mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@3550 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			176 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			176 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- llvm/Analysis/InductionVariable.h - Induction variable ----*- C++ -*--=//
 | |
| //
 | |
| // This interface is used to identify and classify induction variables that
 | |
| // exist in the program.  Induction variables must contain a PHI node that
 | |
| // exists in a loop header.  Because of this, they are identified an managed by
 | |
| // this PHI node.
 | |
| //
 | |
| // Induction variables are classified into a type.  Knowing that an induction
 | |
| // variable is of a specific type can constrain the values of the start and
 | |
| // step.  For example, a SimpleLinear induction variable must have a start and
 | |
| // step values that are constants.
 | |
| //
 | |
| // Induction variables can be created with or without loop information.  If no
 | |
| // loop information is available, induction variables cannot be recognized to be
 | |
| // more than SimpleLinear variables.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/InductionVariable.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/Expressions.h"
 | |
| #include "llvm/iPHINode.h"
 | |
| #include "llvm/InstrTypes.h"
 | |
| #include "llvm/Type.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/Assembly/Writer.h"
 | |
| 
 | |
| static bool isLoopInvariant(const Value *V, const Loop *L) {
 | |
|   if (isa<Constant>(V) || isa<Argument>(V) || isa<GlobalValue>(V))
 | |
|     return true;
 | |
|   
 | |
|   const Instruction *I = cast<Instruction>(V);
 | |
|   const BasicBlock *BB = I->getParent();
 | |
| 
 | |
|   return !L->contains(BB);
 | |
| }
 | |
| 
 | |
| enum InductionVariable::iType
 | |
| InductionVariable::Classify(const Value *Start, const Value *Step,
 | |
| 			    const Loop *L) {
 | |
|   // Check for cannonical and simple linear expressions now...
 | |
|   if (const ConstantInt *CStart = dyn_cast<ConstantInt>(Start))
 | |
|     if (const ConstantInt *CStep = dyn_cast<ConstantInt>(Step)) {
 | |
|       if (CStart->equalsInt(0) && CStep->equalsInt(1))
 | |
| 	return Cannonical;
 | |
|       else
 | |
| 	return SimpleLinear;
 | |
|     }
 | |
| 
 | |
|   // Without loop information, we cannot do any better, so bail now...
 | |
|   if (L == 0) return Unknown;
 | |
| 
 | |
|   if (isLoopInvariant(Start, L) && isLoopInvariant(Step, L))
 | |
|     return Linear;
 | |
|   return Unknown;
 | |
| }
 | |
| 
 | |
| // Create an induction variable for the specified value.  If it is a PHI, and
 | |
| // if it's recognizable, classify it and fill in instance variables.
 | |
| //
 | |
| InductionVariable::InductionVariable(PHINode *P, LoopInfo *LoopInfo) {
 | |
|   InductionType = Unknown;     // Assume the worst
 | |
|   Phi = P;
 | |
|   
 | |
|   // If the PHI node has more than two predecessors, we don't know how to
 | |
|   // handle it.
 | |
|   //
 | |
|   if (Phi->getNumIncomingValues() != 2) return;
 | |
| 
 | |
|   // FIXME: Handle FP induction variables.
 | |
|   if (Phi->getType() == Type::FloatTy || Phi->getType() == Type::DoubleTy)
 | |
|     return;
 | |
| 
 | |
|   // If we have loop information, make sure that this PHI node is in the header
 | |
|   // of a loop...
 | |
|   //
 | |
|   const Loop *L = LoopInfo ? LoopInfo->getLoopFor(Phi->getParent()) : 0;
 | |
|   if (L && L->getHeader() != Phi->getParent())
 | |
|     return;
 | |
| 
 | |
|   Value *V1 = Phi->getIncomingValue(0);
 | |
|   Value *V2 = Phi->getIncomingValue(1);
 | |
| 
 | |
|   if (L == 0) {  // No loop information?  Base everything on expression analysis
 | |
|     ExprType E1 = ClassifyExpression(V1);
 | |
|     ExprType E2 = ClassifyExpression(V2);
 | |
| 
 | |
|     if (E1.ExprTy > E2.ExprTy)        // Make E1 be the simpler expression
 | |
|       std::swap(E1, E2);
 | |
|     
 | |
|     // E1 must be a constant incoming value, and E2 must be a linear expression
 | |
|     // with respect to the PHI node.
 | |
|     //
 | |
|     if (E1.ExprTy > ExprType::Constant || E2.ExprTy != ExprType::Linear ||
 | |
| 	E2.Var != Phi)
 | |
|       return;
 | |
| 
 | |
|     // Okay, we have found an induction variable. Save the start and step values
 | |
|     const Type *ETy = Phi->getType();
 | |
|     if (isa<PointerType>(ETy)) ETy = Type::ULongTy;
 | |
| 
 | |
|     Start = (Value*)(E1.Offset ? E1.Offset : ConstantInt::get(ETy, 0));
 | |
|     Step  = (Value*)(E2.Offset ? E2.Offset : ConstantInt::get(ETy, 0));
 | |
|   } else {
 | |
|     // Okay, at this point, we know that we have loop information...
 | |
| 
 | |
|     // Make sure that V1 is the incoming value, and V2 is from the backedge of
 | |
|     // the loop.
 | |
|     if (L->contains(Phi->getIncomingBlock(0)))     // Wrong order.  Swap now.
 | |
|       std::swap(V1, V2);
 | |
|     
 | |
|     Start = V1;     // We know that Start has to be loop invariant...
 | |
|     Step = 0;
 | |
| 
 | |
|     if (V2 == Phi) {  // referencing the PHI directly?  Must have zero step
 | |
|       Step = Constant::getNullValue(Phi->getType());
 | |
|     } else if (BinaryOperator *I = dyn_cast<BinaryOperator>(V2)) {
 | |
|       // TODO: This could be much better...
 | |
|       if (I->getOpcode() == Instruction::Add) {
 | |
| 	if (I->getOperand(0) == Phi)
 | |
| 	  Step = I->getOperand(1);
 | |
| 	else if (I->getOperand(1) == Phi)
 | |
| 	  Step = I->getOperand(0);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (Step == 0) {                  // Unrecognized step value...
 | |
|       ExprType StepE = ClassifyExpression(V2);
 | |
|       if (StepE.ExprTy != ExprType::Linear ||
 | |
| 	  StepE.Var != Phi) return;
 | |
| 
 | |
|       const Type *ETy = Phi->getType();
 | |
|       if (isa<PointerType>(ETy)) ETy = Type::ULongTy;
 | |
|       Step  = (Value*)(StepE.Offset ? StepE.Offset : ConstantInt::get(ETy, 0));
 | |
|     } else {   // We were able to get a step value, simplify with expr analysis
 | |
|       ExprType StepE = ClassifyExpression(Step);
 | |
|       if (StepE.ExprTy == ExprType::Linear && StepE.Offset == 0) {
 | |
|         // No offset from variable?  Grab the variable
 | |
|         Step = StepE.Var;
 | |
|       } else if (StepE.ExprTy == ExprType::Constant) {
 | |
|         if (StepE.Offset)
 | |
|           Step = (Value*)StepE.Offset;
 | |
|         else
 | |
|           Step = Constant::getNullValue(Step->getType());
 | |
|         const Type *ETy = Phi->getType();
 | |
|         if (isa<PointerType>(ETy)) ETy = Type::ULongTy;
 | |
|         Step  = (Value*)(StepE.Offset ? StepE.Offset : ConstantInt::get(ETy,0));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Classify the induction variable type now...
 | |
|   InductionType = InductionVariable::Classify(Start, Step, L);
 | |
| }
 | |
| 
 | |
| void InductionVariable::print(std::ostream &o) const {
 | |
|   switch (InductionType) {
 | |
|   case InductionVariable::Cannonical:   o << "Cannonical ";   break;
 | |
|   case InductionVariable::SimpleLinear: o << "SimpleLinear "; break;
 | |
|   case InductionVariable::Linear:       o << "Linear ";       break;
 | |
|   case InductionVariable::Unknown:      o << "Unrecognized "; break;
 | |
|   }
 | |
|   o << "Induction Variable";
 | |
|   if (Phi) {
 | |
|     WriteAsOperand(o, Phi);
 | |
|     o << ":\n" << Phi;
 | |
|   } else {
 | |
|     o << "\n";
 | |
|   }
 | |
|   if (InductionType == InductionVariable::Unknown) return;
 | |
| 
 | |
|   o << "  Start ="; WriteAsOperand(o, Start);
 | |
|   o << "  Step =" ; WriteAsOperand(o, Step);
 | |
|   o << "\n";
 | |
| }
 |