mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11800 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2059 lines
		
	
	
		
			87 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			2059 lines
		
	
	
		
			87 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
| <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
 | |
| <html>
 | |
| <head>
 | |
|   <title>LLVM Assembly Language Reference Manual</title>
 | |
|   <link rel="stylesheet" href="llvm.css" type="text/css">
 | |
| </head>
 | |
| <body>
 | |
| <div class="doc_title"> LLVM Language Reference Manual </div>
 | |
| <ol>
 | |
|   <li><a href="#abstract">Abstract</a></li>
 | |
|   <li><a href="#introduction">Introduction</a></li>
 | |
|   <li><a href="#identifiers">Identifiers</a></li>
 | |
|   <li><a href="#typesystem">Type System</a>
 | |
|     <ol>
 | |
|       <li><a href="#t_primitive">Primitive Types</a> 	
 | |
|         <ol>
 | |
|           <li><a href="#t_classifications">Type Classifications</a></li>
 | |
|         </ol>
 | |
|       </li>
 | |
|       <li><a href="#t_derived">Derived Types</a>
 | |
|         <ol>
 | |
|           <li><a href="#t_array">Array Type</a></li>
 | |
|           <li><a href="#t_function">Function Type</a></li>
 | |
|           <li><a href="#t_pointer">Pointer Type</a></li>
 | |
|           <li><a href="#t_struct">Structure Type</a></li>
 | |
| <!-- <li><a href="#t_packed" >Packed Type</a> -->
 | |
|         </ol>
 | |
|       </li>
 | |
|     </ol>
 | |
|   </li>
 | |
|   <li><a href="#highlevel">High Level Structure</a>
 | |
|     <ol>
 | |
|       <li><a href="#modulestructure">Module Structure</a></li>
 | |
|       <li><a href="#globalvars">Global Variables</a></li>
 | |
|       <li><a href="#functionstructure">Function Structure</a></li>
 | |
|     </ol>
 | |
|   </li>
 | |
|   <li><a href="#instref">Instruction Reference</a>
 | |
|     <ol>
 | |
|       <li><a href="#terminators">Terminator Instructions</a>
 | |
|         <ol>
 | |
|           <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
 | |
|           <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
 | |
|           <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
 | |
|           <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
 | |
|           <li><a href="#i_unwind">'<tt>unwind</tt>'  Instruction</a></li>
 | |
|         </ol>
 | |
|       </li>
 | |
|       <li><a href="#binaryops">Binary Operations</a>
 | |
|         <ol>
 | |
|           <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
 | |
|           <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
 | |
|           <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
 | |
|           <li><a href="#i_div">'<tt>div</tt>' Instruction</a></li>
 | |
|           <li><a href="#i_rem">'<tt>rem</tt>' Instruction</a></li>
 | |
|           <li><a href="#i_setcc">'<tt>set<i>cc</i></tt>' Instructions</a></li>
 | |
|         </ol>
 | |
|       </li>
 | |
|       <li><a href="#bitwiseops">Bitwise Binary Operations</a>
 | |
|         <ol>
 | |
|           <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
 | |
|           <li><a href="#i_or">'<tt>or</tt>'  Instruction</a></li>
 | |
|           <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
 | |
|           <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
 | |
|           <li><a href="#i_shr">'<tt>shr</tt>' Instruction</a></li>
 | |
|         </ol>
 | |
|       </li>
 | |
|       <li><a href="#memoryops">Memory Access Operations</a>
 | |
|         <ol>
 | |
|           <li><a href="#i_malloc">'<tt>malloc</tt>'   Instruction</a></li>
 | |
|           <li><a href="#i_free">'<tt>free</tt>'     Instruction</a></li>
 | |
|           <li><a href="#i_alloca">'<tt>alloca</tt>'   Instruction</a></li>
 | |
| 	 <li><a href="#i_load">'<tt>load</tt>'     Instruction</a></li>
 | |
| 	 <li><a href="#i_store">'<tt>store</tt>'    Instruction</a></li>
 | |
| 	 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
 | |
|         </ol>
 | |
|       </li>
 | |
|       <li><a href="#otherops">Other Operations</a>
 | |
|         <ol>
 | |
|           <li><a href="#i_phi">'<tt>phi</tt>'   Instruction</a></li>
 | |
|           <li><a href="#i_cast">'<tt>cast .. to</tt>' Instruction</a></li>
 | |
|           <li><a href="#i_call">'<tt>call</tt>'  Instruction</a></li>
 | |
|           <li><a href="#i_vanext">'<tt>vanext</tt>' Instruction</a></li>
 | |
|           <li><a href="#i_vaarg">'<tt>vaarg</tt>'  Instruction</a></li>
 | |
|         </ol>
 | |
|       </li>
 | |
|     </ol>
 | |
|   </li>
 | |
|   <li><a href="#intrinsics">Intrinsic Functions</a>
 | |
|     <ol>
 | |
|       <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
 | |
|         <ol>
 | |
|           <li><a href="#i_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
 | |
|           <li><a href="#i_va_end">'<tt>llvm.va_end</tt>'   Intrinsic</a></li>
 | |
|           <li><a href="#i_va_copy">'<tt>llvm.va_copy</tt>'  Intrinsic</a></li>
 | |
|         </ol>
 | |
|       </li>
 | |
|       <li><a href="#int_codegen">Code Generator Intrinsics</a>
 | |
|         <ol>
 | |
|           <li><a href="#i_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
 | |
|           <li><a href="#i_frameaddress">'<tt>llvm.frameaddress</tt>'   Intrinsic</a></li>
 | |
|         </ol>
 | |
|       </li>
 | |
|       <li><a href="#int_libc">Standard C Library Intrinsics</a>
 | |
|         <ol>
 | |
|           <li><a href="#i_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a></li>
 | |
|           <li><a href="#i_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a></li>
 | |
|           <li><a href="#i_memset">'<tt>llvm.memset</tt>' Intrinsic</a></li>
 | |
|         </ol>
 | |
|       </li>
 | |
|       <li><a href="#int_debugger">Debugger intrinsics</a>
 | |
|     </ol>
 | |
|   </li>
 | |
| </ol>
 | |
| <div class="doc_text">
 | |
| <p><b>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
 | |
| and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></b></p>
 | |
| <p> </p>
 | |
| </div>
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_section"> <a name="abstract">Abstract </a></div>
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_text">
 | |
| <p>This document is a reference manual for the LLVM assembly language. 
 | |
| LLVM is an SSA based representation that provides type safety,
 | |
| low-level operations, flexibility, and the capability of representing
 | |
| 'all' high-level languages cleanly.  It is the common code
 | |
| representation used throughout all phases of the LLVM compilation
 | |
| strategy.</p>
 | |
| </div>
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_section"> <a name="introduction">Introduction</a> </div>
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_text">
 | |
| <p>The LLVM code representation is designed to be used in three
 | |
| different forms: as an in-memory compiler IR, as an on-disk bytecode
 | |
| representation (suitable for fast loading by a Just-In-Time compiler),
 | |
| and as a human readable assembly language representation.  This allows
 | |
| LLVM to provide a powerful intermediate representation for efficient
 | |
| compiler transformations and analysis, while providing a natural means
 | |
| to debug and visualize the transformations.  The three different forms
 | |
| of LLVM are all equivalent.  This document describes the human readable
 | |
| representation and notation.</p>
 | |
| <p>The LLVM representation aims to be a light-weight and low-level
 | |
| while being expressive, typed, and extensible at the same time.  It
 | |
| aims to be a "universal IR" of sorts, by being at a low enough level
 | |
| that high-level ideas may be cleanly mapped to it (similar to how
 | |
| microprocessors are "universal IR's", allowing many source languages to
 | |
| be mapped to them).  By providing type information, LLVM can be used as
 | |
| the target of optimizations: for example, through pointer analysis, it
 | |
| can be proven that a C automatic variable is never accessed outside of
 | |
| the current function... allowing it to be promoted to a simple SSA
 | |
| value instead of a memory location.</p>
 | |
| </div>
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
 | |
| <div class="doc_text">
 | |
| <p>It is important to note that this document describes 'well formed'
 | |
| LLVM assembly language.  There is a difference between what the parser
 | |
| accepts and what is considered 'well formed'.  For example, the
 | |
| following instruction is syntactically okay, but not well formed:</p>
 | |
| <pre>  %x = <a href="#i_add">add</a> int 1, %x<br></pre>
 | |
| <p>...because the definition of <tt>%x</tt> does not dominate all of
 | |
| its uses. The LLVM infrastructure provides a verification pass that may
 | |
| be used to verify that an LLVM module is well formed.  This pass is
 | |
| automatically run by the parser after parsing input assembly, and by
 | |
| the optimizer before it outputs bytecode.  The violations pointed out
 | |
| by the verifier pass indicate bugs in transformation passes or input to
 | |
| the parser.</p>
 | |
| <!-- Describe the typesetting conventions here. --> </div>
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_text">
 | |
| <p>LLVM uses three different forms of identifiers, for different
 | |
| purposes:</p>
 | |
| <ol>
 | |
|   <li>Numeric constants are represented as you would expect: 12, -3
 | |
| 123.421,   etc.  Floating point constants have an optional hexidecimal
 | |
| notation.</li>
 | |
|   <li>Named values are represented as a string of characters with a '%'
 | |
| prefix.   For example, %foo, %DivisionByZero,
 | |
| %a.really.long.identifier.  The actual   regular expression used is '<tt>%[a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
 | |
| Identifiers which require other characters in their names can be
 | |
| surrounded   with quotes.  In this way, anything except a <tt>"</tt>
 | |
| character can be used   in a name.</li>
 | |
|   <li>Unnamed values are represented as an unsigned numeric value with
 | |
| a '%'   prefix.  For example, %12, %2, %44.</li>
 | |
| </ol>
 | |
| <p>LLVM requires the values start with a '%' sign for two reasons:
 | |
| Compilers don't need to worry about name clashes with reserved words,
 | |
| and the set of reserved words may be expanded in the future without
 | |
| penalty.  Additionally, unnamed identifiers allow a compiler to quickly
 | |
| come up with a temporary variable without having to avoid symbol table
 | |
| conflicts.</p>
 | |
| <p>Reserved words in LLVM are very similar to reserved words in other
 | |
| languages. There are keywords for different opcodes ('<tt><a
 | |
|  href="#i_add">add</a></tt>', '<tt><a href="#i_cast">cast</a></tt>', '<tt><a
 | |
|  href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
 | |
|  href="#t_void">void</a></tt>', '<tt><a href="#t_uint">uint</a></tt>',
 | |
| etc...), and others.  These reserved words cannot conflict with
 | |
| variable names, because none of them start with a '%' character.</p>
 | |
| <p>Here is an example of LLVM code to multiply the integer variable '<tt>%X</tt>'
 | |
| by 8:</p>
 | |
| <p>The easy way:</p>
 | |
| <pre>  %result = <a href="#i_mul">mul</a> uint %X, 8<br></pre>
 | |
| <p>After strength reduction:</p>
 | |
| <pre>  %result = <a href="#i_shl">shl</a> uint %X, ubyte 3<br></pre>
 | |
| <p>And the hard way:</p>
 | |
| <pre>  <a href="#i_add">add</a> uint %X, %X           <i>; yields {uint}:%0</i>
 | |
|   <a
 | |
|  href="#i_add">add</a> uint %0, %0           <i>; yields {uint}:%1</i>
 | |
|   %result = <a
 | |
|  href="#i_add">add</a> uint %1, %1<br></pre>
 | |
| <p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
 | |
| important lexical features of LLVM:</p>
 | |
| <ol>
 | |
|   <li>Comments are delimited with a '<tt>;</tt>' and go until the end
 | |
| of   line.</li>
 | |
|   <li>Unnamed temporaries are created when the result of a computation
 | |
| is not   assigned to a named value.</li>
 | |
|   <li>Unnamed temporaries are numbered sequentially</li>
 | |
| </ol>
 | |
| <p>...and it also show a convention that we follow in this document. 
 | |
| When demonstrating instructions, we will follow an instruction with a
 | |
| comment that defines the type and name of value produced.  Comments are
 | |
| shown in italic text.</p>
 | |
| <p>The one non-intuitive notation for constants is the optional
 | |
| hexidecimal form of floating point constants.  For example, the form '<tt>double
 | |
| 0x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
 | |
| 4.5e+15</tt>' which is also supported by the parser.  The only time
 | |
| hexadecimal floating point constants are useful (and the only time that
 | |
| they are generated by the disassembler) is when an FP constant has to
 | |
| be emitted that is not representable as a decimal floating point number
 | |
| exactly.  For example, NaN's, infinities, and other special cases are
 | |
| represented in their IEEE hexadecimal format so that assembly and
 | |
| disassembly do not cause any bits to change in the constants.</p>
 | |
| </div>
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_section"> <a name="typesystem">Type System</a> </div>
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_text">
 | |
| <p>The LLVM type system is one of the most important features of the
 | |
| intermediate representation.  Being typed enables a number of
 | |
| optimizations to be performed on the IR directly, without having to do
 | |
| extra analyses on the side before the transformation.  A strong type
 | |
| system makes it easier to read the generated code and enables novel
 | |
| analyses and transformations that are not feasible to perform on normal
 | |
| three address code representations.</p>
 | |
| <!-- The written form for the type system was heavily influenced by the
 | |
| syntactic problems with types in the C language<sup><a
 | |
| href="#rw_stroustrup">1</a></sup>.<p> --> </div>
 | |
| <!-- ======================================================================= -->
 | |
| <div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
 | |
| <div class="doc_text">
 | |
| <p>The primitive types are the fundemental building blocks of the LLVM
 | |
| system. The current set of primitive types are as follows:</p>
 | |
| <p>
 | |
| <table border="0" align="center">
 | |
|   <tbody>
 | |
|     <tr>
 | |
|       <td>
 | |
|       <table border="1" cellspacing="0" cellpadding="4" align="center">
 | |
|         <tbody>
 | |
|           <tr>
 | |
|             <td><tt>void</tt></td>
 | |
|             <td>No value</td>
 | |
|           </tr>
 | |
|           <tr>
 | |
|             <td><tt>ubyte</tt></td>
 | |
|             <td>Unsigned 8 bit value</td>
 | |
|           </tr>
 | |
|           <tr>
 | |
|             <td><tt>ushort</tt></td>
 | |
|             <td>Unsigned 16 bit value</td>
 | |
|           </tr>
 | |
|           <tr>
 | |
|             <td><tt>uint</tt></td>
 | |
|             <td>Unsigned 32 bit value</td>
 | |
|           </tr>
 | |
|           <tr>
 | |
|             <td><tt>ulong</tt></td>
 | |
|             <td>Unsigned 64 bit value</td>
 | |
|           </tr>
 | |
|           <tr>
 | |
|             <td><tt>float</tt></td>
 | |
|             <td>32 bit floating point value</td>
 | |
|           </tr>
 | |
|           <tr>
 | |
|             <td><tt>label</tt></td>
 | |
|             <td>Branch destination</td>
 | |
|           </tr>
 | |
|         </tbody>
 | |
|       </table>
 | |
|       </td>
 | |
|       <td valign="top">
 | |
|       <table border="1" cellspacing="0" cellpadding="4" align="center"">
 | |
|         <tbody>
 | |
|           <tr>
 | |
|             <td><tt>bool</tt></td>
 | |
|             <td>True or False value</td>
 | |
|           </tr>
 | |
|           <tr>
 | |
|             <td><tt>sbyte</tt></td>
 | |
|             <td>Signed 8 bit value</td>
 | |
|           </tr>
 | |
|           <tr>
 | |
|             <td><tt>short</tt></td>
 | |
|             <td>Signed 16 bit value</td>
 | |
|           </tr>
 | |
|           <tr>
 | |
|             <td><tt>int</tt></td>
 | |
|             <td>Signed 32 bit value</td>
 | |
|           </tr>
 | |
|           <tr>
 | |
|             <td><tt>long</tt></td>
 | |
|             <td>Signed 64 bit value</td>
 | |
|           </tr>
 | |
|           <tr>
 | |
|             <td><tt>double</tt></td>
 | |
|             <td>64 bit floating point value</td>
 | |
|           </tr>
 | |
|         </tbody>
 | |
|       </table>
 | |
|       </td>
 | |
|     </tr>
 | |
|   </tbody>
 | |
| </table>
 | |
| </p>
 | |
| </div>
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <div class="doc_subsubsection"> <a name="t_classifications">Type
 | |
| Classifications</a> </div>
 | |
| <div class="doc_text">
 | |
| <p>These different primitive types fall into a few useful
 | |
| classifications:</p>
 | |
| <p>
 | |
| <table border="1" cellspacing="0" cellpadding="4" align="center">
 | |
|   <tbody>
 | |
|     <tr>
 | |
|       <td><a name="t_signed">signed</a></td>
 | |
|       <td><tt>sbyte, short, int, long, float, double</tt></td>
 | |
|     </tr>
 | |
|     <tr>
 | |
|       <td><a name="t_unsigned">unsigned</a></td>
 | |
|       <td><tt>ubyte, ushort, uint, ulong</tt></td>
 | |
|     </tr>
 | |
|     <tr>
 | |
|       <td><a name="t_integer">integer</a></td>
 | |
|       <td><tt>ubyte, sbyte, ushort, short, uint, int, ulong, long</tt></td>
 | |
|     </tr>
 | |
|     <tr>
 | |
|       <td><a name="t_integral">integral</a></td>
 | |
|       <td><tt>bool, ubyte, sbyte, ushort, short, uint, int, ulong, long</tt></td>
 | |
|     </tr>
 | |
|     <tr>
 | |
|       <td><a name="t_floating">floating point</a></td>
 | |
|       <td><tt>float, double</tt></td>
 | |
|     </tr>
 | |
|     <tr>
 | |
|       <td><a name="t_firstclass">first class</a></td>
 | |
|       <td><tt>bool, ubyte, sbyte, ushort, short,<br>
 | |
| uint, int, ulong, long, float, double, <a href="#t_pointer">pointer</a></tt></td>
 | |
|     </tr>
 | |
|   </tbody>
 | |
| </table>
 | |
| </p>
 | |
| <p>The <a href="#t_firstclass">first class</a> types are perhaps the
 | |
| most important.  Values of these types are the only ones which can be
 | |
| produced by instructions, passed as arguments, or used as operands to
 | |
| instructions.  This means that all structures and arrays must be
 | |
| manipulated either by pointer or by component.</p>
 | |
| </div>
 | |
| <!-- ======================================================================= -->
 | |
| <div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
 | |
| <div class="doc_text">
 | |
| <p>The real power in LLVM comes from the derived types in the system. 
 | |
| This is what allows a programmer to represent arrays, functions,
 | |
| pointers, and other useful types.  Note that these derived types may be
 | |
| recursive: For example, it is possible to have a two dimensional array.</p>
 | |
| </div>
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
 | |
| <div class="doc_text">
 | |
| <h5>Overview:</h5>
 | |
| <p>The array type is a very simple derived type that arranges elements
 | |
| sequentially in memory.  The array type requires a size (number of
 | |
| elements) and an underlying data type.</p>
 | |
| <h5>Syntax:</h5>
 | |
| <pre>  [<# elements> x <elementtype>]<br></pre>
 | |
| <p>The number of elements is a constant integer value, elementtype may
 | |
| be any type with a size.</p>
 | |
| <h5>Examples:</h5>
 | |
| <p> <tt>[40 x int ]</tt>: Array of 40 integer values.<br>
 | |
| <tt>[41 x int ]</tt>: Array of 41 integer values.<br>
 | |
| <tt>[40 x uint]</tt>: Array of 40 unsigned integer values.</p>
 | |
| <p> </p>
 | |
| <p>Here are some examples of multidimensional arrays:</p>
 | |
| <p>
 | |
| <table border="0" cellpadding="0" cellspacing="0">
 | |
|   <tbody>
 | |
|     <tr>
 | |
|       <td><tt>[3 x [4 x int]]</tt></td>
 | |
|       <td>: 3x4 array integer values.</td>
 | |
|     </tr>
 | |
|     <tr>
 | |
|       <td><tt>[12 x [10 x float]]</tt></td>
 | |
|       <td>: 12x10 array of single precision floating point values.</td>
 | |
|     </tr>
 | |
|     <tr>
 | |
|       <td><tt>[2 x [3 x [4 x uint]]]</tt></td>
 | |
|       <td>: 2x3x4 array of unsigned integer values.</td>
 | |
|     </tr>
 | |
|   </tbody>
 | |
| </table>
 | |
| </p>
 | |
| </div>
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
 | |
| <div class="doc_text">
 | |
| <h5>Overview:</h5>
 | |
| <p>The function type can be thought of as a function signature.  It
 | |
| consists of a return type and a list of formal parameter types. 
 | |
| Function types are usually used to build virtual function tables
 | |
| (which are structures of pointers to functions), for indirect function
 | |
| calls, and when defining a function.</p>
 | |
| <p>
 | |
| The return type of a function type cannot be an aggregate type.
 | |
| </p>
 | |
| <h5>Syntax:</h5>
 | |
| <pre>  <returntype> (<parameter list>)<br></pre>
 | |
| <p>Where '<tt><parameter list></tt>' is a comma-separated list of
 | |
| type specifiers.  Optionally, the parameter list may include a type <tt>...</tt>,
 | |
| which indicates that the function takes a variable number of arguments.
 | |
| Variable argument functions can access their arguments with the <a
 | |
|  href="#int_varargs">variable argument handling intrinsic</a> functions.</p>
 | |
| <h5>Examples:</h5>
 | |
| <p>
 | |
| <table border="0" cellpadding="0" cellspacing="0">
 | |
|   <tbody>
 | |
|     <tr>
 | |
|       <td><tt>int (int)</tt></td>
 | |
|       <td>: function taking an <tt>int</tt>, returning an <tt>int</tt></td>
 | |
|     </tr>
 | |
|     <tr>
 | |
|       <td><tt>float (int, int *) *</tt></td>
 | |
|       <td>: <a href="#t_pointer">Pointer</a> to a function that takes
 | |
| an <tt>int</tt> and a <a href="#t_pointer">pointer</a> to <tt>int</tt>,
 | |
| returning <tt>float</tt>.</td>
 | |
|     </tr>
 | |
|     <tr>
 | |
|       <td><tt>int (sbyte *, ...)</tt></td>
 | |
|       <td>: A vararg function that takes at least one <a
 | |
|  href="#t_pointer">pointer</a> to <tt>sbyte</tt> (signed char in C),
 | |
| which       returns an integer.  This is the signature for <tt>printf</tt>
 | |
| in LLVM.</td>
 | |
|     </tr>
 | |
|   </tbody>
 | |
| </table>
 | |
| </p>
 | |
| </div>
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
 | |
| <div class="doc_text">
 | |
| <h5>Overview:</h5>
 | |
| <p>The structure type is used to represent a collection of data members
 | |
| together in memory.  The packing of the field types is defined to match
 | |
| the ABI of the underlying processor.  The elements of a structure may
 | |
| be any type that has a size.</p>
 | |
| <p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
 | |
| and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
 | |
| field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
 | |
| instruction.</p>
 | |
| <h5>Syntax:</h5>
 | |
| <pre>  { <type list> }<br></pre>
 | |
| <h5>Examples:</h5>
 | |
| <p>
 | |
| <table border="0" cellpadding="0" cellspacing="0">
 | |
|   <tbody>
 | |
|     <tr>
 | |
|       <td><tt>{ int, int, int }</tt></td>
 | |
|       <td>: a triple of three <tt>int</tt> values</td>
 | |
|     </tr>
 | |
|     <tr>
 | |
|       <td><tt>{ float, int (int) * }</tt></td>
 | |
|       <td>: A pair, where the first element is a <tt>float</tt> and the
 | |
| second       element is a <a href="#t_pointer">pointer</a> to a <a
 | |
|  href="t_function">function</a> that takes an <tt>int</tt>, returning
 | |
| an <tt>int</tt>.</td>
 | |
|     </tr>
 | |
|   </tbody>
 | |
| </table>
 | |
| </p>
 | |
| </div>
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
 | |
| <div class="doc_text">
 | |
| <h5>Overview:</h5>
 | |
| <p>As in many languages, the pointer type represents a pointer or
 | |
| reference to another object, which must live in memory.</p>
 | |
| <h5>Syntax:</h5>
 | |
| <pre>  <type> *<br></pre>
 | |
| <h5>Examples:</h5>
 | |
| <p>
 | |
| <table border="0" cellpadding="0" cellspacing="0">
 | |
|   <tbody>
 | |
|     <tr>
 | |
|       <td><tt>[4x int]*</tt></td>
 | |
|       <td>: <a href="#t_pointer">pointer</a> to <a href="#t_array">array</a>
 | |
| of four <tt>int</tt> values</td>
 | |
|     </tr>
 | |
|     <tr>
 | |
|       <td><tt>int (int *) *</tt></td>
 | |
|       <td>: A <a href="#t_pointer">pointer</a> to a <a
 | |
|  href="t_function">function</a> that takes an <tt>int</tt>, returning
 | |
| an <tt>int</tt>.</td>
 | |
|     </tr>
 | |
|   </tbody>
 | |
| </table>
 | |
| </p>
 | |
| </div>
 | |
| <!-- _______________________________________________________________________ --><!--
 | |
| <div class="doc_subsubsection">
 | |
|   <a name="t_packed">Packed Type</a>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| Mention/decide that packed types work with saturation or not. Maybe have a packed+saturated type in addition to just a packed type.<p>
 | |
| 
 | |
| Packed types should be 'nonsaturated' because standard data types are not saturated.  Maybe have a saturated packed type?<p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| --><!-- *********************************************************************** -->
 | |
| <div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
 | |
| <!-- *********************************************************************** --><!-- ======================================================================= -->
 | |
| <div class="doc_subsection"> <a name="modulestructure">Module Structure</a> </div>
 | |
| <div class="doc_text">
 | |
| <p>LLVM programs are composed of "Module"s, each of which is a
 | |
| translation unit of the input programs.  Each module consists of
 | |
| functions, global variables, and symbol table entries.  Modules may be
 | |
| combined together with the LLVM linker, which merges function (and
 | |
| global variable) definitions, resolves forward declarations, and merges
 | |
| symbol table entries. Here is an example of the "hello world" module:</p>
 | |
| <pre><i>; Declare the string constant as a global constant...</i>
 | |
| <a href="#identifiers">%.LC0</a> = <a href="#linkage_internal">internal</a> <a
 | |
|  href="#globalvars">constant</a> <a href="#t_array">[13 x sbyte]</a> c"hello world\0A\00"          <i>; [13 x sbyte]*</i>
 | |
| 
 | |
| <i>; External declaration of the puts function</i>
 | |
| <a href="#functionstructure">declare</a> int %puts(sbyte*)                                            <i>; int(sbyte*)* </i>
 | |
| 
 | |
| <i>; Definition of main function</i>
 | |
| int %main() {                                                        <i>; int()* </i>
 | |
|         <i>; Convert [13x sbyte]* to sbyte *...</i>
 | |
|         %cast210 = <a
 | |
|  href="#i_getelementptr">getelementptr</a> [13 x sbyte]* %.LC0, long 0, long 0 <i>; sbyte*</i>
 | |
| 
 | |
|         <i>; Call puts function to write out the string to stdout...</i>
 | |
|         <a
 | |
|  href="#i_call">call</a> int %puts(sbyte* %cast210)                              <i>; int</i>
 | |
|         <a
 | |
|  href="#i_ret">ret</a> int 0<br>}<br></pre>
 | |
| <p>This example is made up of a <a href="#globalvars">global variable</a>
 | |
| named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
 | |
| function, and a <a href="#functionstructure">function definition</a>
 | |
| for "<tt>main</tt>".</p>
 | |
| <a name="linkage"> In general, a module is made up of a list of global
 | |
| values, where both functions and global variables are global values. 
 | |
| Global values are represented by a pointer to a memory location (in
 | |
| this case, a pointer to an array of char, and a pointer to a function),
 | |
| and have one of the following linkage types:</a>
 | |
| <p> </p>
 | |
| <dl>
 | |
|   <a name="linkage_internal"> <dt><tt><b>internal</b></tt> </dt>
 | |
|   <dd>Global values with internal linkage are only directly accessible
 | |
| by objects in the current module.  In particular, linking code into a
 | |
| module with an internal global value may cause the internal to be
 | |
| renamed as necessary to avoid collisions.  Because the symbol is
 | |
| internal to the module, all references can be updated.  This
 | |
| corresponds to the notion of the '<tt>static</tt>' keyword in C, or the
 | |
| idea of "anonymous namespaces" in C++.
 | |
|     <p> </p>
 | |
|   </dd>
 | |
|   </a><a name="linkage_linkonce"> <dt><tt><b>linkonce</b></tt>: </dt>
 | |
|   <dd>"<tt>linkonce</tt>" linkage is similar to <tt>internal</tt>
 | |
| linkage, with the twist that linking together two modules defining the
 | |
| same <tt>linkonce</tt> globals will cause one of the globals to be
 | |
| discarded.  This is typically used to implement inline functions. 
 | |
| Unreferenced <tt>linkonce</tt> globals are allowed to be discarded.
 | |
|     <p> </p>
 | |
|   </dd>
 | |
|   </a><a name="linkage_weak"> <dt><tt><b>weak</b></tt>: </dt>
 | |
|   <dd>"<tt>weak</tt>" linkage is exactly the same as <tt>linkonce</tt>
 | |
| linkage, except that unreferenced <tt>weak</tt> globals may not be
 | |
| discarded.  This is used to implement constructs in C such as "<tt>int
 | |
| X;</tt>" at global scope.
 | |
|     <p> </p>
 | |
|   </dd>
 | |
|   </a><a name="linkage_appending"> <dt><tt><b>appending</b></tt>: </dt>
 | |
|   <dd>"<tt>appending</tt>" linkage may only be applied to global
 | |
| variables of pointer to array type.  When two global variables with
 | |
| appending linkage are linked together, the two global arrays are
 | |
| appended together.  This is the LLVM, typesafe, equivalent of having
 | |
| the system linker append together "sections" with identical names when
 | |
| .o files are linked.
 | |
|     <p> </p>
 | |
|   </dd>
 | |
|   </a><a name="linkage_external"> <dt><tt><b>externally visible</b></tt>:</dt>
 | |
|   <dd>If none of the above identifiers are used, the global is
 | |
| externally visible, meaning that it participates in linkage and can be
 | |
| used to resolve external symbol references.
 | |
|     <p> </p>
 | |
|   </dd>
 | |
|   </a>
 | |
| </dl>
 | |
| <p> </p>
 | |
| <p><a name="linkage_external">For example, since the "<tt>.LC0</tt>"
 | |
| variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
 | |
| variable and was linked with this one, one of the two would be renamed,
 | |
| preventing a collision.  Since "<tt>main</tt>" and "<tt>puts</tt>" are
 | |
| external (i.e., lacking any linkage declarations), they are accessible
 | |
| outside of the current module.  It is illegal for a function <i>declaration</i>
 | |
| to have any linkage type other than "externally visible".</a></p>
 | |
| </div>
 | |
| <!-- ======================================================================= -->
 | |
| <div class="doc_subsection"> <a name="globalvars">Global Variables</a> </div>
 | |
| <div class="doc_text">
 | |
| <p>Global variables define regions of memory allocated at compilation
 | |
| time instead of run-time.  Global variables may optionally be
 | |
| initialized.  A variable may be defined as a global "constant", which
 | |
| indicates that the contents of the variable will never be modified
 | |
| (opening options for optimization).  Constants must always have an
 | |
| initial value.</p>
 | |
| <p>As SSA values, global variables define pointer values that are in
 | |
| scope (i.e. they dominate) for all basic blocks in the program.  Global
 | |
| variables always define a pointer to their "content" type because they
 | |
| describe a region of memory, and all memory objects in LLVM are
 | |
| accessed through pointers.</p>
 | |
| </div>
 | |
| <!-- ======================================================================= -->
 | |
| <div class="doc_subsection"> <a name="functionstructure">Functions</a> </div>
 | |
| <div class="doc_text">
 | |
| <p>LLVM function definitions are composed of a (possibly empty)
 | |
| argument list, an opening curly brace, a list of basic blocks, and a
 | |
| closing curly brace.  LLVM function declarations are defined with the "<tt>declare</tt>"
 | |
| keyword, a function name, and a function signature.</p>
 | |
| <p>A function definition contains a list of basic blocks, forming the
 | |
| CFG for the function.  Each basic block may optionally start with a
 | |
| label (giving the basic block a symbol table entry), contains a list of
 | |
| instructions, and ends with a <a href="#terminators">terminator</a>
 | |
| instruction (such as a branch or function return).</p>
 | |
| <p>The first basic block in program is special in two ways: it is
 | |
| immediately executed on entrance to the function, and it is not allowed
 | |
| to have predecessor basic blocks (i.e. there can not be any branches to
 | |
| the entry block of a function).  Because the block can have no
 | |
| predecessors, it also cannot have any <a href="#i_phi">PHI nodes</a>.</p>
 | |
| <p>
 | |
| LLVM functions are identified by their name and type signature.  Hence, two
 | |
| functions with the same name but different parameter lists or return values
 | |
| are considered different functions, and LLVM will resolves references to each
 | |
| appropriately.
 | |
| </p>
 | |
| </div>
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_text">
 | |
| <p>The LLVM instruction set consists of several different
 | |
| classifications of instructions: <a href="#terminators">terminator
 | |
| instructions</a>, <a href="#binaryops">binary instructions</a>, <a
 | |
|  href="#memoryops">memory instructions</a>, and <a href="#otherops">other
 | |
| instructions</a>.</p>
 | |
| </div>
 | |
| <!-- ======================================================================= -->
 | |
| <div class="doc_subsection"> <a name="terminators">Terminator
 | |
| Instructions</a> </div>
 | |
| <div class="doc_text">
 | |
| <p>As mentioned <a href="#functionstructure">previously</a>, every
 | |
| basic block in a program ends with a "Terminator" instruction, which
 | |
| indicates which block should be executed after the current block is
 | |
| finished. These terminator instructions typically yield a '<tt>void</tt>'
 | |
| value: they produce control flow, not values (the one exception being
 | |
| the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
 | |
| <p>There are five different terminator instructions: the '<a
 | |
|  href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
 | |
| instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
 | |
| the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, and the '<a
 | |
|  href="#i_unwind"><tt>unwind</tt></a>' instruction.</p>
 | |
| </div>
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
 | |
| Instruction</a> </div>
 | |
| <div class="doc_text">
 | |
| <h5>Syntax:</h5>
 | |
| <pre>  ret <type> <value>       <i>; Return a value from a non-void function</i>
 | |
|   ret void                 <i>; Return from void function</i>
 | |
| </pre>
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>ret</tt>' instruction is used to return control flow (and a
 | |
| value) from a function, back to the caller.</p>
 | |
| <p>There are two forms of the '<tt>ret</tt>' instructruction: one that
 | |
| returns a value and then causes control flow, and one that just causes
 | |
| control flow to occur.</p>
 | |
| <h5>Arguments:</h5>
 | |
| <p>The '<tt>ret</tt>' instruction may return any '<a
 | |
|  href="#t_firstclass">first class</a>' type.  Notice that a function is
 | |
| not <a href="#wellformed">well formed</a> if there exists a '<tt>ret</tt>'
 | |
| instruction inside of the function that returns a value that does not
 | |
| match the return type of the function.</p>
 | |
| <h5>Semantics:</h5>
 | |
| <p>When the '<tt>ret</tt>' instruction is executed, control flow
 | |
| returns back to the calling function's context.  If the caller is a "<a
 | |
|  href="#i_call"><tt>call</tt></a> instruction, execution continues at
 | |
| the instruction after the call.  If the caller was an "<a
 | |
|  href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
 | |
| at the beginning "normal" of the destination block.  If the instruction
 | |
| returns a value, that value shall set the call or invoke instruction's
 | |
| return value.</p>
 | |
| <h5>Example:</h5>
 | |
| <pre>  ret int 5                       <i>; Return an integer value of 5</i>
 | |
|   ret void                        <i>; Return from a void function</i>
 | |
| </pre>
 | |
| </div>
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
 | |
| <div class="doc_text">
 | |
| <h5>Syntax:</h5>
 | |
| <pre>  br bool <cond>, label <iftrue>, label <iffalse><br>  br label <dest>          <i>; Unconditional branch</i>
 | |
| </pre>
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>br</tt>' instruction is used to cause control flow to
 | |
| transfer to a different basic block in the current function.  There are
 | |
| two forms of this instruction, corresponding to a conditional branch
 | |
| and an unconditional branch.</p>
 | |
| <h5>Arguments:</h5>
 | |
| <p>The conditional branch form of the '<tt>br</tt>' instruction takes a
 | |
| single '<tt>bool</tt>' value and two '<tt>label</tt>' values.  The
 | |
| unconditional form of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>'
 | |
| value as a target.</p>
 | |
| <h5>Semantics:</h5>
 | |
| <p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>bool</tt>'
 | |
| argument is evaluated.  If the value is <tt>true</tt>, control flows
 | |
| to the '<tt>iftrue</tt>' <tt>label</tt> argument.  If "cond" is <tt>false</tt>,
 | |
| control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
 | |
| <h5>Example:</h5>
 | |
| <pre>Test:<br>  %cond = <a href="#i_setcc">seteq</a> int %a, %b<br>  br bool %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br>  <a
 | |
|  href="#i_ret">ret</a> int 1<br>IfUnequal:<br>  <a href="#i_ret">ret</a> int 0<br></pre>
 | |
| </div>
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <div class="doc_subsubsection">
 | |
|    <a name="i_switch">'<tt>switch</tt>' Instruction</a>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_text">
 | |
| <h5>Syntax:</h5>
 | |
| 
 | |
| <pre>
 | |
|   switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| 
 | |
| <p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
 | |
| several different places.  It is a generalization of the '<tt>br</tt>'
 | |
| instruction, allowing a branch to occur to one of many possible
 | |
| destinations.</p>
 | |
| 
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| 
 | |
| <p>The '<tt>switch</tt>' instruction uses three parameters: an integer
 | |
| comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
 | |
| an array of pairs of comparison value constants and '<tt>label</tt>'s.  The
 | |
| table is not allowed to contain duplicate constant entries.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| 
 | |
| <p>The <tt>switch</tt> instruction specifies a table of values and
 | |
| destinations. When the '<tt>switch</tt>' instruction is executed, this
 | |
| table is searched for the given value.  If the value is found, the
 | |
| corresponding destination is branched to, otherwise the default value
 | |
| it transfered to.</p>
 | |
| 
 | |
| <h5>Implementation:</h5>
 | |
| 
 | |
| <p>Depending on properties of the target machine and the particular
 | |
| <tt>switch</tt> instruction, this instruction may be code generated in different
 | |
| ways, for example as a series of chained conditional branches, or with a lookup
 | |
| table.</p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| 
 | |
| <pre>
 | |
|  <i>; Emulate a conditional br instruction</i>
 | |
|  %Val = <a href="#i_cast">cast</a> bool %value to int
 | |
|  switch int %Val, label %truedest [int 0, label %falsedest ]
 | |
| 
 | |
|  <i>; Emulate an unconditional br instruction</i>
 | |
|  switch uint 0, label %dest [ ]
 | |
| 
 | |
|  <i>; Implement a jump table:</i>
 | |
|  switch uint %val, label %otherwise [ uint 0, label %onzero 
 | |
|                                       uint 1, label %onone 
 | |
|                                       uint 2, label %ontwo ]
 | |
| </pre>
 | |
| </div>
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <div class="doc_subsubsection"> <a name="i_invoke">'<tt>invoke</tt>'
 | |
| Instruction</a> </div>
 | |
| <div class="doc_text">
 | |
| <h5>Syntax:</h5>
 | |
| <pre>  <result> = invoke <ptr to function ty> %<function ptr val>(<function args>)<br>                 to label <normal label> except label <exception label><br></pre>
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>invoke</tt>' instruction causes control to transfer to a
 | |
| specified function, with the possibility of control flow transfer to
 | |
| either the '<tt>normal</tt>' <tt>label</tt> label or the '<tt>exception</tt>'<tt>label</tt>.
 | |
| If the callee function returns with the "<tt><a href="#i_ret">ret</a></tt>"
 | |
| instruction, control flow will return to the "normal" label.  If the
 | |
| callee (or any indirect callees) returns with the "<a href="#i_unwind"><tt>unwind</tt></a>"
 | |
| instruction, control is interrupted, and continued at the dynamically
 | |
| nearest "except" label.</p>
 | |
| <h5>Arguments:</h5>
 | |
| <p>This instruction requires several arguments:</p>
 | |
| <ol>
 | |
|   <li>'<tt>ptr to function ty</tt>': shall be the signature of the
 | |
| pointer to function value being invoked.  In most cases, this is a
 | |
| direct function invocation, but indirect <tt>invoke</tt>s are just as
 | |
| possible, branching off an arbitrary pointer to function value. </li>
 | |
|   <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer
 | |
| to a function to be invoked. </li>
 | |
|   <li>'<tt>function args</tt>': argument list whose types match the
 | |
| function signature argument types.  If the function signature indicates
 | |
| the function accepts a variable number of arguments, the extra
 | |
| arguments can be specified. </li>
 | |
|   <li>'<tt>normal label</tt>': the label reached when the called
 | |
| function executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
 | |
|   <li>'<tt>exception label</tt>': the label reached when a callee
 | |
| returns with the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
 | |
| </ol>
 | |
| <h5>Semantics:</h5>
 | |
| <p>This instruction is designed to operate as a standard '<tt><a
 | |
|  href="#i_call">call</a></tt>' instruction in most regards.  The
 | |
| primary difference is that it establishes an association with a label,
 | |
| which is used by the runtime library to unwind the stack.</p>
 | |
| <p>This instruction is used in languages with destructors to ensure
 | |
| that proper cleanup is performed in the case of either a <tt>longjmp</tt>
 | |
| or a thrown exception.  Additionally, this is important for
 | |
| implementation of '<tt>catch</tt>' clauses in high-level languages that
 | |
| support them.</p>
 | |
| <h5>Example:</h5>
 | |
| <pre>  %retval = invoke int %Test(int 15)<br>              to label %Continue<br>              except label %TestCleanup     <i>; {int}:retval set</i>
 | |
| </pre>
 | |
| </div>
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
 | |
| Instruction</a> </div>
 | |
| <div class="doc_text">
 | |
| <h5>Syntax:</h5>
 | |
| <pre>  unwind<br></pre>
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing
 | |
| control flow at the first callee in the dynamic call stack which used
 | |
| an <a href="#i_invoke"><tt>invoke</tt></a> instruction to perform the
 | |
| call.  This is primarily used to implement exception handling.</p>
 | |
| <h5>Semantics:</h5>
 | |
| <p>The '<tt>unwind</tt>' intrinsic causes execution of the current
 | |
| function to immediately halt.  The dynamic call stack is then searched
 | |
| for the first <a href="#i_invoke"><tt>invoke</tt></a> instruction on
 | |
| the call stack.  Once found, execution continues at the "exceptional"
 | |
| destination block specified by the <tt>invoke</tt> instruction.  If
 | |
| there is no <tt>invoke</tt> instruction in the dynamic call chain,
 | |
| undefined behavior results.</p>
 | |
| </div>
 | |
| <!-- ======================================================================= -->
 | |
| <div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
 | |
| <div class="doc_text">
 | |
| <p>Binary operators are used to do most of the computation in a
 | |
| program.  They require two operands, execute an operation on them, and
 | |
| produce a single value. The result value of a binary operator is not
 | |
| necessarily the same type as its operands.</p>
 | |
| <p>There are several different binary operators:</p>
 | |
| </div>
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <div class="doc_subsubsection"> <a name="i_add">'<tt>add</tt>'
 | |
| Instruction</a> </div>
 | |
| <div class="doc_text">
 | |
| <h5>Syntax:</h5>
 | |
| <pre>  <result> = add <ty> <var1>, <var2>   <i>; yields {ty}:result</i>
 | |
| </pre>
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
 | |
| <h5>Arguments:</h5>
 | |
| <p>The two arguments to the '<tt>add</tt>' instruction must be either <a
 | |
|  href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
 | |
| values. Both arguments must have identical types.</p>
 | |
| <h5>Semantics:</h5>
 | |
| <p>The value produced is the integer or floating point sum of the two
 | |
| operands.</p>
 | |
| <h5>Example:</h5>
 | |
| <pre>  <result> = add int 4, %var          <i>; yields {int}:result = 4 + %var</i>
 | |
| </pre>
 | |
| </div>
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <div class="doc_subsubsection"> <a name="i_sub">'<tt>sub</tt>'
 | |
| Instruction</a> </div>
 | |
| <div class="doc_text">
 | |
| <h5>Syntax:</h5>
 | |
| <pre>  <result> = sub <ty> <var1>, <var2>   <i>; yields {ty}:result</i>
 | |
| </pre>
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>sub</tt>' instruction returns the difference of its two
 | |
| operands.</p>
 | |
| <p>Note that the '<tt>sub</tt>' instruction is used to represent the '<tt>neg</tt>'
 | |
| instruction present in most other intermediate representations.</p>
 | |
| <h5>Arguments:</h5>
 | |
| <p>The two arguments to the '<tt>sub</tt>' instruction must be either <a
 | |
|  href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
 | |
| values. Both arguments must have identical types.</p>
 | |
| <h5>Semantics:</h5>
 | |
| <p>The value produced is the integer or floating point difference of
 | |
| the two operands.</p>
 | |
| <h5>Example:</h5>
 | |
| <pre>  <result> = sub int 4, %var          <i>; yields {int}:result = 4 - %var</i>
 | |
|   <result> = sub int 0, %val          <i>; yields {int}:result = -%var</i>
 | |
| </pre>
 | |
| </div>
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <div class="doc_subsubsection"> <a name="i_mul">'<tt>mul</tt>'
 | |
| Instruction</a> </div>
 | |
| <div class="doc_text">
 | |
| <h5>Syntax:</h5>
 | |
| <pre>  <result> = mul <ty> <var1>, <var2>   <i>; yields {ty}:result</i>
 | |
| </pre>
 | |
| <h5>Overview:</h5>
 | |
| <p>The  '<tt>mul</tt>' instruction returns the product of its two
 | |
| operands.</p>
 | |
| <h5>Arguments:</h5>
 | |
| <p>The two arguments to the '<tt>mul</tt>' instruction must be either <a
 | |
|  href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
 | |
| values. Both arguments must have identical types.</p>
 | |
| <h5>Semantics:</h5>
 | |
| <p>The value produced is the integer or floating point product of the
 | |
| two operands.</p>
 | |
| <p>There is no signed vs unsigned multiplication.  The appropriate
 | |
| action is taken based on the type of the operand.</p>
 | |
| <h5>Example:</h5>
 | |
| <pre>  <result> = mul int 4, %var          <i>; yields {int}:result = 4 * %var</i>
 | |
| </pre>
 | |
| </div>
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <div class="doc_subsubsection"> <a name="i_div">'<tt>div</tt>'
 | |
| Instruction</a> </div>
 | |
| <div class="doc_text">
 | |
| <h5>Syntax:</h5>
 | |
| <pre>  <result> = div <ty> <var1>, <var2>   <i>; yields {ty}:result</i>
 | |
| </pre>
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>div</tt>' instruction returns the quotient of its two
 | |
| operands.</p>
 | |
| <h5>Arguments:</h5>
 | |
| <p>The two arguments to the '<tt>div</tt>' instruction must be either <a
 | |
|  href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
 | |
| values. Both arguments must have identical types.</p>
 | |
| <h5>Semantics:</h5>
 | |
| <p>The value produced is the integer or floating point quotient of the
 | |
| two operands.</p>
 | |
| <h5>Example:</h5>
 | |
| <pre>  <result> = div int 4, %var          <i>; yields {int}:result = 4 / %var</i>
 | |
| </pre>
 | |
| </div>
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <div class="doc_subsubsection"> <a name="i_rem">'<tt>rem</tt>'
 | |
| Instruction</a> </div>
 | |
| <div class="doc_text">
 | |
| <h5>Syntax:</h5>
 | |
| <pre>  <result> = rem <ty> <var1>, <var2>   <i>; yields {ty}:result</i>
 | |
| </pre>
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>rem</tt>' instruction returns the remainder from the
 | |
| division of its two operands.</p>
 | |
| <h5>Arguments:</h5>
 | |
| <p>The two arguments to the '<tt>rem</tt>' instruction must be either <a
 | |
|  href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
 | |
| values. Both arguments must have identical types.</p>
 | |
| <h5>Semantics:</h5>
 | |
| <p>This returns the <i>remainder</i> of a division (where the result
 | |
| has the same sign as the divisor), not the <i>modulus</i> (where the
 | |
| result has the same sign as the dividend) of a value.  For more
 | |
| information about the difference, see: <a
 | |
|  href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
 | |
| Math Forum</a>.</p>
 | |
| <h5>Example:</h5>
 | |
| <pre>  <result> = rem int 4, %var          <i>; yields {int}:result = 4 % %var</i>
 | |
| </pre>
 | |
| </div>
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <div class="doc_subsubsection"> <a name="i_setcc">'<tt>set<i>cc</i></tt>'
 | |
| Instructions</a> </div>
 | |
| <div class="doc_text">
 | |
| <h5>Syntax:</h5>
 | |
| <pre>  <result> = seteq <ty> <var1>, <var2>   <i>; yields {bool}:result</i>
 | |
|   <result> = setne <ty> <var1>, <var2>   <i>; yields {bool}:result</i>
 | |
|   <result> = setlt <ty> <var1>, <var2>   <i>; yields {bool}:result</i>
 | |
|   <result> = setgt <ty> <var1>, <var2>   <i>; yields {bool}:result</i>
 | |
|   <result> = setle <ty> <var1>, <var2>   <i>; yields {bool}:result</i>
 | |
|   <result> = setge <ty> <var1>, <var2>   <i>; yields {bool}:result</i>
 | |
| </pre>
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>set<i>cc</i></tt>' family of instructions returns a boolean
 | |
| value based on a comparison of their two operands.</p>
 | |
| <h5>Arguments:</h5>
 | |
| <p>The two arguments to the '<tt>set<i>cc</i></tt>' instructions must
 | |
| be of <a href="#t_firstclass">first class</a> type (it is not possible
 | |
| to compare '<tt>label</tt>'s, '<tt>array</tt>'s, '<tt>structure</tt>'
 | |
| or '<tt>void</tt>' values, etc...).  Both arguments must have identical
 | |
| types.</p>
 | |
| <h5>Semantics:</h5>
 | |
| <p>The '<tt>seteq</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>'
 | |
| value if both operands are equal.<br>
 | |
| The '<tt>setne</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>'
 | |
| value if both operands are unequal.<br>
 | |
| The '<tt>setlt</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>'
 | |
| value if the first operand is less than the second operand.<br>
 | |
| The '<tt>setgt</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>'
 | |
| value if the first operand is greater than the second operand.<br>
 | |
| The '<tt>setle</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>'
 | |
| value if the first operand is less than or equal to the second operand.<br>
 | |
| The '<tt>setge</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>'
 | |
| value if the first operand is greater than or equal to the second
 | |
| operand.</p>
 | |
| <h5>Example:</h5>
 | |
| <pre>  <result> = seteq int   4, 5        <i>; yields {bool}:result = false</i>
 | |
|   <result> = setne float 4, 5        <i>; yields {bool}:result = true</i>
 | |
|   <result> = setlt uint  4, 5        <i>; yields {bool}:result = true</i>
 | |
|   <result> = setgt sbyte 4, 5        <i>; yields {bool}:result = false</i>
 | |
|   <result> = setle sbyte 4, 5        <i>; yields {bool}:result = true</i>
 | |
|   <result> = setge sbyte 4, 5        <i>; yields {bool}:result = false</i>
 | |
| </pre>
 | |
| </div>
 | |
| <!-- ======================================================================= -->
 | |
| <div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
 | |
| Operations</a> </div>
 | |
| <div class="doc_text">
 | |
| <p>Bitwise binary operators are used to do various forms of
 | |
| bit-twiddling in a program.  They are generally very efficient
 | |
| instructions, and can commonly be strength reduced from other
 | |
| instructions.  They require two operands, execute an operation on them,
 | |
| and produce a single value.  The resulting value of the bitwise binary
 | |
| operators is always the same type as its first operand.</p>
 | |
| </div>
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
 | |
| Instruction</a> </div>
 | |
| <div class="doc_text">
 | |
| <h5>Syntax:</h5>
 | |
| <pre>  <result> = and <ty> <var1>, <var2>   <i>; yields {ty}:result</i>
 | |
| </pre>
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>and</tt>' instruction returns the bitwise logical and of
 | |
| its two operands.</p>
 | |
| <h5>Arguments:</h5>
 | |
| <p>The two arguments to the '<tt>and</tt>' instruction must be <a
 | |
|  href="#t_integral">integral</a> values.  Both arguments must have
 | |
| identical types.</p>
 | |
| <h5>Semantics:</h5>
 | |
| <p>The truth table used for the '<tt>and</tt>' instruction is:</p>
 | |
| <p> </p>
 | |
| <center>
 | |
| <table border="1" cellspacing="0" cellpadding="4">
 | |
|   <tbody>
 | |
|     <tr>
 | |
|       <td>In0</td>
 | |
|       <td>In1</td>
 | |
|       <td>Out</td>
 | |
|     </tr>
 | |
|     <tr>
 | |
|       <td>0</td>
 | |
|       <td>0</td>
 | |
|       <td>0</td>
 | |
|     </tr>
 | |
|     <tr>
 | |
|       <td>0</td>
 | |
|       <td>1</td>
 | |
|       <td>0</td>
 | |
|     </tr>
 | |
|     <tr>
 | |
|       <td>1</td>
 | |
|       <td>0</td>
 | |
|       <td>0</td>
 | |
|     </tr>
 | |
|     <tr>
 | |
|       <td>1</td>
 | |
|       <td>1</td>
 | |
|       <td>1</td>
 | |
|     </tr>
 | |
|   </tbody>
 | |
| </table>
 | |
| </center>
 | |
| <h5>Example:</h5>
 | |
| <pre>  <result> = and int 4, %var         <i>; yields {int}:result = 4 & %var</i>
 | |
|   <result> = and int 15, 40          <i>; yields {int}:result = 8</i>
 | |
|   <result> = and int 4, 8            <i>; yields {int}:result = 0</i>
 | |
| </pre>
 | |
| </div>
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
 | |
| <div class="doc_text">
 | |
| <h5>Syntax:</h5>
 | |
| <pre>  <result> = or <ty> <var1>, <var2>   <i>; yields {ty}:result</i>
 | |
| </pre>
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
 | |
| or of its two operands.</p>
 | |
| <h5>Arguments:</h5>
 | |
| <p>The two arguments to the '<tt>or</tt>' instruction must be <a
 | |
|  href="#t_integral">integral</a> values.  Both arguments must have
 | |
| identical types.</p>
 | |
| <h5>Semantics:</h5>
 | |
| <p>The truth table used for the '<tt>or</tt>' instruction is:</p>
 | |
| <p> </p>
 | |
| <center>
 | |
| <table border="1" cellspacing="0" cellpadding="4">
 | |
|   <tbody>
 | |
|     <tr>
 | |
|       <td>In0</td>
 | |
|       <td>In1</td>
 | |
|       <td>Out</td>
 | |
|     </tr>
 | |
|     <tr>
 | |
|       <td>0</td>
 | |
|       <td>0</td>
 | |
|       <td>0</td>
 | |
|     </tr>
 | |
|     <tr>
 | |
|       <td>0</td>
 | |
|       <td>1</td>
 | |
|       <td>1</td>
 | |
|     </tr>
 | |
|     <tr>
 | |
|       <td>1</td>
 | |
|       <td>0</td>
 | |
|       <td>1</td>
 | |
|     </tr>
 | |
|     <tr>
 | |
|       <td>1</td>
 | |
|       <td>1</td>
 | |
|       <td>1</td>
 | |
|     </tr>
 | |
|   </tbody>
 | |
| </table>
 | |
| </center>
 | |
| <h5>Example:</h5>
 | |
| <pre>  <result> = or int 4, %var         <i>; yields {int}:result = 4 | %var</i>
 | |
|   <result> = or int 15, 40          <i>; yields {int}:result = 47</i>
 | |
|   <result> = or int 4, 8            <i>; yields {int}:result = 12</i>
 | |
| </pre>
 | |
| </div>
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
 | |
| Instruction</a> </div>
 | |
| <div class="doc_text">
 | |
| <h5>Syntax:</h5>
 | |
| <pre>  <result> = xor <ty> <var1>, <var2>   <i>; yields {ty}:result</i>
 | |
| </pre>
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
 | |
| or of its two operands.  The <tt>xor</tt> is used to implement the
 | |
| "one's complement" operation, which is the "~" operator in C.</p>
 | |
| <h5>Arguments:</h5>
 | |
| <p>The two arguments to the '<tt>xor</tt>' instruction must be <a
 | |
|  href="#t_integral">integral</a> values.  Both arguments must have
 | |
| identical types.</p>
 | |
| <h5>Semantics:</h5>
 | |
| <p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
 | |
| <p> </p>
 | |
| <center>
 | |
| <table border="1" cellspacing="0" cellpadding="4">
 | |
|   <tbody>
 | |
|     <tr>
 | |
|       <td>In0</td>
 | |
|       <td>In1</td>
 | |
|       <td>Out</td>
 | |
|     </tr>
 | |
|     <tr>
 | |
|       <td>0</td>
 | |
|       <td>0</td>
 | |
|       <td>0</td>
 | |
|     </tr>
 | |
|     <tr>
 | |
|       <td>0</td>
 | |
|       <td>1</td>
 | |
|       <td>1</td>
 | |
|     </tr>
 | |
|     <tr>
 | |
|       <td>1</td>
 | |
|       <td>0</td>
 | |
|       <td>1</td>
 | |
|     </tr>
 | |
|     <tr>
 | |
|       <td>1</td>
 | |
|       <td>1</td>
 | |
|       <td>0</td>
 | |
|     </tr>
 | |
|   </tbody>
 | |
| </table>
 | |
| </center>
 | |
| <p> </p>
 | |
| <h5>Example:</h5>
 | |
| <pre>  <result> = xor int 4, %var         <i>; yields {int}:result = 4 ^ %var</i>
 | |
|   <result> = xor int 15, 40          <i>; yields {int}:result = 39</i>
 | |
|   <result> = xor int 4, 8            <i>; yields {int}:result = 12</i>
 | |
|   <result> = xor int %V, -1          <i>; yields {int}:result = ~%V</i>
 | |
| </pre>
 | |
| </div>
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
 | |
| Instruction</a> </div>
 | |
| <div class="doc_text">
 | |
| <h5>Syntax:</h5>
 | |
| <pre>  <result> = shl <ty> <var1>, ubyte <var2>   <i>; yields {ty}:result</i>
 | |
| </pre>
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>shl</tt>' instruction returns the first operand shifted to
 | |
| the left a specified number of bits.</p>
 | |
| <h5>Arguments:</h5>
 | |
| <p>The first argument to the '<tt>shl</tt>' instruction must be an <a
 | |
|  href="#t_integer">integer</a> type.  The second argument must be an '<tt>ubyte</tt>'
 | |
| type.</p>
 | |
| <h5>Semantics:</h5>
 | |
| <p>The value produced is <tt>var1</tt> * 2<sup><tt>var2</tt></sup>.</p>
 | |
| <h5>Example:</h5>
 | |
| <pre>  <result> = shl int 4, ubyte %var   <i>; yields {int}:result = 4 << %var</i>
 | |
|   <result> = shl int 4, ubyte 2      <i>; yields {int}:result = 16</i>
 | |
|   <result> = shl int 1, ubyte 10     <i>; yields {int}:result = 1024</i>
 | |
| </pre>
 | |
| </div>
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <div class="doc_subsubsection"> <a name="i_shr">'<tt>shr</tt>'
 | |
| Instruction</a> </div>
 | |
| <div class="doc_text">
 | |
| <h5>Syntax:</h5>
 | |
| <pre>  <result> = shr <ty> <var1>, ubyte <var2>   <i>; yields {ty}:result</i>
 | |
| </pre>
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>shr</tt>' instruction returns the first operand shifted to
 | |
| the right a specified number of bits.</p>
 | |
| <h5>Arguments:</h5>
 | |
| <p>The first argument to the '<tt>shr</tt>' instruction must be an <a
 | |
|  href="#t_integer">integer</a> type.  The second argument must be an '<tt>ubyte</tt>'
 | |
| type.</p>
 | |
| <h5>Semantics:</h5>
 | |
| <p>If the first argument is a <a href="#t_signed">signed</a> type, the
 | |
| most significant bit is duplicated in the newly free'd bit positions. 
 | |
| If the first argument is unsigned, zero bits shall fill the empty
 | |
| positions.</p>
 | |
| <h5>Example:</h5>
 | |
| <pre>  <result> = shr int 4, ubyte %var   <i>; yields {int}:result = 4 >> %var</i>
 | |
|   <result> = shr uint 4, ubyte 1     <i>; yields {uint}:result = 2</i>
 | |
|   <result> = shr int 4, ubyte 2      <i>; yields {int}:result = 1</i>
 | |
|   <result> = shr sbyte 4, ubyte 3    <i>; yields {sbyte}:result = 0</i>
 | |
|   <result> = shr sbyte -2, ubyte 1   <i>; yields {sbyte}:result = -1</i>
 | |
| </pre>
 | |
| </div>
 | |
| <!-- ======================================================================= -->
 | |
| <div class="doc_subsection"> <a name="memoryops">Memory Access
 | |
| Operations</a></div>
 | |
| <div class="doc_text">
 | |
| <p>A key design point of an SSA-based representation is how it
 | |
| represents memory.  In LLVM, no memory locations are in SSA form, which
 | |
| makes things very simple.  This section describes how to read, write,
 | |
| allocate and free memory in LLVM.</p>
 | |
| </div>
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <div class="doc_subsubsection"> <a name="i_malloc">'<tt>malloc</tt>'
 | |
| Instruction</a> </div>
 | |
| <div class="doc_text">
 | |
| <h5>Syntax:</h5>
 | |
| <pre>  <result> = malloc <type>, uint <NumElements>     <i>; yields {type*}:result</i>
 | |
|   <result> = malloc <type>                         <i>; yields {type*}:result</i>
 | |
| </pre>
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>malloc</tt>' instruction allocates memory from the system
 | |
| heap and returns a pointer to it.</p>
 | |
| <h5>Arguments:</h5>
 | |
| <p>The '<tt>malloc</tt>' instruction allocates <tt>sizeof(<type>)*NumElements</tt>
 | |
| bytes of memory from the operating system and returns a pointer of the
 | |
| appropriate type to the program.  The second form of the instruction is
 | |
| a shorter version of the first instruction that defaults to allocating
 | |
| one element.</p>
 | |
| <p>'<tt>type</tt>' must be a sized type.</p>
 | |
| <h5>Semantics:</h5>
 | |
| <p>Memory is allocated using the system "<tt>malloc</tt>" function, and
 | |
| a pointer is returned.</p>
 | |
| <h5>Example:</h5>
 | |
| <pre>  %array  = malloc [4 x ubyte ]                    <i>; yields {[%4 x ubyte]*}:array</i>
 | |
| 
 | |
|   %size   = <a
 | |
|  href="#i_add">add</a> uint 2, 2                          <i>; yields {uint}:size = uint 4</i>
 | |
|   %array1 = malloc ubyte, uint 4                   <i>; yields {ubyte*}:array1</i>
 | |
|   %array2 = malloc [12 x ubyte], uint %size        <i>; yields {[12 x ubyte]*}:array2</i>
 | |
| </pre>
 | |
| </div>
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <div class="doc_subsubsection"> <a name="i_free">'<tt>free</tt>'
 | |
| Instruction</a> </div>
 | |
| <div class="doc_text">
 | |
| <h5>Syntax:</h5>
 | |
| <pre>  free <type> <value>                              <i>; yields {void}</i>
 | |
| </pre>
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>free</tt>' instruction returns memory back to the unused
 | |
| memory heap, to be reallocated in the future.</p>
 | |
| <p> </p>
 | |
| <h5>Arguments:</h5>
 | |
| <p>'<tt>value</tt>' shall be a pointer value that points to a value
 | |
| that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
 | |
| instruction.</p>
 | |
| <h5>Semantics:</h5>
 | |
| <p>Access to the memory pointed to by the pointer is not longer defined
 | |
| after this instruction executes.</p>
 | |
| <h5>Example:</h5>
 | |
| <pre>  %array  = <a href="#i_malloc">malloc</a> [4 x ubyte]                    <i>; yields {[4 x ubyte]*}:array</i>
 | |
|             free   [4 x ubyte]* %array
 | |
| </pre>
 | |
| </div>
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <div class="doc_subsubsection"> <a name="i_alloca">'<tt>alloca</tt>'
 | |
| Instruction</a> </div>
 | |
| <div class="doc_text">
 | |
| <h5>Syntax:</h5>
 | |
| <pre>  <result> = alloca <type>, uint <NumElements>  <i>; yields {type*}:result</i>
 | |
|   <result> = alloca <type>                      <i>; yields {type*}:result</i>
 | |
| </pre>
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>alloca</tt>' instruction allocates memory on the current
 | |
| stack frame of the procedure that is live until the current function
 | |
| returns to its caller.</p>
 | |
| <h5>Arguments:</h5>
 | |
| <p>The the '<tt>alloca</tt>' instruction allocates <tt>sizeof(<type>)*NumElements</tt>
 | |
| bytes of memory on the runtime stack, returning a pointer of the
 | |
| appropriate type to the program.  The second form of the instruction is
 | |
| a shorter version of the first that defaults to allocating one element.</p>
 | |
| <p>'<tt>type</tt>' may be any sized type.</p>
 | |
| <h5>Semantics:</h5>
 | |
| <p>Memory is allocated, a pointer is returned.  '<tt>alloca</tt>'d
 | |
| memory is automatically released when the function returns.  The '<tt>alloca</tt>'
 | |
| instruction is commonly used to represent automatic variables that must
 | |
| have an address available.  When the function returns (either with the <tt><a
 | |
|  href="#i_ret">ret</a></tt> or <tt><a href="#i_invoke">invoke</a></tt>
 | |
| instructions), the memory is reclaimed.</p>
 | |
| <h5>Example:</h5>
 | |
| <pre>  %ptr = alloca int                              <i>; yields {int*}:ptr</i>
 | |
|   %ptr = alloca int, uint 4                      <i>; yields {int*}:ptr</i>
 | |
| </pre>
 | |
| </div>
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
 | |
| Instruction</a> </div>
 | |
| <div class="doc_text">
 | |
| <h5>Syntax:</h5>
 | |
| <pre>  <result> = load <ty>* <pointer><br>  <result> = volatile load <ty>* <pointer><br></pre>
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>load</tt>' instruction is used to read from memory.</p>
 | |
| <h5>Arguments:</h5>
 | |
| <p>The argument to the '<tt>load</tt>' instruction specifies the memory
 | |
| address to load from.  The pointer must point to a <a
 | |
|  href="t_firstclass">first class</a> type.  If the <tt>load</tt> is
 | |
| marked as <tt>volatile</tt> then the optimizer is not allowed to modify
 | |
| the number or order of execution of this <tt>load</tt> with other
 | |
| volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
 | |
| instructions. </p>
 | |
| <h5>Semantics:</h5>
 | |
| <p>The location of memory pointed to is loaded.</p>
 | |
| <h5>Examples:</h5>
 | |
| <pre>  %ptr = <a href="#i_alloca">alloca</a> int                               <i>; yields {int*}:ptr</i>
 | |
|   <a
 | |
|  href="#i_store">store</a> int 3, int* %ptr                          <i>; yields {void}</i>
 | |
|   %val = load int* %ptr                           <i>; yields {int}:val = int 3</i>
 | |
| </pre>
 | |
| </div>
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
 | |
| Instruction</a> </div>
 | |
| <h5>Syntax:</h5>
 | |
| <pre>  store <ty> <value>, <ty>* <pointer>                   <i>; yields {void}</i>
 | |
|   volatile store <ty> <value>, <ty>* <pointer>                   <i>; yields {void}</i>
 | |
| </pre>
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>store</tt>' instruction is used to write to memory.</p>
 | |
| <h5>Arguments:</h5>
 | |
| <p>There are two arguments to the '<tt>store</tt>' instruction: a value
 | |
| to store and an address to store it into.  The type of the '<tt><pointer></tt>'
 | |
| operand must be a pointer to the type of the '<tt><value></tt>'
 | |
| operand. If the <tt>store</tt> is marked as <tt>volatile</tt> then the
 | |
| optimizer is not allowed to modify the number or order of execution of
 | |
| this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
 | |
|  href="#i_store">store</a></tt> instructions.</p>
 | |
| <h5>Semantics:</h5>
 | |
| <p>The contents of memory are updated to contain '<tt><value></tt>'
 | |
| at the location specified by the '<tt><pointer></tt>' operand.</p>
 | |
| <h5>Example:</h5>
 | |
| <pre>  %ptr = <a href="#i_alloca">alloca</a> int                               <i>; yields {int*}:ptr</i>
 | |
|   <a
 | |
|  href="#i_store">store</a> int 3, int* %ptr                          <i>; yields {void}</i>
 | |
|   %val = load int* %ptr                           <i>; yields {int}:val = int 3</i>
 | |
| </pre>
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <div class="doc_subsubsection"> <a name="i_getelementptr">'<tt>getelementptr</tt>'
 | |
| Instruction</a> </div>
 | |
| <div class="doc_text">
 | |
| <h5>Syntax:</h5>
 | |
| <pre>  <result> = getelementptr <ty>* <ptrval>{, long <aidx>|, ubyte <sidx>}*<br></pre>
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>getelementptr</tt>' instruction is used to get the address
 | |
| of a subelement of an aggregate data structure.</p>
 | |
| <h5>Arguments:</h5>
 | |
| <p>This instruction takes a list of <tt>long</tt> values and <tt>ubyte</tt>
 | |
| constants that indicate what form of addressing to perform.  The actual
 | |
| types of the arguments provided depend on the type of the first pointer
 | |
| argument.  The '<tt>getelementptr</tt>' instruction is used to index
 | |
| down through the type levels of a structure.</p>
 | |
| <p>For example, let's consider a C code fragment and how it gets
 | |
| compiled to LLVM:</p>
 | |
| <pre>struct RT {<br>  char A;<br>  int B[10][20];<br>  char C;<br>};<br>struct ST {<br>  int X;<br>  double Y;<br>  struct RT Z;<br>};<br><br>int *foo(struct ST *s) {<br>  return &s[1].Z.B[5][13];<br>}<br></pre>
 | |
| <p>The LLVM code generated by the GCC frontend is:</p>
 | |
| <pre>%RT = type { sbyte, [10 x [20 x int]], sbyte }<br>%ST = type { int, double, %RT }<br><br>int* "foo"(%ST* %s) {<br>  %reg = getelementptr %ST* %s, long 1, ubyte 2, ubyte 1, long 5, long 13<br>  ret int* %reg<br>}<br></pre>
 | |
| <h5>Semantics:</h5>
 | |
| <p>The index types specified for the '<tt>getelementptr</tt>'
 | |
| instruction depend on the pointer type that is being index into. <a
 | |
|  href="t_pointer">Pointer</a> and <a href="t_array">array</a> types
 | |
| require '<tt>long</tt>' values, and <a href="t_struct">structure</a>
 | |
| types require '<tt>ubyte</tt>' <b>constants</b>.</p>
 | |
| <p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
 | |
| type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ int,
 | |
| double, %RT }</tt>' type, a structure.  The second index indexes into
 | |
| the third element of the structure, yielding a '<tt>%RT</tt>' = '<tt>{
 | |
| sbyte, [10 x [20 x int]], sbyte }</tt>' type, another structure.  The
 | |
| third index indexes into the second element of the structure, yielding
 | |
| a '<tt>[10 x [20 x int]]</tt>' type, an array.  The two dimensions of
 | |
| the array are subscripted into, yielding an '<tt>int</tt>' type.  The '<tt>getelementptr</tt>'
 | |
| instruction return a pointer to this element, thus yielding a '<tt>int*</tt>'
 | |
| type.</p>
 | |
| <p>Note that it is perfectly legal to index partially through a
 | |
| structure, returning a pointer to an inner element.  Because of this,
 | |
| the LLVM code for the given testcase is equivalent to:</p>
 | |
| <pre>int* "foo"(%ST* %s) {<br>  %t1 = getelementptr %ST* %s , long 1                        <i>; yields %ST*:%t1</i>
 | |
|   %t2 = getelementptr %ST* %t1, long 0, ubyte 2               <i>; yields %RT*:%t2</i>
 | |
|   %t3 = getelementptr %RT* %t2, long 0, ubyte 1               <i>; yields [10 x [20 x int]]*:%t3</i>
 | |
|   %t4 = getelementptr [10 x [20 x int]]* %t3, long 0, long 5  <i>; yields [20 x int]*:%t4</i>
 | |
|   %t5 = getelementptr [20 x int]* %t4, long 0, long 13        <i>; yields int*:%t5</i>
 | |
|   ret int* %t5
 | |
| }
 | |
| </pre>
 | |
| <h5>Example:</h5>
 | |
| <pre>  <i>; yields [12 x ubyte]*:aptr</i>
 | |
|   %aptr = getelementptr {int, [12 x ubyte]}* %sptr, long 0, ubyte 1<br></pre>
 | |
| <h5> Note To The Novice:</h5>
 | |
| When using indexing into global arrays with the  '<tt>getelementptr</tt>'
 | |
| instruction, you must remember that the  </div>
 | |
| <!-- ======================================================================= -->
 | |
| <div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
 | |
| <div class="doc_text">
 | |
| <p>The instructions in this catagory are the "miscellaneous"
 | |
| instructions, which defy better classification.</p>
 | |
| </div>
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <div class="doc_subsubsection"> <a name="i_phi">'<tt>phi</tt>'
 | |
| Instruction</a> </div>
 | |
| <div class="doc_text">
 | |
| <h5>Syntax:</h5>
 | |
| <pre>  <result> = phi <ty> [ <val0>, <label0>], ...<br></pre>
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>phi</tt>' instruction is used to implement the φ node in
 | |
| the SSA graph representing the function.</p>
 | |
| <h5>Arguments:</h5>
 | |
| <p>The type of the incoming values are specified with the first type
 | |
| field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
 | |
| as arguments, with one pair for each predecessor basic block of the
 | |
| current block.  Only values of <a href="#t_firstclass">first class</a>
 | |
| type may be used as the value arguments to the PHI node.  Only labels
 | |
| may be used as the label arguments.</p>
 | |
| <p>There must be no non-phi instructions between the start of a basic
 | |
| block and the PHI instructions: i.e. PHI instructions must be first in
 | |
| a basic block.</p>
 | |
| <h5>Semantics:</h5>
 | |
| <p>At runtime, the '<tt>phi</tt>' instruction logically takes on the
 | |
| value specified by the parameter, depending on which basic block we
 | |
| came from in the last <a href="#terminators">terminator</a> instruction.</p>
 | |
| <h5>Example:</h5>
 | |
| <pre>Loop:       ; Infinite loop that counts from 0 on up...<br>  %indvar = phi uint [ 0, %LoopHeader ], [ %nextindvar, %Loop ]<br>  %nextindvar = add uint %indvar, 1<br>  br label %Loop<br></pre>
 | |
| </div>
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <div class="doc_subsubsection"> <a name="i_cast">'<tt>cast .. to</tt>'
 | |
| Instruction</a> </div>
 | |
| <div class="doc_text">
 | |
| <h5>Syntax:</h5>
 | |
| <pre>  <result> = cast <ty> <value> to <ty2>             <i>; yields ty2</i>
 | |
| </pre>
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>cast</tt>' instruction is used as the primitive means to
 | |
| convert integers to floating point, change data type sizes, and break
 | |
| type safety (by casting pointers).</p>
 | |
| <h5>Arguments:</h5>
 | |
| <p>The '<tt>cast</tt>' instruction takes a value to cast, which must be
 | |
| a first class value, and a type to cast it to, which must also be a <a
 | |
|  href="#t_firstclass">first class</a> type.</p>
 | |
| <h5>Semantics:</h5>
 | |
| <p>This instruction follows the C rules for explicit casts when
 | |
| determining how the data being cast must change to fit in its new
 | |
| container.</p>
 | |
| <p>When casting to bool, any value that would be considered true in the
 | |
| context of a C '<tt>if</tt>' condition is converted to the boolean '<tt>true</tt>'
 | |
| values, all else are '<tt>false</tt>'.</p>
 | |
| <p>When extending an integral value from a type of one signness to
 | |
| another (for example '<tt>sbyte</tt>' to '<tt>ulong</tt>'), the value
 | |
| is sign-extended if the <b>source</b> value is signed, and
 | |
| zero-extended if the source value is unsigned. <tt>bool</tt> values
 | |
| are always zero extended into either zero or one.</p>
 | |
| <h5>Example:</h5>
 | |
| <pre>  %X = cast int 257 to ubyte              <i>; yields ubyte:1</i>
 | |
|   %Y = cast int 123 to bool               <i>; yields bool:true</i>
 | |
| </pre>
 | |
| </div>
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <div class="doc_subsubsection"> <a name="i_call">'<tt>call</tt>'
 | |
| Instruction</a> </div>
 | |
| <div class="doc_text">
 | |
| <h5>Syntax:</h5>
 | |
| <pre>  <result> = call <ty>* <fnptrval>(<param list>)<br></pre>
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>call</tt>' instruction represents a simple function call.</p>
 | |
| <h5>Arguments:</h5>
 | |
| <p>This instruction requires several arguments:</p>
 | |
| <ol>
 | |
|   <li>
 | |
|     <p>'<tt>ty</tt>': shall be the signature of the pointer to function
 | |
| value   being invoked.  The argument types must match the types implied
 | |
| by this   signature.</p>
 | |
|   </li>
 | |
|   <li>
 | |
|     <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a
 | |
| function   to be invoked. In most cases, this is a direct function
 | |
| invocation, but   indirect <tt>call</tt>s are just as possible,
 | |
| calling an arbitrary pointer to   function values.</p>
 | |
|   </li>
 | |
|   <li>
 | |
|     <p>'<tt>function args</tt>': argument list whose types match the
 | |
| function   signature argument types.  If the function signature
 | |
| indicates the function   accepts a variable number of arguments, the
 | |
| extra arguments can be   specified.</p>
 | |
|   </li>
 | |
| </ol>
 | |
| <h5>Semantics:</h5>
 | |
| <p>The '<tt>call</tt>' instruction is used to cause control flow to
 | |
| transfer to a specified function, with its incoming arguments bound to
 | |
| the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
 | |
| instruction in the called function, control flow continues with the
 | |
| instruction after the function call, and the return value of the
 | |
| function is bound to the result argument.  This is a simpler case of
 | |
| the <a href="#i_invoke">invoke</a> instruction.</p>
 | |
| <h5>Example:</h5>
 | |
| <pre>  %retval = call int %test(int %argc)<br>  call int(sbyte*, ...) *%printf(sbyte* %msg, int 12, sbyte 42);<br></pre>
 | |
| </div>
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <div class="doc_subsubsection"> <a name="i_vanext">'<tt>vanext</tt>'
 | |
| Instruction</a> </div>
 | |
| <div class="doc_text">
 | |
| <h5>Syntax:</h5>
 | |
| <pre>  <resultarglist> = vanext <va_list> <arglist>, <argty><br></pre>
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>vanext</tt>' instruction is used to access arguments passed
 | |
| through the "variable argument" area of a function call.  It is used to
 | |
| implement the <tt>va_arg</tt> macro in C.</p>
 | |
| <h5>Arguments:</h5>
 | |
| <p>This instruction takes a <tt>valist</tt> value and the type of the
 | |
| argument. It returns another <tt>valist</tt>.</p>
 | |
| <h5>Semantics:</h5>
 | |
| <p>The '<tt>vanext</tt>' instruction advances the specified <tt>valist</tt>
 | |
| past an argument of the specified type.  In conjunction with the <a
 | |
|  href="#i_vaarg"><tt>vaarg</tt></a> instruction, it is used to implement
 | |
| the <tt>va_arg</tt> macro available in C.  For more information, see
 | |
| the variable argument handling <a href="#int_varargs">Intrinsic
 | |
| Functions</a>.</p>
 | |
| <p>It is legal for this instruction to be called in a function which
 | |
| does not take a variable number of arguments, for example, the <tt>vfprintf</tt>
 | |
| function.</p>
 | |
| <p><tt>vanext</tt> is an LLVM instruction instead of an <a
 | |
|  href="#intrinsics">intrinsic function</a> because it takes an type as
 | |
| an argument.</p>
 | |
| <h5>Example:</h5>
 | |
| <p>See the <a href="#int_varargs">variable argument processing</a>
 | |
| section.</p>
 | |
| </div>
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <div class="doc_subsubsection"> <a name="i_vaarg">'<tt>vaarg</tt>'
 | |
| Instruction</a> </div>
 | |
| <div class="doc_text">
 | |
| <h5>Syntax:</h5>
 | |
| <pre>  <resultval> = vaarg <va_list> <arglist>, <argty><br></pre>
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>vaarg</tt>' instruction is used to access arguments passed
 | |
| through the "variable argument" area of a function call.  It is used to
 | |
| implement the <tt>va_arg</tt> macro in C.</p>
 | |
| <h5>Arguments:</h5>
 | |
| <p>This instruction takes a <tt>valist</tt> value and the type of the
 | |
| argument. It returns a value of the specified argument type.</p>
 | |
| <h5>Semantics:</h5>
 | |
| <p>The '<tt>vaarg</tt>' instruction loads an argument of the specified
 | |
| type from the specified <tt>va_list</tt>.  In conjunction with the <a
 | |
|  href="#i_vanext"><tt>vanext</tt></a> instruction, it is used to
 | |
| implement the <tt>va_arg</tt> macro available in C.  For more
 | |
| information, see the variable argument handling <a href="#int_varargs">Intrinsic
 | |
| Functions</a>.</p>
 | |
| <p>It is legal for this instruction to be called in a function which
 | |
| does not take a variable number of arguments, for example, the <tt>vfprintf</tt>
 | |
| function.</p>
 | |
| <p><tt>vaarg</tt> is an LLVM instruction instead of an <a
 | |
|  href="#intrinsics">intrinsic function</a> because it takes an type as
 | |
| an argument.</p>
 | |
| <h5>Example:</h5>
 | |
| <p>See the <a href="#int_varargs">variable argument processing</a>
 | |
| section.</p>
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <p>LLVM supports the notion of an "intrinsic function".  These functions have
 | |
| well known names and semantics, and are required to follow certain
 | |
| restrictions. Overall, these instructions represent an extension mechanism for
 | |
| the LLVM language that does not require changing all of the transformations in
 | |
| LLVM to add to the language (or the bytecode reader/writer, the parser,
 | |
| etc...).</p>
 | |
| 
 | |
| <p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix, this
 | |
| prefix is reserved in LLVM for intrinsic names, thus functions may not be named
 | |
| this.  Intrinsic functions must always be external functions: you cannot define
 | |
| the body of intrinsic functions.  Intrinsic functions may only be used in call
 | |
| or invoke instructions: it is illegal to take the address of an intrinsic
 | |
| function.  Additionally, because intrinsic functions are part of the LLVM
 | |
| language, it is required that they all be documented here if any are added.</p>
 | |
| 
 | |
| 
 | |
| <p>
 | |
| Adding an intrinsic to LLVM is straight-forward if it is possible to express the
 | |
| concept in LLVM directly (ie, code generator support is not _required_).  To do
 | |
| this, extend the default implementation of the IntrinsicLowering class to handle
 | |
| the intrinsic.  Code generators use this class to lower intrinsics they do not
 | |
| understand to raw LLVM instructions that they do.
 | |
| </p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <div class="doc_subsection">
 | |
|   <a name="int_varargs">Variable Argument Handling Intrinsics</a>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_text">
 | |
| <p>Variable argument support is defined in LLVM with the <a
 | |
|  href="#i_vanext"><tt>vanext</tt></a> instruction and these three
 | |
| intrinsic functions.  These functions are related to the similarly
 | |
| named macros defined in the <tt><stdarg.h></tt> header file.</p>
 | |
| <p>All of these functions operate on arguments that use a
 | |
| target-specific value type "<tt>va_list</tt>".  The LLVM assembly
 | |
| language reference manual does not define what this type is, so all
 | |
| transformations should be prepared to handle intrinsics with any type
 | |
| used.</p>
 | |
| <p>This example shows how the <a href="#i_vanext"><tt>vanext</tt></a>
 | |
| instruction and the variable argument handling intrinsic functions are
 | |
| used.</p>
 | |
| <pre>
 | |
| int %test(int %X, ...) {
 | |
|   ; Initialize variable argument processing
 | |
|   %ap = call sbyte* %<a href="#i_va_start">llvm.va_start</a>()
 | |
| 
 | |
|   ; Read a single integer argument
 | |
|   %tmp = vaarg sbyte* %ap, int
 | |
| 
 | |
|   ; Advance to the next argument
 | |
|   %ap2 = vanext sbyte* %ap, int
 | |
| 
 | |
|   ; Demonstrate usage of llvm.va_copy and llvm.va_end
 | |
|   %aq = call sbyte* %<a href="#i_va_copy">llvm.va_copy</a>(sbyte* %ap2)
 | |
|   call void %<a href="#i_va_end">llvm.va_end</a>(sbyte* %aq)
 | |
| 
 | |
|   ; Stop processing of arguments.
 | |
|   call void %<a href="#i_va_end">llvm.va_end</a>(sbyte* %ap2)
 | |
|   ret int %tmp
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <div class="doc_subsubsection">
 | |
|   <a name="i_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
 | |
| </div>
 | |
| 
 | |
| 
 | |
| <div class="doc_text">
 | |
| <h5>Syntax:</h5>
 | |
| <pre>  call va_list ()* %llvm.va_start()<br></pre>
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>llvm.va_start</tt>' intrinsic returns a new <tt><arglist></tt>
 | |
| for subsequent use by the variable argument intrinsics.</p>
 | |
| <h5>Semantics:</h5>
 | |
| <p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
 | |
| macro available in C.  In a target-dependent way, it initializes and
 | |
| returns a <tt>va_list</tt> element, so that the next <tt>vaarg</tt>
 | |
| will produce the first variable argument passed to the function.  Unlike
 | |
| the C <tt>va_start</tt> macro, this intrinsic does not need to know the
 | |
| last argument of the function, the compiler can figure that out.</p>
 | |
| <p>Note that this intrinsic function is only legal to be called from
 | |
| within the body of a variable argument function.</p>
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <div class="doc_subsubsection">
 | |
|  <a name="i_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_text">
 | |
| <h5>Syntax:</h5>
 | |
| <pre>  call void (va_list)* %llvm.va_end(va_list <arglist>)<br></pre>
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt><arglist></tt>
 | |
| which has been initialized previously with <tt><a href="#i_va_start">llvm.va_start</a></tt>
 | |
| or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
 | |
| <h5>Arguments:</h5>
 | |
| <p>The argument is a <tt>va_list</tt> to destroy.</p>
 | |
| <h5>Semantics:</h5>
 | |
| <p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
 | |
| macro available in C.  In a target-dependent way, it destroys the <tt>va_list</tt>.
 | |
| Calls to <a href="#i_va_start"><tt>llvm.va_start</tt></a> and <a
 | |
|  href="#i_va_copy"><tt>llvm.va_copy</tt></a> must be matched exactly
 | |
| with calls to <tt>llvm.va_end</tt>.</p>
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <div class="doc_subsubsection">
 | |
|   <a name="i_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_text">
 | |
| <h5>Syntax:</h5>
 | |
| <pre>  call va_list (va_list)* %llvm.va_copy(va_list <destarglist>)<br></pre>
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument
 | |
| position from the source argument list to the destination argument list.</p>
 | |
| <h5>Arguments:</h5>
 | |
| <p>The argument is the <tt>va_list</tt> to copy.</p>
 | |
| <h5>Semantics:</h5>
 | |
| <p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
 | |
| macro available in C.  In a target-dependent way, it copies the source <tt>va_list</tt>
 | |
| element into the returned list.  This intrinsic is necessary because the <tt><a
 | |
|  href="i_va_start">llvm.va_start</a></tt> intrinsic may be arbitrarily
 | |
| complex and require memory allocation, for example.</p>
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <div class="doc_subsection">
 | |
|   <a name="int_codegen">Code Generator Intrinsics</a>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_text">
 | |
| <p>
 | |
| These intrinsics are provided by LLVM to expose special features that may only
 | |
| be implemented with code generator support.
 | |
| </p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <div class="doc_subsubsection">
 | |
|   <a name="i_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   call void* ()* %llvm.returnaddress(uint <level>)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| 
 | |
| <p>
 | |
| The '<tt>llvm.returnaddress</tt>' intrinsic returns a target-specific value
 | |
| indicating the return address of the current function or one of its callers.
 | |
| </p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| 
 | |
| <p>
 | |
| The argument to this intrinsic indicates which function to return the address
 | |
| for.  Zero indicates the calling function, one indicates its caller, etc.  The
 | |
| argument is <b>required</b> to be a constant integer value.
 | |
| </p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| 
 | |
| <p>
 | |
| The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
 | |
| the return address of the specified call frame, or zero if it cannot be
 | |
| identified.  The value returned by this intrinsic is likely to be incorrect or 0
 | |
| for arguments other than zero, so it should only be used for debugging purposes.
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| Note that calling this intrinsic does not prevent function inlining or other
 | |
| aggressive transformations, so the value returned may not that of the obvious
 | |
| source-language caller.
 | |
| </p>
 | |
| </div>
 | |
| 
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <div class="doc_subsubsection">
 | |
|   <a name="i_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   call void* ()* %llvm.frameaddress(uint <level>)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| 
 | |
| <p>
 | |
| The '<tt>llvm.frameaddress</tt>' intrinsic returns the target-specific frame
 | |
| pointer value for the specified stack frame.
 | |
| </p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| 
 | |
| <p>
 | |
| The argument to this intrinsic indicates which function to return the frame
 | |
| pointer for.  Zero indicates the calling function, one indicates its caller,
 | |
| etc.  The argument is <b>required</b> to be a constant integer value.
 | |
| </p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| 
 | |
| <p>
 | |
| The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
 | |
| the frame address of the specified call frame, or zero if it cannot be
 | |
| identified.  The value returned by this intrinsic is likely to be incorrect or 0
 | |
| for arguments other than zero, so it should only be used for debugging purposes.
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| Note that calling this intrinsic does not prevent function inlining or other
 | |
| aggressive transformations, so the value returned may not that of the obvious
 | |
| source-language caller.
 | |
| </p>
 | |
| </div>
 | |
| 
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <div class="doc_subsection">
 | |
|   <a name="int_libc">Standard C Library Intrinsics</a>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_text">
 | |
| <p>
 | |
| LLVM provides intrinsics for a few important standard C library functions.
 | |
| These intrinsics allow source-language front-ends to pass information about the
 | |
| alignment of the pointer arguments to the code generator, providing opportunity
 | |
| for more efficient code generation.
 | |
| </p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <div class="doc_subsubsection">
 | |
|   <a name="i_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   call void (sbyte*, sbyte*, uint, uint)* %llvm.memcpy(sbyte* <dest>, sbyte* <src>,
 | |
|                                                        uint <len>, uint <align>)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| 
 | |
| <p>
 | |
| The '<tt>llvm.memcpy</tt>' intrinsic copies a block of memory from the source
 | |
| location to the destination location.
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| Note that, unlike the standard libc function, the <tt>llvm.memcpy</tt> intrinsic
 | |
| does not return a value, and takes an extra alignment argument.
 | |
| </p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| 
 | |
| <p>
 | |
| The first argument is a pointer to the destination, the second is a pointer to
 | |
| the source.  The third argument is an (arbitrarily sized) integer argument
 | |
| specifying the number of bytes to copy, and the fourth argument is the alignment
 | |
| of the source and destination locations.
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| If the call to this intrinisic has an alignment value that is not 0 or 1, then
 | |
| the caller guarantees that the size of the copy is a multiple of the alignment
 | |
| and that both the source and destination pointers are aligned to that boundary.
 | |
| </p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| 
 | |
| <p>
 | |
| The '<tt>llvm.memcpy</tt>' intrinsic copies a block of memory from the source
 | |
| location to the destination location, which are not allowed to overlap.  It
 | |
| copies "len" bytes of memory over.  If the argument is known to be aligned to
 | |
| some boundary, this can be specified as the fourth argument, otherwise it should
 | |
| be set to 0 or 1.
 | |
| </p>
 | |
| </div>
 | |
| 
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <div class="doc_subsubsection">
 | |
|   <a name="i_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   call void (sbyte*, sbyte*, uint, uint)* %llvm.memmove(sbyte* <dest>, sbyte* <src>,
 | |
|                                                        uint <len>, uint <align>)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| 
 | |
| <p>
 | |
| The '<tt>llvm.memmove</tt>' intrinsic moves a block of memory from the source
 | |
| location to the destination location. It is similar to the '<tt>llvm.memcpy</tt>' 
 | |
| intrinsic but allows the two memory locations to overlap.
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| Note that, unlike the standard libc function, the <tt>llvm.memmove</tt> intrinsic
 | |
| does not return a value, and takes an extra alignment argument.
 | |
| </p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| 
 | |
| <p>
 | |
| The first argument is a pointer to the destination, the second is a pointer to
 | |
| the source.  The third argument is an (arbitrarily sized) integer argument
 | |
| specifying the number of bytes to copy, and the fourth argument is the alignment
 | |
| of the source and destination locations.
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| If the call to this intrinisic has an alignment value that is not 0 or 1, then
 | |
| the caller guarantees that the size of the copy is a multiple of the alignment
 | |
| and that both the source and destination pointers are aligned to that boundary.
 | |
| </p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| 
 | |
| <p>
 | |
| The '<tt>llvm.memmove</tt>' intrinsic copies a block of memory from the source
 | |
| location to the destination location, which may overlap.  It
 | |
| copies "len" bytes of memory over.  If the argument is known to be aligned to
 | |
| some boundary, this can be specified as the fourth argument, otherwise it should
 | |
| be set to 0 or 1.
 | |
| </p>
 | |
| </div>
 | |
| 
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <div class="doc_subsubsection">
 | |
|   <a name="i_memset">'<tt>llvm.memset</tt>' Intrinsic</a>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   call void (sbyte*, ubyte, uint, uint)* %llvm.memset(sbyte* <dest>, ubyte <val>,
 | |
|                                                       uint <len>, uint <align>)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| 
 | |
| <p>
 | |
| The '<tt>llvm.memset</tt>' intrinsic fills a block of memory with a particular
 | |
| byte value.
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
 | |
| does not return a value, and takes an extra alignment argument.
 | |
| </p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| 
 | |
| <p>
 | |
| The first argument is a pointer to the destination to fill, the second is the
 | |
| byte value to fill it with, the third argument is an (arbitrarily sized) integer
 | |
| argument specifying the number of bytes to fill, and the fourth argument is the
 | |
| known alignment of destination location.
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| If the call to this intrinisic has an alignment value that is not 0 or 1, then
 | |
| the caller guarantees that the size of the copy is a multiple of the alignment
 | |
| and that the destination pointer is aligned to that boundary.
 | |
| </p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| 
 | |
| <p>
 | |
| The '<tt>llvm.memset</tt>' intrinsic fills "len" bytes of memory starting at the
 | |
| destination location.  If the argument is known to be aligned to some boundary,
 | |
| this can be specified as the fourth argument, otherwise it should be set to 0 or
 | |
| 1.
 | |
| </p>
 | |
| </div>
 | |
| 
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <div class="doc_subsection">
 | |
|   <a name="int_debugger">Debugger Intrinsics</a>
 | |
| </div>
 | |
| 
 | |
| <div class="doc_text">
 | |
| <p>
 | |
| The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
 | |
| are described in the <a
 | |
| href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
 | |
| Debugging</a> document.
 | |
| </p>
 | |
| </div>
 | |
| 
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <hr>
 | |
| <div class="doc_footer">
 | |
| <address><a href="mailto:sabre@nondot.org">Chris Lattner</a></address>
 | |
| <a href="http://llvm.cs.uiuc.edu">The LLVM Compiler Infrastructure</a> <br>
 | |
| Last modified: $Date$ </div>
 | |
| </body>
 | |
| </html>
 |