mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121906 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			461 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			461 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains some functions that are useful for math stuff.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_SUPPORT_MATHEXTRAS_H
 | |
| #define LLVM_SUPPORT_MATHEXTRAS_H
 | |
| 
 | |
| #include "llvm/Support/SwapByteOrder.h"
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| // NOTE: The following support functions use the _32/_64 extensions instead of
 | |
| // type overloading so that signed and unsigned integers can be used without
 | |
| // ambiguity.
 | |
| 
 | |
| /// Hi_32 - This function returns the high 32 bits of a 64 bit value.
 | |
| inline uint32_t Hi_32(uint64_t Value) {
 | |
|   return static_cast<uint32_t>(Value >> 32);
 | |
| }
 | |
| 
 | |
| /// Lo_32 - This function returns the low 32 bits of a 64 bit value.
 | |
| inline uint32_t Lo_32(uint64_t Value) {
 | |
|   return static_cast<uint32_t>(Value);
 | |
| }
 | |
| 
 | |
| /// isInt - Checks if an integer fits into the given bit width.
 | |
| template<unsigned N>
 | |
| inline bool isInt(int64_t x) {
 | |
|   return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1)));
 | |
| }
 | |
| // Template specializations to get better code for common cases.
 | |
| template<>
 | |
| inline bool isInt<8>(int64_t x) {
 | |
|   return static_cast<int8_t>(x) == x;
 | |
| }
 | |
| template<>
 | |
| inline bool isInt<16>(int64_t x) {
 | |
|   return static_cast<int16_t>(x) == x;
 | |
| }
 | |
| template<>
 | |
| inline bool isInt<32>(int64_t x) {
 | |
|   return static_cast<int32_t>(x) == x;
 | |
| }
 | |
| 
 | |
| /// isUInt - Checks if an unsigned integer fits into the given bit width.
 | |
| template<unsigned N>
 | |
| inline bool isUInt(uint64_t x) {
 | |
|   return N >= 64 || x < (UINT64_C(1)<<N);
 | |
| }
 | |
| // Template specializations to get better code for common cases.
 | |
| template<>
 | |
| inline bool isUInt<8>(uint64_t x) {
 | |
|   return static_cast<uint8_t>(x) == x;
 | |
| }
 | |
| template<>
 | |
| inline bool isUInt<16>(uint64_t x) {
 | |
|   return static_cast<uint16_t>(x) == x;
 | |
| }
 | |
| template<>
 | |
| inline bool isUInt<32>(uint64_t x) {
 | |
|   return static_cast<uint32_t>(x) == x;
 | |
| }
 | |
| 
 | |
| /// isUIntN - Checks if an unsigned integer fits into the given (dynamic)
 | |
| /// bit width.
 | |
| inline bool isUIntN(unsigned N, uint64_t x) {
 | |
|   return x == (x & (~0ULL >> (64 - N)));
 | |
| }
 | |
| 
 | |
| /// isIntN - Checks if an signed integer fits into the given (dynamic)
 | |
| /// bit width.
 | |
| inline bool isIntN(unsigned N, int64_t x) {
 | |
|   return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1)));
 | |
| }
 | |
| 
 | |
| /// isMask_32 - This function returns true if the argument is a sequence of ones
 | |
| /// starting at the least significant bit with the remainder zero (32 bit
 | |
| /// version).   Ex. isMask_32(0x0000FFFFU) == true.
 | |
| inline bool isMask_32(uint32_t Value) {
 | |
|   return Value && ((Value + 1) & Value) == 0;
 | |
| }
 | |
| 
 | |
| /// isMask_64 - This function returns true if the argument is a sequence of ones
 | |
| /// starting at the least significant bit with the remainder zero (64 bit
 | |
| /// version).
 | |
| inline bool isMask_64(uint64_t Value) {
 | |
|   return Value && ((Value + 1) & Value) == 0;
 | |
| }
 | |
| 
 | |
| /// isShiftedMask_32 - This function returns true if the argument contains a
 | |
| /// sequence of ones with the remainder zero (32 bit version.)
 | |
| /// Ex. isShiftedMask_32(0x0000FF00U) == true.
 | |
| inline bool isShiftedMask_32(uint32_t Value) {
 | |
|   return isMask_32((Value - 1) | Value);
 | |
| }
 | |
| 
 | |
| /// isShiftedMask_64 - This function returns true if the argument contains a
 | |
| /// sequence of ones with the remainder zero (64 bit version.)
 | |
| inline bool isShiftedMask_64(uint64_t Value) {
 | |
|   return isMask_64((Value - 1) | Value);
 | |
| }
 | |
| 
 | |
| /// isPowerOf2_32 - This function returns true if the argument is a power of
 | |
| /// two > 0. Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
 | |
| inline bool isPowerOf2_32(uint32_t Value) {
 | |
|   return Value && !(Value & (Value - 1));
 | |
| }
 | |
| 
 | |
| /// isPowerOf2_64 - This function returns true if the argument is a power of two
 | |
| /// > 0 (64 bit edition.)
 | |
| inline bool isPowerOf2_64(uint64_t Value) {
 | |
|   return Value && !(Value & (Value - int64_t(1L)));
 | |
| }
 | |
| 
 | |
| /// ByteSwap_16 - This function returns a byte-swapped representation of the
 | |
| /// 16-bit argument, Value.
 | |
| inline uint16_t ByteSwap_16(uint16_t Value) {
 | |
|   return sys::SwapByteOrder_16(Value);
 | |
| }
 | |
| 
 | |
| /// ByteSwap_32 - This function returns a byte-swapped representation of the
 | |
| /// 32-bit argument, Value.
 | |
| inline uint32_t ByteSwap_32(uint32_t Value) {
 | |
|   return sys::SwapByteOrder_32(Value);
 | |
| }
 | |
| 
 | |
| /// ByteSwap_64 - This function returns a byte-swapped representation of the
 | |
| /// 64-bit argument, Value.
 | |
| inline uint64_t ByteSwap_64(uint64_t Value) {
 | |
|   return sys::SwapByteOrder_64(Value);
 | |
| }
 | |
| 
 | |
| /// CountLeadingZeros_32 - this function performs the platform optimal form of
 | |
| /// counting the number of zeros from the most significant bit to the first one
 | |
| /// bit.  Ex. CountLeadingZeros_32(0x00F000FF) == 8.
 | |
| /// Returns 32 if the word is zero.
 | |
| inline unsigned CountLeadingZeros_32(uint32_t Value) {
 | |
|   unsigned Count; // result
 | |
| #if __GNUC__ >= 4
 | |
|   // PowerPC is defined for __builtin_clz(0)
 | |
| #if !defined(__ppc__) && !defined(__ppc64__)
 | |
|   if (!Value) return 32;
 | |
| #endif
 | |
|   Count = __builtin_clz(Value);
 | |
| #else
 | |
|   if (!Value) return 32;
 | |
|   Count = 0;
 | |
|   // bisection method for count leading zeros
 | |
|   for (unsigned Shift = 32 >> 1; Shift; Shift >>= 1) {
 | |
|     uint32_t Tmp = Value >> Shift;
 | |
|     if (Tmp) {
 | |
|       Value = Tmp;
 | |
|     } else {
 | |
|       Count |= Shift;
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
|   return Count;
 | |
| }
 | |
| 
 | |
| /// CountLeadingOnes_32 - this function performs the operation of
 | |
| /// counting the number of ones from the most significant bit to the first zero
 | |
| /// bit.  Ex. CountLeadingOnes_32(0xFF0FFF00) == 8.
 | |
| /// Returns 32 if the word is all ones.
 | |
| inline unsigned CountLeadingOnes_32(uint32_t Value) {
 | |
|   return CountLeadingZeros_32(~Value);
 | |
| }
 | |
| 
 | |
| /// CountLeadingZeros_64 - This function performs the platform optimal form
 | |
| /// of counting the number of zeros from the most significant bit to the first
 | |
| /// one bit (64 bit edition.)
 | |
| /// Returns 64 if the word is zero.
 | |
| inline unsigned CountLeadingZeros_64(uint64_t Value) {
 | |
|   unsigned Count; // result
 | |
| #if __GNUC__ >= 4
 | |
|   // PowerPC is defined for __builtin_clzll(0)
 | |
| #if !defined(__ppc__) && !defined(__ppc64__)
 | |
|   if (!Value) return 64;
 | |
| #endif
 | |
|   Count = __builtin_clzll(Value);
 | |
| #else
 | |
|   if (sizeof(long) == sizeof(int64_t)) {
 | |
|     if (!Value) return 64;
 | |
|     Count = 0;
 | |
|     // bisection method for count leading zeros
 | |
|     for (unsigned Shift = 64 >> 1; Shift; Shift >>= 1) {
 | |
|       uint64_t Tmp = Value >> Shift;
 | |
|       if (Tmp) {
 | |
|         Value = Tmp;
 | |
|       } else {
 | |
|         Count |= Shift;
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     // get hi portion
 | |
|     uint32_t Hi = Hi_32(Value);
 | |
| 
 | |
|     // if some bits in hi portion
 | |
|     if (Hi) {
 | |
|         // leading zeros in hi portion plus all bits in lo portion
 | |
|         Count = CountLeadingZeros_32(Hi);
 | |
|     } else {
 | |
|         // get lo portion
 | |
|         uint32_t Lo = Lo_32(Value);
 | |
|         // same as 32 bit value
 | |
|         Count = CountLeadingZeros_32(Lo)+32;
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
|   return Count;
 | |
| }
 | |
| 
 | |
| /// CountLeadingOnes_64 - This function performs the operation
 | |
| /// of counting the number of ones from the most significant bit to the first
 | |
| /// zero bit (64 bit edition.)
 | |
| /// Returns 64 if the word is all ones.
 | |
| inline unsigned CountLeadingOnes_64(uint64_t Value) {
 | |
|   return CountLeadingZeros_64(~Value);
 | |
| }
 | |
| 
 | |
| /// CountTrailingZeros_32 - this function performs the platform optimal form of
 | |
| /// counting the number of zeros from the least significant bit to the first one
 | |
| /// bit.  Ex. CountTrailingZeros_32(0xFF00FF00) == 8.
 | |
| /// Returns 32 if the word is zero.
 | |
| inline unsigned CountTrailingZeros_32(uint32_t Value) {
 | |
| #if __GNUC__ >= 4
 | |
|   return Value ? __builtin_ctz(Value) : 32;
 | |
| #else
 | |
|   static const unsigned Mod37BitPosition[] = {
 | |
|     32, 0, 1, 26, 2, 23, 27, 0, 3, 16, 24, 30, 28, 11, 0, 13,
 | |
|     4, 7, 17, 0, 25, 22, 31, 15, 29, 10, 12, 6, 0, 21, 14, 9,
 | |
|     5, 20, 8, 19, 18
 | |
|   };
 | |
|   return Mod37BitPosition[(-Value & Value) % 37];
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /// CountTrailingOnes_32 - this function performs the operation of
 | |
| /// counting the number of ones from the least significant bit to the first zero
 | |
| /// bit.  Ex. CountTrailingOnes_32(0x00FF00FF) == 8.
 | |
| /// Returns 32 if the word is all ones.
 | |
| inline unsigned CountTrailingOnes_32(uint32_t Value) {
 | |
|   return CountTrailingZeros_32(~Value);
 | |
| }
 | |
| 
 | |
| /// CountTrailingZeros_64 - This function performs the platform optimal form
 | |
| /// of counting the number of zeros from the least significant bit to the first
 | |
| /// one bit (64 bit edition.)
 | |
| /// Returns 64 if the word is zero.
 | |
| inline unsigned CountTrailingZeros_64(uint64_t Value) {
 | |
| #if __GNUC__ >= 4
 | |
|   return Value ? __builtin_ctzll(Value) : 64;
 | |
| #else
 | |
|   static const unsigned Mod67Position[] = {
 | |
|     64, 0, 1, 39, 2, 15, 40, 23, 3, 12, 16, 59, 41, 19, 24, 54,
 | |
|     4, 64, 13, 10, 17, 62, 60, 28, 42, 30, 20, 51, 25, 44, 55,
 | |
|     47, 5, 32, 65, 38, 14, 22, 11, 58, 18, 53, 63, 9, 61, 27,
 | |
|     29, 50, 43, 46, 31, 37, 21, 57, 52, 8, 26, 49, 45, 36, 56,
 | |
|     7, 48, 35, 6, 34, 33, 0
 | |
|   };
 | |
|   return Mod67Position[(-Value & Value) % 67];
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /// CountTrailingOnes_64 - This function performs the operation
 | |
| /// of counting the number of ones from the least significant bit to the first
 | |
| /// zero bit (64 bit edition.)
 | |
| /// Returns 64 if the word is all ones.
 | |
| inline unsigned CountTrailingOnes_64(uint64_t Value) {
 | |
|   return CountTrailingZeros_64(~Value);
 | |
| }
 | |
| 
 | |
| /// CountPopulation_32 - this function counts the number of set bits in a value.
 | |
| /// Ex. CountPopulation(0xF000F000) = 8
 | |
| /// Returns 0 if the word is zero.
 | |
| inline unsigned CountPopulation_32(uint32_t Value) {
 | |
| #if __GNUC__ >= 4
 | |
|   return __builtin_popcount(Value);
 | |
| #else
 | |
|   uint32_t v = Value - ((Value >> 1) & 0x55555555);
 | |
|   v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
 | |
|   return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /// CountPopulation_64 - this function counts the number of set bits in a value,
 | |
| /// (64 bit edition.)
 | |
| inline unsigned CountPopulation_64(uint64_t Value) {
 | |
| #if __GNUC__ >= 4
 | |
|   return __builtin_popcountll(Value);
 | |
| #else
 | |
|   uint64_t v = Value - ((Value >> 1) & 0x5555555555555555ULL);
 | |
|   v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL);
 | |
|   v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
 | |
|   return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /// Log2_32 - This function returns the floor log base 2 of the specified value,
 | |
| /// -1 if the value is zero. (32 bit edition.)
 | |
| /// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
 | |
| inline unsigned Log2_32(uint32_t Value) {
 | |
|   return 31 - CountLeadingZeros_32(Value);
 | |
| }
 | |
| 
 | |
| /// Log2_64 - This function returns the floor log base 2 of the specified value,
 | |
| /// -1 if the value is zero. (64 bit edition.)
 | |
| inline unsigned Log2_64(uint64_t Value) {
 | |
|   return 63 - CountLeadingZeros_64(Value);
 | |
| }
 | |
| 
 | |
| /// Log2_32_Ceil - This function returns the ceil log base 2 of the specified
 | |
| /// value, 32 if the value is zero. (32 bit edition).
 | |
| /// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
 | |
| inline unsigned Log2_32_Ceil(uint32_t Value) {
 | |
|   return 32-CountLeadingZeros_32(Value-1);
 | |
| }
 | |
| 
 | |
| /// Log2_64_Ceil - This function returns the ceil log base 2 of the specified
 | |
| /// value, 64 if the value is zero. (64 bit edition.)
 | |
| inline unsigned Log2_64_Ceil(uint64_t Value) {
 | |
|   return 64-CountLeadingZeros_64(Value-1);
 | |
| }
 | |
| 
 | |
| /// GreatestCommonDivisor64 - Return the greatest common divisor of the two
 | |
| /// values using Euclid's algorithm.
 | |
| inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) {
 | |
|   while (B) {
 | |
|     uint64_t T = B;
 | |
|     B = A % B;
 | |
|     A = T;
 | |
|   }
 | |
|   return A;
 | |
| }
 | |
| 
 | |
| /// BitsToDouble - This function takes a 64-bit integer and returns the bit
 | |
| /// equivalent double.
 | |
| inline double BitsToDouble(uint64_t Bits) {
 | |
|   union {
 | |
|     uint64_t L;
 | |
|     double D;
 | |
|   } T;
 | |
|   T.L = Bits;
 | |
|   return T.D;
 | |
| }
 | |
| 
 | |
| /// BitsToFloat - This function takes a 32-bit integer and returns the bit
 | |
| /// equivalent float.
 | |
| inline float BitsToFloat(uint32_t Bits) {
 | |
|   union {
 | |
|     uint32_t I;
 | |
|     float F;
 | |
|   } T;
 | |
|   T.I = Bits;
 | |
|   return T.F;
 | |
| }
 | |
| 
 | |
| /// DoubleToBits - This function takes a double and returns the bit
 | |
| /// equivalent 64-bit integer.  Note that copying doubles around
 | |
| /// changes the bits of NaNs on some hosts, notably x86, so this
 | |
| /// routine cannot be used if these bits are needed.
 | |
| inline uint64_t DoubleToBits(double Double) {
 | |
|   union {
 | |
|     uint64_t L;
 | |
|     double D;
 | |
|   } T;
 | |
|   T.D = Double;
 | |
|   return T.L;
 | |
| }
 | |
| 
 | |
| /// FloatToBits - This function takes a float and returns the bit
 | |
| /// equivalent 32-bit integer.  Note that copying floats around
 | |
| /// changes the bits of NaNs on some hosts, notably x86, so this
 | |
| /// routine cannot be used if these bits are needed.
 | |
| inline uint32_t FloatToBits(float Float) {
 | |
|   union {
 | |
|     uint32_t I;
 | |
|     float F;
 | |
|   } T;
 | |
|   T.F = Float;
 | |
|   return T.I;
 | |
| }
 | |
| 
 | |
| /// Platform-independent wrappers for the C99 isnan() function.
 | |
| int IsNAN(float f);
 | |
| int IsNAN(double d);
 | |
| 
 | |
| /// Platform-independent wrappers for the C99 isinf() function.
 | |
| int IsInf(float f);
 | |
| int IsInf(double d);
 | |
| 
 | |
| /// MinAlign - A and B are either alignments or offsets.  Return the minimum
 | |
| /// alignment that may be assumed after adding the two together.
 | |
| static inline uint64_t MinAlign(uint64_t A, uint64_t B) {
 | |
|   // The largest power of 2 that divides both A and B.
 | |
|   return (A | B) & -(A | B);
 | |
| }
 | |
| 
 | |
| /// NextPowerOf2 - Returns the next power of two (in 64-bits)
 | |
| /// that is strictly greater than A.  Returns zero on overflow.
 | |
| static inline uint64_t NextPowerOf2(uint64_t A) {
 | |
|   A |= (A >> 1);
 | |
|   A |= (A >> 2);
 | |
|   A |= (A >> 4);
 | |
|   A |= (A >> 8);
 | |
|   A |= (A >> 16);
 | |
|   A |= (A >> 32);
 | |
|   return A + 1;
 | |
| }
 | |
| 
 | |
| /// RoundUpToAlignment - Returns the next integer (mod 2**64) that is
 | |
| /// greater than or equal to \arg Value and is a multiple of \arg
 | |
| /// Align. Align must be non-zero.
 | |
| ///
 | |
| /// Examples:
 | |
| /// RoundUpToAlignment(5, 8) = 8
 | |
| /// RoundUpToAlignment(17, 8) = 24
 | |
| /// RoundUpToAlignment(~0LL, 8) = 0
 | |
| inline uint64_t RoundUpToAlignment(uint64_t Value, uint64_t Align) {
 | |
|   return ((Value + Align - 1) / Align) * Align;
 | |
| }
 | |
| 
 | |
| /// OffsetToAlignment - Return the offset to the next integer (mod 2**64) that
 | |
| /// is greater than or equal to \arg Value and is a multiple of \arg
 | |
| /// Align. Align must be non-zero.
 | |
| inline uint64_t OffsetToAlignment(uint64_t Value, uint64_t Align) {
 | |
|   return RoundUpToAlignment(Value, Align) - Value;
 | |
| }
 | |
| 
 | |
| /// abs64 - absolute value of a 64-bit int.  Not all environments support
 | |
| /// "abs" on whatever their name for the 64-bit int type is.  The absolute
 | |
| /// value of the largest negative number is undefined, as with "abs".
 | |
| inline int64_t abs64(int64_t x) {
 | |
|   return (x < 0) ? -x : x;
 | |
| }
 | |
| 
 | |
| /// SignExtend32 - Sign extend B-bit number x to 32-bit int.
 | |
| /// Usage int32_t r = SignExtend32<5>(x);
 | |
| template <unsigned B> inline int32_t SignExtend32(uint32_t x) {
 | |
|   return int32_t(x << (32 - B)) >> (32 - B);
 | |
| }
 | |
| 
 | |
| /// SignExtend64 - Sign extend B-bit number x to 64-bit int.
 | |
| /// Usage int64_t r = SignExtend64<5>(x);
 | |
| template <unsigned B> inline int64_t SignExtend64(uint64_t x) {
 | |
|   return int64_t(x << (64 - B)) >> (64 - B);
 | |
| }
 | |
| 
 | |
| } // End llvm namespace
 | |
| 
 | |
| #endif
 |