mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	This speeds up the greedy register allocator by 15%. DenseMap is not as fast as one might hope. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126921 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1365 lines
		
	
	
		
			49 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1365 lines
		
	
	
		
			49 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- RegAllocGreedy.cpp - greedy register allocator --------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines the RAGreedy function pass for register allocation in
 | 
						|
// optimized builds.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "regalloc"
 | 
						|
#include "AllocationOrder.h"
 | 
						|
#include "LiveIntervalUnion.h"
 | 
						|
#include "LiveRangeEdit.h"
 | 
						|
#include "RegAllocBase.h"
 | 
						|
#include "Spiller.h"
 | 
						|
#include "SpillPlacement.h"
 | 
						|
#include "SplitKit.h"
 | 
						|
#include "VirtRegMap.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/PassAnalysisSupport.h"
 | 
						|
#include "llvm/CodeGen/CalcSpillWeights.h"
 | 
						|
#include "llvm/CodeGen/EdgeBundles.h"
 | 
						|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | 
						|
#include "llvm/CodeGen/LiveStackAnalysis.h"
 | 
						|
#include "llvm/CodeGen/MachineDominators.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineLoopInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineLoopRanges.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/CodeGen/RegAllocRegistry.h"
 | 
						|
#include "llvm/CodeGen/RegisterCoalescer.h"
 | 
						|
#include "llvm/Target/TargetOptions.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Support/Timer.h"
 | 
						|
 | 
						|
#include <queue>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumGlobalSplits, "Number of split global live ranges");
 | 
						|
STATISTIC(NumLocalSplits,  "Number of split local live ranges");
 | 
						|
STATISTIC(NumReassigned,   "Number of interferences reassigned");
 | 
						|
STATISTIC(NumEvicted,      "Number of interferences evicted");
 | 
						|
 | 
						|
static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
 | 
						|
                                       createGreedyRegisterAllocator);
 | 
						|
 | 
						|
namespace {
 | 
						|
class RAGreedy : public MachineFunctionPass, public RegAllocBase {
 | 
						|
  // context
 | 
						|
  MachineFunction *MF;
 | 
						|
  BitVector ReservedRegs;
 | 
						|
 | 
						|
  // analyses
 | 
						|
  SlotIndexes *Indexes;
 | 
						|
  LiveStacks *LS;
 | 
						|
  MachineDominatorTree *DomTree;
 | 
						|
  MachineLoopInfo *Loops;
 | 
						|
  MachineLoopRanges *LoopRanges;
 | 
						|
  EdgeBundles *Bundles;
 | 
						|
  SpillPlacement *SpillPlacer;
 | 
						|
 | 
						|
  // state
 | 
						|
  std::auto_ptr<Spiller> SpillerInstance;
 | 
						|
  std::priority_queue<std::pair<unsigned, unsigned> > Queue;
 | 
						|
 | 
						|
  // Live ranges pass through a number of stages as we try to allocate them.
 | 
						|
  // Some of the stages may also create new live ranges:
 | 
						|
  //
 | 
						|
  // - Region splitting.
 | 
						|
  // - Per-block splitting.
 | 
						|
  // - Local splitting.
 | 
						|
  // - Spilling.
 | 
						|
  //
 | 
						|
  // Ranges produced by one of the stages skip the previous stages when they are
 | 
						|
  // dequeued. This improves performance because we can skip interference checks
 | 
						|
  // that are unlikely to give any results. It also guarantees that the live
 | 
						|
  // range splitting algorithm terminates, something that is otherwise hard to
 | 
						|
  // ensure.
 | 
						|
  enum LiveRangeStage {
 | 
						|
    RS_Original, ///< Never seen before, never split.
 | 
						|
    RS_Second,   ///< Second time in the queue.
 | 
						|
    RS_Region,   ///< Produced by region splitting.
 | 
						|
    RS_Block,    ///< Produced by per-block splitting.
 | 
						|
    RS_Local,    ///< Produced by local splitting.
 | 
						|
    RS_Spill     ///< Produced by spilling.
 | 
						|
  };
 | 
						|
 | 
						|
  IndexedMap<unsigned char, VirtReg2IndexFunctor> LRStage;
 | 
						|
 | 
						|
  LiveRangeStage getStage(const LiveInterval &VirtReg) const {
 | 
						|
    return LiveRangeStage(LRStage[VirtReg.reg]);
 | 
						|
  }
 | 
						|
 | 
						|
  template<typename Iterator>
 | 
						|
  void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
 | 
						|
    LRStage.resize(MRI->getNumVirtRegs());
 | 
						|
    for (;Begin != End; ++Begin)
 | 
						|
      LRStage[(*Begin)->reg] = NewStage;
 | 
						|
  }
 | 
						|
 | 
						|
  // splitting state.
 | 
						|
  std::auto_ptr<SplitAnalysis> SA;
 | 
						|
  std::auto_ptr<SplitEditor> SE;
 | 
						|
 | 
						|
  /// All basic blocks where the current register is live.
 | 
						|
  SmallVector<SpillPlacement::BlockConstraint, 8> SpillConstraints;
 | 
						|
 | 
						|
  /// For every instruction in SA->UseSlots, store the previous non-copy
 | 
						|
  /// instruction.
 | 
						|
  SmallVector<SlotIndex, 8> PrevSlot;
 | 
						|
 | 
						|
public:
 | 
						|
  RAGreedy();
 | 
						|
 | 
						|
  /// Return the pass name.
 | 
						|
  virtual const char* getPassName() const {
 | 
						|
    return "Greedy Register Allocator";
 | 
						|
  }
 | 
						|
 | 
						|
  /// RAGreedy analysis usage.
 | 
						|
  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
 | 
						|
  virtual void releaseMemory();
 | 
						|
  virtual Spiller &spiller() { return *SpillerInstance; }
 | 
						|
  virtual void enqueue(LiveInterval *LI);
 | 
						|
  virtual LiveInterval *dequeue();
 | 
						|
  virtual unsigned selectOrSplit(LiveInterval&,
 | 
						|
                                 SmallVectorImpl<LiveInterval*>&);
 | 
						|
 | 
						|
  /// Perform register allocation.
 | 
						|
  virtual bool runOnMachineFunction(MachineFunction &mf);
 | 
						|
 | 
						|
  static char ID;
 | 
						|
 | 
						|
private:
 | 
						|
  bool checkUncachedInterference(LiveInterval&, unsigned);
 | 
						|
  LiveInterval *getSingleInterference(LiveInterval&, unsigned);
 | 
						|
  bool reassignVReg(LiveInterval &InterferingVReg, unsigned OldPhysReg);
 | 
						|
  float calcInterferenceInfo(LiveInterval&, unsigned);
 | 
						|
  float calcGlobalSplitCost(const BitVector&);
 | 
						|
  void splitAroundRegion(LiveInterval&, unsigned, const BitVector&,
 | 
						|
                         SmallVectorImpl<LiveInterval*>&);
 | 
						|
  void calcGapWeights(unsigned, SmallVectorImpl<float>&);
 | 
						|
  SlotIndex getPrevMappedIndex(const MachineInstr*);
 | 
						|
  void calcPrevSlots();
 | 
						|
  unsigned nextSplitPoint(unsigned);
 | 
						|
  bool canEvictInterference(LiveInterval&, unsigned, unsigned, float&);
 | 
						|
 | 
						|
  unsigned tryReassign(LiveInterval&, AllocationOrder&,
 | 
						|
                              SmallVectorImpl<LiveInterval*>&);
 | 
						|
  unsigned tryEvict(LiveInterval&, AllocationOrder&,
 | 
						|
                    SmallVectorImpl<LiveInterval*>&);
 | 
						|
  unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
 | 
						|
                          SmallVectorImpl<LiveInterval*>&);
 | 
						|
  unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
 | 
						|
    SmallVectorImpl<LiveInterval*>&);
 | 
						|
  unsigned trySplit(LiveInterval&, AllocationOrder&,
 | 
						|
                    SmallVectorImpl<LiveInterval*>&);
 | 
						|
};
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
char RAGreedy::ID = 0;
 | 
						|
 | 
						|
FunctionPass* llvm::createGreedyRegisterAllocator() {
 | 
						|
  return new RAGreedy();
 | 
						|
}
 | 
						|
 | 
						|
RAGreedy::RAGreedy(): MachineFunctionPass(ID), LRStage(RS_Original) {
 | 
						|
  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
 | 
						|
  initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
 | 
						|
  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
 | 
						|
  initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
 | 
						|
  initializeRegisterCoalescerAnalysisGroup(*PassRegistry::getPassRegistry());
 | 
						|
  initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
 | 
						|
  initializeLiveStacksPass(*PassRegistry::getPassRegistry());
 | 
						|
  initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
 | 
						|
  initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
 | 
						|
  initializeMachineLoopRangesPass(*PassRegistry::getPassRegistry());
 | 
						|
  initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
 | 
						|
  initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
 | 
						|
  initializeSpillPlacementPass(*PassRegistry::getPassRegistry());
 | 
						|
}
 | 
						|
 | 
						|
void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.setPreservesCFG();
 | 
						|
  AU.addRequired<AliasAnalysis>();
 | 
						|
  AU.addPreserved<AliasAnalysis>();
 | 
						|
  AU.addRequired<LiveIntervals>();
 | 
						|
  AU.addRequired<SlotIndexes>();
 | 
						|
  AU.addPreserved<SlotIndexes>();
 | 
						|
  if (StrongPHIElim)
 | 
						|
    AU.addRequiredID(StrongPHIEliminationID);
 | 
						|
  AU.addRequiredTransitive<RegisterCoalescer>();
 | 
						|
  AU.addRequired<CalculateSpillWeights>();
 | 
						|
  AU.addRequired<LiveStacks>();
 | 
						|
  AU.addPreserved<LiveStacks>();
 | 
						|
  AU.addRequired<MachineDominatorTree>();
 | 
						|
  AU.addPreserved<MachineDominatorTree>();
 | 
						|
  AU.addRequired<MachineLoopInfo>();
 | 
						|
  AU.addPreserved<MachineLoopInfo>();
 | 
						|
  AU.addRequired<MachineLoopRanges>();
 | 
						|
  AU.addPreserved<MachineLoopRanges>();
 | 
						|
  AU.addRequired<VirtRegMap>();
 | 
						|
  AU.addPreserved<VirtRegMap>();
 | 
						|
  AU.addRequired<EdgeBundles>();
 | 
						|
  AU.addRequired<SpillPlacement>();
 | 
						|
  MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
}
 | 
						|
 | 
						|
void RAGreedy::releaseMemory() {
 | 
						|
  SpillerInstance.reset(0);
 | 
						|
  LRStage.clear();
 | 
						|
  RegAllocBase::releaseMemory();
 | 
						|
}
 | 
						|
 | 
						|
void RAGreedy::enqueue(LiveInterval *LI) {
 | 
						|
  // Prioritize live ranges by size, assigning larger ranges first.
 | 
						|
  // The queue holds (size, reg) pairs.
 | 
						|
  const unsigned Size = LI->getSize();
 | 
						|
  const unsigned Reg = LI->reg;
 | 
						|
  assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
 | 
						|
         "Can only enqueue virtual registers");
 | 
						|
  unsigned Prio;
 | 
						|
 | 
						|
  LRStage.grow(Reg);
 | 
						|
  if (LRStage[Reg] == RS_Original)
 | 
						|
    // 1st generation ranges are handled first, long -> short.
 | 
						|
    Prio = (1u << 31) + Size;
 | 
						|
  else
 | 
						|
    // Repeat offenders are handled second, short -> long
 | 
						|
    Prio = (1u << 30) - Size;
 | 
						|
 | 
						|
  // Boost ranges that have a physical register hint.
 | 
						|
  const unsigned Hint = VRM->getRegAllocPref(Reg);
 | 
						|
  if (TargetRegisterInfo::isPhysicalRegister(Hint))
 | 
						|
    Prio |= (1u << 30);
 | 
						|
 | 
						|
  Queue.push(std::make_pair(Prio, Reg));
 | 
						|
}
 | 
						|
 | 
						|
LiveInterval *RAGreedy::dequeue() {
 | 
						|
  if (Queue.empty())
 | 
						|
    return 0;
 | 
						|
  LiveInterval *LI = &LIS->getInterval(Queue.top().second);
 | 
						|
  Queue.pop();
 | 
						|
  return LI;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                         Register Reassignment
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
// Check interference without using the cache.
 | 
						|
bool RAGreedy::checkUncachedInterference(LiveInterval &VirtReg,
 | 
						|
                                         unsigned PhysReg) {
 | 
						|
  for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) {
 | 
						|
    LiveIntervalUnion::Query subQ(&VirtReg, &PhysReg2LiveUnion[*AliasI]);
 | 
						|
    if (subQ.checkInterference())
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// getSingleInterference - Return the single interfering virtual register
 | 
						|
/// assigned to PhysReg. Return 0 if more than one virtual register is
 | 
						|
/// interfering.
 | 
						|
LiveInterval *RAGreedy::getSingleInterference(LiveInterval &VirtReg,
 | 
						|
                                              unsigned PhysReg) {
 | 
						|
  // Check physreg and aliases.
 | 
						|
  LiveInterval *Interference = 0;
 | 
						|
  for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) {
 | 
						|
    LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
 | 
						|
    if (Q.checkInterference()) {
 | 
						|
      if (Interference)
 | 
						|
        return 0;
 | 
						|
      if (Q.collectInterferingVRegs(2) > 1)
 | 
						|
        return 0;
 | 
						|
      Interference = Q.interferingVRegs().front();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Interference;
 | 
						|
}
 | 
						|
 | 
						|
// Attempt to reassign this virtual register to a different physical register.
 | 
						|
//
 | 
						|
// FIXME: we are not yet caching these "second-level" interferences discovered
 | 
						|
// in the sub-queries. These interferences can change with each call to
 | 
						|
// selectOrSplit. However, we could implement a "may-interfere" cache that
 | 
						|
// could be conservatively dirtied when we reassign or split.
 | 
						|
//
 | 
						|
// FIXME: This may result in a lot of alias queries. We could summarize alias
 | 
						|
// live intervals in their parent register's live union, but it's messy.
 | 
						|
bool RAGreedy::reassignVReg(LiveInterval &InterferingVReg,
 | 
						|
                            unsigned WantedPhysReg) {
 | 
						|
  assert(TargetRegisterInfo::isVirtualRegister(InterferingVReg.reg) &&
 | 
						|
         "Can only reassign virtual registers");
 | 
						|
  assert(TRI->regsOverlap(WantedPhysReg, VRM->getPhys(InterferingVReg.reg)) &&
 | 
						|
         "inconsistent phys reg assigment");
 | 
						|
 | 
						|
  AllocationOrder Order(InterferingVReg.reg, *VRM, ReservedRegs);
 | 
						|
  while (unsigned PhysReg = Order.next()) {
 | 
						|
    // Don't reassign to a WantedPhysReg alias.
 | 
						|
    if (TRI->regsOverlap(PhysReg, WantedPhysReg))
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (checkUncachedInterference(InterferingVReg, PhysReg))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Reassign the interfering virtual reg to this physical reg.
 | 
						|
    unsigned OldAssign = VRM->getPhys(InterferingVReg.reg);
 | 
						|
    DEBUG(dbgs() << "reassigning: " << InterferingVReg << " from " <<
 | 
						|
          TRI->getName(OldAssign) << " to " << TRI->getName(PhysReg) << '\n');
 | 
						|
    unassign(InterferingVReg, OldAssign);
 | 
						|
    assign(InterferingVReg, PhysReg);
 | 
						|
    ++NumReassigned;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// tryReassign - Try to reassign a single interference to a different physreg.
 | 
						|
/// @param  VirtReg Currently unassigned virtual register.
 | 
						|
/// @param  Order   Physregs to try.
 | 
						|
/// @return         Physreg to assign VirtReg, or 0.
 | 
						|
unsigned RAGreedy::tryReassign(LiveInterval &VirtReg, AllocationOrder &Order,
 | 
						|
                               SmallVectorImpl<LiveInterval*> &NewVRegs){
 | 
						|
  NamedRegionTimer T("Reassign", TimerGroupName, TimePassesIsEnabled);
 | 
						|
 | 
						|
  Order.rewind();
 | 
						|
  while (unsigned PhysReg = Order.next()) {
 | 
						|
    LiveInterval *InterferingVReg = getSingleInterference(VirtReg, PhysReg);
 | 
						|
    if (!InterferingVReg)
 | 
						|
      continue;
 | 
						|
    if (TargetRegisterInfo::isPhysicalRegister(InterferingVReg->reg))
 | 
						|
      continue;
 | 
						|
    if (reassignVReg(*InterferingVReg, PhysReg))
 | 
						|
      return PhysReg;
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                         Interference eviction
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// canEvict - Return true if all interferences between VirtReg and PhysReg can
 | 
						|
/// be evicted. Set maxWeight to the maximal spill weight of an interference.
 | 
						|
bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
 | 
						|
                                    unsigned Size, float &MaxWeight) {
 | 
						|
  float Weight = 0;
 | 
						|
  for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) {
 | 
						|
    LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
 | 
						|
    // If there is 10 or more interferences, chances are one is smaller.
 | 
						|
    if (Q.collectInterferingVRegs(10) >= 10)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // CHeck if any interfering live range is shorter than VirtReg.
 | 
						|
    for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i) {
 | 
						|
      LiveInterval *Intf = Q.interferingVRegs()[i];
 | 
						|
      if (TargetRegisterInfo::isPhysicalRegister(Intf->reg))
 | 
						|
        return false;
 | 
						|
      if (Intf->getSize() <= Size)
 | 
						|
        return false;
 | 
						|
      Weight = std::max(Weight, Intf->weight);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  MaxWeight = Weight;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// tryEvict - Try to evict all interferences for a physreg.
 | 
						|
/// @param  VirtReg Currently unassigned virtual register.
 | 
						|
/// @param  Order   Physregs to try.
 | 
						|
/// @return         Physreg to assign VirtReg, or 0.
 | 
						|
unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
 | 
						|
                            AllocationOrder &Order,
 | 
						|
                            SmallVectorImpl<LiveInterval*> &NewVRegs){
 | 
						|
  NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled);
 | 
						|
 | 
						|
  // We can only evict interference if all interfering registers are virtual and
 | 
						|
  // longer than VirtReg.
 | 
						|
  const unsigned Size = VirtReg.getSize();
 | 
						|
 | 
						|
  // Keep track of the lightest single interference seen so far.
 | 
						|
  float BestWeight = 0;
 | 
						|
  unsigned BestPhys = 0;
 | 
						|
 | 
						|
  Order.rewind();
 | 
						|
  while (unsigned PhysReg = Order.next()) {
 | 
						|
    float Weight = 0;
 | 
						|
    if (!canEvictInterference(VirtReg, PhysReg, Size, Weight))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // This is an eviction candidate.
 | 
						|
    DEBUG(dbgs() << "max " << PrintReg(PhysReg, TRI) << " interference = "
 | 
						|
                 << Weight << '\n');
 | 
						|
    if (BestPhys && Weight >= BestWeight)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Best so far.
 | 
						|
    BestPhys = PhysReg;
 | 
						|
    BestWeight = Weight;
 | 
						|
    // Stop if the hint can be used.
 | 
						|
    if (Order.isHint(PhysReg))
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!BestPhys)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "evicting " << PrintReg(BestPhys, TRI) << " interference\n");
 | 
						|
  for (const unsigned *AliasI = TRI->getOverlaps(BestPhys); *AliasI; ++AliasI) {
 | 
						|
    LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
 | 
						|
    assert(Q.seenAllInterferences() && "Didn't check all interfererences.");
 | 
						|
    for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i) {
 | 
						|
      LiveInterval *Intf = Q.interferingVRegs()[i];
 | 
						|
      unassign(*Intf, VRM->getPhys(Intf->reg));
 | 
						|
      ++NumEvicted;
 | 
						|
      NewVRegs.push_back(Intf);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return BestPhys;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                              Region Splitting
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// calcInterferenceInfo - Compute per-block outgoing and ingoing constraints
 | 
						|
/// when considering interference from PhysReg. Also compute an optimistic local
 | 
						|
/// cost of this interference pattern.
 | 
						|
///
 | 
						|
/// The final cost of a split is the local cost + global cost of preferences
 | 
						|
/// broken by SpillPlacement.
 | 
						|
///
 | 
						|
float RAGreedy::calcInterferenceInfo(LiveInterval &VirtReg, unsigned PhysReg) {
 | 
						|
  // Reset interference dependent info.
 | 
						|
  SpillConstraints.resize(SA->LiveBlocks.size());
 | 
						|
  for (unsigned i = 0, e = SA->LiveBlocks.size(); i != e; ++i) {
 | 
						|
    SplitAnalysis::BlockInfo &BI = SA->LiveBlocks[i];
 | 
						|
    SpillPlacement::BlockConstraint &BC = SpillConstraints[i];
 | 
						|
    BC.Number = BI.MBB->getNumber();
 | 
						|
    BC.Entry = (BI.Uses && BI.LiveIn) ?
 | 
						|
      SpillPlacement::PrefReg : SpillPlacement::DontCare;
 | 
						|
    BC.Exit = (BI.Uses && BI.LiveOut) ?
 | 
						|
      SpillPlacement::PrefReg : SpillPlacement::DontCare;
 | 
						|
    BI.OverlapEntry = BI.OverlapExit = false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Add interference info from each PhysReg alias.
 | 
						|
  for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) {
 | 
						|
    if (!query(VirtReg, *AI).checkInterference())
 | 
						|
      continue;
 | 
						|
    LiveIntervalUnion::SegmentIter IntI =
 | 
						|
      PhysReg2LiveUnion[*AI].find(VirtReg.beginIndex());
 | 
						|
    if (!IntI.valid())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Determine which blocks have interference live in or after the last split
 | 
						|
    // point.
 | 
						|
    for (unsigned i = 0, e = SA->LiveBlocks.size(); i != e; ++i) {
 | 
						|
      SplitAnalysis::BlockInfo &BI = SA->LiveBlocks[i];
 | 
						|
      SpillPlacement::BlockConstraint &BC = SpillConstraints[i];
 | 
						|
 | 
						|
      // Skip interference-free blocks.
 | 
						|
      if (IntI.start() >= BI.Stop)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Is the interference live-in?
 | 
						|
      if (BI.LiveIn) {
 | 
						|
        IntI.advanceTo(BI.Start);
 | 
						|
        if (!IntI.valid())
 | 
						|
          break;
 | 
						|
        if (IntI.start() <= BI.Start)
 | 
						|
          BC.Entry = SpillPlacement::MustSpill;
 | 
						|
      }
 | 
						|
 | 
						|
      // Is the interference overlapping the last split point?
 | 
						|
      if (BI.LiveOut) {
 | 
						|
        if (IntI.stop() < BI.LastSplitPoint)
 | 
						|
          IntI.advanceTo(BI.LastSplitPoint.getPrevSlot());
 | 
						|
        if (!IntI.valid())
 | 
						|
          break;
 | 
						|
        if (IntI.start() < BI.Stop)
 | 
						|
          BC.Exit = SpillPlacement::MustSpill;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Rewind iterator and check other interferences.
 | 
						|
    IntI.find(VirtReg.beginIndex());
 | 
						|
    for (unsigned i = 0, e = SA->LiveBlocks.size(); i != e; ++i) {
 | 
						|
      SplitAnalysis::BlockInfo &BI = SA->LiveBlocks[i];
 | 
						|
      SpillPlacement::BlockConstraint &BC = SpillConstraints[i];
 | 
						|
 | 
						|
      // Skip interference-free blocks.
 | 
						|
      if (IntI.start() >= BI.Stop)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Handle transparent blocks with interference separately.
 | 
						|
      // Transparent blocks never incur any fixed cost.
 | 
						|
      if (BI.LiveThrough && !BI.Uses) {
 | 
						|
        IntI.advanceTo(BI.Start);
 | 
						|
        if (!IntI.valid())
 | 
						|
          break;
 | 
						|
        if (IntI.start() >= BI.Stop)
 | 
						|
          continue;
 | 
						|
 | 
						|
        if (BC.Entry != SpillPlacement::MustSpill)
 | 
						|
          BC.Entry = SpillPlacement::PrefSpill;
 | 
						|
        if (BC.Exit != SpillPlacement::MustSpill)
 | 
						|
          BC.Exit = SpillPlacement::PrefSpill;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Now we only have blocks with uses left.
 | 
						|
      // Check if the interference overlaps the uses.
 | 
						|
      assert(BI.Uses && "Non-transparent block without any uses");
 | 
						|
 | 
						|
      // Check interference on entry.
 | 
						|
      if (BI.LiveIn && BC.Entry != SpillPlacement::MustSpill) {
 | 
						|
        IntI.advanceTo(BI.Start);
 | 
						|
        if (!IntI.valid())
 | 
						|
          break;
 | 
						|
        // Not live in, but before the first use.
 | 
						|
        if (IntI.start() < BI.FirstUse) {
 | 
						|
          BC.Entry = SpillPlacement::PrefSpill;
 | 
						|
          // If the block contains a kill from an earlier split, never split
 | 
						|
          // again in the same block.
 | 
						|
          if (!BI.LiveThrough && !SA->isOriginalEndpoint(BI.Kill))
 | 
						|
            BC.Entry = SpillPlacement::MustSpill;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Does interference overlap the uses in the entry segment
 | 
						|
      // [FirstUse;Kill)?
 | 
						|
      if (BI.LiveIn && !BI.OverlapEntry) {
 | 
						|
        IntI.advanceTo(BI.FirstUse);
 | 
						|
        if (!IntI.valid())
 | 
						|
          break;
 | 
						|
        // A live-through interval has no kill.
 | 
						|
        // Check [FirstUse;LastUse) instead.
 | 
						|
        if (IntI.start() < (BI.LiveThrough ? BI.LastUse : BI.Kill))
 | 
						|
          BI.OverlapEntry = true;
 | 
						|
      }
 | 
						|
 | 
						|
      // Does interference overlap the uses in the exit segment [Def;LastUse)?
 | 
						|
      if (BI.LiveOut && !BI.LiveThrough && !BI.OverlapExit) {
 | 
						|
        IntI.advanceTo(BI.Def);
 | 
						|
        if (!IntI.valid())
 | 
						|
          break;
 | 
						|
        if (IntI.start() < BI.LastUse)
 | 
						|
          BI.OverlapExit = true;
 | 
						|
      }
 | 
						|
 | 
						|
      // Check interference on exit.
 | 
						|
      if (BI.LiveOut && BC.Exit != SpillPlacement::MustSpill) {
 | 
						|
        // Check interference between LastUse and Stop.
 | 
						|
        if (BC.Exit != SpillPlacement::PrefSpill) {
 | 
						|
          IntI.advanceTo(BI.LastUse);
 | 
						|
          if (!IntI.valid())
 | 
						|
            break;
 | 
						|
          if (IntI.start() < BI.Stop) {
 | 
						|
            BC.Exit = SpillPlacement::PrefSpill;
 | 
						|
            // Avoid splitting twice in the same block.
 | 
						|
            if (!BI.LiveThrough && !SA->isOriginalEndpoint(BI.Def))
 | 
						|
              BC.Exit = SpillPlacement::MustSpill;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Accumulate a local cost of this interference pattern.
 | 
						|
  float LocalCost = 0;
 | 
						|
  for (unsigned i = 0, e = SA->LiveBlocks.size(); i != e; ++i) {
 | 
						|
    SplitAnalysis::BlockInfo &BI = SA->LiveBlocks[i];
 | 
						|
    if (!BI.Uses)
 | 
						|
      continue;
 | 
						|
    SpillPlacement::BlockConstraint &BC = SpillConstraints[i];
 | 
						|
    unsigned Inserts = 0;
 | 
						|
 | 
						|
    // Do we need spill code for the entry segment?
 | 
						|
    if (BI.LiveIn)
 | 
						|
      Inserts += BI.OverlapEntry || BC.Entry != SpillPlacement::PrefReg;
 | 
						|
 | 
						|
    // For the exit segment?
 | 
						|
    if (BI.LiveOut)
 | 
						|
      Inserts += BI.OverlapExit || BC.Exit != SpillPlacement::PrefReg;
 | 
						|
 | 
						|
    // The local cost of spill code in this block is the block frequency times
 | 
						|
    // the number of spill instructions inserted.
 | 
						|
    if (Inserts)
 | 
						|
      LocalCost += Inserts * SpillPlacer->getBlockFrequency(BI.MBB);
 | 
						|
  }
 | 
						|
  DEBUG(dbgs() << "Local cost of " << PrintReg(PhysReg, TRI) << " = "
 | 
						|
               << LocalCost << '\n');
 | 
						|
  return LocalCost;
 | 
						|
}
 | 
						|
 | 
						|
/// calcGlobalSplitCost - Return the global split cost of following the split
 | 
						|
/// pattern in LiveBundles. This cost should be added to the local cost of the
 | 
						|
/// interference pattern in SpillConstraints.
 | 
						|
///
 | 
						|
float RAGreedy::calcGlobalSplitCost(const BitVector &LiveBundles) {
 | 
						|
  float GlobalCost = 0;
 | 
						|
  for (unsigned i = 0, e = SpillConstraints.size(); i != e; ++i) {
 | 
						|
    SpillPlacement::BlockConstraint &BC = SpillConstraints[i];
 | 
						|
    unsigned Inserts = 0;
 | 
						|
    // Broken entry preference?
 | 
						|
    Inserts += LiveBundles[Bundles->getBundle(BC.Number, 0)] !=
 | 
						|
                 (BC.Entry == SpillPlacement::PrefReg);
 | 
						|
    // Broken exit preference?
 | 
						|
    Inserts += LiveBundles[Bundles->getBundle(BC.Number, 1)] !=
 | 
						|
                 (BC.Exit == SpillPlacement::PrefReg);
 | 
						|
    if (Inserts)
 | 
						|
      GlobalCost +=
 | 
						|
        Inserts * SpillPlacer->getBlockFrequency(SA->LiveBlocks[i].MBB);
 | 
						|
  }
 | 
						|
  DEBUG(dbgs() << "Global cost = " << GlobalCost << '\n');
 | 
						|
  return GlobalCost;
 | 
						|
}
 | 
						|
 | 
						|
/// splitAroundRegion - Split VirtReg around the region determined by
 | 
						|
/// LiveBundles. Make an effort to avoid interference from PhysReg.
 | 
						|
///
 | 
						|
/// The 'register' interval is going to contain as many uses as possible while
 | 
						|
/// avoiding interference. The 'stack' interval is the complement constructed by
 | 
						|
/// SplitEditor. It will contain the rest.
 | 
						|
///
 | 
						|
void RAGreedy::splitAroundRegion(LiveInterval &VirtReg, unsigned PhysReg,
 | 
						|
                                 const BitVector &LiveBundles,
 | 
						|
                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
 | 
						|
  DEBUG({
 | 
						|
    dbgs() << "Splitting around region for " << PrintReg(PhysReg, TRI)
 | 
						|
           << " with bundles";
 | 
						|
    for (int i = LiveBundles.find_first(); i>=0; i = LiveBundles.find_next(i))
 | 
						|
      dbgs() << " EB#" << i;
 | 
						|
    dbgs() << ".\n";
 | 
						|
  });
 | 
						|
 | 
						|
  // First compute interference ranges in the live blocks.
 | 
						|
  typedef std::pair<SlotIndex, SlotIndex> IndexPair;
 | 
						|
  SmallVector<IndexPair, 8> InterferenceRanges;
 | 
						|
  InterferenceRanges.resize(SA->LiveBlocks.size());
 | 
						|
  for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) {
 | 
						|
    if (!query(VirtReg, *AI).checkInterference())
 | 
						|
      continue;
 | 
						|
    LiveIntervalUnion::SegmentIter IntI =
 | 
						|
      PhysReg2LiveUnion[*AI].find(VirtReg.beginIndex());
 | 
						|
    if (!IntI.valid())
 | 
						|
      continue;
 | 
						|
    for (unsigned i = 0, e = SA->LiveBlocks.size(); i != e; ++i) {
 | 
						|
      const SplitAnalysis::BlockInfo &BI = SA->LiveBlocks[i];
 | 
						|
      IndexPair &IP = InterferenceRanges[i];
 | 
						|
 | 
						|
      // Skip interference-free blocks.
 | 
						|
      if (IntI.start() >= BI.Stop)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // First interference in block.
 | 
						|
      if (BI.LiveIn) {
 | 
						|
        IntI.advanceTo(BI.Start);
 | 
						|
        if (!IntI.valid())
 | 
						|
          break;
 | 
						|
        if (IntI.start() >= BI.Stop)
 | 
						|
          continue;
 | 
						|
        if (!IP.first.isValid() || IntI.start() < IP.first)
 | 
						|
          IP.first = IntI.start();
 | 
						|
      }
 | 
						|
 | 
						|
      // Last interference in block.
 | 
						|
      if (BI.LiveOut) {
 | 
						|
        IntI.advanceTo(BI.Stop);
 | 
						|
        if (!IntI.valid() || IntI.start() >= BI.Stop)
 | 
						|
          --IntI;
 | 
						|
        if (IntI.stop() <= BI.Start)
 | 
						|
          continue;
 | 
						|
        if (!IP.second.isValid() || IntI.stop() > IP.second)
 | 
						|
          IP.second = IntI.stop();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<LiveInterval*, 4> SpillRegs;
 | 
						|
  LiveRangeEdit LREdit(VirtReg, NewVRegs, SpillRegs);
 | 
						|
  SE->reset(LREdit);
 | 
						|
 | 
						|
  // Create the main cross-block interval.
 | 
						|
  SE->openIntv();
 | 
						|
 | 
						|
  // First add all defs that are live out of a block.
 | 
						|
  for (unsigned i = 0, e = SA->LiveBlocks.size(); i != e; ++i) {
 | 
						|
    SplitAnalysis::BlockInfo &BI = SA->LiveBlocks[i];
 | 
						|
    bool RegIn  = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 0)];
 | 
						|
    bool RegOut = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 1)];
 | 
						|
 | 
						|
    // Should the register be live out?
 | 
						|
    if (!BI.LiveOut || !RegOut)
 | 
						|
      continue;
 | 
						|
 | 
						|
    IndexPair &IP = InterferenceRanges[i];
 | 
						|
    DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " -> EB#"
 | 
						|
                 << Bundles->getBundle(BI.MBB->getNumber(), 1)
 | 
						|
                 << " intf [" << IP.first << ';' << IP.second << ')');
 | 
						|
 | 
						|
    // The interference interval should either be invalid or overlap MBB.
 | 
						|
    assert((!IP.first.isValid() || IP.first < BI.Stop) && "Bad interference");
 | 
						|
    assert((!IP.second.isValid() || IP.second > BI.Start)
 | 
						|
           && "Bad interference");
 | 
						|
 | 
						|
    // Check interference leaving the block.
 | 
						|
    if (!IP.second.isValid()) {
 | 
						|
      // Block is interference-free.
 | 
						|
      DEBUG(dbgs() << ", no interference");
 | 
						|
      if (!BI.Uses) {
 | 
						|
        assert(BI.LiveThrough && "No uses, but not live through block?");
 | 
						|
        // Block is live-through without interference.
 | 
						|
        DEBUG(dbgs() << ", no uses"
 | 
						|
                     << (RegIn ? ", live-through.\n" : ", stack in.\n"));
 | 
						|
        if (!RegIn)
 | 
						|
          SE->enterIntvAtEnd(*BI.MBB);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      if (!BI.LiveThrough) {
 | 
						|
        DEBUG(dbgs() << ", not live-through.\n");
 | 
						|
        SE->useIntv(SE->enterIntvBefore(BI.Def), BI.Stop);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      if (!RegIn) {
 | 
						|
        // Block is live-through, but entry bundle is on the stack.
 | 
						|
        // Reload just before the first use.
 | 
						|
        DEBUG(dbgs() << ", not live-in, enter before first use.\n");
 | 
						|
        SE->useIntv(SE->enterIntvBefore(BI.FirstUse), BI.Stop);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      DEBUG(dbgs() << ", live-through.\n");
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Block has interference.
 | 
						|
    DEBUG(dbgs() << ", interference to " << IP.second);
 | 
						|
 | 
						|
    if (!BI.LiveThrough && IP.second <= BI.Def) {
 | 
						|
      // The interference doesn't reach the outgoing segment.
 | 
						|
      DEBUG(dbgs() << " doesn't affect def from " << BI.Def << '\n');
 | 
						|
      SE->useIntv(BI.Def, BI.Stop);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    if (!BI.Uses) {
 | 
						|
      // No uses in block, avoid interference by reloading as late as possible.
 | 
						|
      DEBUG(dbgs() << ", no uses.\n");
 | 
						|
      SlotIndex SegStart = SE->enterIntvAtEnd(*BI.MBB);
 | 
						|
      assert(SegStart >= IP.second && "Couldn't avoid interference");
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (IP.second.getBoundaryIndex() < BI.LastUse) {
 | 
						|
      // There are interference-free uses at the end of the block.
 | 
						|
      // Find the first use that can get the live-out register.
 | 
						|
      SmallVectorImpl<SlotIndex>::const_iterator UI =
 | 
						|
        std::lower_bound(SA->UseSlots.begin(), SA->UseSlots.end(),
 | 
						|
                         IP.second.getBoundaryIndex());
 | 
						|
      assert(UI != SA->UseSlots.end() && "Couldn't find last use");
 | 
						|
      SlotIndex Use = *UI;
 | 
						|
      assert(Use <= BI.LastUse && "Couldn't find last use");
 | 
						|
      // Only attempt a split befroe the last split point.
 | 
						|
      if (Use.getBaseIndex() <= BI.LastSplitPoint) {
 | 
						|
        DEBUG(dbgs() << ", free use at " << Use << ".\n");
 | 
						|
        SlotIndex SegStart = SE->enterIntvBefore(Use);
 | 
						|
        assert(SegStart >= IP.second && "Couldn't avoid interference");
 | 
						|
        assert(SegStart < BI.LastSplitPoint && "Impossible split point");
 | 
						|
        SE->useIntv(SegStart, BI.Stop);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Interference is after the last use.
 | 
						|
    DEBUG(dbgs() << " after last use.\n");
 | 
						|
    SlotIndex SegStart = SE->enterIntvAtEnd(*BI.MBB);
 | 
						|
    assert(SegStart >= IP.second && "Couldn't avoid interference");
 | 
						|
  }
 | 
						|
 | 
						|
  // Now all defs leading to live bundles are handled, do everything else.
 | 
						|
  for (unsigned i = 0, e = SA->LiveBlocks.size(); i != e; ++i) {
 | 
						|
    SplitAnalysis::BlockInfo &BI = SA->LiveBlocks[i];
 | 
						|
    bool RegIn  = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 0)];
 | 
						|
    bool RegOut = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 1)];
 | 
						|
 | 
						|
    // Is the register live-in?
 | 
						|
    if (!BI.LiveIn || !RegIn)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // We have an incoming register. Check for interference.
 | 
						|
    IndexPair &IP = InterferenceRanges[i];
 | 
						|
 | 
						|
    DEBUG(dbgs() << "EB#" << Bundles->getBundle(BI.MBB->getNumber(), 0)
 | 
						|
                 << " -> BB#" << BI.MBB->getNumber());
 | 
						|
 | 
						|
    // Check interference entering the block.
 | 
						|
    if (!IP.first.isValid()) {
 | 
						|
      // Block is interference-free.
 | 
						|
      DEBUG(dbgs() << ", no interference");
 | 
						|
      if (!BI.Uses) {
 | 
						|
        assert(BI.LiveThrough && "No uses, but not live through block?");
 | 
						|
        // Block is live-through without interference.
 | 
						|
        if (RegOut) {
 | 
						|
          DEBUG(dbgs() << ", no uses, live-through.\n");
 | 
						|
          SE->useIntv(BI.Start, BI.Stop);
 | 
						|
        } else {
 | 
						|
          DEBUG(dbgs() << ", no uses, stack-out.\n");
 | 
						|
          SE->leaveIntvAtTop(*BI.MBB);
 | 
						|
        }
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      if (!BI.LiveThrough) {
 | 
						|
        DEBUG(dbgs() << ", killed in block.\n");
 | 
						|
        SE->useIntv(BI.Start, SE->leaveIntvAfter(BI.Kill));
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      if (!RegOut) {
 | 
						|
        // Block is live-through, but exit bundle is on the stack.
 | 
						|
        // Spill immediately after the last use.
 | 
						|
        if (BI.LastUse < BI.LastSplitPoint) {
 | 
						|
          DEBUG(dbgs() << ", uses, stack-out.\n");
 | 
						|
          SE->useIntv(BI.Start, SE->leaveIntvAfter(BI.LastUse));
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        // The last use is after the last split point, it is probably an
 | 
						|
        // indirect jump.
 | 
						|
        DEBUG(dbgs() << ", uses at " << BI.LastUse << " after split point "
 | 
						|
                     << BI.LastSplitPoint << ", stack-out.\n");
 | 
						|
        SlotIndex SegEnd = SE->leaveIntvBefore(BI.LastSplitPoint);
 | 
						|
        SE->useIntv(BI.Start, SegEnd);
 | 
						|
        // Run a double interval from the split to the last use.
 | 
						|
        // This makes it possible to spill the complement without affecting the
 | 
						|
        // indirect branch.
 | 
						|
        SE->overlapIntv(SegEnd, BI.LastUse);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      // Register is live-through.
 | 
						|
      DEBUG(dbgs() << ", uses, live-through.\n");
 | 
						|
      SE->useIntv(BI.Start, BI.Stop);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Block has interference.
 | 
						|
    DEBUG(dbgs() << ", interference from " << IP.first);
 | 
						|
 | 
						|
    if (!BI.LiveThrough && IP.first >= BI.Kill) {
 | 
						|
      // The interference doesn't reach the outgoing segment.
 | 
						|
      DEBUG(dbgs() << " doesn't affect kill at " << BI.Kill << '\n');
 | 
						|
      SE->useIntv(BI.Start, BI.Kill);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!BI.Uses) {
 | 
						|
      // No uses in block, avoid interference by spilling as soon as possible.
 | 
						|
      DEBUG(dbgs() << ", no uses.\n");
 | 
						|
      SlotIndex SegEnd = SE->leaveIntvAtTop(*BI.MBB);
 | 
						|
      assert(SegEnd <= IP.first && "Couldn't avoid interference");
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (IP.first.getBaseIndex() > BI.FirstUse) {
 | 
						|
      // There are interference-free uses at the beginning of the block.
 | 
						|
      // Find the last use that can get the register.
 | 
						|
      SmallVectorImpl<SlotIndex>::const_iterator UI =
 | 
						|
        std::lower_bound(SA->UseSlots.begin(), SA->UseSlots.end(),
 | 
						|
                         IP.first.getBaseIndex());
 | 
						|
      assert(UI != SA->UseSlots.begin() && "Couldn't find first use");
 | 
						|
      SlotIndex Use = (--UI)->getBoundaryIndex();
 | 
						|
      DEBUG(dbgs() << ", free use at " << *UI << ".\n");
 | 
						|
      SlotIndex SegEnd = SE->leaveIntvAfter(Use);
 | 
						|
      assert(SegEnd <= IP.first && "Couldn't avoid interference");
 | 
						|
      SE->useIntv(BI.Start, SegEnd);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Interference is before the first use.
 | 
						|
    DEBUG(dbgs() << " before first use.\n");
 | 
						|
    SlotIndex SegEnd = SE->leaveIntvAtTop(*BI.MBB);
 | 
						|
    assert(SegEnd <= IP.first && "Couldn't avoid interference");
 | 
						|
  }
 | 
						|
 | 
						|
  SE->closeIntv();
 | 
						|
 | 
						|
  // FIXME: Should we be more aggressive about splitting the stack region into
 | 
						|
  // per-block segments? The current approach allows the stack region to
 | 
						|
  // separate into connected components. Some components may be allocatable.
 | 
						|
  SE->finish();
 | 
						|
  ++NumGlobalSplits;
 | 
						|
 | 
						|
  if (VerifyEnabled) {
 | 
						|
    MF->verify(this, "After splitting live range around region");
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
    // Make sure that at least one of the new intervals can allocate to PhysReg.
 | 
						|
    // That was the whole point of splitting the live range.
 | 
						|
    bool found = false;
 | 
						|
    for (LiveRangeEdit::iterator I = LREdit.begin(), E = LREdit.end(); I != E;
 | 
						|
         ++I)
 | 
						|
      if (!checkUncachedInterference(**I, PhysReg)) {
 | 
						|
        found = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    assert(found && "No allocatable intervals after pointless splitting");
 | 
						|
#endif
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
 | 
						|
                                  SmallVectorImpl<LiveInterval*> &NewVRegs) {
 | 
						|
  BitVector LiveBundles, BestBundles;
 | 
						|
  float BestCost = 0;
 | 
						|
  unsigned BestReg = 0;
 | 
						|
  Order.rewind();
 | 
						|
  while (unsigned PhysReg = Order.next()) {
 | 
						|
    float Cost = calcInterferenceInfo(VirtReg, PhysReg);
 | 
						|
    if (BestReg && Cost >= BestCost)
 | 
						|
      continue;
 | 
						|
 | 
						|
    SpillPlacer->placeSpills(SpillConstraints, LiveBundles);
 | 
						|
    // No live bundles, defer to splitSingleBlocks().
 | 
						|
    if (!LiveBundles.any())
 | 
						|
      continue;
 | 
						|
 | 
						|
    Cost += calcGlobalSplitCost(LiveBundles);
 | 
						|
    if (!BestReg || Cost < BestCost) {
 | 
						|
      BestReg = PhysReg;
 | 
						|
      BestCost = Cost;
 | 
						|
      BestBundles.swap(LiveBundles);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!BestReg)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  splitAroundRegion(VirtReg, BestReg, BestBundles, NewVRegs);
 | 
						|
  setStage(NewVRegs.begin(), NewVRegs.end(), RS_Region);
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                             Local Splitting
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
 | 
						|
/// calcGapWeights - Compute the maximum spill weight that needs to be evicted
 | 
						|
/// in order to use PhysReg between two entries in SA->UseSlots.
 | 
						|
///
 | 
						|
/// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
 | 
						|
///
 | 
						|
void RAGreedy::calcGapWeights(unsigned PhysReg,
 | 
						|
                              SmallVectorImpl<float> &GapWeight) {
 | 
						|
  assert(SA->LiveBlocks.size() == 1 && "Not a local interval");
 | 
						|
  const SplitAnalysis::BlockInfo &BI = SA->LiveBlocks.front();
 | 
						|
  const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
 | 
						|
  const unsigned NumGaps = Uses.size()-1;
 | 
						|
 | 
						|
  // Start and end points for the interference check.
 | 
						|
  SlotIndex StartIdx = BI.LiveIn ? BI.FirstUse.getBaseIndex() : BI.FirstUse;
 | 
						|
  SlotIndex StopIdx = BI.LiveOut ? BI.LastUse.getBoundaryIndex() : BI.LastUse;
 | 
						|
 | 
						|
  GapWeight.assign(NumGaps, 0.0f);
 | 
						|
 | 
						|
  // Add interference from each overlapping register.
 | 
						|
  for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) {
 | 
						|
    if (!query(const_cast<LiveInterval&>(SA->getParent()), *AI)
 | 
						|
           .checkInterference())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // We know that VirtReg is a continuous interval from FirstUse to LastUse,
 | 
						|
    // so we don't need InterferenceQuery.
 | 
						|
    //
 | 
						|
    // Interference that overlaps an instruction is counted in both gaps
 | 
						|
    // surrounding the instruction. The exception is interference before
 | 
						|
    // StartIdx and after StopIdx.
 | 
						|
    //
 | 
						|
    LiveIntervalUnion::SegmentIter IntI = PhysReg2LiveUnion[*AI].find(StartIdx);
 | 
						|
    for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
 | 
						|
      // Skip the gaps before IntI.
 | 
						|
      while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
 | 
						|
        if (++Gap == NumGaps)
 | 
						|
          break;
 | 
						|
      if (Gap == NumGaps)
 | 
						|
        break;
 | 
						|
 | 
						|
      // Update the gaps covered by IntI.
 | 
						|
      const float weight = IntI.value()->weight;
 | 
						|
      for (; Gap != NumGaps; ++Gap) {
 | 
						|
        GapWeight[Gap] = std::max(GapWeight[Gap], weight);
 | 
						|
        if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
 | 
						|
          break;
 | 
						|
      }
 | 
						|
      if (Gap == NumGaps)
 | 
						|
        break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// getPrevMappedIndex - Return the slot index of the last non-copy instruction
 | 
						|
/// before MI that has a slot index. If MI is the first mapped instruction in
 | 
						|
/// its block, return the block start index instead.
 | 
						|
///
 | 
						|
SlotIndex RAGreedy::getPrevMappedIndex(const MachineInstr *MI) {
 | 
						|
  assert(MI && "Missing MachineInstr");
 | 
						|
  const MachineBasicBlock *MBB = MI->getParent();
 | 
						|
  MachineBasicBlock::const_iterator B = MBB->begin(), I = MI;
 | 
						|
  while (I != B)
 | 
						|
    if (!(--I)->isDebugValue() && !I->isCopy())
 | 
						|
      return Indexes->getInstructionIndex(I);
 | 
						|
  return Indexes->getMBBStartIdx(MBB);
 | 
						|
}
 | 
						|
 | 
						|
/// calcPrevSlots - Fill in the PrevSlot array with the index of the previous
 | 
						|
/// real non-copy instruction for each instruction in SA->UseSlots.
 | 
						|
///
 | 
						|
void RAGreedy::calcPrevSlots() {
 | 
						|
  const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
 | 
						|
  PrevSlot.clear();
 | 
						|
  PrevSlot.reserve(Uses.size());
 | 
						|
  for (unsigned i = 0, e = Uses.size(); i != e; ++i) {
 | 
						|
    const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i]);
 | 
						|
    PrevSlot.push_back(getPrevMappedIndex(MI).getDefIndex());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// nextSplitPoint - Find the next index into SA->UseSlots > i such that it may
 | 
						|
/// be beneficial to split before UseSlots[i].
 | 
						|
///
 | 
						|
/// 0 is always a valid split point
 | 
						|
unsigned RAGreedy::nextSplitPoint(unsigned i) {
 | 
						|
  const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
 | 
						|
  const unsigned Size = Uses.size();
 | 
						|
  assert(i != Size && "No split points after the end");
 | 
						|
  // Allow split before i when Uses[i] is not adjacent to the previous use.
 | 
						|
  while (++i != Size && PrevSlot[i].getBaseIndex() <= Uses[i-1].getBaseIndex())
 | 
						|
    ;
 | 
						|
  return i;
 | 
						|
}
 | 
						|
 | 
						|
/// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
 | 
						|
/// basic block.
 | 
						|
///
 | 
						|
unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
 | 
						|
                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
 | 
						|
  assert(SA->LiveBlocks.size() == 1 && "Not a local interval");
 | 
						|
  const SplitAnalysis::BlockInfo &BI = SA->LiveBlocks.front();
 | 
						|
 | 
						|
  // Note that it is possible to have an interval that is live-in or live-out
 | 
						|
  // while only covering a single block - A phi-def can use undef values from
 | 
						|
  // predecessors, and the block could be a single-block loop.
 | 
						|
  // We don't bother doing anything clever about such a case, we simply assume
 | 
						|
  // that the interval is continuous from FirstUse to LastUse. We should make
 | 
						|
  // sure that we don't do anything illegal to such an interval, though.
 | 
						|
 | 
						|
  const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
 | 
						|
  if (Uses.size() <= 2)
 | 
						|
    return 0;
 | 
						|
  const unsigned NumGaps = Uses.size()-1;
 | 
						|
 | 
						|
  DEBUG({
 | 
						|
    dbgs() << "tryLocalSplit: ";
 | 
						|
    for (unsigned i = 0, e = Uses.size(); i != e; ++i)
 | 
						|
      dbgs() << ' ' << SA->UseSlots[i];
 | 
						|
    dbgs() << '\n';
 | 
						|
  });
 | 
						|
 | 
						|
  // For every use, find the previous mapped non-copy instruction.
 | 
						|
  // We use this to detect valid split points, and to estimate new interval
 | 
						|
  // sizes.
 | 
						|
  calcPrevSlots();
 | 
						|
 | 
						|
  unsigned BestBefore = NumGaps;
 | 
						|
  unsigned BestAfter = 0;
 | 
						|
  float BestDiff = 0;
 | 
						|
 | 
						|
  const float blockFreq = SpillPlacer->getBlockFrequency(BI.MBB);
 | 
						|
  SmallVector<float, 8> GapWeight;
 | 
						|
 | 
						|
  Order.rewind();
 | 
						|
  while (unsigned PhysReg = Order.next()) {
 | 
						|
    // Keep track of the largest spill weight that would need to be evicted in
 | 
						|
    // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
 | 
						|
    calcGapWeights(PhysReg, GapWeight);
 | 
						|
 | 
						|
    // Try to find the best sequence of gaps to close.
 | 
						|
    // The new spill weight must be larger than any gap interference.
 | 
						|
 | 
						|
    // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
 | 
						|
    unsigned SplitBefore = 0, SplitAfter = nextSplitPoint(1) - 1;
 | 
						|
 | 
						|
    // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
 | 
						|
    // It is the spill weight that needs to be evicted.
 | 
						|
    float MaxGap = GapWeight[0];
 | 
						|
    for (unsigned i = 1; i != SplitAfter; ++i)
 | 
						|
      MaxGap = std::max(MaxGap, GapWeight[i]);
 | 
						|
 | 
						|
    for (;;) {
 | 
						|
      // Live before/after split?
 | 
						|
      const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
 | 
						|
      const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
 | 
						|
 | 
						|
      DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' '
 | 
						|
                   << Uses[SplitBefore] << '-' << Uses[SplitAfter]
 | 
						|
                   << " i=" << MaxGap);
 | 
						|
 | 
						|
      // Stop before the interval gets so big we wouldn't be making progress.
 | 
						|
      if (!LiveBefore && !LiveAfter) {
 | 
						|
        DEBUG(dbgs() << " all\n");
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      // Should the interval be extended or shrunk?
 | 
						|
      bool Shrink = true;
 | 
						|
      if (MaxGap < HUGE_VALF) {
 | 
						|
        // Estimate the new spill weight.
 | 
						|
        //
 | 
						|
        // Each instruction reads and writes the register, except the first
 | 
						|
        // instr doesn't read when !FirstLive, and the last instr doesn't write
 | 
						|
        // when !LastLive.
 | 
						|
        //
 | 
						|
        // We will be inserting copies before and after, so the total number of
 | 
						|
        // reads and writes is 2 * EstUses.
 | 
						|
        //
 | 
						|
        const unsigned EstUses = 2*(SplitAfter - SplitBefore) +
 | 
						|
                                 2*(LiveBefore + LiveAfter);
 | 
						|
 | 
						|
        // Try to guess the size of the new interval. This should be trivial,
 | 
						|
        // but the slot index of an inserted copy can be a lot smaller than the
 | 
						|
        // instruction it is inserted before if there are many dead indexes
 | 
						|
        // between them.
 | 
						|
        //
 | 
						|
        // We measure the distance from the instruction before SplitBefore to
 | 
						|
        // get a conservative estimate.
 | 
						|
        //
 | 
						|
        // The final distance can still be different if inserting copies
 | 
						|
        // triggers a slot index renumbering.
 | 
						|
        //
 | 
						|
        const float EstWeight = normalizeSpillWeight(blockFreq * EstUses,
 | 
						|
                              PrevSlot[SplitBefore].distance(Uses[SplitAfter]));
 | 
						|
        // Would this split be possible to allocate?
 | 
						|
        // Never allocate all gaps, we wouldn't be making progress.
 | 
						|
        float Diff = EstWeight - MaxGap;
 | 
						|
        DEBUG(dbgs() << " w=" << EstWeight << " d=" << Diff);
 | 
						|
        if (Diff > 0) {
 | 
						|
          Shrink = false;
 | 
						|
          if (Diff > BestDiff) {
 | 
						|
            DEBUG(dbgs() << " (best)");
 | 
						|
            BestDiff = Diff;
 | 
						|
            BestBefore = SplitBefore;
 | 
						|
            BestAfter = SplitAfter;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Try to shrink.
 | 
						|
      if (Shrink) {
 | 
						|
        SplitBefore = nextSplitPoint(SplitBefore);
 | 
						|
        if (SplitBefore < SplitAfter) {
 | 
						|
          DEBUG(dbgs() << " shrink\n");
 | 
						|
          // Recompute the max when necessary.
 | 
						|
          if (GapWeight[SplitBefore - 1] >= MaxGap) {
 | 
						|
            MaxGap = GapWeight[SplitBefore];
 | 
						|
            for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
 | 
						|
              MaxGap = std::max(MaxGap, GapWeight[i]);
 | 
						|
          }
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        MaxGap = 0;
 | 
						|
      }
 | 
						|
 | 
						|
      // Try to extend the interval.
 | 
						|
      if (SplitAfter >= NumGaps) {
 | 
						|
        DEBUG(dbgs() << " end\n");
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      DEBUG(dbgs() << " extend\n");
 | 
						|
      for (unsigned e = nextSplitPoint(SplitAfter + 1) - 1;
 | 
						|
           SplitAfter != e; ++SplitAfter)
 | 
						|
        MaxGap = std::max(MaxGap, GapWeight[SplitAfter]);
 | 
						|
          continue;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Didn't find any candidates?
 | 
						|
  if (BestBefore == NumGaps)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore]
 | 
						|
               << '-' << Uses[BestAfter] << ", " << BestDiff
 | 
						|
               << ", " << (BestAfter - BestBefore + 1) << " instrs\n");
 | 
						|
 | 
						|
  SmallVector<LiveInterval*, 4> SpillRegs;
 | 
						|
  LiveRangeEdit LREdit(VirtReg, NewVRegs, SpillRegs);
 | 
						|
  SE->reset(LREdit);
 | 
						|
 | 
						|
  SE->openIntv();
 | 
						|
  SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
 | 
						|
  SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
 | 
						|
  SE->useIntv(SegStart, SegStop);
 | 
						|
  SE->closeIntv();
 | 
						|
  SE->finish();
 | 
						|
  setStage(NewVRegs.begin(), NewVRegs.end(), RS_Local);
 | 
						|
  ++NumLocalSplits;
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                          Live Range Splitting
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// trySplit - Try to split VirtReg or one of its interferences, making it
 | 
						|
/// assignable.
 | 
						|
/// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
 | 
						|
unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
 | 
						|
                            SmallVectorImpl<LiveInterval*>&NewVRegs) {
 | 
						|
  // Local intervals are handled separately.
 | 
						|
  if (LIS->intervalIsInOneMBB(VirtReg)) {
 | 
						|
    NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled);
 | 
						|
    SA->analyze(&VirtReg);
 | 
						|
    return tryLocalSplit(VirtReg, Order, NewVRegs);
 | 
						|
  }
 | 
						|
 | 
						|
  NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled);
 | 
						|
 | 
						|
  // Don't iterate global splitting.
 | 
						|
  // Move straight to spilling if this range was produced by a global split.
 | 
						|
  LiveRangeStage Stage = getStage(VirtReg);
 | 
						|
  if (Stage >= RS_Block)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  SA->analyze(&VirtReg);
 | 
						|
 | 
						|
  // First try to split around a region spanning multiple blocks.
 | 
						|
  if (Stage < RS_Region) {
 | 
						|
    unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
 | 
						|
    if (PhysReg || !NewVRegs.empty())
 | 
						|
      return PhysReg;
 | 
						|
  }
 | 
						|
 | 
						|
  // Then isolate blocks with multiple uses.
 | 
						|
  if (Stage < RS_Block) {
 | 
						|
    SplitAnalysis::BlockPtrSet Blocks;
 | 
						|
    if (SA->getMultiUseBlocks(Blocks)) {
 | 
						|
      SmallVector<LiveInterval*, 4> SpillRegs;
 | 
						|
      LiveRangeEdit LREdit(VirtReg, NewVRegs, SpillRegs);
 | 
						|
      SE->reset(LREdit);
 | 
						|
      SE->splitSingleBlocks(Blocks);
 | 
						|
      setStage(NewVRegs.begin(), NewVRegs.end(), RS_Block);
 | 
						|
      if (VerifyEnabled)
 | 
						|
        MF->verify(this, "After splitting live range around basic blocks");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Don't assign any physregs.
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                            Main Entry Point
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
 | 
						|
                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
 | 
						|
  LiveRangeStage Stage = getStage(VirtReg);
 | 
						|
  if (Stage == RS_Original)
 | 
						|
    LRStage[VirtReg.reg] = RS_Second;
 | 
						|
 | 
						|
  // First try assigning a free register.
 | 
						|
  AllocationOrder Order(VirtReg.reg, *VRM, ReservedRegs);
 | 
						|
  while (unsigned PhysReg = Order.next()) {
 | 
						|
    if (!checkPhysRegInterference(VirtReg, PhysReg))
 | 
						|
      return PhysReg;
 | 
						|
  }
 | 
						|
 | 
						|
  if (unsigned PhysReg = tryReassign(VirtReg, Order, NewVRegs))
 | 
						|
    return PhysReg;
 | 
						|
 | 
						|
  if (unsigned PhysReg = tryEvict(VirtReg, Order, NewVRegs))
 | 
						|
    return PhysReg;
 | 
						|
 | 
						|
  assert(NewVRegs.empty() && "Cannot append to existing NewVRegs");
 | 
						|
 | 
						|
  // The first time we see a live range, don't try to split or spill.
 | 
						|
  // Wait until the second time, when all smaller ranges have been allocated.
 | 
						|
  // This gives a better picture of the interference to split around.
 | 
						|
  if (Stage == RS_Original) {
 | 
						|
    NewVRegs.push_back(&VirtReg);
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(Stage < RS_Spill && "Cannot allocate after spilling");
 | 
						|
 | 
						|
  // Try splitting VirtReg or interferences.
 | 
						|
  unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
 | 
						|
  if (PhysReg || !NewVRegs.empty())
 | 
						|
    return PhysReg;
 | 
						|
 | 
						|
  // Finally spill VirtReg itself.
 | 
						|
  NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled);
 | 
						|
  SmallVector<LiveInterval*, 1> pendingSpills;
 | 
						|
  spiller().spill(&VirtReg, NewVRegs, pendingSpills);
 | 
						|
 | 
						|
  // The live virtual register requesting allocation was spilled, so tell
 | 
						|
  // the caller not to allocate anything during this round.
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
 | 
						|
  DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
 | 
						|
               << "********** Function: "
 | 
						|
               << ((Value*)mf.getFunction())->getName() << '\n');
 | 
						|
 | 
						|
  MF = &mf;
 | 
						|
  if (VerifyEnabled)
 | 
						|
    MF->verify(this, "Before greedy register allocator");
 | 
						|
 | 
						|
  RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>());
 | 
						|
  Indexes = &getAnalysis<SlotIndexes>();
 | 
						|
  DomTree = &getAnalysis<MachineDominatorTree>();
 | 
						|
  ReservedRegs = TRI->getReservedRegs(*MF);
 | 
						|
  SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
 | 
						|
  Loops = &getAnalysis<MachineLoopInfo>();
 | 
						|
  LoopRanges = &getAnalysis<MachineLoopRanges>();
 | 
						|
  Bundles = &getAnalysis<EdgeBundles>();
 | 
						|
  SpillPlacer = &getAnalysis<SpillPlacement>();
 | 
						|
 | 
						|
  SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
 | 
						|
  SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree));
 | 
						|
  LRStage.clear();
 | 
						|
  LRStage.resize(MRI->getNumVirtRegs());
 | 
						|
 | 
						|
  allocatePhysRegs();
 | 
						|
  addMBBLiveIns(MF);
 | 
						|
  LIS->addKillFlags();
 | 
						|
 | 
						|
  // Run rewriter
 | 
						|
  {
 | 
						|
    NamedRegionTimer T("Rewriter", TimerGroupName, TimePassesIsEnabled);
 | 
						|
    VRM->rewrite(Indexes);
 | 
						|
  }
 | 
						|
 | 
						|
  // The pass output is in VirtRegMap. Release all the transient data.
 | 
						|
  releaseMemory();
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 |