mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	- Added new method Type::isIntegral() that is the same as isInteger, but
    also accepts bool.
SCVS: ----------------------------------------------------------------------
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@3572 91177308-0d34-0410-b5e6-96231b3b80d8
		
	
		
			
				
	
	
		
			312 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			312 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- llvm/Type.h - Classes for handling data types ------------*- C++ -*--=//
 | 
						|
//
 | 
						|
// This file contains the declaration of the Type class.  For more "Type" type
 | 
						|
// stuff, look in DerivedTypes.h.
 | 
						|
//
 | 
						|
// Note that instances of the Type class are immutable: once they are created,
 | 
						|
// they are never changed.  Also note that only one instance of a particular 
 | 
						|
// type is ever created.  Thus seeing if two types are equal is a matter of 
 | 
						|
// doing a trivial pointer comparison.
 | 
						|
//
 | 
						|
// Types, once allocated, are never free'd.
 | 
						|
//
 | 
						|
// Opaque types are simple derived types with no state.  There may be many
 | 
						|
// different Opaque type objects floating around, but two are only considered
 | 
						|
// identical if they are pointer equals of each other.  This allows us to have 
 | 
						|
// two opaque types that end up resolving to different concrete types later.
 | 
						|
//
 | 
						|
// Opaque types are also kinda wierd and scary and different because they have
 | 
						|
// to keep a list of uses of the type.  When, through linking, parsing, or
 | 
						|
// bytecode reading, they become resolved, they need to find and update all
 | 
						|
// users of the unknown type, causing them to reference a new, more concrete
 | 
						|
// type.  Opaque types are deleted when their use list dwindles to zero users.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef LLVM_TYPE_H
 | 
						|
#define LLVM_TYPE_H
 | 
						|
 | 
						|
#include "llvm/Value.h"
 | 
						|
#include "Support/GraphTraits.h"
 | 
						|
#include "Support/iterator"
 | 
						|
 | 
						|
class DerivedType;
 | 
						|
class FunctionType;
 | 
						|
class ArrayType;
 | 
						|
class PointerType;
 | 
						|
class StructType;
 | 
						|
class OpaqueType;
 | 
						|
 | 
						|
class Type : public Value {
 | 
						|
public:
 | 
						|
  ///===-------------------------------------------------------------------===//
 | 
						|
  /// Definitions of all of the base types for the Type system.  Based on this
 | 
						|
  /// value, you can cast to a "DerivedType" subclass (see DerivedTypes.h)
 | 
						|
  /// Note: If you add an element to this, you need to add an element to the 
 | 
						|
  /// Type::getPrimitiveType function, or else things will break!
 | 
						|
  ///
 | 
						|
  enum PrimitiveID {
 | 
						|
    VoidTyID = 0  , BoolTyID,           //  0, 1: Basics...
 | 
						|
    UByteTyID     , SByteTyID,          //  2, 3: 8 bit types...
 | 
						|
    UShortTyID    , ShortTyID,          //  4, 5: 16 bit types...
 | 
						|
    UIntTyID      , IntTyID,            //  6, 7: 32 bit types...
 | 
						|
    ULongTyID     , LongTyID,           //  8, 9: 64 bit types...
 | 
						|
 | 
						|
    FloatTyID     , DoubleTyID,         // 10,11: Floating point types...
 | 
						|
 | 
						|
    TypeTyID,                           // 12   : Type definitions
 | 
						|
    LabelTyID     ,                     // 13   : Labels... 
 | 
						|
 | 
						|
    // Derived types... see DerivedTypes.h file...
 | 
						|
    // Make sure FirstDerivedTyID stays up to date!!!
 | 
						|
    FunctionTyID  , StructTyID,         // Functions... Structs...
 | 
						|
    ArrayTyID     , PointerTyID,        // Array... pointer...
 | 
						|
    OpaqueTyID,                         // Opaque type instances...
 | 
						|
    //PackedTyID  ,                     // SIMD 'packed' format... TODO
 | 
						|
    //...
 | 
						|
 | 
						|
    NumPrimitiveIDs,                    // Must remain as last defined ID
 | 
						|
    FirstDerivedTyID = FunctionTyID,
 | 
						|
  };
 | 
						|
 | 
						|
private:
 | 
						|
  PrimitiveID ID;        // The current base type of this type...
 | 
						|
  unsigned    UID;       // The unique ID number for this class
 | 
						|
  std::string Desc;      // The printed name of the string...
 | 
						|
  bool        Abstract;  // True if type contains an OpaqueType
 | 
						|
  bool        Recursive; // True if the type is recursive
 | 
						|
 | 
						|
protected:
 | 
						|
  /// ctor is protected, so only subclasses can create Type objects...
 | 
						|
  Type(const std::string &Name, PrimitiveID id);
 | 
						|
  virtual ~Type() {}
 | 
						|
 | 
						|
  /// When types are refined, they update their description to be more concrete.
 | 
						|
  ///
 | 
						|
  inline void setDescription(const std::string &D) { Desc = D; }
 | 
						|
  
 | 
						|
  /// setName - Associate the name with this type in the symbol table, but don't
 | 
						|
  /// set the local name to be equal specified name.
 | 
						|
  ///
 | 
						|
  virtual void setName(const std::string &Name, SymbolTable *ST = 0);
 | 
						|
 | 
						|
  /// Types can become nonabstract later, if they are refined.
 | 
						|
  ///
 | 
						|
  inline void setAbstract(bool Val) { Abstract = Val; }
 | 
						|
 | 
						|
  /// Types can become recursive later, if they are refined.
 | 
						|
  ///
 | 
						|
  inline void setRecursive(bool Val) { Recursive = Val; }
 | 
						|
 | 
						|
public:
 | 
						|
  virtual void print(std::ostream &O) const;
 | 
						|
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  // Property accessors for dealing with types... Some of these virtual methods
 | 
						|
  // are defined in private classes defined in Type.cpp for primitive types.
 | 
						|
  //
 | 
						|
 | 
						|
  /// getPrimitiveID - Return the base type of the type.  This will return one
 | 
						|
  /// of the PrimitiveID enum elements defined above.
 | 
						|
  ///
 | 
						|
  inline PrimitiveID getPrimitiveID() const { return ID; }
 | 
						|
 | 
						|
  /// getUniqueID - Returns the UID of the type.  This can be thought of as a
 | 
						|
  /// small integer version of the pointer to the type class.  Two types that
 | 
						|
  /// are structurally different have different UIDs.  This can be used for
 | 
						|
  /// indexing types into an array.
 | 
						|
  ///
 | 
						|
  inline unsigned getUniqueID() const { return UID; }
 | 
						|
 | 
						|
  /// getDescription - Return the string representation of the type...
 | 
						|
  inline const std::string &getDescription() const { return Desc; }
 | 
						|
 | 
						|
  /// isSigned - Return whether an integral numeric type is signed.  This is
 | 
						|
  /// true for SByteTy, ShortTy, IntTy, LongTy.  Note that this is not true for
 | 
						|
  /// Float and Double.
 | 
						|
  //
 | 
						|
  virtual bool isSigned() const { return 0; }
 | 
						|
  
 | 
						|
  /// isUnsigned - Return whether a numeric type is unsigned.  This is not quite
 | 
						|
  /// the complement of isSigned... nonnumeric types return false as they do
 | 
						|
  /// with isSigned.  This returns true for UByteTy, UShortTy, UIntTy, and
 | 
						|
  /// ULongTy
 | 
						|
  /// 
 | 
						|
  virtual bool isUnsigned() const { return 0; }
 | 
						|
 | 
						|
  /// isInteger - Equilivent to isSigned() || isUnsigned(), but with only a
 | 
						|
  /// single virtual function invocation.
 | 
						|
  ///
 | 
						|
  virtual bool isInteger() const { return 0; }
 | 
						|
 | 
						|
  /// isIntegral - Returns true if this is an integral type, which is either
 | 
						|
  /// BoolTy or one of the Integer types.
 | 
						|
  ///
 | 
						|
  bool isIntegral() const { return isInteger() || this == BoolTy; }
 | 
						|
 | 
						|
  /// isFloatingPoint - Return true if this is one of the two floating point
 | 
						|
  /// types
 | 
						|
  bool isFloatingPoint() const { return ID == FloatTyID || ID == DoubleTyID; }
 | 
						|
 | 
						|
  /// isAbstract - True if the type is either an Opaque type, or is a derived
 | 
						|
  /// type that includes an opaque type somewhere in it.  
 | 
						|
  ///
 | 
						|
  inline bool isAbstract() const { return Abstract; }
 | 
						|
 | 
						|
  /// isRecursive - True if the type graph contains a cycle.
 | 
						|
  ///
 | 
						|
  inline bool isRecursive() const { return Recursive; }
 | 
						|
 | 
						|
  /// isLosslesslyConvertableTo - Return true if this type can be converted to
 | 
						|
  /// 'Ty' without any reinterpretation of bits.  For example, uint to int.
 | 
						|
  ///
 | 
						|
  bool isLosslesslyConvertableTo(const Type *Ty) const;
 | 
						|
 | 
						|
 | 
						|
  /// Here are some useful little methods to query what type derived types are
 | 
						|
  /// Note that all other types can just compare to see if this == Type::xxxTy;
 | 
						|
  ///
 | 
						|
  inline bool isPrimitiveType() const { return ID < FirstDerivedTyID;  }
 | 
						|
  inline bool isDerivedType()   const { return ID >= FirstDerivedTyID; }
 | 
						|
 | 
						|
  /// isFirstClassType - Return true if the value is holdable in a register.
 | 
						|
  inline bool isFirstClassType() const {
 | 
						|
    return isPrimitiveType() || ID == PointerTyID;
 | 
						|
  }
 | 
						|
 | 
						|
  /// isSized - Return true if it makes sense to take the size of this type.  To
 | 
						|
  /// get the actual size for a particular target, it is reasonable to use the
 | 
						|
  /// TargetData subsystem to do this.
 | 
						|
  ///
 | 
						|
  bool isSized() const {
 | 
						|
    return ID != VoidTyID && ID != TypeTyID &&
 | 
						|
           ID != FunctionTyID && ID != LabelTyID && ID != OpaqueTyID;
 | 
						|
  }
 | 
						|
 | 
						|
  /// getPrimitiveSize - Return the basic size of this type if it is a primative
 | 
						|
  /// type.  These are fixed by LLVM and are not target dependant.  This will
 | 
						|
  /// return zero if the type does not have a size or is not a primitive type.
 | 
						|
  ///
 | 
						|
  unsigned getPrimitiveSize() const;
 | 
						|
 | 
						|
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  // Type Iteration support
 | 
						|
  //
 | 
						|
  class TypeIterator;
 | 
						|
  typedef TypeIterator subtype_iterator;
 | 
						|
  inline subtype_iterator subtype_begin() const;   // DEFINED BELOW
 | 
						|
  inline subtype_iterator subtype_end() const;     // DEFINED BELOW
 | 
						|
 | 
						|
  /// getContainedType - This method is used to implement the type iterator
 | 
						|
  /// (defined a the end of the file).  For derived types, this returns the
 | 
						|
  /// types 'contained' in the derived type, returning 0 when 'i' becomes
 | 
						|
  /// invalid. This allows the user to iterate over the types in a struct, for
 | 
						|
  /// example, really easily.
 | 
						|
  ///
 | 
						|
  virtual const Type *getContainedType(unsigned i) const { return 0; }
 | 
						|
 | 
						|
  /// getNumContainedTypes - Return the number of types in the derived type
 | 
						|
  virtual unsigned getNumContainedTypes() const { return 0; }
 | 
						|
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  // Static members exported by the Type class itself.  Useful for getting
 | 
						|
  // instances of Type.
 | 
						|
  //
 | 
						|
 | 
						|
  /// getPrimitiveType/getUniqueIDType - Return a type based on an identifier.
 | 
						|
  static const Type *getPrimitiveType(PrimitiveID IDNumber);
 | 
						|
  static const Type *getUniqueIDType(unsigned UID);
 | 
						|
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  // These are the builtin types that are always available...
 | 
						|
  //
 | 
						|
  static Type *VoidTy , *BoolTy;
 | 
						|
  static Type *SByteTy, *UByteTy,
 | 
						|
              *ShortTy, *UShortTy,
 | 
						|
              *IntTy  , *UIntTy, 
 | 
						|
              *LongTy , *ULongTy;
 | 
						|
  static Type *FloatTy, *DoubleTy;
 | 
						|
 | 
						|
  static Type *TypeTy , *LabelTy;
 | 
						|
 | 
						|
  /// Methods for support type inquiry through isa, cast, and dyn_cast:
 | 
						|
  static inline bool classof(const Type *T) { return true; }
 | 
						|
  static inline bool classof(const Value *V) {
 | 
						|
    return V->getValueType() == Value::TypeVal;
 | 
						|
  }
 | 
						|
 | 
						|
#include "llvm/Type.def"
 | 
						|
 | 
						|
private:
 | 
						|
  class TypeIterator : public bidirectional_iterator<const Type, ptrdiff_t> {
 | 
						|
    const Type * const Ty;
 | 
						|
    unsigned Idx;
 | 
						|
 | 
						|
    typedef TypeIterator _Self;
 | 
						|
  public:
 | 
						|
    inline TypeIterator(const Type *ty, unsigned idx) : Ty(ty), Idx(idx) {}
 | 
						|
    inline ~TypeIterator() {}
 | 
						|
    
 | 
						|
    inline bool operator==(const _Self& x) const { return Idx == x.Idx; }
 | 
						|
    inline bool operator!=(const _Self& x) const { return !operator==(x); }
 | 
						|
    
 | 
						|
    inline pointer operator*() const { return Ty->getContainedType(Idx); }
 | 
						|
    inline pointer operator->() const { return operator*(); }
 | 
						|
    
 | 
						|
    inline _Self& operator++() { ++Idx; return *this; } // Preincrement
 | 
						|
    inline _Self operator++(int) { // Postincrement
 | 
						|
      _Self tmp = *this; ++*this; return tmp; 
 | 
						|
    }
 | 
						|
    
 | 
						|
    inline _Self& operator--() { --Idx; return *this; }  // Predecrement
 | 
						|
    inline _Self operator--(int) { // Postdecrement
 | 
						|
      _Self tmp = *this; --*this; return tmp;
 | 
						|
    }
 | 
						|
  };
 | 
						|
};
 | 
						|
 | 
						|
inline Type::TypeIterator Type::subtype_begin() const {
 | 
						|
  return TypeIterator(this, 0);
 | 
						|
}
 | 
						|
 | 
						|
inline Type::TypeIterator Type::subtype_end() const {
 | 
						|
  return TypeIterator(this, getNumContainedTypes());
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Provide specializations of GraphTraits to be able to treat a type as a 
 | 
						|
// graph of sub types...
 | 
						|
 | 
						|
template <> struct GraphTraits<Type*> {
 | 
						|
  typedef Type NodeType;
 | 
						|
  typedef Type::subtype_iterator ChildIteratorType;
 | 
						|
 | 
						|
  static inline NodeType *getEntryNode(Type *T) { return T; }
 | 
						|
  static inline ChildIteratorType child_begin(NodeType *N) { 
 | 
						|
    return N->subtype_begin(); 
 | 
						|
  }
 | 
						|
  static inline ChildIteratorType child_end(NodeType *N) { 
 | 
						|
    return N->subtype_end();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <> struct GraphTraits<const Type*> {
 | 
						|
  typedef const Type NodeType;
 | 
						|
  typedef Type::subtype_iterator ChildIteratorType;
 | 
						|
 | 
						|
  static inline NodeType *getEntryNode(const Type *T) { return T; }
 | 
						|
  static inline ChildIteratorType child_begin(NodeType *N) { 
 | 
						|
    return N->subtype_begin(); 
 | 
						|
  }
 | 
						|
  static inline ChildIteratorType child_end(NodeType *N) { 
 | 
						|
    return N->subtype_end();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <> inline bool isa_impl<PointerType, Type>(const Type &Ty) { 
 | 
						|
  return Ty.getPrimitiveID() == Type::PointerTyID;
 | 
						|
}
 | 
						|
 | 
						|
#endif
 |