mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237379 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			304 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			304 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- llvm/Target/TargetSchedule.cpp - Sched Machine Model ----*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements a wrapper around MCSchedModel that allows the interface
 | |
| // to benefit from information currently only available in TargetInstrInfo.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/CodeGen/TargetSchedule.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include "llvm/Target/TargetSubtargetInfo.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| static cl::opt<bool> EnableSchedModel("schedmodel", cl::Hidden, cl::init(true),
 | |
|   cl::desc("Use TargetSchedModel for latency lookup"));
 | |
| 
 | |
| static cl::opt<bool> EnableSchedItins("scheditins", cl::Hidden, cl::init(true),
 | |
|   cl::desc("Use InstrItineraryData for latency lookup"));
 | |
| 
 | |
| bool TargetSchedModel::hasInstrSchedModel() const {
 | |
|   return EnableSchedModel && SchedModel.hasInstrSchedModel();
 | |
| }
 | |
| 
 | |
| bool TargetSchedModel::hasInstrItineraries() const {
 | |
|   return EnableSchedItins && !InstrItins.isEmpty();
 | |
| }
 | |
| 
 | |
| static unsigned gcd(unsigned Dividend, unsigned Divisor) {
 | |
|   // Dividend and Divisor will be naturally swapped as needed.
 | |
|   while(Divisor) {
 | |
|     unsigned Rem = Dividend % Divisor;
 | |
|     Dividend = Divisor;
 | |
|     Divisor = Rem;
 | |
|   };
 | |
|   return Dividend;
 | |
| }
 | |
| static unsigned lcm(unsigned A, unsigned B) {
 | |
|   unsigned LCM = (uint64_t(A) * B) / gcd(A, B);
 | |
|   assert((LCM >= A && LCM >= B) && "LCM overflow");
 | |
|   return LCM;
 | |
| }
 | |
| 
 | |
| void TargetSchedModel::init(const MCSchedModel &sm,
 | |
|                             const TargetSubtargetInfo *sti,
 | |
|                             const TargetInstrInfo *tii) {
 | |
|   SchedModel = sm;
 | |
|   STI = sti;
 | |
|   TII = tii;
 | |
|   STI->initInstrItins(InstrItins);
 | |
| 
 | |
|   unsigned NumRes = SchedModel.getNumProcResourceKinds();
 | |
|   ResourceFactors.resize(NumRes);
 | |
|   ResourceLCM = SchedModel.IssueWidth;
 | |
|   for (unsigned Idx = 0; Idx < NumRes; ++Idx) {
 | |
|     unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits;
 | |
|     if (NumUnits > 0)
 | |
|       ResourceLCM = lcm(ResourceLCM, NumUnits);
 | |
|   }
 | |
|   MicroOpFactor = ResourceLCM / SchedModel.IssueWidth;
 | |
|   for (unsigned Idx = 0; Idx < NumRes; ++Idx) {
 | |
|     unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits;
 | |
|     ResourceFactors[Idx] = NumUnits ? (ResourceLCM / NumUnits) : 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| unsigned TargetSchedModel::getNumMicroOps(const MachineInstr *MI,
 | |
|                                           const MCSchedClassDesc *SC) const {
 | |
|   if (hasInstrItineraries()) {
 | |
|     int UOps = InstrItins.getNumMicroOps(MI->getDesc().getSchedClass());
 | |
|     return (UOps >= 0) ? UOps : TII->getNumMicroOps(&InstrItins, MI);
 | |
|   }
 | |
|   if (hasInstrSchedModel()) {
 | |
|     if (!SC)
 | |
|       SC = resolveSchedClass(MI);
 | |
|     if (SC->isValid())
 | |
|       return SC->NumMicroOps;
 | |
|   }
 | |
|   return MI->isTransient() ? 0 : 1;
 | |
| }
 | |
| 
 | |
| // The machine model may explicitly specify an invalid latency, which
 | |
| // effectively means infinite latency. Since users of the TargetSchedule API
 | |
| // don't know how to handle this, we convert it to a very large latency that is
 | |
| // easy to distinguish when debugging the DAG but won't induce overflow.
 | |
| static unsigned capLatency(int Cycles) {
 | |
|   return Cycles >= 0 ? Cycles : 1000;
 | |
| }
 | |
| 
 | |
| /// Return the MCSchedClassDesc for this instruction. Some SchedClasses require
 | |
| /// evaluation of predicates that depend on instruction operands or flags.
 | |
| const MCSchedClassDesc *TargetSchedModel::
 | |
| resolveSchedClass(const MachineInstr *MI) const {
 | |
| 
 | |
|   // Get the definition's scheduling class descriptor from this machine model.
 | |
|   unsigned SchedClass = MI->getDesc().getSchedClass();
 | |
|   const MCSchedClassDesc *SCDesc = SchedModel.getSchedClassDesc(SchedClass);
 | |
|   if (!SCDesc->isValid())
 | |
|     return SCDesc;
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   unsigned NIter = 0;
 | |
| #endif
 | |
|   while (SCDesc->isVariant()) {
 | |
|     assert(++NIter < 6 && "Variants are nested deeper than the magic number");
 | |
| 
 | |
|     SchedClass = STI->resolveSchedClass(SchedClass, MI, this);
 | |
|     SCDesc = SchedModel.getSchedClassDesc(SchedClass);
 | |
|   }
 | |
|   return SCDesc;
 | |
| }
 | |
| 
 | |
| /// Find the def index of this operand. This index maps to the machine model and
 | |
| /// is independent of use operands. Def operands may be reordered with uses or
 | |
| /// merged with uses without affecting the def index (e.g. before/after
 | |
| /// regalloc). However, an instruction's def operands must never be reordered
 | |
| /// with respect to each other.
 | |
| static unsigned findDefIdx(const MachineInstr *MI, unsigned DefOperIdx) {
 | |
|   unsigned DefIdx = 0;
 | |
|   for (unsigned i = 0; i != DefOperIdx; ++i) {
 | |
|     const MachineOperand &MO = MI->getOperand(i);
 | |
|     if (MO.isReg() && MO.isDef())
 | |
|       ++DefIdx;
 | |
|   }
 | |
|   return DefIdx;
 | |
| }
 | |
| 
 | |
| /// Find the use index of this operand. This is independent of the instruction's
 | |
| /// def operands.
 | |
| ///
 | |
| /// Note that uses are not determined by the operand's isUse property, which
 | |
| /// is simply the inverse of isDef. Here we consider any readsReg operand to be
 | |
| /// a "use". The machine model allows an operand to be both a Def and Use.
 | |
| static unsigned findUseIdx(const MachineInstr *MI, unsigned UseOperIdx) {
 | |
|   unsigned UseIdx = 0;
 | |
|   for (unsigned i = 0; i != UseOperIdx; ++i) {
 | |
|     const MachineOperand &MO = MI->getOperand(i);
 | |
|     if (MO.isReg() && MO.readsReg())
 | |
|       ++UseIdx;
 | |
|   }
 | |
|   return UseIdx;
 | |
| }
 | |
| 
 | |
| // Top-level API for clients that know the operand indices.
 | |
| unsigned TargetSchedModel::computeOperandLatency(
 | |
|   const MachineInstr *DefMI, unsigned DefOperIdx,
 | |
|   const MachineInstr *UseMI, unsigned UseOperIdx) const {
 | |
| 
 | |
|   if (!hasInstrSchedModel() && !hasInstrItineraries())
 | |
|     return TII->defaultDefLatency(SchedModel, DefMI);
 | |
| 
 | |
|   if (hasInstrItineraries()) {
 | |
|     int OperLatency = 0;
 | |
|     if (UseMI) {
 | |
|       OperLatency = TII->getOperandLatency(&InstrItins, DefMI, DefOperIdx,
 | |
|                                            UseMI, UseOperIdx);
 | |
|     }
 | |
|     else {
 | |
|       unsigned DefClass = DefMI->getDesc().getSchedClass();
 | |
|       OperLatency = InstrItins.getOperandCycle(DefClass, DefOperIdx);
 | |
|     }
 | |
|     if (OperLatency >= 0)
 | |
|       return OperLatency;
 | |
| 
 | |
|     // No operand latency was found.
 | |
|     unsigned InstrLatency = TII->getInstrLatency(&InstrItins, DefMI);
 | |
| 
 | |
|     // Expected latency is the max of the stage latency and itinerary props.
 | |
|     // Rather than directly querying InstrItins stage latency, we call a TII
 | |
|     // hook to allow subtargets to specialize latency. This hook is only
 | |
|     // applicable to the InstrItins model. InstrSchedModel should model all
 | |
|     // special cases without TII hooks.
 | |
|     InstrLatency = std::max(InstrLatency,
 | |
|                             TII->defaultDefLatency(SchedModel, DefMI));
 | |
|     return InstrLatency;
 | |
|   }
 | |
|   // hasInstrSchedModel()
 | |
|   const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI);
 | |
|   unsigned DefIdx = findDefIdx(DefMI, DefOperIdx);
 | |
|   if (DefIdx < SCDesc->NumWriteLatencyEntries) {
 | |
|     // Lookup the definition's write latency in SubtargetInfo.
 | |
|     const MCWriteLatencyEntry *WLEntry =
 | |
|       STI->getWriteLatencyEntry(SCDesc, DefIdx);
 | |
|     unsigned WriteID = WLEntry->WriteResourceID;
 | |
|     unsigned Latency = capLatency(WLEntry->Cycles);
 | |
|     if (!UseMI)
 | |
|       return Latency;
 | |
| 
 | |
|     // Lookup the use's latency adjustment in SubtargetInfo.
 | |
|     const MCSchedClassDesc *UseDesc = resolveSchedClass(UseMI);
 | |
|     if (UseDesc->NumReadAdvanceEntries == 0)
 | |
|       return Latency;
 | |
|     unsigned UseIdx = findUseIdx(UseMI, UseOperIdx);
 | |
|     int Advance = STI->getReadAdvanceCycles(UseDesc, UseIdx, WriteID);
 | |
|     if (Advance > 0 && (unsigned)Advance > Latency) // unsigned wrap
 | |
|       return 0;
 | |
|     return Latency - Advance;
 | |
|   }
 | |
|   // If DefIdx does not exist in the model (e.g. implicit defs), then return
 | |
|   // unit latency (defaultDefLatency may be too conservative).
 | |
| #ifndef NDEBUG
 | |
|   if (SCDesc->isValid() && !DefMI->getOperand(DefOperIdx).isImplicit()
 | |
|       && !DefMI->getDesc().OpInfo[DefOperIdx].isOptionalDef()
 | |
|       && SchedModel.isComplete()) {
 | |
|     std::string Err;
 | |
|     raw_string_ostream ss(Err);
 | |
|     ss << "DefIdx " << DefIdx << " exceeds machine model writes for "
 | |
|        << *DefMI;
 | |
|     report_fatal_error(ss.str());
 | |
|   }
 | |
| #endif
 | |
|   // FIXME: Automatically giving all implicit defs defaultDefLatency is
 | |
|   // undesirable. We should only do it for defs that are known to the MC
 | |
|   // desc like flags. Truly implicit defs should get 1 cycle latency.
 | |
|   return DefMI->isTransient() ? 0 : TII->defaultDefLatency(SchedModel, DefMI);
 | |
| }
 | |
| 
 | |
| unsigned
 | |
| TargetSchedModel::computeInstrLatency(const MCSchedClassDesc &SCDesc) const {
 | |
|   unsigned Latency = 0;
 | |
|   for (unsigned DefIdx = 0, DefEnd = SCDesc.NumWriteLatencyEntries;
 | |
|        DefIdx != DefEnd; ++DefIdx) {
 | |
|     // Lookup the definition's write latency in SubtargetInfo.
 | |
|     const MCWriteLatencyEntry *WLEntry =
 | |
|       STI->getWriteLatencyEntry(&SCDesc, DefIdx);
 | |
|     Latency = std::max(Latency, capLatency(WLEntry->Cycles));
 | |
|   }
 | |
|   return Latency;
 | |
| }
 | |
| 
 | |
| unsigned TargetSchedModel::computeInstrLatency(unsigned Opcode) const {
 | |
|   assert(hasInstrSchedModel() && "Only call this function with a SchedModel");
 | |
| 
 | |
|   unsigned SCIdx = TII->get(Opcode).getSchedClass();
 | |
|   const MCSchedClassDesc *SCDesc = SchedModel.getSchedClassDesc(SCIdx);
 | |
| 
 | |
|   if (SCDesc->isValid() && !SCDesc->isVariant())
 | |
|     return computeInstrLatency(*SCDesc);
 | |
| 
 | |
|   llvm_unreachable("No MI sched latency");
 | |
| }
 | |
| 
 | |
| unsigned
 | |
| TargetSchedModel::computeInstrLatency(const MachineInstr *MI,
 | |
|                                       bool UseDefaultDefLatency) const {
 | |
|   // For the itinerary model, fall back to the old subtarget hook.
 | |
|   // Allow subtargets to compute Bundle latencies outside the machine model.
 | |
|   if (hasInstrItineraries() || MI->isBundle() ||
 | |
|       (!hasInstrSchedModel() && !UseDefaultDefLatency))
 | |
|     return TII->getInstrLatency(&InstrItins, MI);
 | |
| 
 | |
|   if (hasInstrSchedModel()) {
 | |
|     const MCSchedClassDesc *SCDesc = resolveSchedClass(MI);
 | |
|     if (SCDesc->isValid())
 | |
|       return computeInstrLatency(*SCDesc);
 | |
|   }
 | |
|   return TII->defaultDefLatency(SchedModel, MI);
 | |
| }
 | |
| 
 | |
| unsigned TargetSchedModel::
 | |
| computeOutputLatency(const MachineInstr *DefMI, unsigned DefOperIdx,
 | |
|                      const MachineInstr *DepMI) const {
 | |
|   if (SchedModel.MicroOpBufferSize <= 1)
 | |
|     return 1;
 | |
| 
 | |
|   // MicroOpBufferSize > 1 indicates an out-of-order processor that can dispatch
 | |
|   // WAW dependencies in the same cycle.
 | |
| 
 | |
|   // Treat predication as a data dependency for out-of-order cpus. In-order
 | |
|   // cpus do not need to treat predicated writes specially.
 | |
|   //
 | |
|   // TODO: The following hack exists because predication passes do not
 | |
|   // correctly append imp-use operands, and readsReg() strangely returns false
 | |
|   // for predicated defs.
 | |
|   unsigned Reg = DefMI->getOperand(DefOperIdx).getReg();
 | |
|   const MachineFunction &MF = *DefMI->getParent()->getParent();
 | |
|   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
 | |
|   if (!DepMI->readsRegister(Reg, TRI) && TII->isPredicated(DepMI))
 | |
|     return computeInstrLatency(DefMI);
 | |
| 
 | |
|   // If we have a per operand scheduling model, check if this def is writing
 | |
|   // an unbuffered resource. If so, it treated like an in-order cpu.
 | |
|   if (hasInstrSchedModel()) {
 | |
|     const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI);
 | |
|     if (SCDesc->isValid()) {
 | |
|       for (const MCWriteProcResEntry *PRI = STI->getWriteProcResBegin(SCDesc),
 | |
|              *PRE = STI->getWriteProcResEnd(SCDesc); PRI != PRE; ++PRI) {
 | |
|         if (!SchedModel.getProcResource(PRI->ProcResourceIdx)->BufferSize)
 | |
|           return 1;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 |