mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@10793 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1309 lines
		
	
	
		
			51 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1309 lines
		
	
	
		
			51 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- CorrelatedExprs.cpp - Pass to detect and eliminated c.e.'s ---------===//
 | |
| // 
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| // 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Correlated Expression Elimination propagates information from conditional
 | |
| // branches to blocks dominated by destinations of the branch.  It propagates
 | |
| // information from the condition check itself into the body of the branch,
 | |
| // allowing transformations like these for example:
 | |
| //
 | |
| //  if (i == 7)
 | |
| //    ... 4*i;  // constant propagation
 | |
| //
 | |
| //  M = i+1; N = j+1;
 | |
| //  if (i == j)
 | |
| //    X = M-N;  // = M-M == 0;
 | |
| //
 | |
| // This is called Correlated Expression Elimination because we eliminate or
 | |
| // simplify expressions that are correlated with the direction of a branch.  In
 | |
| // this way we use static information to give us some information about the
 | |
| // dynamic value of a variable.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Type.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Assembly/Writer.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Support/ConstantRange.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "Support/Debug.h"
 | |
| #include "Support/PostOrderIterator.h"
 | |
| #include "Support/Statistic.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
|   Statistic<> NumSetCCRemoved("cee", "Number of setcc instruction eliminated");
 | |
|   Statistic<> NumOperandsCann("cee", "Number of operands canonicalized");
 | |
|   Statistic<> BranchRevectors("cee", "Number of branches revectored");
 | |
| 
 | |
|   class ValueInfo;
 | |
|   class Relation {
 | |
|     Value *Val;                 // Relation to what value?
 | |
|     Instruction::BinaryOps Rel; // SetCC relation, or Add if no information
 | |
|   public:
 | |
|     Relation(Value *V) : Val(V), Rel(Instruction::Add) {}
 | |
|     bool operator<(const Relation &R) const { return Val < R.Val; }
 | |
|     Value *getValue() const { return Val; }
 | |
|     Instruction::BinaryOps getRelation() const { return Rel; }
 | |
| 
 | |
|     // contradicts - Return true if the relationship specified by the operand
 | |
|     // contradicts already known information.
 | |
|     //
 | |
|     bool contradicts(Instruction::BinaryOps Rel, const ValueInfo &VI) const;
 | |
| 
 | |
|     // incorporate - Incorporate information in the argument into this relation
 | |
|     // entry.  This assumes that the information doesn't contradict itself.  If
 | |
|     // any new information is gained, true is returned, otherwise false is
 | |
|     // returned to indicate that nothing was updated.
 | |
|     //
 | |
|     bool incorporate(Instruction::BinaryOps Rel, ValueInfo &VI);
 | |
| 
 | |
|     // KnownResult - Whether or not this condition determines the result of a
 | |
|     // setcc in the program.  False & True are intentionally 0 & 1 so we can
 | |
|     // convert to bool by casting after checking for unknown.
 | |
|     //
 | |
|     enum KnownResult { KnownFalse = 0, KnownTrue = 1, Unknown = 2 };
 | |
| 
 | |
|     // getImpliedResult - If this relationship between two values implies that
 | |
|     // the specified relationship is true or false, return that.  If we cannot
 | |
|     // determine the result required, return Unknown.
 | |
|     //
 | |
|     KnownResult getImpliedResult(Instruction::BinaryOps Rel) const;
 | |
| 
 | |
|     // print - Output this relation to the specified stream
 | |
|     void print(std::ostream &OS) const;
 | |
|     void dump() const;
 | |
|   };
 | |
| 
 | |
| 
 | |
|   // ValueInfo - One instance of this record exists for every value with
 | |
|   // relationships between other values.  It keeps track of all of the
 | |
|   // relationships to other values in the program (specified with Relation) that
 | |
|   // are known to be valid in a region.
 | |
|   //
 | |
|   class ValueInfo {
 | |
|     // RelationShips - this value is know to have the specified relationships to
 | |
|     // other values.  There can only be one entry per value, and this list is
 | |
|     // kept sorted by the Val field.
 | |
|     std::vector<Relation> Relationships;
 | |
| 
 | |
|     // If information about this value is known or propagated from constant
 | |
|     // expressions, this range contains the possible values this value may hold.
 | |
|     ConstantRange Bounds;
 | |
| 
 | |
|     // If we find that this value is equal to another value that has a lower
 | |
|     // rank, this value is used as it's replacement.
 | |
|     //
 | |
|     Value *Replacement;
 | |
|   public:
 | |
|     ValueInfo(const Type *Ty)
 | |
|       : Bounds(Ty->isIntegral() ? Ty : Type::IntTy), Replacement(0) {}
 | |
| 
 | |
|     // getBounds() - Return the constant bounds of the value...
 | |
|     const ConstantRange &getBounds() const { return Bounds; }
 | |
|     ConstantRange &getBounds() { return Bounds; }
 | |
| 
 | |
|     const std::vector<Relation> &getRelationships() { return Relationships; }
 | |
| 
 | |
|     // getReplacement - Return the value this value is to be replaced with if it
 | |
|     // exists, otherwise return null.
 | |
|     //
 | |
|     Value *getReplacement() const { return Replacement; }
 | |
| 
 | |
|     // setReplacement - Used by the replacement calculation pass to figure out
 | |
|     // what to replace this value with, if anything.
 | |
|     //
 | |
|     void setReplacement(Value *Repl) { Replacement = Repl; }
 | |
| 
 | |
|     // getRelation - return the relationship entry for the specified value.
 | |
|     // This can invalidate references to other Relations, so use it carefully.
 | |
|     //
 | |
|     Relation &getRelation(Value *V) {
 | |
|       // Binary search for V's entry...
 | |
|       std::vector<Relation>::iterator I =
 | |
|         std::lower_bound(Relationships.begin(), Relationships.end(), V);
 | |
| 
 | |
|       // If we found the entry, return it...
 | |
|       if (I != Relationships.end() && I->getValue() == V)
 | |
|         return *I;
 | |
| 
 | |
|       // Insert and return the new relationship...
 | |
|       return *Relationships.insert(I, V);
 | |
|     }
 | |
| 
 | |
|     const Relation *requestRelation(Value *V) const {
 | |
|       // Binary search for V's entry...
 | |
|       std::vector<Relation>::const_iterator I =
 | |
|         std::lower_bound(Relationships.begin(), Relationships.end(), V);
 | |
|       if (I != Relationships.end() && I->getValue() == V)
 | |
|         return &*I;
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     // print - Output information about this value relation...
 | |
|     void print(std::ostream &OS, Value *V) const;
 | |
|     void dump() const;
 | |
|   };
 | |
| 
 | |
|   // RegionInfo - Keeps track of all of the value relationships for a region.  A
 | |
|   // region is the are dominated by a basic block.  RegionInfo's keep track of
 | |
|   // the RegionInfo for their dominator, because anything known in a dominator
 | |
|   // is known to be true in a dominated block as well.
 | |
|   //
 | |
|   class RegionInfo {
 | |
|     BasicBlock *BB;
 | |
| 
 | |
|     // ValueMap - Tracks the ValueInformation known for this region
 | |
|     typedef std::map<Value*, ValueInfo> ValueMapTy;
 | |
|     ValueMapTy ValueMap;
 | |
|   public:
 | |
|     RegionInfo(BasicBlock *bb) : BB(bb) {}
 | |
| 
 | |
|     // getEntryBlock - Return the block that dominates all of the members of
 | |
|     // this region.
 | |
|     BasicBlock *getEntryBlock() const { return BB; }
 | |
| 
 | |
|     // empty - return true if this region has no information known about it.
 | |
|     bool empty() const { return ValueMap.empty(); }
 | |
|     
 | |
|     const RegionInfo &operator=(const RegionInfo &RI) {
 | |
|       ValueMap = RI.ValueMap;
 | |
|       return *this;
 | |
|     }
 | |
| 
 | |
|     // print - Output information about this region...
 | |
|     void print(std::ostream &OS) const;
 | |
|     void dump() const;
 | |
| 
 | |
|     // Allow external access.
 | |
|     typedef ValueMapTy::iterator iterator;
 | |
|     iterator begin() { return ValueMap.begin(); }
 | |
|     iterator end() { return ValueMap.end(); }
 | |
| 
 | |
|     ValueInfo &getValueInfo(Value *V) {
 | |
|       ValueMapTy::iterator I = ValueMap.lower_bound(V);
 | |
|       if (I != ValueMap.end() && I->first == V) return I->second;
 | |
|       return ValueMap.insert(I, std::make_pair(V, V->getType()))->second;
 | |
|     }
 | |
| 
 | |
|     const ValueInfo *requestValueInfo(Value *V) const {
 | |
|       ValueMapTy::const_iterator I = ValueMap.find(V);
 | |
|       if (I != ValueMap.end()) return &I->second;
 | |
|       return 0;
 | |
|     }
 | |
|     
 | |
|     /// removeValueInfo - Remove anything known about V from our records.  This
 | |
|     /// works whether or not we know anything about V.
 | |
|     ///
 | |
|     void removeValueInfo(Value *V) {
 | |
|       ValueMap.erase(V);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// CEE - Correlated Expression Elimination
 | |
|   class CEE : public FunctionPass {
 | |
|     std::map<Value*, unsigned> RankMap;
 | |
|     std::map<BasicBlock*, RegionInfo> RegionInfoMap;
 | |
|     DominatorSet *DS;
 | |
|     DominatorTree *DT;
 | |
|   public:
 | |
|     virtual bool runOnFunction(Function &F);
 | |
| 
 | |
|     // We don't modify the program, so we preserve all analyses
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.addRequired<DominatorSet>();
 | |
|       AU.addRequired<DominatorTree>();
 | |
|       AU.addRequiredID(BreakCriticalEdgesID);
 | |
|     };
 | |
| 
 | |
|     // print - Implement the standard print form to print out analysis
 | |
|     // information.
 | |
|     virtual void print(std::ostream &O, const Module *M) const;
 | |
| 
 | |
|   private:
 | |
|     RegionInfo &getRegionInfo(BasicBlock *BB) {
 | |
|       std::map<BasicBlock*, RegionInfo>::iterator I
 | |
|         = RegionInfoMap.lower_bound(BB);
 | |
|       if (I != RegionInfoMap.end() && I->first == BB) return I->second;
 | |
|       return RegionInfoMap.insert(I, std::make_pair(BB, BB))->second;
 | |
|     }
 | |
| 
 | |
|     void BuildRankMap(Function &F);
 | |
|     unsigned getRank(Value *V) const {
 | |
|       if (isa<Constant>(V) || isa<GlobalValue>(V)) return 0;
 | |
|       std::map<Value*, unsigned>::const_iterator I = RankMap.find(V);
 | |
|       if (I != RankMap.end()) return I->second;
 | |
|       return 0; // Must be some other global thing
 | |
|     }
 | |
| 
 | |
|     bool TransformRegion(BasicBlock *BB, std::set<BasicBlock*> &VisitedBlocks);
 | |
| 
 | |
|     bool ForwardCorrelatedEdgeDestination(TerminatorInst *TI, unsigned SuccNo,
 | |
|                                           RegionInfo &RI);
 | |
| 
 | |
|     void ForwardSuccessorTo(TerminatorInst *TI, unsigned Succ, BasicBlock *D,
 | |
|                             RegionInfo &RI);
 | |
|     void ReplaceUsesOfValueInRegion(Value *Orig, Value *New,
 | |
|                                     BasicBlock *RegionDominator);
 | |
|     void CalculateRegionExitBlocks(BasicBlock *BB, BasicBlock *OldSucc,
 | |
|                                    std::vector<BasicBlock*> &RegionExitBlocks);
 | |
|     void InsertRegionExitMerges(PHINode *NewPHI, Instruction *OldVal,
 | |
|                              const std::vector<BasicBlock*> &RegionExitBlocks);
 | |
| 
 | |
|     void PropagateBranchInfo(BranchInst *BI);
 | |
|     void PropagateEquality(Value *Op0, Value *Op1, RegionInfo &RI);
 | |
|     void PropagateRelation(Instruction::BinaryOps Opcode, Value *Op0,
 | |
|                            Value *Op1, RegionInfo &RI);
 | |
|     void UpdateUsersOfValue(Value *V, RegionInfo &RI);
 | |
|     void IncorporateInstruction(Instruction *Inst, RegionInfo &RI);
 | |
|     void ComputeReplacements(RegionInfo &RI);
 | |
| 
 | |
| 
 | |
|     // getSetCCResult - Given a setcc instruction, determine if the result is
 | |
|     // determined by facts we already know about the region under analysis.
 | |
|     // Return KnownTrue, KnownFalse, or Unknown based on what we can determine.
 | |
|     //
 | |
|     Relation::KnownResult getSetCCResult(SetCondInst *SC, const RegionInfo &RI);
 | |
| 
 | |
| 
 | |
|     bool SimplifyBasicBlock(BasicBlock &BB, const RegionInfo &RI);
 | |
|     bool SimplifyInstruction(Instruction *Inst, const RegionInfo &RI);
 | |
|   }; 
 | |
|   RegisterOpt<CEE> X("cee", "Correlated Expression Elimination");
 | |
| }
 | |
| 
 | |
| Pass *llvm::createCorrelatedExpressionEliminationPass() { return new CEE(); }
 | |
| 
 | |
| 
 | |
| bool CEE::runOnFunction(Function &F) {
 | |
|   // Build a rank map for the function...
 | |
|   BuildRankMap(F);
 | |
| 
 | |
|   // Traverse the dominator tree, computing information for each node in the
 | |
|   // tree.  Note that our traversal will not even touch unreachable basic
 | |
|   // blocks.
 | |
|   DS = &getAnalysis<DominatorSet>();
 | |
|   DT = &getAnalysis<DominatorTree>();
 | |
|   
 | |
|   std::set<BasicBlock*> VisitedBlocks;
 | |
|   bool Changed = TransformRegion(&F.getEntryBlock(), VisitedBlocks);
 | |
| 
 | |
|   RegionInfoMap.clear();
 | |
|   RankMap.clear();
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| // TransformRegion - Transform the region starting with BB according to the
 | |
| // calculated region information for the block.  Transforming the region
 | |
| // involves analyzing any information this block provides to successors,
 | |
| // propagating the information to successors, and finally transforming
 | |
| // successors.
 | |
| //
 | |
| // This method processes the function in depth first order, which guarantees
 | |
| // that we process the immediate dominator of a block before the block itself.
 | |
| // Because we are passing information from immediate dominators down to
 | |
| // dominatees, we obviously have to process the information source before the
 | |
| // information consumer.
 | |
| //
 | |
| bool CEE::TransformRegion(BasicBlock *BB, std::set<BasicBlock*> &VisitedBlocks){
 | |
|   // Prevent infinite recursion...
 | |
|   if (VisitedBlocks.count(BB)) return false;
 | |
|   VisitedBlocks.insert(BB);
 | |
| 
 | |
|   // Get the computed region information for this block...
 | |
|   RegionInfo &RI = getRegionInfo(BB);
 | |
| 
 | |
|   // Compute the replacement information for this block...
 | |
|   ComputeReplacements(RI);
 | |
| 
 | |
|   // If debugging, print computed region information...
 | |
|   DEBUG(RI.print(std::cerr));
 | |
| 
 | |
|   // Simplify the contents of this block...
 | |
|   bool Changed = SimplifyBasicBlock(*BB, RI);
 | |
| 
 | |
|   // Get the terminator of this basic block...
 | |
|   TerminatorInst *TI = BB->getTerminator();
 | |
| 
 | |
|   // Loop over all of the blocks that this block is the immediate dominator for.
 | |
|   // Because all information known in this region is also known in all of the
 | |
|   // blocks that are dominated by this one, we can safely propagate the
 | |
|   // information down now.
 | |
|   //
 | |
|   DominatorTree::Node *BBN = (*DT)[BB];
 | |
|   if (!RI.empty())        // Time opt: only propagate if we can change something
 | |
|     for (unsigned i = 0, e = BBN->getChildren().size(); i != e; ++i) {
 | |
|       BasicBlock *Dominated = BBN->getChildren()[i]->getBlock();
 | |
|       assert(RegionInfoMap.find(Dominated) == RegionInfoMap.end() &&
 | |
|              "RegionInfo should be calculated in dominanace order!");
 | |
|       getRegionInfo(Dominated) = RI;
 | |
|     }
 | |
| 
 | |
|   // Now that all of our successors have information if they deserve it,
 | |
|   // propagate any information our terminator instruction finds to our
 | |
|   // successors.
 | |
|   if (BranchInst *BI = dyn_cast<BranchInst>(TI))
 | |
|     if (BI->isConditional())
 | |
|       PropagateBranchInfo(BI);
 | |
| 
 | |
|   // If this is a branch to a block outside our region that simply performs
 | |
|   // another conditional branch, one whose outcome is known inside of this
 | |
|   // region, then vector this outgoing edge directly to the known destination.
 | |
|   //
 | |
|   for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
 | |
|     while (ForwardCorrelatedEdgeDestination(TI, i, RI)) {
 | |
|       ++BranchRevectors;
 | |
|       Changed = true;
 | |
|     }
 | |
| 
 | |
|   // Now that all of our successors have information, recursively process them.
 | |
|   for (unsigned i = 0, e = BBN->getChildren().size(); i != e; ++i)
 | |
|     Changed |= TransformRegion(BBN->getChildren()[i]->getBlock(),VisitedBlocks);
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| // isBlockSimpleEnoughForCheck to see if the block is simple enough for us to
 | |
| // revector the conditional branch in the bottom of the block, do so now.
 | |
| //
 | |
| static bool isBlockSimpleEnough(BasicBlock *BB) {
 | |
|   assert(isa<BranchInst>(BB->getTerminator()));
 | |
|   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
 | |
|   assert(BI->isConditional());
 | |
| 
 | |
|   // Check the common case first: empty block, or block with just a setcc.
 | |
|   if (BB->size() == 1 ||
 | |
|       (BB->size() == 2 && &BB->front() == BI->getCondition() &&
 | |
|        BI->getCondition()->hasOneUse()))
 | |
|     return true;
 | |
| 
 | |
|   // Check the more complex case now...
 | |
|   BasicBlock::iterator I = BB->begin();
 | |
| 
 | |
|   // FIXME: This should be reenabled once the regression with SIM is fixed!
 | |
| #if 0
 | |
|   // PHI Nodes are ok, just skip over them...
 | |
|   while (isa<PHINode>(*I)) ++I;
 | |
| #endif
 | |
| 
 | |
|   // Accept the setcc instruction...
 | |
|   if (&*I == BI->getCondition())
 | |
|     ++I;
 | |
| 
 | |
|   // Nothing else is acceptable here yet.  We must not revector... unless we are
 | |
|   // at the terminator instruction.
 | |
|   if (&*I == BI)
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool CEE::ForwardCorrelatedEdgeDestination(TerminatorInst *TI, unsigned SuccNo,
 | |
|                                            RegionInfo &RI) {
 | |
|   // If this successor is a simple block not in the current region, which
 | |
|   // contains only a conditional branch, we decide if the outcome of the branch
 | |
|   // can be determined from information inside of the region.  Instead of going
 | |
|   // to this block, we can instead go to the destination we know is the right
 | |
|   // target.
 | |
|   //
 | |
| 
 | |
|   // Check to see if we dominate the block. If so, this block will get the
 | |
|   // condition turned to a constant anyway.
 | |
|   //
 | |
|   //if (DS->dominates(RI.getEntryBlock(), BB))
 | |
|   // return 0;
 | |
| 
 | |
|   BasicBlock *BB = TI->getParent();
 | |
| 
 | |
|   // Get the destination block of this edge...
 | |
|   BasicBlock *OldSucc = TI->getSuccessor(SuccNo);
 | |
| 
 | |
|   // Make sure that the block ends with a conditional branch and is simple
 | |
|   // enough for use to be able to revector over.
 | |
|   BranchInst *BI = dyn_cast<BranchInst>(OldSucc->getTerminator());
 | |
|   if (BI == 0 || !BI->isConditional() || !isBlockSimpleEnough(OldSucc))
 | |
|     return false;
 | |
| 
 | |
|   // We can only forward the branch over the block if the block ends with a
 | |
|   // setcc we can determine the outcome for.
 | |
|   //
 | |
|   // FIXME: we can make this more generic.  Code below already handles more
 | |
|   // generic case.
 | |
|   SetCondInst *SCI = dyn_cast<SetCondInst>(BI->getCondition());
 | |
|   if (SCI == 0) return false;
 | |
| 
 | |
|   // Make a new RegionInfo structure so that we can simulate the effect of the
 | |
|   // PHI nodes in the block we are skipping over...
 | |
|   //
 | |
|   RegionInfo NewRI(RI);
 | |
| 
 | |
|   // Remove value information for all of the values we are simulating... to make
 | |
|   // sure we don't have any stale information.
 | |
|   for (BasicBlock::iterator I = OldSucc->begin(), E = OldSucc->end(); I!=E; ++I)
 | |
|     if (I->getType() != Type::VoidTy)
 | |
|       NewRI.removeValueInfo(I);
 | |
|     
 | |
|   // Put the newly discovered information into the RegionInfo...
 | |
|   for (BasicBlock::iterator I = OldSucc->begin(), E = OldSucc->end(); I!=E; ++I)
 | |
|     if (PHINode *PN = dyn_cast<PHINode>(I)) {
 | |
|       int OpNum = PN->getBasicBlockIndex(BB);
 | |
|       assert(OpNum != -1 && "PHI doesn't have incoming edge for predecessor!?");
 | |
|       PropagateEquality(PN, PN->getIncomingValue(OpNum), NewRI);      
 | |
|     } else if (SetCondInst *SCI = dyn_cast<SetCondInst>(I)) {
 | |
|       Relation::KnownResult Res = getSetCCResult(SCI, NewRI);
 | |
|       if (Res == Relation::Unknown) return false;
 | |
|       PropagateEquality(SCI, ConstantBool::get(Res), NewRI);
 | |
|     } else {
 | |
|       assert(isa<BranchInst>(*I) && "Unexpected instruction type!");
 | |
|     }
 | |
|   
 | |
|   // Compute the facts implied by what we have discovered...
 | |
|   ComputeReplacements(NewRI);
 | |
| 
 | |
|   ValueInfo &PredicateVI = NewRI.getValueInfo(BI->getCondition());
 | |
|   if (PredicateVI.getReplacement() &&
 | |
|       isa<Constant>(PredicateVI.getReplacement())) {
 | |
|     ConstantBool *CB = cast<ConstantBool>(PredicateVI.getReplacement());
 | |
| 
 | |
|     // Forward to the successor that corresponds to the branch we will take.
 | |
|     ForwardSuccessorTo(TI, SuccNo, BI->getSuccessor(!CB->getValue()), NewRI);
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static Value *getReplacementOrValue(Value *V, RegionInfo &RI) {
 | |
|   if (const ValueInfo *VI = RI.requestValueInfo(V))
 | |
|     if (Value *Repl = VI->getReplacement())
 | |
|       return Repl;
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| /// ForwardSuccessorTo - We have found that we can forward successor # 'SuccNo'
 | |
| /// of Terminator 'TI' to the 'Dest' BasicBlock.  This method performs the
 | |
| /// mechanics of updating SSA information and revectoring the branch.
 | |
| ///
 | |
| void CEE::ForwardSuccessorTo(TerminatorInst *TI, unsigned SuccNo,
 | |
|                              BasicBlock *Dest, RegionInfo &RI) {
 | |
|   // If there are any PHI nodes in the Dest BB, we must duplicate the entry
 | |
|   // in the PHI node for the old successor to now include an entry from the
 | |
|   // current basic block.
 | |
|   //
 | |
|   BasicBlock *OldSucc = TI->getSuccessor(SuccNo);
 | |
|   BasicBlock *BB = TI->getParent();
 | |
| 
 | |
|   DEBUG(std::cerr << "Forwarding branch in basic block %" << BB->getName()
 | |
|         << " from block %" << OldSucc->getName() << " to block %"
 | |
|         << Dest->getName() << "\n");
 | |
| 
 | |
|   DEBUG(std::cerr << "Before forwarding: " << *BB->getParent());
 | |
| 
 | |
|   // Because we know that there cannot be critical edges in the flow graph, and
 | |
|   // that OldSucc has multiple outgoing edges, this means that Dest cannot have
 | |
|   // multiple incoming edges.
 | |
|   //
 | |
| #ifndef NDEBUG
 | |
|   pred_iterator DPI = pred_begin(Dest); ++DPI;
 | |
|   assert(DPI == pred_end(Dest) && "Critical edge found!!");
 | |
| #endif
 | |
| 
 | |
|   // Loop over any PHI nodes in the destination, eliminating them, because they
 | |
|   // may only have one input.
 | |
|   //
 | |
|   while (PHINode *PN = dyn_cast<PHINode>(&Dest->front())) {
 | |
|     assert(PN->getNumIncomingValues() == 1 && "Crit edge found!");
 | |
|     // Eliminate the PHI node
 | |
|     PN->replaceAllUsesWith(PN->getIncomingValue(0));
 | |
|     Dest->getInstList().erase(PN);
 | |
|   }
 | |
| 
 | |
|   // If there are values defined in the "OldSucc" basic block, we need to insert
 | |
|   // PHI nodes in the regions we are dealing with to emulate them.  This can
 | |
|   // insert dead phi nodes, but it is more trouble to see if they are used than
 | |
|   // to just blindly insert them.
 | |
|   //
 | |
|   if (DS->dominates(OldSucc, Dest)) {
 | |
|     // RegionExitBlocks - Find all of the blocks that are not dominated by Dest,
 | |
|     // but have predecessors that are.  Additionally, prune down the set to only
 | |
|     // include blocks that are dominated by OldSucc as well.
 | |
|     //
 | |
|     std::vector<BasicBlock*> RegionExitBlocks;
 | |
|     CalculateRegionExitBlocks(Dest, OldSucc, RegionExitBlocks);
 | |
| 
 | |
|     for (BasicBlock::iterator I = OldSucc->begin(), E = OldSucc->end();
 | |
|          I != E; ++I)
 | |
|       if (I->getType() != Type::VoidTy) {
 | |
|         // Create and insert the PHI node into the top of Dest.
 | |
|         PHINode *NewPN = new PHINode(I->getType(), I->getName()+".fw_merge",
 | |
|                                      Dest->begin());
 | |
|         // There is definitely an edge from OldSucc... add the edge now
 | |
|         NewPN->addIncoming(I, OldSucc);
 | |
| 
 | |
|         // There is also an edge from BB now, add the edge with the calculated
 | |
|         // value from the RI.
 | |
|         NewPN->addIncoming(getReplacementOrValue(I, RI), BB);
 | |
| 
 | |
|         // Make everything in the Dest region use the new PHI node now...
 | |
|         ReplaceUsesOfValueInRegion(I, NewPN, Dest);
 | |
| 
 | |
|         // Make sure that exits out of the region dominated by NewPN get PHI
 | |
|         // nodes that merge the values as appropriate.
 | |
|         InsertRegionExitMerges(NewPN, I, RegionExitBlocks);
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // If there were PHI nodes in OldSucc, we need to remove the entry for this
 | |
|   // edge from the PHI node, and we need to replace any references to the PHI
 | |
|   // node with a new value.
 | |
|   //
 | |
|   for (BasicBlock::iterator I = OldSucc->begin();
 | |
|        PHINode *PN = dyn_cast<PHINode>(I); ) {
 | |
| 
 | |
|     // Get the value flowing across the old edge and remove the PHI node entry
 | |
|     // for this edge: we are about to remove the edge!  Don't remove the PHI
 | |
|     // node yet though if this is the last edge into it.
 | |
|     Value *EdgeValue = PN->removeIncomingValue(BB, false);
 | |
| 
 | |
|     // Make sure that anything that used to use PN now refers to EdgeValue    
 | |
|     ReplaceUsesOfValueInRegion(PN, EdgeValue, Dest);
 | |
| 
 | |
|     // If there is only one value left coming into the PHI node, replace the PHI
 | |
|     // node itself with the one incoming value left.
 | |
|     //
 | |
|     if (PN->getNumIncomingValues() == 1) {
 | |
|       assert(PN->getNumIncomingValues() == 1);
 | |
|       PN->replaceAllUsesWith(PN->getIncomingValue(0));
 | |
|       PN->getParent()->getInstList().erase(PN);
 | |
|       I = OldSucc->begin();
 | |
|     } else if (PN->getNumIncomingValues() == 0) {  // Nuke the PHI
 | |
|       // If we removed the last incoming value to this PHI, nuke the PHI node
 | |
|       // now.
 | |
|       PN->replaceAllUsesWith(Constant::getNullValue(PN->getType()));
 | |
|       PN->getParent()->getInstList().erase(PN);
 | |
|       I = OldSucc->begin();
 | |
|     } else {
 | |
|       ++I;  // Otherwise, move on to the next PHI node
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Actually revector the branch now...
 | |
|   TI->setSuccessor(SuccNo, Dest);
 | |
| 
 | |
|   // If we just introduced a critical edge in the flow graph, make sure to break
 | |
|   // it right away...
 | |
|   SplitCriticalEdge(TI, SuccNo, this);
 | |
| 
 | |
|   // Make sure that we don't introduce critical edges from oldsucc now!
 | |
|   for (unsigned i = 0, e = OldSucc->getTerminator()->getNumSuccessors();
 | |
|        i != e; ++i)
 | |
|     if (isCriticalEdge(OldSucc->getTerminator(), i))
 | |
|       SplitCriticalEdge(OldSucc->getTerminator(), i, this);
 | |
| 
 | |
|   // Since we invalidated the CFG, recalculate the dominator set so that it is
 | |
|   // useful for later processing!
 | |
|   // FIXME: This is much worse than it really should be!
 | |
|   //DS->recalculate();
 | |
| 
 | |
|   DEBUG(std::cerr << "After forwarding: " << *BB->getParent());
 | |
| }
 | |
| 
 | |
| /// ReplaceUsesOfValueInRegion - This method replaces all uses of Orig with uses
 | |
| /// of New.  It only affects instructions that are defined in basic blocks that
 | |
| /// are dominated by Head.
 | |
| ///
 | |
| void CEE::ReplaceUsesOfValueInRegion(Value *Orig, Value *New,
 | |
|                                      BasicBlock *RegionDominator) {
 | |
|   assert(Orig != New && "Cannot replace value with itself");
 | |
|   std::vector<Instruction*> InstsToChange;
 | |
|   std::vector<PHINode*>     PHIsToChange;
 | |
|   InstsToChange.reserve(Orig->use_size());
 | |
| 
 | |
|   // Loop over instructions adding them to InstsToChange vector, this allows us
 | |
|   // an easy way to avoid invalidating the use_iterator at a bad time.
 | |
|   for (Value::use_iterator I = Orig->use_begin(), E = Orig->use_end();
 | |
|        I != E; ++I)
 | |
|     if (Instruction *User = dyn_cast<Instruction>(*I))
 | |
|       if (DS->dominates(RegionDominator, User->getParent()))
 | |
|         InstsToChange.push_back(User);
 | |
|       else if (PHINode *PN = dyn_cast<PHINode>(User)) {
 | |
|         PHIsToChange.push_back(PN);
 | |
|       }
 | |
| 
 | |
|   // PHIsToChange contains PHI nodes that use Orig that do not live in blocks
 | |
|   // dominated by orig.  If the block the value flows in from is dominated by
 | |
|   // RegionDominator, then we rewrite the PHI
 | |
|   for (unsigned i = 0, e = PHIsToChange.size(); i != e; ++i) {
 | |
|     PHINode *PN = PHIsToChange[i];
 | |
|     for (unsigned j = 0, e = PN->getNumIncomingValues(); j != e; ++j)
 | |
|       if (PN->getIncomingValue(j) == Orig &&
 | |
|           DS->dominates(RegionDominator, PN->getIncomingBlock(j)))
 | |
|         PN->setIncomingValue(j, New);
 | |
|   }
 | |
| 
 | |
|   // Loop over the InstsToChange list, replacing all uses of Orig with uses of
 | |
|   // New.  This list contains all of the instructions in our region that use
 | |
|   // Orig.
 | |
|   for (unsigned i = 0, e = InstsToChange.size(); i != e; ++i)
 | |
|     if (PHINode *PN = dyn_cast<PHINode>(InstsToChange[i])) {
 | |
|       // PHINodes must be handled carefully.  If the PHI node itself is in the
 | |
|       // region, we have to make sure to only do the replacement for incoming
 | |
|       // values that correspond to basic blocks in the region.
 | |
|       for (unsigned j = 0, e = PN->getNumIncomingValues(); j != e; ++j)
 | |
|         if (PN->getIncomingValue(j) == Orig &&
 | |
|             DS->dominates(RegionDominator, PN->getIncomingBlock(j)))
 | |
|           PN->setIncomingValue(j, New);
 | |
| 
 | |
|     } else {
 | |
|       InstsToChange[i]->replaceUsesOfWith(Orig, New);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void CalcRegionExitBlocks(BasicBlock *Header, BasicBlock *BB,
 | |
|                                  std::set<BasicBlock*> &Visited,
 | |
|                                  DominatorSet &DS,
 | |
|                                  std::vector<BasicBlock*> &RegionExitBlocks) {
 | |
|   if (Visited.count(BB)) return;
 | |
|   Visited.insert(BB);
 | |
| 
 | |
|   if (DS.dominates(Header, BB)) {  // Block in the region, recursively traverse
 | |
|     for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
 | |
|       CalcRegionExitBlocks(Header, *I, Visited, DS, RegionExitBlocks);
 | |
|   } else {
 | |
|     // Header does not dominate this block, but we have a predecessor that does
 | |
|     // dominate us.  Add ourself to the list.
 | |
|     RegionExitBlocks.push_back(BB);    
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// CalculateRegionExitBlocks - Find all of the blocks that are not dominated by
 | |
| /// BB, but have predecessors that are.  Additionally, prune down the set to
 | |
| /// only include blocks that are dominated by OldSucc as well.
 | |
| ///
 | |
| void CEE::CalculateRegionExitBlocks(BasicBlock *BB, BasicBlock *OldSucc,
 | |
|                                     std::vector<BasicBlock*> &RegionExitBlocks){
 | |
|   std::set<BasicBlock*> Visited;  // Don't infinite loop
 | |
| 
 | |
|   // Recursively calculate blocks we are interested in...
 | |
|   CalcRegionExitBlocks(BB, BB, Visited, *DS, RegionExitBlocks);
 | |
|   
 | |
|   // Filter out blocks that are not dominated by OldSucc...
 | |
|   for (unsigned i = 0; i != RegionExitBlocks.size(); ) {
 | |
|     if (DS->dominates(OldSucc, RegionExitBlocks[i]))
 | |
|       ++i;  // Block is ok, keep it.
 | |
|     else {
 | |
|       // Move to end of list...
 | |
|       std::swap(RegionExitBlocks[i], RegionExitBlocks.back());
 | |
|       RegionExitBlocks.pop_back();        // Nuke the end
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CEE::InsertRegionExitMerges(PHINode *BBVal, Instruction *OldVal,
 | |
|                              const std::vector<BasicBlock*> &RegionExitBlocks) {
 | |
|   assert(BBVal->getType() == OldVal->getType() && "Should be derived values!");
 | |
|   BasicBlock *BB = BBVal->getParent();
 | |
|   BasicBlock *OldSucc = OldVal->getParent();
 | |
| 
 | |
|   // Loop over all of the blocks we have to place PHIs in, doing it.
 | |
|   for (unsigned i = 0, e = RegionExitBlocks.size(); i != e; ++i) {
 | |
|     BasicBlock *FBlock = RegionExitBlocks[i];  // Block on the frontier
 | |
| 
 | |
|     // Create the new PHI node
 | |
|     PHINode *NewPN = new PHINode(BBVal->getType(),
 | |
|                                  OldVal->getName()+".fw_frontier",
 | |
|                                  FBlock->begin());
 | |
| 
 | |
|     // Add an incoming value for every predecessor of the block...
 | |
|     for (pred_iterator PI = pred_begin(FBlock), PE = pred_end(FBlock);
 | |
|          PI != PE; ++PI) {
 | |
|       // If the incoming edge is from the region dominated by BB, use BBVal,
 | |
|       // otherwise use OldVal.
 | |
|       NewPN->addIncoming(DS->dominates(BB, *PI) ? BBVal : OldVal, *PI);
 | |
|     }
 | |
|     
 | |
|     // Now make everyone dominated by this block use this new value!
 | |
|     ReplaceUsesOfValueInRegion(OldVal, NewPN, FBlock);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| // BuildRankMap - This method builds the rank map data structure which gives
 | |
| // each instruction/value in the function a value based on how early it appears
 | |
| // in the function.  We give constants and globals rank 0, arguments are
 | |
| // numbered starting at one, and instructions are numbered in reverse post-order
 | |
| // from where the arguments leave off.  This gives instructions in loops higher
 | |
| // values than instructions not in loops.
 | |
| //
 | |
| void CEE::BuildRankMap(Function &F) {
 | |
|   unsigned Rank = 1;  // Skip rank zero.
 | |
| 
 | |
|   // Number the arguments...
 | |
|   for (Function::aiterator I = F.abegin(), E = F.aend(); I != E; ++I)
 | |
|     RankMap[I] = Rank++;
 | |
| 
 | |
|   // Number the instructions in reverse post order...
 | |
|   ReversePostOrderTraversal<Function*> RPOT(&F);
 | |
|   for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
 | |
|          E = RPOT.end(); I != E; ++I)
 | |
|     for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
 | |
|          BBI != E; ++BBI)
 | |
|       if (BBI->getType() != Type::VoidTy)
 | |
|         RankMap[BBI] = Rank++;
 | |
| }
 | |
| 
 | |
| 
 | |
| // PropagateBranchInfo - When this method is invoked, we need to propagate
 | |
| // information derived from the branch condition into the true and false
 | |
| // branches of BI.  Since we know that there aren't any critical edges in the
 | |
| // flow graph, this can proceed unconditionally.
 | |
| //
 | |
| void CEE::PropagateBranchInfo(BranchInst *BI) {
 | |
|   assert(BI->isConditional() && "Must be a conditional branch!");
 | |
| 
 | |
|   // Propagate information into the true block...
 | |
|   //
 | |
|   PropagateEquality(BI->getCondition(), ConstantBool::True,
 | |
|                     getRegionInfo(BI->getSuccessor(0)));
 | |
|   
 | |
|   // Propagate information into the false block...
 | |
|   //
 | |
|   PropagateEquality(BI->getCondition(), ConstantBool::False,
 | |
|                     getRegionInfo(BI->getSuccessor(1)));
 | |
| }
 | |
| 
 | |
| 
 | |
| // PropagateEquality - If we discover that two values are equal to each other in
 | |
| // a specified region, propagate this knowledge recursively.
 | |
| //
 | |
| void CEE::PropagateEquality(Value *Op0, Value *Op1, RegionInfo &RI) {
 | |
|   if (Op0 == Op1) return;  // Gee whiz. Are these really equal each other?
 | |
| 
 | |
|   if (isa<Constant>(Op0))  // Make sure the constant is always Op1
 | |
|     std::swap(Op0, Op1);
 | |
| 
 | |
|   // Make sure we don't already know these are equal, to avoid infinite loops...
 | |
|   ValueInfo &VI = RI.getValueInfo(Op0);
 | |
| 
 | |
|   // Get information about the known relationship between Op0 & Op1
 | |
|   Relation &KnownRelation = VI.getRelation(Op1);
 | |
| 
 | |
|   // If we already know they're equal, don't reprocess...
 | |
|   if (KnownRelation.getRelation() == Instruction::SetEQ)
 | |
|     return;
 | |
| 
 | |
|   // If this is boolean, check to see if one of the operands is a constant.  If
 | |
|   // it's a constant, then see if the other one is one of a setcc instruction,
 | |
|   // an AND, OR, or XOR instruction.
 | |
|   //
 | |
|   if (ConstantBool *CB = dyn_cast<ConstantBool>(Op1)) {
 | |
| 
 | |
|     if (Instruction *Inst = dyn_cast<Instruction>(Op0)) {
 | |
|       // If we know that this instruction is an AND instruction, and the result
 | |
|       // is true, this means that both operands to the OR are known to be true
 | |
|       // as well.
 | |
|       //
 | |
|       if (CB->getValue() && Inst->getOpcode() == Instruction::And) {
 | |
|         PropagateEquality(Inst->getOperand(0), CB, RI);
 | |
|         PropagateEquality(Inst->getOperand(1), CB, RI);
 | |
|       }
 | |
|       
 | |
|       // If we know that this instruction is an OR instruction, and the result
 | |
|       // is false, this means that both operands to the OR are know to be false
 | |
|       // as well.
 | |
|       //
 | |
|       if (!CB->getValue() && Inst->getOpcode() == Instruction::Or) {
 | |
|         PropagateEquality(Inst->getOperand(0), CB, RI);
 | |
|         PropagateEquality(Inst->getOperand(1), CB, RI);
 | |
|       }
 | |
|       
 | |
|       // If we know that this instruction is a NOT instruction, we know that the
 | |
|       // operand is known to be the inverse of whatever the current value is.
 | |
|       //
 | |
|       if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(Inst))
 | |
|         if (BinaryOperator::isNot(BOp))
 | |
|           PropagateEquality(BinaryOperator::getNotArgument(BOp),
 | |
|                             ConstantBool::get(!CB->getValue()), RI);
 | |
| 
 | |
|       // If we know the value of a SetCC instruction, propagate the information
 | |
|       // about the relation into this region as well.
 | |
|       //
 | |
|       if (SetCondInst *SCI = dyn_cast<SetCondInst>(Inst)) {
 | |
|         if (CB->getValue()) {  // If we know the condition is true...
 | |
|           // Propagate info about the LHS to the RHS & RHS to LHS
 | |
|           PropagateRelation(SCI->getOpcode(), SCI->getOperand(0),
 | |
|                             SCI->getOperand(1), RI);
 | |
|           PropagateRelation(SCI->getSwappedCondition(),
 | |
|                             SCI->getOperand(1), SCI->getOperand(0), RI);
 | |
| 
 | |
|         } else {               // If we know the condition is false...
 | |
|           // We know the opposite of the condition is true...
 | |
|           Instruction::BinaryOps C = SCI->getInverseCondition();
 | |
|           
 | |
|           PropagateRelation(C, SCI->getOperand(0), SCI->getOperand(1), RI);
 | |
|           PropagateRelation(SetCondInst::getSwappedCondition(C),
 | |
|                             SCI->getOperand(1), SCI->getOperand(0), RI);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Propagate information about Op0 to Op1 & visa versa
 | |
|   PropagateRelation(Instruction::SetEQ, Op0, Op1, RI);
 | |
|   PropagateRelation(Instruction::SetEQ, Op1, Op0, RI);
 | |
| }
 | |
| 
 | |
| 
 | |
| // PropagateRelation - We know that the specified relation is true in all of the
 | |
| // blocks in the specified region.  Propagate the information about Op0 and
 | |
| // anything derived from it into this region.
 | |
| //
 | |
| void CEE::PropagateRelation(Instruction::BinaryOps Opcode, Value *Op0,
 | |
|                             Value *Op1, RegionInfo &RI) {
 | |
|   assert(Op0->getType() == Op1->getType() && "Equal types expected!");
 | |
| 
 | |
|   // Constants are already pretty well understood.  We will apply information
 | |
|   // about the constant to Op1 in another call to PropagateRelation.
 | |
|   //
 | |
|   if (isa<Constant>(Op0)) return;
 | |
| 
 | |
|   // Get the region information for this block to update...
 | |
|   ValueInfo &VI = RI.getValueInfo(Op0);
 | |
| 
 | |
|   // Get information about the known relationship between Op0 & Op1
 | |
|   Relation &Op1R = VI.getRelation(Op1);
 | |
| 
 | |
|   // Quick bailout for common case if we are reprocessing an instruction...
 | |
|   if (Op1R.getRelation() == Opcode)
 | |
|     return;
 | |
| 
 | |
|   // If we already have information that contradicts the current information we
 | |
|   // are propagating, ignore this info.  Something bad must have happened!
 | |
|   //
 | |
|   if (Op1R.contradicts(Opcode, VI)) {
 | |
|     Op1R.contradicts(Opcode, VI);
 | |
|     std::cerr << "Contradiction found for opcode: "
 | |
|               << Instruction::getOpcodeName(Opcode) << "\n";
 | |
|     Op1R.print(std::cerr);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If the information propagated is new, then we want process the uses of this
 | |
|   // instruction to propagate the information down to them.
 | |
|   //
 | |
|   if (Op1R.incorporate(Opcode, VI))
 | |
|     UpdateUsersOfValue(Op0, RI);
 | |
| }
 | |
| 
 | |
| 
 | |
| // UpdateUsersOfValue - The information about V in this region has been updated.
 | |
| // Propagate this to all consumers of the value.
 | |
| //
 | |
| void CEE::UpdateUsersOfValue(Value *V, RegionInfo &RI) {
 | |
|   for (Value::use_iterator I = V->use_begin(), E = V->use_end();
 | |
|        I != E; ++I)
 | |
|     if (Instruction *Inst = dyn_cast<Instruction>(*I)) {
 | |
|       // If this is an instruction using a value that we know something about,
 | |
|       // try to propagate information to the value produced by the
 | |
|       // instruction.  We can only do this if it is an instruction we can
 | |
|       // propagate information for (a setcc for example), and we only WANT to
 | |
|       // do this if the instruction dominates this region.
 | |
|       //
 | |
|       // If the instruction doesn't dominate this region, then it cannot be
 | |
|       // used in this region and we don't care about it.  If the instruction
 | |
|       // is IN this region, then we will simplify the instruction before we
 | |
|       // get to uses of it anyway, so there is no reason to bother with it
 | |
|       // here.  This check is also effectively checking to make sure that Inst
 | |
|       // is in the same function as our region (in case V is a global f.e.).
 | |
|       //
 | |
|       if (DS->properlyDominates(Inst->getParent(), RI.getEntryBlock()))
 | |
|         IncorporateInstruction(Inst, RI);
 | |
|     }
 | |
| }
 | |
| 
 | |
| // IncorporateInstruction - We just updated the information about one of the
 | |
| // operands to the specified instruction.  Update the information about the
 | |
| // value produced by this instruction
 | |
| //
 | |
| void CEE::IncorporateInstruction(Instruction *Inst, RegionInfo &RI) {
 | |
|   if (SetCondInst *SCI = dyn_cast<SetCondInst>(Inst)) {
 | |
|     // See if we can figure out a result for this instruction...
 | |
|     Relation::KnownResult Result = getSetCCResult(SCI, RI);
 | |
|     if (Result != Relation::Unknown) {
 | |
|       PropagateEquality(SCI, Result ? ConstantBool::True : ConstantBool::False,
 | |
|                         RI);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| // ComputeReplacements - Some values are known to be equal to other values in a
 | |
| // region.  For example if there is a comparison of equality between a variable
 | |
| // X and a constant C, we can replace all uses of X with C in the region we are
 | |
| // interested in.  We generalize this replacement to replace variables with
 | |
| // other variables if they are equal and there is a variable with lower rank
 | |
| // than the current one.  This offers a canonicalizing property that exposes
 | |
| // more redundancies for later transformations to take advantage of.
 | |
| //
 | |
| void CEE::ComputeReplacements(RegionInfo &RI) {
 | |
|   // Loop over all of the values in the region info map...
 | |
|   for (RegionInfo::iterator I = RI.begin(), E = RI.end(); I != E; ++I) {
 | |
|     ValueInfo &VI = I->second;
 | |
| 
 | |
|     // If we know that this value is a particular constant, set Replacement to
 | |
|     // the constant...
 | |
|     Value *Replacement = VI.getBounds().getSingleElement();
 | |
| 
 | |
|     // If this value is not known to be some constant, figure out the lowest
 | |
|     // rank value that it is known to be equal to (if anything).
 | |
|     //
 | |
|     if (Replacement == 0) {
 | |
|       // Find out if there are any equality relationships with values of lower
 | |
|       // rank than VI itself...
 | |
|       unsigned MinRank = getRank(I->first);
 | |
| 
 | |
|       // Loop over the relationships known about Op0.
 | |
|       const std::vector<Relation> &Relationships = VI.getRelationships();
 | |
|       for (unsigned i = 0, e = Relationships.size(); i != e; ++i)
 | |
|         if (Relationships[i].getRelation() == Instruction::SetEQ) {
 | |
|           unsigned R = getRank(Relationships[i].getValue());
 | |
|           if (R < MinRank) {
 | |
|             MinRank = R;
 | |
|             Replacement = Relationships[i].getValue();
 | |
|           }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // If we found something to replace this value with, keep track of it.
 | |
|     if (Replacement)
 | |
|       VI.setReplacement(Replacement);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // SimplifyBasicBlock - Given information about values in region RI, simplify
 | |
| // the instructions in the specified basic block.
 | |
| //
 | |
| bool CEE::SimplifyBasicBlock(BasicBlock &BB, const RegionInfo &RI) {
 | |
|   bool Changed = false;
 | |
|   for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) {
 | |
|     Instruction *Inst = I++;
 | |
| 
 | |
|     // Convert instruction arguments to canonical forms...
 | |
|     Changed |= SimplifyInstruction(Inst, RI);
 | |
| 
 | |
|     if (SetCondInst *SCI = dyn_cast<SetCondInst>(Inst)) {
 | |
|       // Try to simplify a setcc instruction based on inherited information
 | |
|       Relation::KnownResult Result = getSetCCResult(SCI, RI);
 | |
|       if (Result != Relation::Unknown) {
 | |
|         DEBUG(std::cerr << "Replacing setcc with " << Result
 | |
|                         << " constant: " << SCI);
 | |
| 
 | |
|         SCI->replaceAllUsesWith(ConstantBool::get((bool)Result));
 | |
|         // The instruction is now dead, remove it from the program.
 | |
|         SCI->getParent()->getInstList().erase(SCI);
 | |
|         ++NumSetCCRemoved;
 | |
|         Changed = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| // SimplifyInstruction - Inspect the operands of the instruction, converting
 | |
| // them to their canonical form if possible.  This takes care of, for example,
 | |
| // replacing a value 'X' with a constant 'C' if the instruction in question is
 | |
| // dominated by a true seteq 'X', 'C'.
 | |
| //
 | |
| bool CEE::SimplifyInstruction(Instruction *I, const RegionInfo &RI) {
 | |
|   bool Changed = false;
 | |
| 
 | |
|   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
 | |
|     if (const ValueInfo *VI = RI.requestValueInfo(I->getOperand(i)))
 | |
|       if (Value *Repl = VI->getReplacement()) {
 | |
|         // If we know if a replacement with lower rank than Op0, make the
 | |
|         // replacement now.
 | |
|         DEBUG(std::cerr << "In Inst: " << I << "  Replacing operand #" << i
 | |
|                         << " with " << Repl << "\n");
 | |
|         I->setOperand(i, Repl);
 | |
|         Changed = true;
 | |
|         ++NumOperandsCann;
 | |
|       }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| 
 | |
| // getSetCCResult - Try to simplify a setcc instruction based on information
 | |
| // inherited from a dominating setcc instruction.  V is one of the operands to
 | |
| // the setcc instruction, and VI is the set of information known about it.  We
 | |
| // take two cases into consideration here.  If the comparison is against a
 | |
| // constant value, we can use the constant range to see if the comparison is
 | |
| // possible to succeed.  If it is not a comparison against a constant, we check
 | |
| // to see if there is a known relationship between the two values.  If so, we
 | |
| // may be able to eliminate the check.
 | |
| //
 | |
| Relation::KnownResult CEE::getSetCCResult(SetCondInst *SCI,
 | |
|                                           const RegionInfo &RI) {
 | |
|   Value *Op0 = SCI->getOperand(0), *Op1 = SCI->getOperand(1);
 | |
|   Instruction::BinaryOps Opcode = SCI->getOpcode();
 | |
|   
 | |
|   if (isa<Constant>(Op0)) {
 | |
|     if (isa<Constant>(Op1)) {
 | |
|       if (Constant *Result = ConstantFoldInstruction(SCI)) {
 | |
|         // Wow, this is easy, directly eliminate the SetCondInst.
 | |
|         DEBUG(std::cerr << "Replacing setcc with constant fold: " << SCI);
 | |
|         return cast<ConstantBool>(Result)->getValue()
 | |
|           ? Relation::KnownTrue : Relation::KnownFalse;
 | |
|       }
 | |
|     } else {
 | |
|       // We want to swap this instruction so that operand #0 is the constant.
 | |
|       std::swap(Op0, Op1);
 | |
|       Opcode = SCI->getSwappedCondition();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Try to figure out what the result of this comparison will be...
 | |
|   Relation::KnownResult Result = Relation::Unknown;
 | |
| 
 | |
|   // We have to know something about the relationship to prove anything...
 | |
|   if (const ValueInfo *Op0VI = RI.requestValueInfo(Op0)) {
 | |
| 
 | |
|     // At this point, we know that if we have a constant argument that it is in
 | |
|     // Op1.  Check to see if we know anything about comparing value with a
 | |
|     // constant, and if we can use this info to fold the setcc.
 | |
|     //
 | |
|     if (ConstantIntegral *C = dyn_cast<ConstantIntegral>(Op1)) {
 | |
|       // Check to see if we already know the result of this comparison...
 | |
|       ConstantRange R = ConstantRange(Opcode, C);
 | |
|       ConstantRange Int = R.intersectWith(Op0VI->getBounds());
 | |
| 
 | |
|       // If the intersection of the two ranges is empty, then the condition
 | |
|       // could never be true!
 | |
|       // 
 | |
|       if (Int.isEmptySet()) {
 | |
|         Result = Relation::KnownFalse;
 | |
| 
 | |
|       // Otherwise, if VI.getBounds() (the possible values) is a subset of R
 | |
|       // (the allowed values) then we know that the condition must always be
 | |
|       // true!
 | |
|       //
 | |
|       } else if (Int == Op0VI->getBounds()) {
 | |
|         Result = Relation::KnownTrue;
 | |
|       }
 | |
|     } else {
 | |
|       // If we are here, we know that the second argument is not a constant
 | |
|       // integral.  See if we know anything about Op0 & Op1 that allows us to
 | |
|       // fold this anyway.
 | |
|       //
 | |
|       // Do we have value information about Op0 and a relation to Op1?
 | |
|       if (const Relation *Op2R = Op0VI->requestRelation(Op1))
 | |
|         Result = Op2R->getImpliedResult(Opcode);
 | |
|     }
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Relation Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // CheckCondition - Return true if the specified condition is false.  Bound may
 | |
| // be null.
 | |
| static bool CheckCondition(Constant *Bound, Constant *C,
 | |
|                            Instruction::BinaryOps BO) {
 | |
|   assert(C != 0 && "C is not specified!");
 | |
|   if (Bound == 0) return false;
 | |
| 
 | |
|   Constant *Val = ConstantExpr::get(BO, Bound, C);
 | |
|   if (ConstantBool *CB = dyn_cast<ConstantBool>(Val))
 | |
|     return !CB->getValue();  // Return true if the condition is false...
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // contradicts - Return true if the relationship specified by the operand
 | |
| // contradicts already known information.
 | |
| //
 | |
| bool Relation::contradicts(Instruction::BinaryOps Op,
 | |
|                            const ValueInfo &VI) const {
 | |
|   assert (Op != Instruction::Add && "Invalid relation argument!");
 | |
| 
 | |
|   // If this is a relationship with a constant, make sure that this relationship
 | |
|   // does not contradict properties known about the bounds of the constant.
 | |
|   //
 | |
|   if (ConstantIntegral *C = dyn_cast<ConstantIntegral>(Val))
 | |
|     if (ConstantRange(Op, C).intersectWith(VI.getBounds()).isEmptySet())
 | |
|       return true;
 | |
| 
 | |
|   switch (Rel) {
 | |
|   default: assert(0 && "Unknown Relationship code!");
 | |
|   case Instruction::Add: return false;  // Nothing known, nothing contradicts
 | |
|   case Instruction::SetEQ:
 | |
|     return Op == Instruction::SetLT || Op == Instruction::SetGT ||
 | |
|            Op == Instruction::SetNE;
 | |
|   case Instruction::SetNE: return Op == Instruction::SetEQ;
 | |
|   case Instruction::SetLE: return Op == Instruction::SetGT;
 | |
|   case Instruction::SetGE: return Op == Instruction::SetLT;
 | |
|   case Instruction::SetLT:
 | |
|     return Op == Instruction::SetEQ || Op == Instruction::SetGT ||
 | |
|            Op == Instruction::SetGE;
 | |
|   case Instruction::SetGT:
 | |
|     return Op == Instruction::SetEQ || Op == Instruction::SetLT ||
 | |
|            Op == Instruction::SetLE;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // incorporate - Incorporate information in the argument into this relation
 | |
| // entry.  This assumes that the information doesn't contradict itself.  If any
 | |
| // new information is gained, true is returned, otherwise false is returned to
 | |
| // indicate that nothing was updated.
 | |
| //
 | |
| bool Relation::incorporate(Instruction::BinaryOps Op, ValueInfo &VI) {
 | |
|   assert(!contradicts(Op, VI) &&
 | |
|          "Cannot incorporate contradictory information!");
 | |
| 
 | |
|   // If this is a relationship with a constant, make sure that we update the
 | |
|   // range that is possible for the value to have...
 | |
|   //
 | |
|   if (ConstantIntegral *C = dyn_cast<ConstantIntegral>(Val))
 | |
|     VI.getBounds() = ConstantRange(Op, C).intersectWith(VI.getBounds());
 | |
| 
 | |
|   switch (Rel) {
 | |
|   default: assert(0 && "Unknown prior value!");
 | |
|   case Instruction::Add:   Rel = Op; return true;
 | |
|   case Instruction::SetEQ: return false;  // Nothing is more precise
 | |
|   case Instruction::SetNE: return false;  // Nothing is more precise
 | |
|   case Instruction::SetLT: return false;  // Nothing is more precise
 | |
|   case Instruction::SetGT: return false;  // Nothing is more precise
 | |
|   case Instruction::SetLE:
 | |
|     if (Op == Instruction::SetEQ || Op == Instruction::SetLT) {
 | |
|       Rel = Op;
 | |
|       return true;
 | |
|     } else if (Op == Instruction::SetNE) {
 | |
|       Rel = Instruction::SetLT;
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   case Instruction::SetGE: return Op == Instruction::SetLT;
 | |
|     if (Op == Instruction::SetEQ || Op == Instruction::SetGT) {
 | |
|       Rel = Op;
 | |
|       return true;
 | |
|     } else if (Op == Instruction::SetNE) {
 | |
|       Rel = Instruction::SetGT;
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // getImpliedResult - If this relationship between two values implies that
 | |
| // the specified relationship is true or false, return that.  If we cannot
 | |
| // determine the result required, return Unknown.
 | |
| //
 | |
| Relation::KnownResult
 | |
| Relation::getImpliedResult(Instruction::BinaryOps Op) const {
 | |
|   if (Rel == Op) return KnownTrue;
 | |
|   if (Rel == SetCondInst::getInverseCondition(Op)) return KnownFalse;
 | |
| 
 | |
|   switch (Rel) {
 | |
|   default: assert(0 && "Unknown prior value!");
 | |
|   case Instruction::SetEQ:
 | |
|     if (Op == Instruction::SetLE || Op == Instruction::SetGE) return KnownTrue;
 | |
|     if (Op == Instruction::SetLT || Op == Instruction::SetGT) return KnownFalse;
 | |
|     break;
 | |
|   case Instruction::SetLT:
 | |
|     if (Op == Instruction::SetNE || Op == Instruction::SetLE) return KnownTrue;
 | |
|     if (Op == Instruction::SetEQ) return KnownFalse;
 | |
|     break;
 | |
|   case Instruction::SetGT:
 | |
|     if (Op == Instruction::SetNE || Op == Instruction::SetGE) return KnownTrue;
 | |
|     if (Op == Instruction::SetEQ) return KnownFalse;
 | |
|     break;
 | |
|   case Instruction::SetNE:
 | |
|   case Instruction::SetLE:
 | |
|   case Instruction::SetGE:
 | |
|   case Instruction::Add:
 | |
|     break;
 | |
|   }
 | |
|   return Unknown;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Printing Support...
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // print - Implement the standard print form to print out analysis information.
 | |
| void CEE::print(std::ostream &O, const Module *M) const {
 | |
|   O << "\nPrinting Correlated Expression Info:\n";
 | |
|   for (std::map<BasicBlock*, RegionInfo>::const_iterator I = 
 | |
|          RegionInfoMap.begin(), E = RegionInfoMap.end(); I != E; ++I)
 | |
|     I->second.print(O);
 | |
| }
 | |
| 
 | |
| // print - Output information about this region...
 | |
| void RegionInfo::print(std::ostream &OS) const {
 | |
|   if (ValueMap.empty()) return;
 | |
| 
 | |
|   OS << " RegionInfo for basic block: " << BB->getName() << "\n";
 | |
|   for (std::map<Value*, ValueInfo>::const_iterator
 | |
|          I = ValueMap.begin(), E = ValueMap.end(); I != E; ++I)
 | |
|     I->second.print(OS, I->first);
 | |
|   OS << "\n";
 | |
| }
 | |
| 
 | |
| // print - Output information about this value relation...
 | |
| void ValueInfo::print(std::ostream &OS, Value *V) const {
 | |
|   if (Relationships.empty()) return;
 | |
| 
 | |
|   if (V) {
 | |
|     OS << "  ValueInfo for: ";
 | |
|     WriteAsOperand(OS, V);
 | |
|   }
 | |
|   OS << "\n    Bounds = " << Bounds << "\n";
 | |
|   if (Replacement) {
 | |
|     OS << "    Replacement = ";
 | |
|     WriteAsOperand(OS, Replacement);
 | |
|     OS << "\n";
 | |
|   }
 | |
|   for (unsigned i = 0, e = Relationships.size(); i != e; ++i)
 | |
|     Relationships[i].print(OS);
 | |
| }
 | |
| 
 | |
| // print - Output this relation to the specified stream
 | |
| void Relation::print(std::ostream &OS) const {
 | |
|   OS << "    is ";
 | |
|   switch (Rel) {
 | |
|   default:           OS << "*UNKNOWN*"; break;
 | |
|   case Instruction::SetEQ: OS << "== "; break;
 | |
|   case Instruction::SetNE: OS << "!= "; break;
 | |
|   case Instruction::SetLT: OS << "< "; break;
 | |
|   case Instruction::SetGT: OS << "> "; break;
 | |
|   case Instruction::SetLE: OS << "<= "; break;
 | |
|   case Instruction::SetGE: OS << ">= "; break;
 | |
|   }
 | |
| 
 | |
|   WriteAsOperand(OS, Val);
 | |
|   OS << "\n";
 | |
| }
 | |
| 
 | |
| // Don't inline these methods or else we won't be able to call them from GDB!
 | |
| void Relation::dump() const { print(std::cerr); }
 | |
| void ValueInfo::dump() const { print(std::cerr, 0); }
 | |
| void RegionInfo::dump() const { print(std::cerr); }
 |