mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	errors like the one corrected by r135261. Migrate all LLVM callers of the old constructor to the new one. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135431 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1735 lines
		
	
	
		
			61 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1735 lines
		
	
	
		
			61 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements a class to represent arbitrary precision integral
 | |
| // constant values and operations on them.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_APINT_H
 | |
| #define LLVM_APINT_H
 | |
| 
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include <cassert>
 | |
| #include <climits>
 | |
| #include <cstring>
 | |
| #include <string>
 | |
| 
 | |
| namespace llvm {
 | |
|   class Serializer;
 | |
|   class Deserializer;
 | |
|   class FoldingSetNodeID;
 | |
|   class raw_ostream;
 | |
|   class StringRef;
 | |
| 
 | |
|   template<typename T>
 | |
|   class SmallVectorImpl;
 | |
| 
 | |
|   // An unsigned host type used as a single part of a multi-part
 | |
|   // bignum.
 | |
|   typedef uint64_t integerPart;
 | |
| 
 | |
|   const unsigned int host_char_bit = 8;
 | |
|   const unsigned int integerPartWidth = host_char_bit *
 | |
|     static_cast<unsigned int>(sizeof(integerPart));
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                              APInt Class
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// APInt - This class represents arbitrary precision constant integral values.
 | |
| /// It is a functional replacement for common case unsigned integer type like
 | |
| /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
 | |
| /// integer sizes and large integer value types such as 3-bits, 15-bits, or more
 | |
| /// than 64-bits of precision. APInt provides a variety of arithmetic operators
 | |
| /// and methods to manipulate integer values of any bit-width. It supports both
 | |
| /// the typical integer arithmetic and comparison operations as well as bitwise
 | |
| /// manipulation.
 | |
| ///
 | |
| /// The class has several invariants worth noting:
 | |
| ///   * All bit, byte, and word positions are zero-based.
 | |
| ///   * Once the bit width is set, it doesn't change except by the Truncate,
 | |
| ///     SignExtend, or ZeroExtend operations.
 | |
| ///   * All binary operators must be on APInt instances of the same bit width.
 | |
| ///     Attempting to use these operators on instances with different bit
 | |
| ///     widths will yield an assertion.
 | |
| ///   * The value is stored canonically as an unsigned value. For operations
 | |
| ///     where it makes a difference, there are both signed and unsigned variants
 | |
| ///     of the operation. For example, sdiv and udiv. However, because the bit
 | |
| ///     widths must be the same, operations such as Mul and Add produce the same
 | |
| ///     results regardless of whether the values are interpreted as signed or
 | |
| ///     not.
 | |
| ///   * In general, the class tries to follow the style of computation that LLVM
 | |
| ///     uses in its IR. This simplifies its use for LLVM.
 | |
| ///
 | |
| /// @brief Class for arbitrary precision integers.
 | |
| class APInt {
 | |
|   unsigned BitWidth;      ///< The number of bits in this APInt.
 | |
| 
 | |
|   /// This union is used to store the integer value. When the
 | |
|   /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
 | |
|   union {
 | |
|     uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
 | |
|     uint64_t *pVal;  ///< Used to store the >64 bits integer value.
 | |
|   };
 | |
| 
 | |
|   /// This enum is used to hold the constants we needed for APInt.
 | |
|   enum {
 | |
|     /// Bits in a word
 | |
|     APINT_BITS_PER_WORD = static_cast<unsigned int>(sizeof(uint64_t)) *
 | |
|                           CHAR_BIT,
 | |
|     /// Byte size of a word
 | |
|     APINT_WORD_SIZE = static_cast<unsigned int>(sizeof(uint64_t))
 | |
|   };
 | |
| 
 | |
|   /// This constructor is used only internally for speed of construction of
 | |
|   /// temporaries. It is unsafe for general use so it is not public.
 | |
|   /// @brief Fast internal constructor
 | |
|   APInt(uint64_t* val, unsigned bits) : BitWidth(bits), pVal(val) { }
 | |
| 
 | |
|   /// @returns true if the number of bits <= 64, false otherwise.
 | |
|   /// @brief Determine if this APInt just has one word to store value.
 | |
|   bool isSingleWord() const {
 | |
|     return BitWidth <= APINT_BITS_PER_WORD;
 | |
|   }
 | |
| 
 | |
|   /// @returns the word position for the specified bit position.
 | |
|   /// @brief Determine which word a bit is in.
 | |
|   static unsigned whichWord(unsigned bitPosition) {
 | |
|     return bitPosition / APINT_BITS_PER_WORD;
 | |
|   }
 | |
| 
 | |
|   /// @returns the bit position in a word for the specified bit position
 | |
|   /// in the APInt.
 | |
|   /// @brief Determine which bit in a word a bit is in.
 | |
|   static unsigned whichBit(unsigned bitPosition) {
 | |
|     return bitPosition % APINT_BITS_PER_WORD;
 | |
|   }
 | |
| 
 | |
|   /// This method generates and returns a uint64_t (word) mask for a single
 | |
|   /// bit at a specific bit position. This is used to mask the bit in the
 | |
|   /// corresponding word.
 | |
|   /// @returns a uint64_t with only bit at "whichBit(bitPosition)" set
 | |
|   /// @brief Get a single bit mask.
 | |
|   static uint64_t maskBit(unsigned bitPosition) {
 | |
|     return 1ULL << whichBit(bitPosition);
 | |
|   }
 | |
| 
 | |
|   /// This method is used internally to clear the to "N" bits in the high order
 | |
|   /// word that are not used by the APInt. This is needed after the most
 | |
|   /// significant word is assigned a value to ensure that those bits are
 | |
|   /// zero'd out.
 | |
|   /// @brief Clear unused high order bits
 | |
|   APInt& clearUnusedBits() {
 | |
|     // Compute how many bits are used in the final word
 | |
|     unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
 | |
|     if (wordBits == 0)
 | |
|       // If all bits are used, we want to leave the value alone. This also
 | |
|       // avoids the undefined behavior of >> when the shift is the same size as
 | |
|       // the word size (64).
 | |
|       return *this;
 | |
| 
 | |
|     // Mask out the high bits.
 | |
|     uint64_t mask = ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - wordBits);
 | |
|     if (isSingleWord())
 | |
|       VAL &= mask;
 | |
|     else
 | |
|       pVal[getNumWords() - 1] &= mask;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   /// @returns the corresponding word for the specified bit position.
 | |
|   /// @brief Get the word corresponding to a bit position
 | |
|   uint64_t getWord(unsigned bitPosition) const {
 | |
|     return isSingleWord() ? VAL : pVal[whichWord(bitPosition)];
 | |
|   }
 | |
| 
 | |
|   /// Converts a string into a number.  The string must be non-empty
 | |
|   /// and well-formed as a number of the given base. The bit-width
 | |
|   /// must be sufficient to hold the result.
 | |
|   ///
 | |
|   /// This is used by the constructors that take string arguments.
 | |
|   ///
 | |
|   /// StringRef::getAsInteger is superficially similar but (1) does
 | |
|   /// not assume that the string is well-formed and (2) grows the
 | |
|   /// result to hold the input.
 | |
|   ///
 | |
|   /// @param radix 2, 8, 10, or 16
 | |
|   /// @brief Convert a char array into an APInt
 | |
|   void fromString(unsigned numBits, StringRef str, uint8_t radix);
 | |
| 
 | |
|   /// This is used by the toString method to divide by the radix. It simply
 | |
|   /// provides a more convenient form of divide for internal use since KnuthDiv
 | |
|   /// has specific constraints on its inputs. If those constraints are not met
 | |
|   /// then it provides a simpler form of divide.
 | |
|   /// @brief An internal division function for dividing APInts.
 | |
|   static void divide(const APInt LHS, unsigned lhsWords,
 | |
|                      const APInt &RHS, unsigned rhsWords,
 | |
|                      APInt *Quotient, APInt *Remainder);
 | |
| 
 | |
|   /// out-of-line slow case for inline constructor
 | |
|   void initSlowCase(unsigned numBits, uint64_t val, bool isSigned);
 | |
| 
 | |
|   /// shared code between two array constructors
 | |
|   void initFromArray(ArrayRef<uint64_t> array);
 | |
| 
 | |
|   /// out-of-line slow case for inline copy constructor
 | |
|   void initSlowCase(const APInt& that);
 | |
| 
 | |
|   /// out-of-line slow case for shl
 | |
|   APInt shlSlowCase(unsigned shiftAmt) const;
 | |
| 
 | |
|   /// out-of-line slow case for operator&
 | |
|   APInt AndSlowCase(const APInt& RHS) const;
 | |
| 
 | |
|   /// out-of-line slow case for operator|
 | |
|   APInt OrSlowCase(const APInt& RHS) const;
 | |
| 
 | |
|   /// out-of-line slow case for operator^
 | |
|   APInt XorSlowCase(const APInt& RHS) const;
 | |
| 
 | |
|   /// out-of-line slow case for operator=
 | |
|   APInt& AssignSlowCase(const APInt& RHS);
 | |
| 
 | |
|   /// out-of-line slow case for operator==
 | |
|   bool EqualSlowCase(const APInt& RHS) const;
 | |
| 
 | |
|   /// out-of-line slow case for operator==
 | |
|   bool EqualSlowCase(uint64_t Val) const;
 | |
| 
 | |
|   /// out-of-line slow case for countLeadingZeros
 | |
|   unsigned countLeadingZerosSlowCase() const;
 | |
| 
 | |
|   /// out-of-line slow case for countTrailingOnes
 | |
|   unsigned countTrailingOnesSlowCase() const;
 | |
| 
 | |
|   /// out-of-line slow case for countPopulation
 | |
|   unsigned countPopulationSlowCase() const;
 | |
| 
 | |
| public:
 | |
|   /// @name Constructors
 | |
|   /// @{
 | |
|   /// If isSigned is true then val is treated as if it were a signed value
 | |
|   /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
 | |
|   /// will be done. Otherwise, no sign extension occurs (high order bits beyond
 | |
|   /// the range of val are zero filled).
 | |
|   /// @param numBits the bit width of the constructed APInt
 | |
|   /// @param val the initial value of the APInt
 | |
|   /// @param isSigned how to treat signedness of val
 | |
|   /// @brief Create a new APInt of numBits width, initialized as val.
 | |
|   APInt(unsigned numBits, uint64_t val, bool isSigned = false)
 | |
|     : BitWidth(numBits), VAL(0) {
 | |
|     assert(BitWidth && "bitwidth too small");
 | |
|     if (isSingleWord())
 | |
|       VAL = val;
 | |
|     else
 | |
|       initSlowCase(numBits, val, isSigned);
 | |
|     clearUnusedBits();
 | |
|   }
 | |
| 
 | |
|   /// Note that bigVal.size() can be smaller or larger than the corresponding
 | |
|   /// bit width but any extraneous bits will be dropped.
 | |
|   /// @param numBits the bit width of the constructed APInt
 | |
|   /// @param bigVal a sequence of words to form the initial value of the APInt
 | |
|   /// @brief Construct an APInt of numBits width, initialized as bigVal[].
 | |
|   APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
 | |
|   /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
 | |
|   /// deprecated because this constructor is prone to ambiguity with the
 | |
|   /// APInt(unsigned, uint64_t, bool) constructor.
 | |
|   ///
 | |
|   /// If this overload is ever deleted, care should be taken to prevent calls
 | |
|   /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
 | |
|   /// constructor.
 | |
|   APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
 | |
| 
 | |
|   /// This constructor interprets the string \arg str in the given radix. The
 | |
|   /// interpretation stops when the first character that is not suitable for the
 | |
|   /// radix is encountered, or the end of the string. Acceptable radix values
 | |
|   /// are 2, 8, 10 and 16. It is an error for the value implied by the string to
 | |
|   /// require more bits than numBits.
 | |
|   ///
 | |
|   /// @param numBits the bit width of the constructed APInt
 | |
|   /// @param str the string to be interpreted
 | |
|   /// @param radix the radix to use for the conversion 
 | |
|   /// @brief Construct an APInt from a string representation.
 | |
|   APInt(unsigned numBits, StringRef str, uint8_t radix);
 | |
| 
 | |
|   /// Simply makes *this a copy of that.
 | |
|   /// @brief Copy Constructor.
 | |
|   APInt(const APInt& that)
 | |
|     : BitWidth(that.BitWidth), VAL(0) {
 | |
|     assert(BitWidth && "bitwidth too small");
 | |
|     if (isSingleWord())
 | |
|       VAL = that.VAL;
 | |
|     else
 | |
|       initSlowCase(that);
 | |
|   }
 | |
| 
 | |
|   /// @brief Destructor.
 | |
|   ~APInt() {
 | |
|     if (!isSingleWord())
 | |
|       delete [] pVal;
 | |
|   }
 | |
| 
 | |
|   /// Default constructor that creates an uninitialized APInt.  This is useful
 | |
|   ///  for object deserialization (pair this with the static method Read).
 | |
|   explicit APInt() : BitWidth(1) {}
 | |
| 
 | |
|   /// Profile - Used to insert APInt objects, or objects that contain APInt
 | |
|   ///  objects, into FoldingSets.
 | |
|   void Profile(FoldingSetNodeID& id) const;
 | |
| 
 | |
|   /// @}
 | |
|   /// @name Value Tests
 | |
|   /// @{
 | |
|   /// This tests the high bit of this APInt to determine if it is set.
 | |
|   /// @returns true if this APInt is negative, false otherwise
 | |
|   /// @brief Determine sign of this APInt.
 | |
|   bool isNegative() const {
 | |
|     return (*this)[BitWidth - 1];
 | |
|   }
 | |
| 
 | |
|   /// This tests the high bit of the APInt to determine if it is unset.
 | |
|   /// @brief Determine if this APInt Value is non-negative (>= 0)
 | |
|   bool isNonNegative() const {
 | |
|     return !isNegative();
 | |
|   }
 | |
| 
 | |
|   /// This tests if the value of this APInt is positive (> 0). Note
 | |
|   /// that 0 is not a positive value.
 | |
|   /// @returns true if this APInt is positive.
 | |
|   /// @brief Determine if this APInt Value is positive.
 | |
|   bool isStrictlyPositive() const {
 | |
|     return isNonNegative() && !!*this;
 | |
|   }
 | |
| 
 | |
|   /// This checks to see if the value has all bits of the APInt are set or not.
 | |
|   /// @brief Determine if all bits are set
 | |
|   bool isAllOnesValue() const {
 | |
|     return countPopulation() == BitWidth;
 | |
|   }
 | |
| 
 | |
|   /// This checks to see if the value of this APInt is the maximum unsigned
 | |
|   /// value for the APInt's bit width.
 | |
|   /// @brief Determine if this is the largest unsigned value.
 | |
|   bool isMaxValue() const {
 | |
|     return countPopulation() == BitWidth;
 | |
|   }
 | |
| 
 | |
|   /// This checks to see if the value of this APInt is the maximum signed
 | |
|   /// value for the APInt's bit width.
 | |
|   /// @brief Determine if this is the largest signed value.
 | |
|   bool isMaxSignedValue() const {
 | |
|     return BitWidth == 1 ? VAL == 0 :
 | |
|                           !isNegative() && countPopulation() == BitWidth - 1;
 | |
|   }
 | |
| 
 | |
|   /// This checks to see if the value of this APInt is the minimum unsigned
 | |
|   /// value for the APInt's bit width.
 | |
|   /// @brief Determine if this is the smallest unsigned value.
 | |
|   bool isMinValue() const {
 | |
|     return !*this;
 | |
|   }
 | |
| 
 | |
|   /// This checks to see if the value of this APInt is the minimum signed
 | |
|   /// value for the APInt's bit width.
 | |
|   /// @brief Determine if this is the smallest signed value.
 | |
|   bool isMinSignedValue() const {
 | |
|     return BitWidth == 1 ? VAL == 1 : isNegative() && isPowerOf2();
 | |
|   }
 | |
| 
 | |
|   /// @brief Check if this APInt has an N-bits unsigned integer value.
 | |
|   bool isIntN(unsigned N) const {
 | |
|     assert(N && "N == 0 ???");
 | |
|     if (N >= getBitWidth())
 | |
|       return true;
 | |
| 
 | |
|     if (isSingleWord())
 | |
|       return isUIntN(N, VAL);
 | |
|     return APInt(N, makeArrayRef(pVal, getNumWords())).zext(getBitWidth())
 | |
|       == (*this);
 | |
|   }
 | |
| 
 | |
|   /// @brief Check if this APInt has an N-bits signed integer value.
 | |
|   bool isSignedIntN(unsigned N) const {
 | |
|     assert(N && "N == 0 ???");
 | |
|     return getMinSignedBits() <= N;
 | |
|   }
 | |
| 
 | |
|   /// @returns true if the argument APInt value is a power of two > 0.
 | |
|   bool isPowerOf2() const {
 | |
|     if (isSingleWord())
 | |
|       return isPowerOf2_64(VAL);
 | |
|     return countPopulationSlowCase() == 1;
 | |
|   }
 | |
| 
 | |
|   /// isSignBit - Return true if this is the value returned by getSignBit.
 | |
|   bool isSignBit() const { return isMinSignedValue(); }
 | |
| 
 | |
|   /// This converts the APInt to a boolean value as a test against zero.
 | |
|   /// @brief Boolean conversion function.
 | |
|   bool getBoolValue() const {
 | |
|     return !!*this;
 | |
|   }
 | |
| 
 | |
|   /// getLimitedValue - If this value is smaller than the specified limit,
 | |
|   /// return it, otherwise return the limit value.  This causes the value
 | |
|   /// to saturate to the limit.
 | |
|   uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
 | |
|     return (getActiveBits() > 64 || getZExtValue() > Limit) ?
 | |
|       Limit :  getZExtValue();
 | |
|   }
 | |
| 
 | |
|   /// @}
 | |
|   /// @name Value Generators
 | |
|   /// @{
 | |
|   /// @brief Gets maximum unsigned value of APInt for specific bit width.
 | |
|   static APInt getMaxValue(unsigned numBits) {
 | |
|     return getAllOnesValue(numBits);
 | |
|   }
 | |
| 
 | |
|   /// @brief Gets maximum signed value of APInt for a specific bit width.
 | |
|   static APInt getSignedMaxValue(unsigned numBits) {
 | |
|     APInt API = getAllOnesValue(numBits);
 | |
|     API.clearBit(numBits - 1);
 | |
|     return API;
 | |
|   }
 | |
| 
 | |
|   /// @brief Gets minimum unsigned value of APInt for a specific bit width.
 | |
|   static APInt getMinValue(unsigned numBits) {
 | |
|     return APInt(numBits, 0);
 | |
|   }
 | |
| 
 | |
|   /// @brief Gets minimum signed value of APInt for a specific bit width.
 | |
|   static APInt getSignedMinValue(unsigned numBits) {
 | |
|     APInt API(numBits, 0);
 | |
|     API.setBit(numBits - 1);
 | |
|     return API;
 | |
|   }
 | |
| 
 | |
|   /// getSignBit - This is just a wrapper function of getSignedMinValue(), and
 | |
|   /// it helps code readability when we want to get a SignBit.
 | |
|   /// @brief Get the SignBit for a specific bit width.
 | |
|   static APInt getSignBit(unsigned BitWidth) {
 | |
|     return getSignedMinValue(BitWidth);
 | |
|   }
 | |
| 
 | |
|   /// @returns the all-ones value for an APInt of the specified bit-width.
 | |
|   /// @brief Get the all-ones value.
 | |
|   static APInt getAllOnesValue(unsigned numBits) {
 | |
|     return APInt(numBits, -1ULL, true);
 | |
|   }
 | |
| 
 | |
|   /// @returns the '0' value for an APInt of the specified bit-width.
 | |
|   /// @brief Get the '0' value.
 | |
|   static APInt getNullValue(unsigned numBits) {
 | |
|     return APInt(numBits, 0);
 | |
|   }
 | |
| 
 | |
|   /// Get an APInt with the same BitWidth as this APInt, just zero mask
 | |
|   /// the low bits and right shift to the least significant bit.
 | |
|   /// @returns the high "numBits" bits of this APInt.
 | |
|   APInt getHiBits(unsigned numBits) const;
 | |
| 
 | |
|   /// Get an APInt with the same BitWidth as this APInt, just zero mask
 | |
|   /// the high bits.
 | |
|   /// @returns the low "numBits" bits of this APInt.
 | |
|   APInt getLoBits(unsigned numBits) const;
 | |
| 
 | |
|   /// getOneBitSet - Return an APInt with exactly one bit set in the result.
 | |
|   static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
 | |
|     APInt Res(numBits, 0);
 | |
|     Res.setBit(BitNo);
 | |
|     return Res;
 | |
|   }
 | |
|   
 | |
|   /// Constructs an APInt value that has a contiguous range of bits set. The
 | |
|   /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
 | |
|   /// bits will be zero. For example, with parameters(32, 0, 16) you would get
 | |
|   /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
 | |
|   /// example, with parameters (32, 28, 4), you would get 0xF000000F.
 | |
|   /// @param numBits the intended bit width of the result
 | |
|   /// @param loBit the index of the lowest bit set.
 | |
|   /// @param hiBit the index of the highest bit set.
 | |
|   /// @returns An APInt value with the requested bits set.
 | |
|   /// @brief Get a value with a block of bits set.
 | |
|   static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
 | |
|     assert(hiBit <= numBits && "hiBit out of range");
 | |
|     assert(loBit < numBits && "loBit out of range");
 | |
|     if (hiBit < loBit)
 | |
|       return getLowBitsSet(numBits, hiBit) |
 | |
|              getHighBitsSet(numBits, numBits-loBit);
 | |
|     return getLowBitsSet(numBits, hiBit-loBit).shl(loBit);
 | |
|   }
 | |
| 
 | |
|   /// Constructs an APInt value that has the top hiBitsSet bits set.
 | |
|   /// @param numBits the bitwidth of the result
 | |
|   /// @param hiBitsSet the number of high-order bits set in the result.
 | |
|   /// @brief Get a value with high bits set
 | |
|   static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
 | |
|     assert(hiBitsSet <= numBits && "Too many bits to set!");
 | |
|     // Handle a degenerate case, to avoid shifting by word size
 | |
|     if (hiBitsSet == 0)
 | |
|       return APInt(numBits, 0);
 | |
|     unsigned shiftAmt = numBits - hiBitsSet;
 | |
|     // For small values, return quickly
 | |
|     if (numBits <= APINT_BITS_PER_WORD)
 | |
|       return APInt(numBits, ~0ULL << shiftAmt);
 | |
|     return getAllOnesValue(numBits).shl(shiftAmt);
 | |
|   }
 | |
| 
 | |
|   /// Constructs an APInt value that has the bottom loBitsSet bits set.
 | |
|   /// @param numBits the bitwidth of the result
 | |
|   /// @param loBitsSet the number of low-order bits set in the result.
 | |
|   /// @brief Get a value with low bits set
 | |
|   static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
 | |
|     assert(loBitsSet <= numBits && "Too many bits to set!");
 | |
|     // Handle a degenerate case, to avoid shifting by word size
 | |
|     if (loBitsSet == 0)
 | |
|       return APInt(numBits, 0);
 | |
|     if (loBitsSet == APINT_BITS_PER_WORD)
 | |
|       return APInt(numBits, -1ULL);
 | |
|     // For small values, return quickly.
 | |
|     if (numBits < APINT_BITS_PER_WORD)
 | |
|       return APInt(numBits, (1ULL << loBitsSet) - 1);
 | |
|     return getAllOnesValue(numBits).lshr(numBits - loBitsSet);
 | |
|   }
 | |
| 
 | |
|   /// The hash value is computed as the sum of the words and the bit width.
 | |
|   /// @returns A hash value computed from the sum of the APInt words.
 | |
|   /// @brief Get a hash value based on this APInt
 | |
|   uint64_t getHashValue() const;
 | |
| 
 | |
|   /// This function returns a pointer to the internal storage of the APInt.
 | |
|   /// This is useful for writing out the APInt in binary form without any
 | |
|   /// conversions.
 | |
|   const uint64_t* getRawData() const {
 | |
|     if (isSingleWord())
 | |
|       return &VAL;
 | |
|     return &pVal[0];
 | |
|   }
 | |
| 
 | |
|   /// @}
 | |
|   /// @name Unary Operators
 | |
|   /// @{
 | |
|   /// @returns a new APInt value representing *this incremented by one
 | |
|   /// @brief Postfix increment operator.
 | |
|   const APInt operator++(int) {
 | |
|     APInt API(*this);
 | |
|     ++(*this);
 | |
|     return API;
 | |
|   }
 | |
| 
 | |
|   /// @returns *this incremented by one
 | |
|   /// @brief Prefix increment operator.
 | |
|   APInt& operator++();
 | |
| 
 | |
|   /// @returns a new APInt representing *this decremented by one.
 | |
|   /// @brief Postfix decrement operator.
 | |
|   const APInt operator--(int) {
 | |
|     APInt API(*this);
 | |
|     --(*this);
 | |
|     return API;
 | |
|   }
 | |
| 
 | |
|   /// @returns *this decremented by one.
 | |
|   /// @brief Prefix decrement operator.
 | |
|   APInt& operator--();
 | |
| 
 | |
|   /// Performs a bitwise complement operation on this APInt.
 | |
|   /// @returns an APInt that is the bitwise complement of *this
 | |
|   /// @brief Unary bitwise complement operator.
 | |
|   APInt operator~() const {
 | |
|     APInt Result(*this);
 | |
|     Result.flipAllBits();
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   /// Negates *this using two's complement logic.
 | |
|   /// @returns An APInt value representing the negation of *this.
 | |
|   /// @brief Unary negation operator
 | |
|   APInt operator-() const {
 | |
|     return APInt(BitWidth, 0) - (*this);
 | |
|   }
 | |
| 
 | |
|   /// Performs logical negation operation on this APInt.
 | |
|   /// @returns true if *this is zero, false otherwise.
 | |
|   /// @brief Logical negation operator.
 | |
|   bool operator!() const;
 | |
| 
 | |
|   /// @}
 | |
|   /// @name Assignment Operators
 | |
|   /// @{
 | |
|   /// @returns *this after assignment of RHS.
 | |
|   /// @brief Copy assignment operator.
 | |
|   APInt& operator=(const APInt& RHS) {
 | |
|     // If the bitwidths are the same, we can avoid mucking with memory
 | |
|     if (isSingleWord() && RHS.isSingleWord()) {
 | |
|       VAL = RHS.VAL;
 | |
|       BitWidth = RHS.BitWidth;
 | |
|       return clearUnusedBits();
 | |
|     }
 | |
| 
 | |
|     return AssignSlowCase(RHS);
 | |
|   }
 | |
| 
 | |
|   /// The RHS value is assigned to *this. If the significant bits in RHS exceed
 | |
|   /// the bit width, the excess bits are truncated. If the bit width is larger
 | |
|   /// than 64, the value is zero filled in the unspecified high order bits.
 | |
|   /// @returns *this after assignment of RHS value.
 | |
|   /// @brief Assignment operator.
 | |
|   APInt& operator=(uint64_t RHS);
 | |
| 
 | |
|   /// Performs a bitwise AND operation on this APInt and RHS. The result is
 | |
|   /// assigned to *this.
 | |
|   /// @returns *this after ANDing with RHS.
 | |
|   /// @brief Bitwise AND assignment operator.
 | |
|   APInt& operator&=(const APInt& RHS);
 | |
| 
 | |
|   /// Performs a bitwise OR operation on this APInt and RHS. The result is
 | |
|   /// assigned *this;
 | |
|   /// @returns *this after ORing with RHS.
 | |
|   /// @brief Bitwise OR assignment operator.
 | |
|   APInt& operator|=(const APInt& RHS);
 | |
| 
 | |
|   /// Performs a bitwise OR operation on this APInt and RHS. RHS is
 | |
|   /// logically zero-extended or truncated to match the bit-width of
 | |
|   /// the LHS.
 | |
|   /// 
 | |
|   /// @brief Bitwise OR assignment operator.
 | |
|   APInt& operator|=(uint64_t RHS) {
 | |
|     if (isSingleWord()) {
 | |
|       VAL |= RHS;
 | |
|       clearUnusedBits();
 | |
|     } else {
 | |
|       pVal[0] |= RHS;
 | |
|     }
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   /// Performs a bitwise XOR operation on this APInt and RHS. The result is
 | |
|   /// assigned to *this.
 | |
|   /// @returns *this after XORing with RHS.
 | |
|   /// @brief Bitwise XOR assignment operator.
 | |
|   APInt& operator^=(const APInt& RHS);
 | |
| 
 | |
|   /// Multiplies this APInt by RHS and assigns the result to *this.
 | |
|   /// @returns *this
 | |
|   /// @brief Multiplication assignment operator.
 | |
|   APInt& operator*=(const APInt& RHS);
 | |
| 
 | |
|   /// Adds RHS to *this and assigns the result to *this.
 | |
|   /// @returns *this
 | |
|   /// @brief Addition assignment operator.
 | |
|   APInt& operator+=(const APInt& RHS);
 | |
| 
 | |
|   /// Subtracts RHS from *this and assigns the result to *this.
 | |
|   /// @returns *this
 | |
|   /// @brief Subtraction assignment operator.
 | |
|   APInt& operator-=(const APInt& RHS);
 | |
| 
 | |
|   /// Shifts *this left by shiftAmt and assigns the result to *this.
 | |
|   /// @returns *this after shifting left by shiftAmt
 | |
|   /// @brief Left-shift assignment function.
 | |
|   APInt& operator<<=(unsigned shiftAmt) {
 | |
|     *this = shl(shiftAmt);
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   /// @}
 | |
|   /// @name Binary Operators
 | |
|   /// @{
 | |
|   /// Performs a bitwise AND operation on *this and RHS.
 | |
|   /// @returns An APInt value representing the bitwise AND of *this and RHS.
 | |
|   /// @brief Bitwise AND operator.
 | |
|   APInt operator&(const APInt& RHS) const {
 | |
|     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
 | |
|     if (isSingleWord())
 | |
|       return APInt(getBitWidth(), VAL & RHS.VAL);
 | |
|     return AndSlowCase(RHS);
 | |
|   }
 | |
|   APInt And(const APInt& RHS) const {
 | |
|     return this->operator&(RHS);
 | |
|   }
 | |
| 
 | |
|   /// Performs a bitwise OR operation on *this and RHS.
 | |
|   /// @returns An APInt value representing the bitwise OR of *this and RHS.
 | |
|   /// @brief Bitwise OR operator.
 | |
|   APInt operator|(const APInt& RHS) const {
 | |
|     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
 | |
|     if (isSingleWord())
 | |
|       return APInt(getBitWidth(), VAL | RHS.VAL);
 | |
|     return OrSlowCase(RHS);
 | |
|   }
 | |
|   APInt Or(const APInt& RHS) const {
 | |
|     return this->operator|(RHS);
 | |
|   }
 | |
| 
 | |
|   /// Performs a bitwise XOR operation on *this and RHS.
 | |
|   /// @returns An APInt value representing the bitwise XOR of *this and RHS.
 | |
|   /// @brief Bitwise XOR operator.
 | |
|   APInt operator^(const APInt& RHS) const {
 | |
|     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
 | |
|     if (isSingleWord())
 | |
|       return APInt(BitWidth, VAL ^ RHS.VAL);
 | |
|     return XorSlowCase(RHS);
 | |
|   }
 | |
|   APInt Xor(const APInt& RHS) const {
 | |
|     return this->operator^(RHS);
 | |
|   }
 | |
| 
 | |
|   /// Multiplies this APInt by RHS and returns the result.
 | |
|   /// @brief Multiplication operator.
 | |
|   APInt operator*(const APInt& RHS) const;
 | |
| 
 | |
|   /// Adds RHS to this APInt and returns the result.
 | |
|   /// @brief Addition operator.
 | |
|   APInt operator+(const APInt& RHS) const;
 | |
|   APInt operator+(uint64_t RHS) const {
 | |
|     return (*this) + APInt(BitWidth, RHS);
 | |
|   }
 | |
| 
 | |
|   /// Subtracts RHS from this APInt and returns the result.
 | |
|   /// @brief Subtraction operator.
 | |
|   APInt operator-(const APInt& RHS) const;
 | |
|   APInt operator-(uint64_t RHS) const {
 | |
|     return (*this) - APInt(BitWidth, RHS);
 | |
|   }
 | |
| 
 | |
|   APInt operator<<(unsigned Bits) const {
 | |
|     return shl(Bits);
 | |
|   }
 | |
| 
 | |
|   APInt operator<<(const APInt &Bits) const {
 | |
|     return shl(Bits);
 | |
|   }
 | |
| 
 | |
|   /// Arithmetic right-shift this APInt by shiftAmt.
 | |
|   /// @brief Arithmetic right-shift function.
 | |
|   APInt ashr(unsigned shiftAmt) const;
 | |
| 
 | |
|   /// Logical right-shift this APInt by shiftAmt.
 | |
|   /// @brief Logical right-shift function.
 | |
|   APInt lshr(unsigned shiftAmt) const;
 | |
| 
 | |
|   /// Left-shift this APInt by shiftAmt.
 | |
|   /// @brief Left-shift function.
 | |
|   APInt shl(unsigned shiftAmt) const {
 | |
|     assert(shiftAmt <= BitWidth && "Invalid shift amount");
 | |
|     if (isSingleWord()) {
 | |
|       if (shiftAmt == BitWidth)
 | |
|         return APInt(BitWidth, 0); // avoid undefined shift results
 | |
|       return APInt(BitWidth, VAL << shiftAmt);
 | |
|     }
 | |
|     return shlSlowCase(shiftAmt);
 | |
|   }
 | |
| 
 | |
|   /// @brief Rotate left by rotateAmt.
 | |
|   APInt rotl(unsigned rotateAmt) const;
 | |
| 
 | |
|   /// @brief Rotate right by rotateAmt.
 | |
|   APInt rotr(unsigned rotateAmt) const;
 | |
| 
 | |
|   /// Arithmetic right-shift this APInt by shiftAmt.
 | |
|   /// @brief Arithmetic right-shift function.
 | |
|   APInt ashr(const APInt &shiftAmt) const;
 | |
| 
 | |
|   /// Logical right-shift this APInt by shiftAmt.
 | |
|   /// @brief Logical right-shift function.
 | |
|   APInt lshr(const APInt &shiftAmt) const;
 | |
| 
 | |
|   /// Left-shift this APInt by shiftAmt.
 | |
|   /// @brief Left-shift function.
 | |
|   APInt shl(const APInt &shiftAmt) const;
 | |
| 
 | |
|   /// @brief Rotate left by rotateAmt.
 | |
|   APInt rotl(const APInt &rotateAmt) const;
 | |
| 
 | |
|   /// @brief Rotate right by rotateAmt.
 | |
|   APInt rotr(const APInt &rotateAmt) const;
 | |
| 
 | |
|   /// Perform an unsigned divide operation on this APInt by RHS. Both this and
 | |
|   /// RHS are treated as unsigned quantities for purposes of this division.
 | |
|   /// @returns a new APInt value containing the division result
 | |
|   /// @brief Unsigned division operation.
 | |
|   APInt udiv(const APInt &RHS) const;
 | |
| 
 | |
|   /// Signed divide this APInt by APInt RHS.
 | |
|   /// @brief Signed division function for APInt.
 | |
|   APInt sdiv(const APInt &RHS) const {
 | |
|     if (isNegative())
 | |
|       if (RHS.isNegative())
 | |
|         return (-(*this)).udiv(-RHS);
 | |
|       else
 | |
|         return -((-(*this)).udiv(RHS));
 | |
|     else if (RHS.isNegative())
 | |
|       return -(this->udiv(-RHS));
 | |
|     return this->udiv(RHS);
 | |
|   }
 | |
| 
 | |
|   /// Perform an unsigned remainder operation on this APInt with RHS being the
 | |
|   /// divisor. Both this and RHS are treated as unsigned quantities for purposes
 | |
|   /// of this operation. Note that this is a true remainder operation and not
 | |
|   /// a modulo operation because the sign follows the sign of the dividend
 | |
|   /// which is *this.
 | |
|   /// @returns a new APInt value containing the remainder result
 | |
|   /// @brief Unsigned remainder operation.
 | |
|   APInt urem(const APInt &RHS) const;
 | |
| 
 | |
|   /// Signed remainder operation on APInt.
 | |
|   /// @brief Function for signed remainder operation.
 | |
|   APInt srem(const APInt &RHS) const {
 | |
|     if (isNegative())
 | |
|       if (RHS.isNegative())
 | |
|         return -((-(*this)).urem(-RHS));
 | |
|       else
 | |
|         return -((-(*this)).urem(RHS));
 | |
|     else if (RHS.isNegative())
 | |
|       return this->urem(-RHS);
 | |
|     return this->urem(RHS);
 | |
|   }
 | |
| 
 | |
|   /// Sometimes it is convenient to divide two APInt values and obtain both the
 | |
|   /// quotient and remainder. This function does both operations in the same
 | |
|   /// computation making it a little more efficient. The pair of input arguments
 | |
|   /// may overlap with the pair of output arguments. It is safe to call
 | |
|   /// udivrem(X, Y, X, Y), for example.
 | |
|   /// @brief Dual division/remainder interface.
 | |
|   static void udivrem(const APInt &LHS, const APInt &RHS,
 | |
|                       APInt &Quotient, APInt &Remainder);
 | |
| 
 | |
|   static void sdivrem(const APInt &LHS, const APInt &RHS,
 | |
|                       APInt &Quotient, APInt &Remainder) {
 | |
|     if (LHS.isNegative()) {
 | |
|       if (RHS.isNegative())
 | |
|         APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
 | |
|       else
 | |
|         APInt::udivrem(-LHS, RHS, Quotient, Remainder);
 | |
|       Quotient = -Quotient;
 | |
|       Remainder = -Remainder;
 | |
|     } else if (RHS.isNegative()) {
 | |
|       APInt::udivrem(LHS, -RHS, Quotient, Remainder);
 | |
|       Quotient = -Quotient;
 | |
|     } else {
 | |
|       APInt::udivrem(LHS, RHS, Quotient, Remainder);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   
 | |
|   // Operations that return overflow indicators.
 | |
|   APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
 | |
|   APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
 | |
|   APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
 | |
|   APInt usub_ov(const APInt &RHS, bool &Overflow) const;
 | |
|   APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
 | |
|   APInt smul_ov(const APInt &RHS, bool &Overflow) const;
 | |
|   APInt umul_ov(const APInt &RHS, bool &Overflow) const;
 | |
|   APInt sshl_ov(unsigned Amt, bool &Overflow) const;
 | |
| 
 | |
|   /// @returns the bit value at bitPosition
 | |
|   /// @brief Array-indexing support.
 | |
|   bool operator[](unsigned bitPosition) const;
 | |
| 
 | |
|   /// @}
 | |
|   /// @name Comparison Operators
 | |
|   /// @{
 | |
|   /// Compares this APInt with RHS for the validity of the equality
 | |
|   /// relationship.
 | |
|   /// @brief Equality operator.
 | |
|   bool operator==(const APInt& RHS) const {
 | |
|     assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
 | |
|     if (isSingleWord())
 | |
|       return VAL == RHS.VAL;
 | |
|     return EqualSlowCase(RHS);
 | |
|   }
 | |
| 
 | |
|   /// Compares this APInt with a uint64_t for the validity of the equality
 | |
|   /// relationship.
 | |
|   /// @returns true if *this == Val
 | |
|   /// @brief Equality operator.
 | |
|   bool operator==(uint64_t Val) const {
 | |
|     if (isSingleWord())
 | |
|       return VAL == Val;
 | |
|     return EqualSlowCase(Val);
 | |
|   }
 | |
| 
 | |
|   /// Compares this APInt with RHS for the validity of the equality
 | |
|   /// relationship.
 | |
|   /// @returns true if *this == Val
 | |
|   /// @brief Equality comparison.
 | |
|   bool eq(const APInt &RHS) const {
 | |
|     return (*this) == RHS;
 | |
|   }
 | |
| 
 | |
|   /// Compares this APInt with RHS for the validity of the inequality
 | |
|   /// relationship.
 | |
|   /// @returns true if *this != Val
 | |
|   /// @brief Inequality operator.
 | |
|   bool operator!=(const APInt& RHS) const {
 | |
|     return !((*this) == RHS);
 | |
|   }
 | |
| 
 | |
|   /// Compares this APInt with a uint64_t for the validity of the inequality
 | |
|   /// relationship.
 | |
|   /// @returns true if *this != Val
 | |
|   /// @brief Inequality operator.
 | |
|   bool operator!=(uint64_t Val) const {
 | |
|     return !((*this) == Val);
 | |
|   }
 | |
| 
 | |
|   /// Compares this APInt with RHS for the validity of the inequality
 | |
|   /// relationship.
 | |
|   /// @returns true if *this != Val
 | |
|   /// @brief Inequality comparison
 | |
|   bool ne(const APInt &RHS) const {
 | |
|     return !((*this) == RHS);
 | |
|   }
 | |
| 
 | |
|   /// Regards both *this and RHS as unsigned quantities and compares them for
 | |
|   /// the validity of the less-than relationship.
 | |
|   /// @returns true if *this < RHS when both are considered unsigned.
 | |
|   /// @brief Unsigned less than comparison
 | |
|   bool ult(const APInt &RHS) const;
 | |
| 
 | |
|   /// Regards both *this as an unsigned quantity and compares it with RHS for
 | |
|   /// the validity of the less-than relationship.
 | |
|   /// @returns true if *this < RHS when considered unsigned.
 | |
|   /// @brief Unsigned less than comparison
 | |
|   bool ult(uint64_t RHS) const {
 | |
|     return ult(APInt(getBitWidth(), RHS));
 | |
|   }
 | |
| 
 | |
|   /// Regards both *this and RHS as signed quantities and compares them for
 | |
|   /// validity of the less-than relationship.
 | |
|   /// @returns true if *this < RHS when both are considered signed.
 | |
|   /// @brief Signed less than comparison
 | |
|   bool slt(const APInt& RHS) const;
 | |
| 
 | |
|   /// Regards both *this as a signed quantity and compares it with RHS for
 | |
|   /// the validity of the less-than relationship.
 | |
|   /// @returns true if *this < RHS when considered signed.
 | |
|   /// @brief Signed less than comparison
 | |
|   bool slt(uint64_t RHS) const {
 | |
|     return slt(APInt(getBitWidth(), RHS));
 | |
|   }
 | |
| 
 | |
|   /// Regards both *this and RHS as unsigned quantities and compares them for
 | |
|   /// validity of the less-or-equal relationship.
 | |
|   /// @returns true if *this <= RHS when both are considered unsigned.
 | |
|   /// @brief Unsigned less or equal comparison
 | |
|   bool ule(const APInt& RHS) const {
 | |
|     return ult(RHS) || eq(RHS);
 | |
|   }
 | |
| 
 | |
|   /// Regards both *this as an unsigned quantity and compares it with RHS for
 | |
|   /// the validity of the less-or-equal relationship.
 | |
|   /// @returns true if *this <= RHS when considered unsigned.
 | |
|   /// @brief Unsigned less or equal comparison
 | |
|   bool ule(uint64_t RHS) const {
 | |
|     return ule(APInt(getBitWidth(), RHS));
 | |
|   }
 | |
| 
 | |
|   /// Regards both *this and RHS as signed quantities and compares them for
 | |
|   /// validity of the less-or-equal relationship.
 | |
|   /// @returns true if *this <= RHS when both are considered signed.
 | |
|   /// @brief Signed less or equal comparison
 | |
|   bool sle(const APInt& RHS) const {
 | |
|     return slt(RHS) || eq(RHS);
 | |
|   }
 | |
| 
 | |
|   /// Regards both *this as a signed quantity and compares it with RHS for
 | |
|   /// the validity of the less-or-equal relationship.
 | |
|   /// @returns true if *this <= RHS when considered signed.
 | |
|   /// @brief Signed less or equal comparison
 | |
|   bool sle(uint64_t RHS) const {
 | |
|     return sle(APInt(getBitWidth(), RHS));
 | |
|   }
 | |
| 
 | |
|   /// Regards both *this and RHS as unsigned quantities and compares them for
 | |
|   /// the validity of the greater-than relationship.
 | |
|   /// @returns true if *this > RHS when both are considered unsigned.
 | |
|   /// @brief Unsigned greather than comparison
 | |
|   bool ugt(const APInt& RHS) const {
 | |
|     return !ult(RHS) && !eq(RHS);
 | |
|   }
 | |
| 
 | |
|   /// Regards both *this as an unsigned quantity and compares it with RHS for
 | |
|   /// the validity of the greater-than relationship.
 | |
|   /// @returns true if *this > RHS when considered unsigned.
 | |
|   /// @brief Unsigned greater than comparison
 | |
|   bool ugt(uint64_t RHS) const {
 | |
|     return ugt(APInt(getBitWidth(), RHS));
 | |
|   }
 | |
| 
 | |
|   /// Regards both *this and RHS as signed quantities and compares them for
 | |
|   /// the validity of the greater-than relationship.
 | |
|   /// @returns true if *this > RHS when both are considered signed.
 | |
|   /// @brief Signed greather than comparison
 | |
|   bool sgt(const APInt& RHS) const {
 | |
|     return !slt(RHS) && !eq(RHS);
 | |
|   }
 | |
| 
 | |
|   /// Regards both *this as a signed quantity and compares it with RHS for
 | |
|   /// the validity of the greater-than relationship.
 | |
|   /// @returns true if *this > RHS when considered signed.
 | |
|   /// @brief Signed greater than comparison
 | |
|   bool sgt(uint64_t RHS) const {
 | |
|     return sgt(APInt(getBitWidth(), RHS));
 | |
|   }
 | |
| 
 | |
|   /// Regards both *this and RHS as unsigned quantities and compares them for
 | |
|   /// validity of the greater-or-equal relationship.
 | |
|   /// @returns true if *this >= RHS when both are considered unsigned.
 | |
|   /// @brief Unsigned greater or equal comparison
 | |
|   bool uge(const APInt& RHS) const {
 | |
|     return !ult(RHS);
 | |
|   }
 | |
| 
 | |
|   /// Regards both *this as an unsigned quantity and compares it with RHS for
 | |
|   /// the validity of the greater-or-equal relationship.
 | |
|   /// @returns true if *this >= RHS when considered unsigned.
 | |
|   /// @brief Unsigned greater or equal comparison
 | |
|   bool uge(uint64_t RHS) const {
 | |
|     return uge(APInt(getBitWidth(), RHS));
 | |
|   }
 | |
| 
 | |
|   /// Regards both *this and RHS as signed quantities and compares them for
 | |
|   /// validity of the greater-or-equal relationship.
 | |
|   /// @returns true if *this >= RHS when both are considered signed.
 | |
|   /// @brief Signed greather or equal comparison
 | |
|   bool sge(const APInt& RHS) const {
 | |
|     return !slt(RHS);
 | |
|   }
 | |
| 
 | |
|   /// Regards both *this as a signed quantity and compares it with RHS for
 | |
|   /// the validity of the greater-or-equal relationship.
 | |
|   /// @returns true if *this >= RHS when considered signed.
 | |
|   /// @brief Signed greater or equal comparison
 | |
|   bool sge(uint64_t RHS) const {
 | |
|     return sge(APInt(getBitWidth(), RHS));
 | |
|   }
 | |
| 
 | |
|   
 | |
|   
 | |
|   
 | |
|   /// This operation tests if there are any pairs of corresponding bits
 | |
|   /// between this APInt and RHS that are both set.
 | |
|   bool intersects(const APInt &RHS) const {
 | |
|     return (*this & RHS) != 0;
 | |
|   }
 | |
| 
 | |
|   /// @}
 | |
|   /// @name Resizing Operators
 | |
|   /// @{
 | |
|   /// Truncate the APInt to a specified width. It is an error to specify a width
 | |
|   /// that is greater than or equal to the current width.
 | |
|   /// @brief Truncate to new width.
 | |
|   APInt trunc(unsigned width) const;
 | |
| 
 | |
|   /// This operation sign extends the APInt to a new width. If the high order
 | |
|   /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
 | |
|   /// It is an error to specify a width that is less than or equal to the
 | |
|   /// current width.
 | |
|   /// @brief Sign extend to a new width.
 | |
|   APInt sext(unsigned width) const;
 | |
| 
 | |
|   /// This operation zero extends the APInt to a new width. The high order bits
 | |
|   /// are filled with 0 bits.  It is an error to specify a width that is less
 | |
|   /// than or equal to the current width.
 | |
|   /// @brief Zero extend to a new width.
 | |
|   APInt zext(unsigned width) const;
 | |
| 
 | |
|   /// Make this APInt have the bit width given by \p width. The value is sign
 | |
|   /// extended, truncated, or left alone to make it that width.
 | |
|   /// @brief Sign extend or truncate to width
 | |
|   APInt sextOrTrunc(unsigned width) const;
 | |
| 
 | |
|   /// Make this APInt have the bit width given by \p width. The value is zero
 | |
|   /// extended, truncated, or left alone to make it that width.
 | |
|   /// @brief Zero extend or truncate to width
 | |
|   APInt zextOrTrunc(unsigned width) const;
 | |
| 
 | |
|   /// @}
 | |
|   /// @name Bit Manipulation Operators
 | |
|   /// @{
 | |
|   /// @brief Set every bit to 1.
 | |
|   void setAllBits() {
 | |
|     if (isSingleWord())
 | |
|       VAL = -1ULL;
 | |
|     else {
 | |
|       // Set all the bits in all the words.
 | |
|       for (unsigned i = 0; i < getNumWords(); ++i)
 | |
| 	pVal[i] = -1ULL;
 | |
|     }
 | |
|     // Clear the unused ones
 | |
|     clearUnusedBits();
 | |
|   }
 | |
| 
 | |
|   /// Set the given bit to 1 whose position is given as "bitPosition".
 | |
|   /// @brief Set a given bit to 1.
 | |
|   void setBit(unsigned bitPosition);
 | |
| 
 | |
|   /// @brief Set every bit to 0.
 | |
|   void clearAllBits() {
 | |
|     if (isSingleWord())
 | |
|       VAL = 0;
 | |
|     else
 | |
|       memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
 | |
|   }
 | |
| 
 | |
|   /// Set the given bit to 0 whose position is given as "bitPosition".
 | |
|   /// @brief Set a given bit to 0.
 | |
|   void clearBit(unsigned bitPosition);
 | |
| 
 | |
|   /// @brief Toggle every bit to its opposite value.
 | |
|   void flipAllBits() {
 | |
|     if (isSingleWord())
 | |
|       VAL ^= -1ULL;
 | |
|     else {
 | |
|       for (unsigned i = 0; i < getNumWords(); ++i)
 | |
|         pVal[i] ^= -1ULL;
 | |
|     }
 | |
|     clearUnusedBits();
 | |
|   }
 | |
| 
 | |
|   /// Toggle a given bit to its opposite value whose position is given
 | |
|   /// as "bitPosition".
 | |
|   /// @brief Toggles a given bit to its opposite value.
 | |
|   void flipBit(unsigned bitPosition);
 | |
| 
 | |
|   /// @}
 | |
|   /// @name Value Characterization Functions
 | |
|   /// @{
 | |
| 
 | |
|   /// @returns the total number of bits.
 | |
|   unsigned getBitWidth() const {
 | |
|     return BitWidth;
 | |
|   }
 | |
| 
 | |
|   /// Here one word's bitwidth equals to that of uint64_t.
 | |
|   /// @returns the number of words to hold the integer value of this APInt.
 | |
|   /// @brief Get the number of words.
 | |
|   unsigned getNumWords() const {
 | |
|     return getNumWords(BitWidth);
 | |
|   }
 | |
| 
 | |
|   /// Here one word's bitwidth equals to that of uint64_t.
 | |
|   /// @returns the number of words to hold the integer value with a
 | |
|   /// given bit width.
 | |
|   /// @brief Get the number of words.
 | |
|   static unsigned getNumWords(unsigned BitWidth) {
 | |
|     return (BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
 | |
|   }
 | |
| 
 | |
|   /// This function returns the number of active bits which is defined as the
 | |
|   /// bit width minus the number of leading zeros. This is used in several
 | |
|   /// computations to see how "wide" the value is.
 | |
|   /// @brief Compute the number of active bits in the value
 | |
|   unsigned getActiveBits() const {
 | |
|     return BitWidth - countLeadingZeros();
 | |
|   }
 | |
| 
 | |
|   /// This function returns the number of active words in the value of this
 | |
|   /// APInt. This is used in conjunction with getActiveData to extract the raw
 | |
|   /// value of the APInt.
 | |
|   unsigned getActiveWords() const {
 | |
|     return whichWord(getActiveBits()-1) + 1;
 | |
|   }
 | |
| 
 | |
|   /// Computes the minimum bit width for this APInt while considering it to be
 | |
|   /// a signed (and probably negative) value. If the value is not negative,
 | |
|   /// this function returns the same value as getActiveBits()+1. Otherwise, it
 | |
|   /// returns the smallest bit width that will retain the negative value. For
 | |
|   /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
 | |
|   /// for -1, this function will always return 1.
 | |
|   /// @brief Get the minimum bit size for this signed APInt
 | |
|   unsigned getMinSignedBits() const {
 | |
|     if (isNegative())
 | |
|       return BitWidth - countLeadingOnes() + 1;
 | |
|     return getActiveBits()+1;
 | |
|   }
 | |
| 
 | |
|   /// This method attempts to return the value of this APInt as a zero extended
 | |
|   /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
 | |
|   /// uint64_t. Otherwise an assertion will result.
 | |
|   /// @brief Get zero extended value
 | |
|   uint64_t getZExtValue() const {
 | |
|     if (isSingleWord())
 | |
|       return VAL;
 | |
|     assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
 | |
|     return pVal[0];
 | |
|   }
 | |
| 
 | |
|   /// This method attempts to return the value of this APInt as a sign extended
 | |
|   /// int64_t. The bit width must be <= 64 or the value must fit within an
 | |
|   /// int64_t. Otherwise an assertion will result.
 | |
|   /// @brief Get sign extended value
 | |
|   int64_t getSExtValue() const {
 | |
|     if (isSingleWord())
 | |
|       return int64_t(VAL << (APINT_BITS_PER_WORD - BitWidth)) >>
 | |
|                      (APINT_BITS_PER_WORD - BitWidth);
 | |
|     assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
 | |
|     return int64_t(pVal[0]);
 | |
|   }
 | |
| 
 | |
|   /// This method determines how many bits are required to hold the APInt
 | |
|   /// equivalent of the string given by \arg str.
 | |
|   /// @brief Get bits required for string value.
 | |
|   static unsigned getBitsNeeded(StringRef str, uint8_t radix);
 | |
| 
 | |
|   /// countLeadingZeros - This function is an APInt version of the
 | |
|   /// countLeadingZeros_{32,64} functions in MathExtras.h. It counts the number
 | |
|   /// of zeros from the most significant bit to the first one bit.
 | |
|   /// @returns BitWidth if the value is zero.
 | |
|   /// @returns the number of zeros from the most significant bit to the first
 | |
|   /// one bits.
 | |
|   unsigned countLeadingZeros() const {
 | |
|     if (isSingleWord()) {
 | |
|       unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
 | |
|       return CountLeadingZeros_64(VAL) - unusedBits;
 | |
|     }
 | |
|     return countLeadingZerosSlowCase();
 | |
|   }
 | |
| 
 | |
|   /// countLeadingOnes - This function is an APInt version of the
 | |
|   /// countLeadingOnes_{32,64} functions in MathExtras.h. It counts the number
 | |
|   /// of ones from the most significant bit to the first zero bit.
 | |
|   /// @returns 0 if the high order bit is not set
 | |
|   /// @returns the number of 1 bits from the most significant to the least
 | |
|   /// @brief Count the number of leading one bits.
 | |
|   unsigned countLeadingOnes() const;
 | |
| 
 | |
|   /// Computes the number of leading bits of this APInt that are equal to its
 | |
|   /// sign bit.
 | |
|   unsigned getNumSignBits() const {
 | |
|     return isNegative() ? countLeadingOnes() : countLeadingZeros();
 | |
|   }
 | |
| 
 | |
|   /// countTrailingZeros - This function is an APInt version of the
 | |
|   /// countTrailingZeros_{32,64} functions in MathExtras.h. It counts
 | |
|   /// the number of zeros from the least significant bit to the first set bit.
 | |
|   /// @returns BitWidth if the value is zero.
 | |
|   /// @returns the number of zeros from the least significant bit to the first
 | |
|   /// one bit.
 | |
|   /// @brief Count the number of trailing zero bits.
 | |
|   unsigned countTrailingZeros() const;
 | |
| 
 | |
|   /// countTrailingOnes - This function is an APInt version of the
 | |
|   /// countTrailingOnes_{32,64} functions in MathExtras.h. It counts
 | |
|   /// the number of ones from the least significant bit to the first zero bit.
 | |
|   /// @returns BitWidth if the value is all ones.
 | |
|   /// @returns the number of ones from the least significant bit to the first
 | |
|   /// zero bit.
 | |
|   /// @brief Count the number of trailing one bits.
 | |
|   unsigned countTrailingOnes() const {
 | |
|     if (isSingleWord())
 | |
|       return CountTrailingOnes_64(VAL);
 | |
|     return countTrailingOnesSlowCase();
 | |
|   }
 | |
| 
 | |
|   /// countPopulation - This function is an APInt version of the
 | |
|   /// countPopulation_{32,64} functions in MathExtras.h. It counts the number
 | |
|   /// of 1 bits in the APInt value.
 | |
|   /// @returns 0 if the value is zero.
 | |
|   /// @returns the number of set bits.
 | |
|   /// @brief Count the number of bits set.
 | |
|   unsigned countPopulation() const {
 | |
|     if (isSingleWord())
 | |
|       return CountPopulation_64(VAL);
 | |
|     return countPopulationSlowCase();
 | |
|   }
 | |
| 
 | |
|   /// @}
 | |
|   /// @name Conversion Functions
 | |
|   /// @{
 | |
|   void print(raw_ostream &OS, bool isSigned) const;
 | |
| 
 | |
|   /// toString - Converts an APInt to a string and append it to Str.  Str is
 | |
|   /// commonly a SmallString.
 | |
|   void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
 | |
|                 bool formatAsCLiteral = false) const;
 | |
| 
 | |
|   /// Considers the APInt to be unsigned and converts it into a string in the
 | |
|   /// radix given. The radix can be 2, 8, 10 or 16.
 | |
|   void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
 | |
|     toString(Str, Radix, false, false);
 | |
|   }
 | |
| 
 | |
|   /// Considers the APInt to be signed and converts it into a string in the
 | |
|   /// radix given. The radix can be 2, 8, 10 or 16.
 | |
|   void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
 | |
|     toString(Str, Radix, true, false);
 | |
|   }
 | |
| 
 | |
|   /// toString - This returns the APInt as a std::string.  Note that this is an
 | |
|   /// inefficient method.  It is better to pass in a SmallVector/SmallString
 | |
|   /// to the methods above to avoid thrashing the heap for the string.
 | |
|   std::string toString(unsigned Radix, bool Signed) const;
 | |
| 
 | |
| 
 | |
|   /// @returns a byte-swapped representation of this APInt Value.
 | |
|   APInt byteSwap() const;
 | |
| 
 | |
|   /// @brief Converts this APInt to a double value.
 | |
|   double roundToDouble(bool isSigned) const;
 | |
| 
 | |
|   /// @brief Converts this unsigned APInt to a double value.
 | |
|   double roundToDouble() const {
 | |
|     return roundToDouble(false);
 | |
|   }
 | |
| 
 | |
|   /// @brief Converts this signed APInt to a double value.
 | |
|   double signedRoundToDouble() const {
 | |
|     return roundToDouble(true);
 | |
|   }
 | |
| 
 | |
|   /// The conversion does not do a translation from integer to double, it just
 | |
|   /// re-interprets the bits as a double. Note that it is valid to do this on
 | |
|   /// any bit width. Exactly 64 bits will be translated.
 | |
|   /// @brief Converts APInt bits to a double
 | |
|   double bitsToDouble() const {
 | |
|     union {
 | |
|       uint64_t I;
 | |
|       double D;
 | |
|     } T;
 | |
|     T.I = (isSingleWord() ? VAL : pVal[0]);
 | |
|     return T.D;
 | |
|   }
 | |
| 
 | |
|   /// The conversion does not do a translation from integer to float, it just
 | |
|   /// re-interprets the bits as a float. Note that it is valid to do this on
 | |
|   /// any bit width. Exactly 32 bits will be translated.
 | |
|   /// @brief Converts APInt bits to a double
 | |
|   float bitsToFloat() const {
 | |
|     union {
 | |
|       unsigned I;
 | |
|       float F;
 | |
|     } T;
 | |
|     T.I = unsigned((isSingleWord() ? VAL : pVal[0]));
 | |
|     return T.F;
 | |
|   }
 | |
| 
 | |
|   /// The conversion does not do a translation from double to integer, it just
 | |
|   /// re-interprets the bits of the double.
 | |
|   /// @brief Converts a double to APInt bits.
 | |
|   static APInt doubleToBits(double V) {
 | |
|     union {
 | |
|       uint64_t I;
 | |
|       double D;
 | |
|     } T;
 | |
|     T.D = V;
 | |
|     return APInt(sizeof T * CHAR_BIT, T.I);
 | |
|   }
 | |
| 
 | |
|   /// The conversion does not do a translation from float to integer, it just
 | |
|   /// re-interprets the bits of the float.
 | |
|   /// @brief Converts a float to APInt bits.
 | |
|   static APInt floatToBits(float V) {
 | |
|     union {
 | |
|       unsigned I;
 | |
|       float F;
 | |
|     } T;
 | |
|     T.F = V;
 | |
|     return APInt(sizeof T * CHAR_BIT, T.I);
 | |
|   }
 | |
| 
 | |
|   /// @}
 | |
|   /// @name Mathematics Operations
 | |
|   /// @{
 | |
| 
 | |
|   /// @returns the floor log base 2 of this APInt.
 | |
|   unsigned logBase2() const {
 | |
|     return BitWidth - 1 - countLeadingZeros();
 | |
|   }
 | |
| 
 | |
|   /// @returns the ceil log base 2 of this APInt.
 | |
|   unsigned ceilLogBase2() const {
 | |
|     return BitWidth - (*this - 1).countLeadingZeros();
 | |
|   }
 | |
| 
 | |
|   /// @returns the log base 2 of this APInt if its an exact power of two, -1
 | |
|   /// otherwise
 | |
|   int32_t exactLogBase2() const {
 | |
|     if (!isPowerOf2())
 | |
|       return -1;
 | |
|     return logBase2();
 | |
|   }
 | |
| 
 | |
|   /// @brief Compute the square root
 | |
|   APInt sqrt() const;
 | |
| 
 | |
|   /// If *this is < 0 then return -(*this), otherwise *this;
 | |
|   /// @brief Get the absolute value;
 | |
|   APInt abs() const {
 | |
|     if (isNegative())
 | |
|       return -(*this);
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   /// @returns the multiplicative inverse for a given modulo.
 | |
|   APInt multiplicativeInverse(const APInt& modulo) const;
 | |
| 
 | |
|   /// @}
 | |
|   /// @name Support for division by constant
 | |
|   /// @{
 | |
| 
 | |
|   /// Calculate the magic number for signed division by a constant.
 | |
|   struct ms;
 | |
|   ms magic() const;
 | |
| 
 | |
|   /// Calculate the magic number for unsigned division by a constant.
 | |
|   struct mu;
 | |
|   mu magicu(unsigned LeadingZeros = 0) const;
 | |
| 
 | |
|   /// @}
 | |
|   /// @name Building-block Operations for APInt and APFloat
 | |
|   /// @{
 | |
| 
 | |
|   // These building block operations operate on a representation of
 | |
|   // arbitrary precision, two's-complement, bignum integer values.
 | |
|   // They should be sufficient to implement APInt and APFloat bignum
 | |
|   // requirements.  Inputs are generally a pointer to the base of an
 | |
|   // array of integer parts, representing an unsigned bignum, and a
 | |
|   // count of how many parts there are.
 | |
| 
 | |
|   /// Sets the least significant part of a bignum to the input value,
 | |
|   /// and zeroes out higher parts.  */
 | |
|   static void tcSet(integerPart *, integerPart, unsigned int);
 | |
| 
 | |
|   /// Assign one bignum to another.
 | |
|   static void tcAssign(integerPart *, const integerPart *, unsigned int);
 | |
| 
 | |
|   /// Returns true if a bignum is zero, false otherwise.
 | |
|   static bool tcIsZero(const integerPart *, unsigned int);
 | |
| 
 | |
|   /// Extract the given bit of a bignum; returns 0 or 1.  Zero-based.
 | |
|   static int tcExtractBit(const integerPart *, unsigned int bit);
 | |
| 
 | |
|   /// Copy the bit vector of width srcBITS from SRC, starting at bit
 | |
|   /// srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB
 | |
|   /// becomes the least significant bit of DST.  All high bits above
 | |
|   /// srcBITS in DST are zero-filled.
 | |
|   static void tcExtract(integerPart *, unsigned int dstCount,
 | |
|                         const integerPart *,
 | |
|                         unsigned int srcBits, unsigned int srcLSB);
 | |
| 
 | |
|   /// Set the given bit of a bignum.  Zero-based.
 | |
|   static void tcSetBit(integerPart *, unsigned int bit);
 | |
| 
 | |
|   /// Clear the given bit of a bignum.  Zero-based.
 | |
|   static void tcClearBit(integerPart *, unsigned int bit);
 | |
| 
 | |
|   /// Returns the bit number of the least or most significant set bit
 | |
|   /// of a number.  If the input number has no bits set -1U is
 | |
|   /// returned.
 | |
|   static unsigned int tcLSB(const integerPart *, unsigned int);
 | |
|   static unsigned int tcMSB(const integerPart *parts, unsigned int n);
 | |
| 
 | |
|   /// Negate a bignum in-place.
 | |
|   static void tcNegate(integerPart *, unsigned int);
 | |
| 
 | |
|   /// DST += RHS + CARRY where CARRY is zero or one.  Returns the
 | |
|   /// carry flag.
 | |
|   static integerPart tcAdd(integerPart *, const integerPart *,
 | |
|                            integerPart carry, unsigned);
 | |
| 
 | |
|   /// DST -= RHS + CARRY where CARRY is zero or one.  Returns the
 | |
|   /// carry flag.
 | |
|   static integerPart tcSubtract(integerPart *, const integerPart *,
 | |
|                                 integerPart carry, unsigned);
 | |
| 
 | |
|   ///  DST += SRC * MULTIPLIER + PART   if add is true
 | |
|   ///  DST  = SRC * MULTIPLIER + PART   if add is false
 | |
|   ///
 | |
|   ///  Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC
 | |
|   ///  they must start at the same point, i.e. DST == SRC.
 | |
|   ///
 | |
|   ///  If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is
 | |
|   ///  returned.  Otherwise DST is filled with the least significant
 | |
|   ///  DSTPARTS parts of the result, and if all of the omitted higher
 | |
|   ///  parts were zero return zero, otherwise overflow occurred and
 | |
|   ///  return one.
 | |
|   static int tcMultiplyPart(integerPart *dst, const integerPart *src,
 | |
|                             integerPart multiplier, integerPart carry,
 | |
|                             unsigned int srcParts, unsigned int dstParts,
 | |
|                             bool add);
 | |
| 
 | |
|   /// DST = LHS * RHS, where DST has the same width as the operands
 | |
|   /// and is filled with the least significant parts of the result.
 | |
|   /// Returns one if overflow occurred, otherwise zero.  DST must be
 | |
|   /// disjoint from both operands.
 | |
|   static int tcMultiply(integerPart *, const integerPart *,
 | |
|                         const integerPart *, unsigned);
 | |
| 
 | |
|   /// DST = LHS * RHS, where DST has width the sum of the widths of
 | |
|   /// the operands.  No overflow occurs.  DST must be disjoint from
 | |
|   /// both operands. Returns the number of parts required to hold the
 | |
|   /// result.
 | |
|   static unsigned int tcFullMultiply(integerPart *, const integerPart *,
 | |
|                                      const integerPart *, unsigned, unsigned);
 | |
| 
 | |
|   /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
 | |
|   /// Otherwise set LHS to LHS / RHS with the fractional part
 | |
|   /// discarded, set REMAINDER to the remainder, return zero.  i.e.
 | |
|   ///
 | |
|   ///  OLD_LHS = RHS * LHS + REMAINDER
 | |
|   ///
 | |
|   ///  SCRATCH is a bignum of the same size as the operands and result
 | |
|   ///  for use by the routine; its contents need not be initialized
 | |
|   ///  and are destroyed.  LHS, REMAINDER and SCRATCH must be
 | |
|   ///  distinct.
 | |
|   static int tcDivide(integerPart *lhs, const integerPart *rhs,
 | |
|                       integerPart *remainder, integerPart *scratch,
 | |
|                       unsigned int parts);
 | |
| 
 | |
|   /// Shift a bignum left COUNT bits.  Shifted in bits are zero.
 | |
|   /// There are no restrictions on COUNT.
 | |
|   static void tcShiftLeft(integerPart *, unsigned int parts,
 | |
|                           unsigned int count);
 | |
| 
 | |
|   /// Shift a bignum right COUNT bits.  Shifted in bits are zero.
 | |
|   /// There are no restrictions on COUNT.
 | |
|   static void tcShiftRight(integerPart *, unsigned int parts,
 | |
|                            unsigned int count);
 | |
| 
 | |
|   /// The obvious AND, OR and XOR and complement operations.
 | |
|   static void tcAnd(integerPart *, const integerPart *, unsigned int);
 | |
|   static void tcOr(integerPart *, const integerPart *, unsigned int);
 | |
|   static void tcXor(integerPart *, const integerPart *, unsigned int);
 | |
|   static void tcComplement(integerPart *, unsigned int);
 | |
| 
 | |
|   /// Comparison (unsigned) of two bignums.
 | |
|   static int tcCompare(const integerPart *, const integerPart *,
 | |
|                        unsigned int);
 | |
| 
 | |
|   /// Increment a bignum in-place.  Return the carry flag.
 | |
|   static integerPart tcIncrement(integerPart *, unsigned int);
 | |
| 
 | |
|   /// Set the least significant BITS and clear the rest.
 | |
|   static void tcSetLeastSignificantBits(integerPart *, unsigned int,
 | |
|                                         unsigned int bits);
 | |
| 
 | |
|   /// @brief debug method
 | |
|   void dump() const;
 | |
| 
 | |
|   /// @}
 | |
| };
 | |
| 
 | |
| /// Magic data for optimising signed division by a constant.
 | |
| struct APInt::ms {
 | |
|   APInt m;  ///< magic number
 | |
|   unsigned s;  ///< shift amount
 | |
| };
 | |
| 
 | |
| /// Magic data for optimising unsigned division by a constant.
 | |
| struct APInt::mu {
 | |
|   APInt m;     ///< magic number
 | |
|   bool a;      ///< add indicator
 | |
|   unsigned s;  ///< shift amount
 | |
| };
 | |
| 
 | |
| inline bool operator==(uint64_t V1, const APInt& V2) {
 | |
|   return V2 == V1;
 | |
| }
 | |
| 
 | |
| inline bool operator!=(uint64_t V1, const APInt& V2) {
 | |
|   return V2 != V1;
 | |
| }
 | |
| 
 | |
| inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
 | |
|   I.print(OS, true);
 | |
|   return OS;
 | |
| }
 | |
| 
 | |
| namespace APIntOps {
 | |
| 
 | |
| /// @brief Determine the smaller of two APInts considered to be signed.
 | |
| inline APInt smin(const APInt &A, const APInt &B) {
 | |
|   return A.slt(B) ? A : B;
 | |
| }
 | |
| 
 | |
| /// @brief Determine the larger of two APInts considered to be signed.
 | |
| inline APInt smax(const APInt &A, const APInt &B) {
 | |
|   return A.sgt(B) ? A : B;
 | |
| }
 | |
| 
 | |
| /// @brief Determine the smaller of two APInts considered to be signed.
 | |
| inline APInt umin(const APInt &A, const APInt &B) {
 | |
|   return A.ult(B) ? A : B;
 | |
| }
 | |
| 
 | |
| /// @brief Determine the larger of two APInts considered to be unsigned.
 | |
| inline APInt umax(const APInt &A, const APInt &B) {
 | |
|   return A.ugt(B) ? A : B;
 | |
| }
 | |
| 
 | |
| /// @brief Check if the specified APInt has a N-bits unsigned integer value.
 | |
| inline bool isIntN(unsigned N, const APInt& APIVal) {
 | |
|   return APIVal.isIntN(N);
 | |
| }
 | |
| 
 | |
| /// @brief Check if the specified APInt has a N-bits signed integer value.
 | |
| inline bool isSignedIntN(unsigned N, const APInt& APIVal) {
 | |
|   return APIVal.isSignedIntN(N);
 | |
| }
 | |
| 
 | |
| /// @returns true if the argument APInt value is a sequence of ones
 | |
| /// starting at the least significant bit with the remainder zero.
 | |
| inline bool isMask(unsigned numBits, const APInt& APIVal) {
 | |
|   return numBits <= APIVal.getBitWidth() &&
 | |
|     APIVal == APInt::getLowBitsSet(APIVal.getBitWidth(), numBits);
 | |
| }
 | |
| 
 | |
| /// @returns true if the argument APInt value contains a sequence of ones
 | |
| /// with the remainder zero.
 | |
| inline bool isShiftedMask(unsigned numBits, const APInt& APIVal) {
 | |
|   return isMask(numBits, (APIVal - APInt(numBits,1)) | APIVal);
 | |
| }
 | |
| 
 | |
| /// @returns a byte-swapped representation of the specified APInt Value.
 | |
| inline APInt byteSwap(const APInt& APIVal) {
 | |
|   return APIVal.byteSwap();
 | |
| }
 | |
| 
 | |
| /// @returns the floor log base 2 of the specified APInt value.
 | |
| inline unsigned logBase2(const APInt& APIVal) {
 | |
|   return APIVal.logBase2();
 | |
| }
 | |
| 
 | |
| /// GreatestCommonDivisor - This function returns the greatest common
 | |
| /// divisor of the two APInt values using Euclid's algorithm.
 | |
| /// @returns the greatest common divisor of Val1 and Val2
 | |
| /// @brief Compute GCD of two APInt values.
 | |
| APInt GreatestCommonDivisor(const APInt& Val1, const APInt& Val2);
 | |
| 
 | |
| /// Treats the APInt as an unsigned value for conversion purposes.
 | |
| /// @brief Converts the given APInt to a double value.
 | |
| inline double RoundAPIntToDouble(const APInt& APIVal) {
 | |
|   return APIVal.roundToDouble();
 | |
| }
 | |
| 
 | |
| /// Treats the APInt as a signed value for conversion purposes.
 | |
| /// @brief Converts the given APInt to a double value.
 | |
| inline double RoundSignedAPIntToDouble(const APInt& APIVal) {
 | |
|   return APIVal.signedRoundToDouble();
 | |
| }
 | |
| 
 | |
| /// @brief Converts the given APInt to a float vlalue.
 | |
| inline float RoundAPIntToFloat(const APInt& APIVal) {
 | |
|   return float(RoundAPIntToDouble(APIVal));
 | |
| }
 | |
| 
 | |
| /// Treast the APInt as a signed value for conversion purposes.
 | |
| /// @brief Converts the given APInt to a float value.
 | |
| inline float RoundSignedAPIntToFloat(const APInt& APIVal) {
 | |
|   return float(APIVal.signedRoundToDouble());
 | |
| }
 | |
| 
 | |
| /// RoundDoubleToAPInt - This function convert a double value to an APInt value.
 | |
| /// @brief Converts the given double value into a APInt.
 | |
| APInt RoundDoubleToAPInt(double Double, unsigned width);
 | |
| 
 | |
| /// RoundFloatToAPInt - Converts a float value into an APInt value.
 | |
| /// @brief Converts a float value into a APInt.
 | |
| inline APInt RoundFloatToAPInt(float Float, unsigned width) {
 | |
|   return RoundDoubleToAPInt(double(Float), width);
 | |
| }
 | |
| 
 | |
| /// Arithmetic right-shift the APInt by shiftAmt.
 | |
| /// @brief Arithmetic right-shift function.
 | |
| inline APInt ashr(const APInt& LHS, unsigned shiftAmt) {
 | |
|   return LHS.ashr(shiftAmt);
 | |
| }
 | |
| 
 | |
| /// Logical right-shift the APInt by shiftAmt.
 | |
| /// @brief Logical right-shift function.
 | |
| inline APInt lshr(const APInt& LHS, unsigned shiftAmt) {
 | |
|   return LHS.lshr(shiftAmt);
 | |
| }
 | |
| 
 | |
| /// Left-shift the APInt by shiftAmt.
 | |
| /// @brief Left-shift function.
 | |
| inline APInt shl(const APInt& LHS, unsigned shiftAmt) {
 | |
|   return LHS.shl(shiftAmt);
 | |
| }
 | |
| 
 | |
| /// Signed divide APInt LHS by APInt RHS.
 | |
| /// @brief Signed division function for APInt.
 | |
| inline APInt sdiv(const APInt& LHS, const APInt& RHS) {
 | |
|   return LHS.sdiv(RHS);
 | |
| }
 | |
| 
 | |
| /// Unsigned divide APInt LHS by APInt RHS.
 | |
| /// @brief Unsigned division function for APInt.
 | |
| inline APInt udiv(const APInt& LHS, const APInt& RHS) {
 | |
|   return LHS.udiv(RHS);
 | |
| }
 | |
| 
 | |
| /// Signed remainder operation on APInt.
 | |
| /// @brief Function for signed remainder operation.
 | |
| inline APInt srem(const APInt& LHS, const APInt& RHS) {
 | |
|   return LHS.srem(RHS);
 | |
| }
 | |
| 
 | |
| /// Unsigned remainder operation on APInt.
 | |
| /// @brief Function for unsigned remainder operation.
 | |
| inline APInt urem(const APInt& LHS, const APInt& RHS) {
 | |
|   return LHS.urem(RHS);
 | |
| }
 | |
| 
 | |
| /// Performs multiplication on APInt values.
 | |
| /// @brief Function for multiplication operation.
 | |
| inline APInt mul(const APInt& LHS, const APInt& RHS) {
 | |
|   return LHS * RHS;
 | |
| }
 | |
| 
 | |
| /// Performs addition on APInt values.
 | |
| /// @brief Function for addition operation.
 | |
| inline APInt add(const APInt& LHS, const APInt& RHS) {
 | |
|   return LHS + RHS;
 | |
| }
 | |
| 
 | |
| /// Performs subtraction on APInt values.
 | |
| /// @brief Function for subtraction operation.
 | |
| inline APInt sub(const APInt& LHS, const APInt& RHS) {
 | |
|   return LHS - RHS;
 | |
| }
 | |
| 
 | |
| /// Performs bitwise AND operation on APInt LHS and
 | |
| /// APInt RHS.
 | |
| /// @brief Bitwise AND function for APInt.
 | |
| inline APInt And(const APInt& LHS, const APInt& RHS) {
 | |
|   return LHS & RHS;
 | |
| }
 | |
| 
 | |
| /// Performs bitwise OR operation on APInt LHS and APInt RHS.
 | |
| /// @brief Bitwise OR function for APInt.
 | |
| inline APInt Or(const APInt& LHS, const APInt& RHS) {
 | |
|   return LHS | RHS;
 | |
| }
 | |
| 
 | |
| /// Performs bitwise XOR operation on APInt.
 | |
| /// @brief Bitwise XOR function for APInt.
 | |
| inline APInt Xor(const APInt& LHS, const APInt& RHS) {
 | |
|   return LHS ^ RHS;
 | |
| }
 | |
| 
 | |
| /// Performs a bitwise complement operation on APInt.
 | |
| /// @brief Bitwise complement function.
 | |
| inline APInt Not(const APInt& APIVal) {
 | |
|   return ~APIVal;
 | |
| }
 | |
| 
 | |
| } // End of APIntOps namespace
 | |
| 
 | |
| } // End of llvm namespace
 | |
| 
 | |
| #endif
 |