mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@3432 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			190 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			190 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- PostDominators.cpp - Post-Dominator Calculation --------------------===//
 | |
| //
 | |
| // This file implements the post-dominator construction algorithms.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/PostDominators.h"
 | |
| #include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "Support/DepthFirstIterator.h"
 | |
| #include "Support/SetOperations.h"
 | |
| using std::set;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  PostDominatorSet Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static RegisterAnalysis<PostDominatorSet>
 | |
| B("postdomset", "Post-Dominator Set Construction", true);
 | |
| 
 | |
| // Postdominator set construction.  This converts the specified function to only
 | |
| // have a single exit node (return stmt), then calculates the post dominance
 | |
| // sets for the function.
 | |
| //
 | |
| bool PostDominatorSet::runOnFunction(Function &F) {
 | |
|   Doms.clear();   // Reset from the last time we were run...
 | |
|   // Since we require that the unify all exit nodes pass has been run, we know
 | |
|   // that there can be at most one return instruction in the function left.
 | |
|   // Get it.
 | |
|   //
 | |
|   Root = getAnalysis<UnifyFunctionExitNodes>().getExitNode();
 | |
| 
 | |
|   if (Root == 0) {  // No exit node for the function?  Postdomsets are all empty
 | |
|     for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
 | |
|       Doms[FI] = DomSetType();
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   bool Changed;
 | |
|   do {
 | |
|     Changed = false;
 | |
| 
 | |
|     set<const BasicBlock*> Visited;
 | |
|     DomSetType WorkingSet;
 | |
|     idf_iterator<BasicBlock*> It = idf_begin(Root), End = idf_end(Root);
 | |
|     for ( ; It != End; ++It) {
 | |
|       BasicBlock *BB = *It;
 | |
|       succ_iterator PI = succ_begin(BB), PEnd = succ_end(BB);
 | |
|       if (PI != PEnd) {                // Is there SOME predecessor?
 | |
| 	// Loop until we get to a successor that has had it's dom set filled
 | |
| 	// in at least once.  We are guaranteed to have this because we are
 | |
| 	// traversing the graph in DFO and have handled start nodes specially.
 | |
| 	//
 | |
| 	while (Doms[*PI].size() == 0) ++PI;
 | |
| 	WorkingSet = Doms[*PI];
 | |
| 
 | |
| 	for (++PI; PI != PEnd; ++PI) { // Intersect all of the successor sets
 | |
| 	  DomSetType &PredSet = Doms[*PI];
 | |
| 	  if (PredSet.size())
 | |
| 	    set_intersect(WorkingSet, PredSet);
 | |
| 	}
 | |
|       }
 | |
| 	
 | |
|       WorkingSet.insert(BB);           // A block always dominates itself
 | |
|       DomSetType &BBSet = Doms[BB];
 | |
|       if (BBSet != WorkingSet) {
 | |
| 	BBSet.swap(WorkingSet);        // Constant time operation!
 | |
| 	Changed = true;                // The sets changed.
 | |
|       }
 | |
|       WorkingSet.clear();              // Clear out the set for next iteration
 | |
|     }
 | |
|   } while (Changed);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // getAnalysisUsage - This obviously provides a post-dominator set, but it also
 | |
| // requires the UnifyFunctionExitNodes pass.
 | |
| //
 | |
| void PostDominatorSet::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.setPreservesAll();
 | |
|   AU.addRequired<UnifyFunctionExitNodes>();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  ImmediatePostDominators Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static RegisterAnalysis<ImmediatePostDominators>
 | |
| D("postidom", "Immediate Post-Dominators Construction", true);
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  PostDominatorTree Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static RegisterAnalysis<PostDominatorTree>
 | |
| F("postdomtree", "Post-Dominator Tree Construction", true);
 | |
| 
 | |
| void PostDominatorTree::calculate(const PostDominatorSet &DS) {
 | |
|   Nodes[Root] = new Node(Root, 0);   // Add a node for the root...
 | |
| 
 | |
|   if (Root) {
 | |
|     // Iterate over all nodes in depth first order...
 | |
|     for (idf_iterator<BasicBlock*> I = idf_begin(Root), E = idf_end(Root);
 | |
|          I != E; ++I) {
 | |
|       BasicBlock *BB = *I;
 | |
|       const DominatorSet::DomSetType &Dominators = DS.getDominators(BB);
 | |
|       unsigned DomSetSize = Dominators.size();
 | |
|       if (DomSetSize == 1) continue;  // Root node... IDom = null
 | |
|       
 | |
|       // Loop over all dominators of this node.  This corresponds to looping
 | |
|       // over nodes in the dominator chain, looking for a node whose dominator
 | |
|       // set is equal to the current nodes, except that the current node does
 | |
|       // not exist in it.  This means that it is one level higher in the dom
 | |
|       // chain than the current node, and it is our idom!  We know that we have
 | |
|       // already added a DominatorTree node for our idom, because the idom must
 | |
|       // be a predecessor in the depth first order that we are iterating through
 | |
|       // the function.
 | |
|       //
 | |
|       DominatorSet::DomSetType::const_iterator I = Dominators.begin();
 | |
|       DominatorSet::DomSetType::const_iterator End = Dominators.end();
 | |
|       for (; I != End; ++I) {   // Iterate over dominators...
 | |
| 	// All of our dominators should form a chain, where the number
 | |
| 	// of elements in the dominator set indicates what level the
 | |
| 	// node is at in the chain.  We want the node immediately
 | |
| 	// above us, so it will have an identical dominator set,
 | |
| 	// except that BB will not dominate it... therefore it's
 | |
| 	// dominator set size will be one less than BB's...
 | |
| 	//
 | |
| 	if (DS.getDominators(*I).size() == DomSetSize - 1) {
 | |
| 	  // We know that the immediate dominator should already have a node, 
 | |
| 	  // because we are traversing the CFG in depth first order!
 | |
| 	  //
 | |
| 	  Node *IDomNode = Nodes[*I];
 | |
| 	  assert(IDomNode && "No node for IDOM?");
 | |
| 	  
 | |
| 	  // Add a new tree node for this BasicBlock, and link it as a child of
 | |
| 	  // IDomNode
 | |
| 	  Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
 | |
| 	  break;
 | |
| 	}
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  PostDominanceFrontier Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static RegisterAnalysis<PostDominanceFrontier>
 | |
| H("postdomfrontier", "Post-Dominance Frontier Construction", true);
 | |
| 
 | |
| const DominanceFrontier::DomSetType &
 | |
| PostDominanceFrontier::calculate(const PostDominatorTree &DT, 
 | |
|                                  const DominatorTree::Node *Node) {
 | |
|   // Loop over CFG successors to calculate DFlocal[Node]
 | |
|   BasicBlock *BB = Node->getNode();
 | |
|   DomSetType &S = Frontiers[BB];       // The new set to fill in...
 | |
|   if (!Root) return S;
 | |
| 
 | |
|   for (pred_iterator SI = pred_begin(BB), SE = pred_end(BB);
 | |
|        SI != SE; ++SI) {
 | |
|     // Does Node immediately dominate this predeccessor?
 | |
|     if (DT[*SI]->getIDom() != Node)
 | |
|       S.insert(*SI);
 | |
|   }
 | |
| 
 | |
|   // At this point, S is DFlocal.  Now we union in DFup's of our children...
 | |
|   // Loop through and visit the nodes that Node immediately dominates (Node's
 | |
|   // children in the IDomTree)
 | |
|   //
 | |
|   for (PostDominatorTree::Node::const_iterator
 | |
|          NI = Node->begin(), NE = Node->end(); NI != NE; ++NI) {
 | |
|     DominatorTree::Node *IDominee = *NI;
 | |
|     const DomSetType &ChildDF = calculate(DT, IDominee);
 | |
| 
 | |
|     DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end();
 | |
|     for (; CDFI != CDFE; ++CDFI) {
 | |
|       if (!Node->dominates(DT[*CDFI]))
 | |
| 	S.insert(*CDFI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| // stub - a dummy function to make linking work ok.
 | |
| void PostDominanceFrontier::stub() {
 | |
| }
 |