 | |
|       bool LBeforeH = !FlipPairOrder;
 | |
|       unsigned NumOperands = I->getNumOperands();
 | |
|       SmallVector<Value *, 3> ReplacedOperands(NumOperands);
 | |
|       getReplacementInputsForPair(Context, L, H, ReplacedOperands,
 | |
|                                   LBeforeH);
 | |
| 
 | |
|       // Make a copy of the original operation, change its type to the vector
 | |
|       // type and replace its operands with the vector operands.
 | |
|       Instruction *K = L->clone();
 | |
|       if (L->hasName())
 | |
|         K->takeName(L);
 | |
|       else if (H->hasName())
 | |
|         K->takeName(H);
 | |
| 
 | |
|       if (!isa<StoreInst>(K))
 | |
|         K->mutateType(getVecTypeForPair(L->getType(), H->getType()));
 | |
| 
 | |
|       combineMetadata(K, H);
 | |
|       K->intersectOptionalDataWith(H);
 | |
| 
 | |
|       for (unsigned o = 0; o < NumOperands; ++o)
 | |
|         K->setOperand(o, ReplacedOperands[o]);
 | |
| 
 | |
|       K->insertAfter(J);
 | |
| 
 | |
|       // Instruction insertion point:
 | |
|       Instruction *InsertionPt = K;
 | |
|       Instruction *K1 = nullptr, *K2 = nullptr;
 | |
|       replaceOutputsOfPair(Context, L, H, K, InsertionPt, K1, K2);
 | |
| 
 | |
|       // The use dag of the first original instruction must be moved to after
 | |
|       // the location of the second instruction. The entire use dag of the
 | |
|       // first instruction is disjoint from the input dag of the second
 | |
|       // (by definition), and so commutes with it.
 | |
| 
 | |
|       moveUsesOfIAfterJ(BB, LoadMoveSetPairs, InsertionPt, I, J);
 | |
| 
 | |
|       if (!isa<StoreInst>(I)) {
 | |
|         L->replaceAllUsesWith(K1);
 | |
|         H->replaceAllUsesWith(K2);
 | |
|         AA->replaceWithNewValue(L, K1);
 | |
|         AA->replaceWithNewValue(H, K2);
 | |
|       }
 | |
| 
 | |
|       // Instructions that may read from memory may be in the load move set.
 | |
|       // Once an instruction is fused, we no longer need its move set, and so
 | |
|       // the values of the map never need to be updated. However, when a load
 | |
|       // is fused, we need to merge the entries from both instructions in the
 | |
|       // pair in case those instructions were in the move set of some other
 | |
|       // yet-to-be-fused pair. The loads in question are the keys of the map.
 | |
|       if (I->mayReadFromMemory()) {
 | |
|         std::vector<ValuePair> NewSetMembers;
 | |
|         DenseMap<Value *, std::vector<Value *> >::iterator II =
 | |
|           LoadMoveSet.find(I);
 | |
|         if (II != LoadMoveSet.end())
 | |
|           for (std::vector<Value *>::iterator N = II->second.begin(),
 | |
|                NE = II->second.end(); N != NE; ++N)
 | |
|             NewSetMembers.push_back(ValuePair(K, *N));
 | |
|         DenseMap<Value *, std::vector<Value *> >::iterator JJ =
 | |
|           LoadMoveSet.find(J);
 | |
|         if (JJ != LoadMoveSet.end())
 | |
|           for (std::vector<Value *>::iterator N = JJ->second.begin(),
 | |
|                NE = JJ->second.end(); N != NE; ++N)
 | |
|             NewSetMembers.push_back(ValuePair(K, *N));
 | |
|         for (std::vector<ValuePair>::iterator A = NewSetMembers.begin(),
 | |
|              AE = NewSetMembers.end(); A != AE; ++A) {
 | |
|           LoadMoveSet[A->first].push_back(A->second);
 | |
|           LoadMoveSetPairs.insert(*A);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Before removing I, set the iterator to the next instruction.
 | |
|       PI = std::next(BasicBlock::iterator(I));
 | |
|       if (cast<Instruction>(PI) == J)
 | |
|         ++PI;
 | |
| 
 | |
|       SE->forgetValue(I);
 | |
|       SE->forgetValue(J);
 | |
|       I->eraseFromParent();
 | |
|       J->eraseFromParent();
 | |
| 
 | |
|       DEBUG(if (PrintAfterEveryPair) dbgs() << "BBV: block is now: \n" <<
 | |
|                                                BB << "\n");
 | |
|     }
 | |
| 
 | |
|     DEBUG(dbgs() << "BBV: final: \n" << BB << "\n");
 | |
|   }
 | |
| }
 | |
| 
 | |
| char BBVectorize::ID = 0;
 | |
| static const char bb_vectorize_name[] = "Basic-Block Vectorization";
 | |
| INITIALIZE_PASS_BEGIN(BBVectorize, BBV_NAME, bb_vectorize_name, false, false)
 | |
| INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
 | |
| INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
 | |
| INITIALIZE_PASS_END(BBVectorize, BBV_NAME, bb_vectorize_name, false, false)
 | |
| 
 | |
| BasicBlockPass *llvm::createBBVectorizePass(const VectorizeConfig &C) {
 | |
|   return new BBVectorize(C);
 | |
| }
 | |
| 
 | |
| bool
 | |
| llvm::vectorizeBasicBlock(Pass *P, BasicBlock &BB, const VectorizeConfig &C) {
 | |
|   BBVectorize BBVectorizer(P, C);
 | |
|   return BBVectorizer.vectorizeBB(BB);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| VectorizeConfig::VectorizeConfig() {
 | |
|   VectorBits = ::VectorBits;
 | |
|   VectorizeBools = !::NoBools;
 | |
|   VectorizeInts = !::NoInts;
 | |
|   VectorizeFloats = !::NoFloats;
 | |
|   VectorizePointers = !::NoPointers;
 | |
|   VectorizeCasts = !::NoCasts;
 | |
|   VectorizeMath = !::NoMath;
 | |
|   VectorizeBitManipulations = !::NoBitManipulation;
 | |
|   VectorizeFMA = !::NoFMA;
 | |
|   VectorizeSelect = !::NoSelect;
 | |
|   VectorizeCmp = !::NoCmp;
 | |
|   VectorizeGEP = !::NoGEP;
 | |
|   VectorizeMemOps = !::NoMemOps;
 | |
|   AlignedOnly = ::AlignedOnly;
 | |
|   ReqChainDepth= ::ReqChainDepth;
 | |
|   SearchLimit = ::SearchLimit;
 | |
|   MaxCandPairsForCycleCheck = ::MaxCandPairsForCycleCheck;
 | |
|   SplatBreaksChain = ::SplatBreaksChain;
 | |
|   MaxInsts = ::MaxInsts;
 | |
|   MaxPairs = ::MaxPairs;
 | |
|   MaxIter = ::MaxIter;
 | |
|   Pow2LenOnly = ::Pow2LenOnly;
 | |
|   NoMemOpBoost = ::NoMemOpBoost;
 | |
|   FastDep = ::FastDep;
 | |
| }
 |