mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	This patch adds support for the following new instructions in the Power ISA 2.07: vpksdss vpksdus vpkudus vpkudum vupkhsw vupklsw These instructions are available through the vec_packs, vec_packsu, vec_unpackh, and vec_unpackl built-in interfaces. These are lane-sensitive instructions, so the built-ins have different implementations for big- and little-endian, and the instructions must be marked as killing the vector swap optimization for now. The first three instructions perform saturating pack operations. The fourth performs a modulo pack operation, which means it can be represented with a vector shuffle, and conversely the appropriate vector shuffles may cause this instruction to be generated. The other instructions are only generated via built-in support for now. Appropriate tests have been added. There is a companion patch to clang for the rest of this support. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237499 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			822 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			822 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===----------- PPCVSXSwapRemoval.cpp - Remove VSX LE Swaps -------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===---------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass analyzes vector computations and removes unnecessary
 | 
						|
// doubleword swaps (xxswapd instructions).  This pass is performed
 | 
						|
// only for little-endian VSX code generation.
 | 
						|
//
 | 
						|
// For this specific case, loads and stores of v4i32, v4f32, v2i64,
 | 
						|
// and v2f64 vectors are inefficient.  These are implemented using
 | 
						|
// the lxvd2x and stxvd2x instructions, which invert the order of
 | 
						|
// doublewords in a vector register.  Thus code generation inserts
 | 
						|
// an xxswapd after each such load, and prior to each such store.
 | 
						|
//
 | 
						|
// The extra xxswapd instructions reduce performance.  The purpose
 | 
						|
// of this pass is to reduce the number of xxswapd instructions
 | 
						|
// required for correctness.
 | 
						|
//
 | 
						|
// The primary insight is that much code that operates on vectors
 | 
						|
// does not care about the relative order of elements in a register,
 | 
						|
// so long as the correct memory order is preserved.  If we have a
 | 
						|
// computation where all input values are provided by lxvd2x/xxswapd,
 | 
						|
// all outputs are stored using xxswapd/lxvd2x, and all intermediate
 | 
						|
// computations are lane-insensitive (independent of element order),
 | 
						|
// then all the xxswapd instructions associated with the loads and
 | 
						|
// stores may be removed without changing observable semantics.
 | 
						|
//
 | 
						|
// This pass uses standard equivalence class infrastructure to create
 | 
						|
// maximal webs of computations fitting the above description.  Each
 | 
						|
// such web is then optimized by removing its unnecessary xxswapd
 | 
						|
// instructions.
 | 
						|
//
 | 
						|
// There are some lane-sensitive operations for which we can still
 | 
						|
// permit the optimization, provided we modify those operations
 | 
						|
// accordingly.  Such operations are identified as using "special
 | 
						|
// handling" within this module.
 | 
						|
//
 | 
						|
//===---------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "PPCInstrInfo.h"
 | 
						|
#include "PPC.h"
 | 
						|
#include "PPCInstrBuilder.h"
 | 
						|
#include "PPCTargetMachine.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/EquivalenceClasses.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/Format.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "ppc-vsx-swaps"
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
  void initializePPCVSXSwapRemovalPass(PassRegistry&);
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
// A PPCVSXSwapEntry is created for each machine instruction that
 | 
						|
// is relevant to a vector computation.
 | 
						|
struct PPCVSXSwapEntry {
 | 
						|
  // Pointer to the instruction.
 | 
						|
  MachineInstr *VSEMI;
 | 
						|
 | 
						|
  // Unique ID (position in the swap vector).
 | 
						|
  int VSEId;
 | 
						|
 | 
						|
  // Attributes of this node.
 | 
						|
  unsigned int IsLoad : 1;
 | 
						|
  unsigned int IsStore : 1;
 | 
						|
  unsigned int IsSwap : 1;
 | 
						|
  unsigned int MentionsPhysVR : 1;
 | 
						|
  unsigned int HasImplicitSubreg : 1;
 | 
						|
  unsigned int IsSwappable : 1;
 | 
						|
  unsigned int SpecialHandling : 3;
 | 
						|
  unsigned int WebRejected : 1;
 | 
						|
  unsigned int WillRemove : 1;
 | 
						|
};
 | 
						|
 | 
						|
enum SHValues {
 | 
						|
  SH_NONE = 0,
 | 
						|
  SH_EXTRACT,
 | 
						|
  SH_INSERT,
 | 
						|
  SH_NOSWAP_LD,
 | 
						|
  SH_NOSWAP_ST,
 | 
						|
  SH_SPLAT
 | 
						|
};
 | 
						|
 | 
						|
struct PPCVSXSwapRemoval : public MachineFunctionPass {
 | 
						|
 | 
						|
  static char ID;
 | 
						|
  const PPCInstrInfo *TII;
 | 
						|
  MachineFunction *MF;
 | 
						|
  MachineRegisterInfo *MRI;
 | 
						|
 | 
						|
  // Swap entries are allocated in a vector for better performance.
 | 
						|
  std::vector<PPCVSXSwapEntry> SwapVector;
 | 
						|
 | 
						|
  // A mapping is maintained between machine instructions and
 | 
						|
  // their swap entries.  The key is the address of the MI.
 | 
						|
  DenseMap<MachineInstr*, int> SwapMap;
 | 
						|
 | 
						|
  // Equivalence classes are used to gather webs of related computation.
 | 
						|
  // Swap entries are represented by their VSEId fields.
 | 
						|
  EquivalenceClasses<int> *EC;
 | 
						|
 | 
						|
  PPCVSXSwapRemoval() : MachineFunctionPass(ID) {
 | 
						|
    initializePPCVSXSwapRemovalPass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  // Initialize data structures.
 | 
						|
  void initialize(MachineFunction &MFParm);
 | 
						|
 | 
						|
  // Walk the machine instructions to gather vector usage information.
 | 
						|
  // Return true iff vector mentions are present.
 | 
						|
  bool gatherVectorInstructions();
 | 
						|
 | 
						|
  // Add an entry to the swap vector and swap map.
 | 
						|
  int addSwapEntry(MachineInstr *MI, PPCVSXSwapEntry &SwapEntry);
 | 
						|
 | 
						|
  // Hunt backwards through COPY and SUBREG_TO_REG chains for a
 | 
						|
  // source register.  VecIdx indicates the swap vector entry to
 | 
						|
  // mark as mentioning a physical register if the search leads
 | 
						|
  // to one.
 | 
						|
  unsigned lookThruCopyLike(unsigned SrcReg, unsigned VecIdx);
 | 
						|
 | 
						|
  // Generate equivalence classes for related computations (webs).
 | 
						|
  void formWebs();
 | 
						|
 | 
						|
  // Analyze webs and determine those that cannot be optimized.
 | 
						|
  void recordUnoptimizableWebs();
 | 
						|
 | 
						|
  // Record which swap instructions can be safely removed.
 | 
						|
  void markSwapsForRemoval();
 | 
						|
 | 
						|
  // Remove swaps and update other instructions requiring special
 | 
						|
  // handling.  Return true iff any changes are made.
 | 
						|
  bool removeSwaps();
 | 
						|
 | 
						|
  // Update instructions requiring special handling.
 | 
						|
  void handleSpecialSwappables(int EntryIdx);
 | 
						|
 | 
						|
  // Dump a description of the entries in the swap vector.
 | 
						|
  void dumpSwapVector();
 | 
						|
 | 
						|
  // Return true iff the given register is in the given class.
 | 
						|
  bool isRegInClass(unsigned Reg, const TargetRegisterClass *RC) {
 | 
						|
    if (TargetRegisterInfo::isVirtualRegister(Reg))
 | 
						|
      return RC->hasSubClassEq(MRI->getRegClass(Reg));
 | 
						|
    if (RC->contains(Reg))
 | 
						|
      return true;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Return true iff the given register is a full vector register.
 | 
						|
  bool isVecReg(unsigned Reg) {
 | 
						|
    return (isRegInClass(Reg, &PPC::VSRCRegClass) ||
 | 
						|
            isRegInClass(Reg, &PPC::VRRCRegClass));
 | 
						|
  }
 | 
						|
 | 
						|
public:
 | 
						|
  // Main entry point for this pass.
 | 
						|
  bool runOnMachineFunction(MachineFunction &MF) override {
 | 
						|
    // If we don't have VSX on the subtarget, don't do anything.
 | 
						|
    const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>();
 | 
						|
    if (!STI.hasVSX())
 | 
						|
      return false;
 | 
						|
 | 
						|
    bool Changed = false;
 | 
						|
    initialize(MF);
 | 
						|
 | 
						|
    if (gatherVectorInstructions()) {
 | 
						|
      formWebs();
 | 
						|
      recordUnoptimizableWebs();
 | 
						|
      markSwapsForRemoval();
 | 
						|
      Changed = removeSwaps();
 | 
						|
    }
 | 
						|
 | 
						|
    // FIXME: See the allocation of EC in initialize().
 | 
						|
    delete EC;
 | 
						|
    return Changed;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// Initialize data structures for this pass.  In particular, clear the
 | 
						|
// swap vector and allocate the equivalence class mapping before
 | 
						|
// processing each function.
 | 
						|
void PPCVSXSwapRemoval::initialize(MachineFunction &MFParm) {
 | 
						|
  MF = &MFParm;
 | 
						|
  MRI = &MF->getRegInfo();
 | 
						|
  TII = static_cast<const PPCInstrInfo*>(MF->getSubtarget().getInstrInfo());
 | 
						|
 | 
						|
  // An initial vector size of 256 appears to work well in practice.
 | 
						|
  // Small/medium functions with vector content tend not to incur a
 | 
						|
  // reallocation at this size.  Three of the vector tests in
 | 
						|
  // projects/test-suite reallocate, which seems like a reasonable rate.
 | 
						|
  const int InitialVectorSize(256);
 | 
						|
  SwapVector.clear();
 | 
						|
  SwapVector.reserve(InitialVectorSize);
 | 
						|
 | 
						|
  // FIXME: Currently we allocate EC each time because we don't have
 | 
						|
  // access to the set representation on which to call clear().  Should
 | 
						|
  // consider adding a clear() method to the EquivalenceClasses class.
 | 
						|
  EC = new EquivalenceClasses<int>;
 | 
						|
}
 | 
						|
 | 
						|
// Create an entry in the swap vector for each instruction that mentions
 | 
						|
// a full vector register, recording various characteristics of the
 | 
						|
// instructions there.
 | 
						|
bool PPCVSXSwapRemoval::gatherVectorInstructions() {
 | 
						|
  bool RelevantFunction = false;
 | 
						|
 | 
						|
  for (MachineBasicBlock &MBB : *MF) {
 | 
						|
    for (MachineInstr &MI : MBB) {
 | 
						|
 | 
						|
      bool RelevantInstr = false;
 | 
						|
      bool ImplicitSubreg = false;
 | 
						|
 | 
						|
      for (const MachineOperand &MO : MI.operands()) {
 | 
						|
        if (!MO.isReg())
 | 
						|
          continue;
 | 
						|
        unsigned Reg = MO.getReg();
 | 
						|
        if (isVecReg(Reg)) {
 | 
						|
          RelevantInstr = true;
 | 
						|
          if (MO.getSubReg() != 0)
 | 
						|
            ImplicitSubreg = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (!RelevantInstr)
 | 
						|
        continue;
 | 
						|
 | 
						|
      RelevantFunction = true;
 | 
						|
 | 
						|
      // Create a SwapEntry initialized to zeros, then fill in the
 | 
						|
      // instruction and ID fields before pushing it to the back
 | 
						|
      // of the swap vector.
 | 
						|
      PPCVSXSwapEntry SwapEntry{};
 | 
						|
      int VecIdx = addSwapEntry(&MI, SwapEntry);
 | 
						|
 | 
						|
      if (ImplicitSubreg)
 | 
						|
        SwapVector[VecIdx].HasImplicitSubreg = 1;
 | 
						|
 | 
						|
      switch(MI.getOpcode()) {
 | 
						|
      default:
 | 
						|
        // Unless noted otherwise, an instruction is considered
 | 
						|
        // safe for the optimization.  There are a large number of
 | 
						|
        // such true-SIMD instructions (all vector math, logical,
 | 
						|
        // select, compare, etc.).
 | 
						|
        SwapVector[VecIdx].IsSwappable = 1;
 | 
						|
        break;
 | 
						|
      case PPC::XXPERMDI:
 | 
						|
        // This is a swap if it is of the form XXPERMDI t, s, s, 2.
 | 
						|
        // Unfortunately, MachineCSE ignores COPY and SUBREG_TO_REG, so we
 | 
						|
        // can also see XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), 2,
 | 
						|
        // for example.  We have to look through chains of COPY and
 | 
						|
        // SUBREG_TO_REG to find the real source value for comparison.
 | 
						|
        // If the real source value is a physical register, then mark the
 | 
						|
        // XXPERMDI as mentioning a physical register.
 | 
						|
        // Any other form of XXPERMDI is lane-sensitive and unsafe
 | 
						|
        // for the optimization.
 | 
						|
        if (MI.getOperand(3).getImm() == 2) {
 | 
						|
          unsigned trueReg1 = lookThruCopyLike(MI.getOperand(1).getReg(),
 | 
						|
                                               VecIdx);
 | 
						|
          unsigned trueReg2 = lookThruCopyLike(MI.getOperand(2).getReg(),
 | 
						|
                                               VecIdx);
 | 
						|
          if (trueReg1 == trueReg2)
 | 
						|
            SwapVector[VecIdx].IsSwap = 1;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      case PPC::LVX:
 | 
						|
        // Non-permuting loads are currently unsafe.  We can use special
 | 
						|
        // handling for this in the future.  By not marking these as
 | 
						|
        // IsSwap, we ensure computations containing them will be rejected
 | 
						|
        // for now.
 | 
						|
        SwapVector[VecIdx].IsLoad = 1;
 | 
						|
        break;
 | 
						|
      case PPC::LXVD2X:
 | 
						|
      case PPC::LXVW4X:
 | 
						|
        // Permuting loads are marked as both load and swap, and are
 | 
						|
        // safe for optimization.
 | 
						|
        SwapVector[VecIdx].IsLoad = 1;
 | 
						|
        SwapVector[VecIdx].IsSwap = 1;
 | 
						|
        break;
 | 
						|
      case PPC::STVX:
 | 
						|
        // Non-permuting stores are currently unsafe.  We can use special
 | 
						|
        // handling for this in the future.  By not marking these as
 | 
						|
        // IsSwap, we ensure computations containing them will be rejected
 | 
						|
        // for now.
 | 
						|
        SwapVector[VecIdx].IsStore = 1;
 | 
						|
        break;
 | 
						|
      case PPC::STXVD2X:
 | 
						|
      case PPC::STXVW4X:
 | 
						|
        // Permuting stores are marked as both store and swap, and are
 | 
						|
        // safe for optimization.
 | 
						|
        SwapVector[VecIdx].IsStore = 1;
 | 
						|
        SwapVector[VecIdx].IsSwap = 1;
 | 
						|
        break;
 | 
						|
      case PPC::SUBREG_TO_REG:
 | 
						|
        // These are fine provided they are moving between full vector
 | 
						|
        // register classes.  For example, the VRs are a subset of the
 | 
						|
        // VSRs, but each VR and each VSR is a full 128-bit register.
 | 
						|
        if (isVecReg(MI.getOperand(0).getReg()) &&
 | 
						|
            isVecReg(MI.getOperand(2).getReg()))
 | 
						|
          SwapVector[VecIdx].IsSwappable = 1;
 | 
						|
        break;
 | 
						|
      case PPC::COPY:
 | 
						|
        // These are fine provided they are moving between full vector
 | 
						|
        // register classes.
 | 
						|
        if (isVecReg(MI.getOperand(0).getReg()) &&
 | 
						|
            isVecReg(MI.getOperand(1).getReg()))
 | 
						|
          SwapVector[VecIdx].IsSwappable = 1;
 | 
						|
        break;
 | 
						|
      case PPC::VSPLTB:
 | 
						|
      case PPC::VSPLTH:
 | 
						|
      case PPC::VSPLTW:
 | 
						|
        // Splats are lane-sensitive, but we can use special handling
 | 
						|
        // to adjust the source lane for the splat.  This is not yet
 | 
						|
        // implemented.  When it is, we need to uncomment the following:
 | 
						|
        SwapVector[VecIdx].IsSwappable = 1;
 | 
						|
        SwapVector[VecIdx].SpecialHandling = SHValues::SH_SPLAT;
 | 
						|
        break;
 | 
						|
      // The presence of the following lane-sensitive operations in a
 | 
						|
      // web will kill the optimization, at least for now.  For these
 | 
						|
      // we do nothing, causing the optimization to fail.
 | 
						|
      // FIXME: Some of these could be permitted with special handling,
 | 
						|
      // and will be phased in as time permits.
 | 
						|
      // FIXME: There is no simple and maintainable way to express a set
 | 
						|
      // of opcodes having a common attribute in TableGen.  Should this
 | 
						|
      // change, this is a prime candidate to use such a mechanism.
 | 
						|
      case PPC::INLINEASM:
 | 
						|
      case PPC::EXTRACT_SUBREG:
 | 
						|
      case PPC::INSERT_SUBREG:
 | 
						|
      case PPC::COPY_TO_REGCLASS:
 | 
						|
      case PPC::LVEBX:
 | 
						|
      case PPC::LVEHX:
 | 
						|
      case PPC::LVEWX:
 | 
						|
      case PPC::LVSL:
 | 
						|
      case PPC::LVSR:
 | 
						|
      case PPC::LVXL:
 | 
						|
      case PPC::LXVDSX:
 | 
						|
      case PPC::STVEBX:
 | 
						|
      case PPC::STVEHX:
 | 
						|
      case PPC::STVEWX:
 | 
						|
      case PPC::STVXL:
 | 
						|
      case PPC::STXSDX:
 | 
						|
      case PPC::VCIPHER:
 | 
						|
      case PPC::VCIPHERLAST:
 | 
						|
      case PPC::VMRGHB:
 | 
						|
      case PPC::VMRGHH:
 | 
						|
      case PPC::VMRGHW:
 | 
						|
      case PPC::VMRGLB:
 | 
						|
      case PPC::VMRGLH:
 | 
						|
      case PPC::VMRGLW:
 | 
						|
      case PPC::VMULESB:
 | 
						|
      case PPC::VMULESH:
 | 
						|
      case PPC::VMULESW:
 | 
						|
      case PPC::VMULEUB:
 | 
						|
      case PPC::VMULEUH:
 | 
						|
      case PPC::VMULEUW:
 | 
						|
      case PPC::VMULOSB:
 | 
						|
      case PPC::VMULOSH:
 | 
						|
      case PPC::VMULOSW:
 | 
						|
      case PPC::VMULOUB:
 | 
						|
      case PPC::VMULOUH:
 | 
						|
      case PPC::VMULOUW:
 | 
						|
      case PPC::VNCIPHER:
 | 
						|
      case PPC::VNCIPHERLAST:
 | 
						|
      case PPC::VPERM:
 | 
						|
      case PPC::VPERMXOR:
 | 
						|
      case PPC::VPKPX:
 | 
						|
      case PPC::VPKSHSS:
 | 
						|
      case PPC::VPKSHUS:
 | 
						|
      case PPC::VPKSDSS:
 | 
						|
      case PPC::VPKSDUS:
 | 
						|
      case PPC::VPKSWSS:
 | 
						|
      case PPC::VPKSWUS:
 | 
						|
      case PPC::VPKUDUM:
 | 
						|
      case PPC::VPKUDUS:
 | 
						|
      case PPC::VPKUHUM:
 | 
						|
      case PPC::VPKUHUS:
 | 
						|
      case PPC::VPKUWUM:
 | 
						|
      case PPC::VPKUWUS:
 | 
						|
      case PPC::VPMSUMB:
 | 
						|
      case PPC::VPMSUMD:
 | 
						|
      case PPC::VPMSUMH:
 | 
						|
      case PPC::VPMSUMW:
 | 
						|
      case PPC::VRLB:
 | 
						|
      case PPC::VRLD:
 | 
						|
      case PPC::VRLH:
 | 
						|
      case PPC::VRLW:
 | 
						|
      case PPC::VSBOX:
 | 
						|
      case PPC::VSHASIGMAD:
 | 
						|
      case PPC::VSHASIGMAW:
 | 
						|
      case PPC::VSL:
 | 
						|
      case PPC::VSLDOI:
 | 
						|
      case PPC::VSLO:
 | 
						|
      case PPC::VSR:
 | 
						|
      case PPC::VSRO:
 | 
						|
      case PPC::VSUM2SWS:
 | 
						|
      case PPC::VSUM4SBS:
 | 
						|
      case PPC::VSUM4SHS:
 | 
						|
      case PPC::VSUM4UBS:
 | 
						|
      case PPC::VSUMSWS:
 | 
						|
      case PPC::VUPKHPX:
 | 
						|
      case PPC::VUPKHSB:
 | 
						|
      case PPC::VUPKHSH:
 | 
						|
      case PPC::VUPKHSW:
 | 
						|
      case PPC::VUPKLPX:
 | 
						|
      case PPC::VUPKLSB:
 | 
						|
      case PPC::VUPKLSH:
 | 
						|
      case PPC::VUPKLSW:
 | 
						|
      case PPC::XXMRGHW:
 | 
						|
      case PPC::XXMRGLW:
 | 
						|
      case PPC::XXSPLTW:
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (RelevantFunction) {
 | 
						|
    DEBUG(dbgs() << "Swap vector when first built\n\n");
 | 
						|
    dumpSwapVector();
 | 
						|
  }
 | 
						|
 | 
						|
  return RelevantFunction;
 | 
						|
}
 | 
						|
 | 
						|
// Add an entry to the swap vector and swap map, and make a
 | 
						|
// singleton equivalence class for the entry.
 | 
						|
int PPCVSXSwapRemoval::addSwapEntry(MachineInstr *MI,
 | 
						|
                                  PPCVSXSwapEntry& SwapEntry) {
 | 
						|
  SwapEntry.VSEMI = MI;
 | 
						|
  SwapEntry.VSEId = SwapVector.size();
 | 
						|
  SwapVector.push_back(SwapEntry);
 | 
						|
  EC->insert(SwapEntry.VSEId);
 | 
						|
  SwapMap[MI] = SwapEntry.VSEId;
 | 
						|
  return SwapEntry.VSEId;
 | 
						|
}
 | 
						|
 | 
						|
// This is used to find the "true" source register for an
 | 
						|
// XXPERMDI instruction, since MachineCSE does not handle the
 | 
						|
// "copy-like" operations (Copy and SubregToReg).  Returns
 | 
						|
// the original SrcReg unless it is the target of a copy-like
 | 
						|
// operation, in which case we chain backwards through all
 | 
						|
// such operations to the ultimate source register.  If a
 | 
						|
// physical register is encountered, we stop the search and
 | 
						|
// flag the swap entry indicated by VecIdx (the original
 | 
						|
// XXPERMDI) as mentioning a physical register.  Similarly
 | 
						|
// for implicit subregister mentions (which should never
 | 
						|
// happen).
 | 
						|
unsigned PPCVSXSwapRemoval::lookThruCopyLike(unsigned SrcReg,
 | 
						|
                                             unsigned VecIdx) {
 | 
						|
  MachineInstr *MI = MRI->getVRegDef(SrcReg);
 | 
						|
  if (!MI->isCopyLike())
 | 
						|
    return SrcReg;
 | 
						|
 | 
						|
  unsigned CopySrcReg, CopySrcSubreg;
 | 
						|
  if (MI->isCopy()) {
 | 
						|
    CopySrcReg = MI->getOperand(1).getReg();
 | 
						|
    CopySrcSubreg = MI->getOperand(1).getSubReg();
 | 
						|
  } else {
 | 
						|
    assert(MI->isSubregToReg() && "bad opcode for lookThruCopyLike");
 | 
						|
    CopySrcReg = MI->getOperand(2).getReg();
 | 
						|
    CopySrcSubreg = MI->getOperand(2).getSubReg();
 | 
						|
  }
 | 
						|
 | 
						|
  if (!TargetRegisterInfo::isVirtualRegister(CopySrcReg)) {
 | 
						|
    SwapVector[VecIdx].MentionsPhysVR = 1;
 | 
						|
    return CopySrcReg;
 | 
						|
  }
 | 
						|
 | 
						|
  if (CopySrcSubreg != 0) {
 | 
						|
    SwapVector[VecIdx].HasImplicitSubreg = 1;
 | 
						|
    return CopySrcReg;
 | 
						|
  }
 | 
						|
 | 
						|
  return lookThruCopyLike(CopySrcReg, VecIdx);
 | 
						|
}
 | 
						|
 | 
						|
// Generate equivalence classes for related computations (webs) by
 | 
						|
// def-use relationships of virtual registers.  Mention of a physical
 | 
						|
// register terminates the generation of equivalence classes as this
 | 
						|
// indicates a use of a parameter, definition of a return value, use
 | 
						|
// of a value returned from a call, or definition of a parameter to a
 | 
						|
// call.  Computations with physical register mentions are flagged
 | 
						|
// as such so their containing webs will not be optimized.
 | 
						|
void PPCVSXSwapRemoval::formWebs() {
 | 
						|
 | 
						|
  DEBUG(dbgs() << "\n*** Forming webs for swap removal ***\n\n");
 | 
						|
 | 
						|
  for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
 | 
						|
 | 
						|
    MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
 | 
						|
 | 
						|
    DEBUG(dbgs() << "\n" << SwapVector[EntryIdx].VSEId << " ");
 | 
						|
    DEBUG(MI->dump());
 | 
						|
 | 
						|
    // It's sufficient to walk vector uses and join them to their unique
 | 
						|
    // definitions.  In addition, check *all* vector register operands
 | 
						|
    // for physical regs.
 | 
						|
    for (const MachineOperand &MO : MI->operands()) {
 | 
						|
      if (!MO.isReg())
 | 
						|
        continue;
 | 
						|
 | 
						|
      unsigned Reg = MO.getReg();
 | 
						|
      if (!isVecReg(Reg))
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (!TargetRegisterInfo::isVirtualRegister(Reg)) {
 | 
						|
        SwapVector[EntryIdx].MentionsPhysVR = 1;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      if (!MO.isUse())
 | 
						|
        continue;
 | 
						|
 | 
						|
      MachineInstr* DefMI = MRI->getVRegDef(Reg);
 | 
						|
      assert(SwapMap.find(DefMI) != SwapMap.end() &&
 | 
						|
             "Inconsistency: def of vector reg not found in swap map!");
 | 
						|
      int DefIdx = SwapMap[DefMI];
 | 
						|
      (void)EC->unionSets(SwapVector[DefIdx].VSEId,
 | 
						|
                          SwapVector[EntryIdx].VSEId);
 | 
						|
 | 
						|
      DEBUG(dbgs() << format("Unioning %d with %d\n", SwapVector[DefIdx].VSEId,
 | 
						|
                             SwapVector[EntryIdx].VSEId));
 | 
						|
      DEBUG(dbgs() << "  Def: ");
 | 
						|
      DEBUG(DefMI->dump());
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Walk the swap vector entries looking for conditions that prevent their
 | 
						|
// containing computations from being optimized.  When such conditions are
 | 
						|
// found, mark the representative of the computation's equivalence class
 | 
						|
// as rejected.
 | 
						|
void PPCVSXSwapRemoval::recordUnoptimizableWebs() {
 | 
						|
 | 
						|
  DEBUG(dbgs() << "\n*** Rejecting webs for swap removal ***\n\n");
 | 
						|
 | 
						|
  for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
 | 
						|
    int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId);
 | 
						|
 | 
						|
    // Reject webs containing mentions of physical registers or implicit
 | 
						|
    // subregs, or containing operations that we don't know how to handle
 | 
						|
    // in a lane-permuted region.
 | 
						|
    if (SwapVector[EntryIdx].MentionsPhysVR ||
 | 
						|
        SwapVector[EntryIdx].HasImplicitSubreg ||
 | 
						|
        !(SwapVector[EntryIdx].IsSwappable || SwapVector[EntryIdx].IsSwap)) {
 | 
						|
 | 
						|
      SwapVector[Repr].WebRejected = 1;
 | 
						|
 | 
						|
      DEBUG(dbgs() <<
 | 
						|
            format("Web %d rejected for physreg, subreg, or not swap[pable]\n",
 | 
						|
                   Repr));
 | 
						|
      DEBUG(dbgs() << "  in " << EntryIdx << ": ");
 | 
						|
      DEBUG(SwapVector[EntryIdx].VSEMI->dump());
 | 
						|
      DEBUG(dbgs() << "\n");
 | 
						|
    }
 | 
						|
 | 
						|
    // Reject webs than contain swapping loads that feed something other
 | 
						|
    // than a swap instruction.
 | 
						|
    else if (SwapVector[EntryIdx].IsLoad && SwapVector[EntryIdx].IsSwap) {
 | 
						|
      MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
 | 
						|
      unsigned DefReg = MI->getOperand(0).getReg();
 | 
						|
 | 
						|
      // We skip debug instructions in the analysis.  (Note that debug
 | 
						|
      // location information is still maintained by this optimization
 | 
						|
      // because it remains on the LXVD2X and STXVD2X instructions after
 | 
						|
      // the XXPERMDIs are removed.)
 | 
						|
      for (MachineInstr &UseMI : MRI->use_nodbg_instructions(DefReg)) {
 | 
						|
        int UseIdx = SwapMap[&UseMI];
 | 
						|
 | 
						|
        if (!SwapVector[UseIdx].IsSwap || SwapVector[UseIdx].IsLoad ||
 | 
						|
            SwapVector[UseIdx].IsStore) {
 | 
						|
 | 
						|
          SwapVector[Repr].WebRejected = 1;
 | 
						|
 | 
						|
          DEBUG(dbgs() <<
 | 
						|
                format("Web %d rejected for load not feeding swap\n", Repr));
 | 
						|
          DEBUG(dbgs() << "  def " << EntryIdx << ": ");
 | 
						|
          DEBUG(MI->dump());
 | 
						|
          DEBUG(dbgs() << "  use " << UseIdx << ": ");
 | 
						|
          DEBUG(UseMI.dump());
 | 
						|
          DEBUG(dbgs() << "\n");
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
    // Reject webs than contain swapping stores that are fed by something
 | 
						|
    // other than a swap instruction.
 | 
						|
    } else if (SwapVector[EntryIdx].IsStore && SwapVector[EntryIdx].IsSwap) {
 | 
						|
      MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
 | 
						|
      unsigned UseReg = MI->getOperand(0).getReg();
 | 
						|
      MachineInstr *DefMI = MRI->getVRegDef(UseReg);
 | 
						|
      int DefIdx = SwapMap[DefMI];
 | 
						|
 | 
						|
      if (!SwapVector[DefIdx].IsSwap || SwapVector[DefIdx].IsLoad ||
 | 
						|
          SwapVector[DefIdx].IsStore) {
 | 
						|
 | 
						|
        SwapVector[Repr].WebRejected = 1;
 | 
						|
 | 
						|
        DEBUG(dbgs() <<
 | 
						|
              format("Web %d rejected for store not fed by swap\n", Repr));
 | 
						|
        DEBUG(dbgs() << "  def " << DefIdx << ": ");
 | 
						|
        DEBUG(DefMI->dump());
 | 
						|
        DEBUG(dbgs() << "  use " << EntryIdx << ": ");
 | 
						|
        DEBUG(MI->dump());
 | 
						|
        DEBUG(dbgs() << "\n");
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Swap vector after web analysis:\n\n");
 | 
						|
  dumpSwapVector();
 | 
						|
}
 | 
						|
 | 
						|
// Walk the swap vector entries looking for swaps fed by permuting loads
 | 
						|
// and swaps that feed permuting stores.  If the containing computation
 | 
						|
// has not been marked rejected, mark each such swap for removal.
 | 
						|
// (Removal is delayed in case optimization has disturbed the pattern,
 | 
						|
// such that multiple loads feed the same swap, etc.)
 | 
						|
void PPCVSXSwapRemoval::markSwapsForRemoval() {
 | 
						|
 | 
						|
  DEBUG(dbgs() << "\n*** Marking swaps for removal ***\n\n");
 | 
						|
 | 
						|
  for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
 | 
						|
 | 
						|
    if (SwapVector[EntryIdx].IsLoad && SwapVector[EntryIdx].IsSwap) {
 | 
						|
      int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId);
 | 
						|
 | 
						|
      if (!SwapVector[Repr].WebRejected) {
 | 
						|
        MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
 | 
						|
        unsigned DefReg = MI->getOperand(0).getReg();
 | 
						|
 | 
						|
        for (MachineInstr &UseMI : MRI->use_nodbg_instructions(DefReg)) {
 | 
						|
          int UseIdx = SwapMap[&UseMI];
 | 
						|
          SwapVector[UseIdx].WillRemove = 1;
 | 
						|
 | 
						|
          DEBUG(dbgs() << "Marking swap fed by load for removal: ");
 | 
						|
          DEBUG(UseMI.dump());
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
    } else if (SwapVector[EntryIdx].IsStore && SwapVector[EntryIdx].IsSwap) {
 | 
						|
      int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId);
 | 
						|
 | 
						|
      if (!SwapVector[Repr].WebRejected) {
 | 
						|
        MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
 | 
						|
        unsigned UseReg = MI->getOperand(0).getReg();
 | 
						|
        MachineInstr *DefMI = MRI->getVRegDef(UseReg);
 | 
						|
        int DefIdx = SwapMap[DefMI];
 | 
						|
        SwapVector[DefIdx].WillRemove = 1;
 | 
						|
 | 
						|
        DEBUG(dbgs() << "Marking swap feeding store for removal: ");
 | 
						|
        DEBUG(DefMI->dump());
 | 
						|
      }
 | 
						|
 | 
						|
    } else if (SwapVector[EntryIdx].IsSwappable &&
 | 
						|
               SwapVector[EntryIdx].SpecialHandling != 0) {
 | 
						|
      int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId);
 | 
						|
 | 
						|
      if (!SwapVector[Repr].WebRejected)
 | 
						|
        handleSpecialSwappables(EntryIdx);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// The identified swap entry requires special handling to allow its
 | 
						|
// containing computation to be optimized.  Perform that handling
 | 
						|
// here.
 | 
						|
// FIXME: This code is to be phased in with subsequent patches.
 | 
						|
void PPCVSXSwapRemoval::handleSpecialSwappables(int EntryIdx) {
 | 
						|
  switch (SwapVector[EntryIdx].SpecialHandling) {
 | 
						|
 | 
						|
  default:
 | 
						|
    assert(false && "Unexpected special handling type");
 | 
						|
    break;
 | 
						|
 | 
						|
  // For splats based on an index into a vector, add N/2 modulo N
 | 
						|
  // to the index, where N is the number of vector elements.
 | 
						|
  case SHValues::SH_SPLAT: {
 | 
						|
    MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
 | 
						|
    unsigned NElts;
 | 
						|
 | 
						|
    DEBUG(dbgs() << "Changing splat: ");
 | 
						|
    DEBUG(MI->dump());
 | 
						|
 | 
						|
    switch (MI->getOpcode()) {
 | 
						|
    default:
 | 
						|
      assert(false && "Unexpected splat opcode");
 | 
						|
    case PPC::VSPLTB: NElts = 16; break;
 | 
						|
    case PPC::VSPLTH: NElts = 8;  break;
 | 
						|
    case PPC::VSPLTW: NElts = 4;  break;
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned EltNo = MI->getOperand(1).getImm();
 | 
						|
    EltNo = (EltNo + NElts / 2) % NElts;
 | 
						|
    MI->getOperand(1).setImm(EltNo);
 | 
						|
 | 
						|
    DEBUG(dbgs() << "  Into: ");
 | 
						|
    DEBUG(MI->dump());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Walk the swap vector and replace each entry marked for removal with
 | 
						|
// a copy operation.
 | 
						|
bool PPCVSXSwapRemoval::removeSwaps() {
 | 
						|
 | 
						|
  DEBUG(dbgs() << "\n*** Removing swaps ***\n\n");
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
 | 
						|
    if (SwapVector[EntryIdx].WillRemove) {
 | 
						|
      Changed = true;
 | 
						|
      MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
 | 
						|
      MachineBasicBlock *MBB = MI->getParent();
 | 
						|
      BuildMI(*MBB, MI, MI->getDebugLoc(),
 | 
						|
              TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
 | 
						|
        .addOperand(MI->getOperand(1));
 | 
						|
 | 
						|
      DEBUG(dbgs() << format("Replaced %d with copy: ",
 | 
						|
                             SwapVector[EntryIdx].VSEId));
 | 
						|
      DEBUG(MI->dump());
 | 
						|
 | 
						|
      MI->eraseFromParent();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
// For debug purposes, dump the contents of the swap vector.
 | 
						|
void PPCVSXSwapRemoval::dumpSwapVector() {
 | 
						|
 | 
						|
  for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
 | 
						|
 | 
						|
    MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
 | 
						|
    int ID = SwapVector[EntryIdx].VSEId;
 | 
						|
 | 
						|
    DEBUG(dbgs() << format("%6d", ID));
 | 
						|
    DEBUG(dbgs() << format("%6d", EC->getLeaderValue(ID)));
 | 
						|
    DEBUG(dbgs() << format(" BB#%3d", MI->getParent()->getNumber()));
 | 
						|
    DEBUG(dbgs() << format("  %14s  ", TII->getName(MI->getOpcode())));
 | 
						|
 | 
						|
    if (SwapVector[EntryIdx].IsLoad)
 | 
						|
      DEBUG(dbgs() << "load ");
 | 
						|
    if (SwapVector[EntryIdx].IsStore)
 | 
						|
      DEBUG(dbgs() << "store ");
 | 
						|
    if (SwapVector[EntryIdx].IsSwap)
 | 
						|
      DEBUG(dbgs() << "swap ");
 | 
						|
    if (SwapVector[EntryIdx].MentionsPhysVR)
 | 
						|
      DEBUG(dbgs() << "physreg ");
 | 
						|
    if (SwapVector[EntryIdx].HasImplicitSubreg)
 | 
						|
      DEBUG(dbgs() << "implsubreg ");
 | 
						|
 | 
						|
    if (SwapVector[EntryIdx].IsSwappable) {
 | 
						|
      DEBUG(dbgs() << "swappable ");
 | 
						|
      switch(SwapVector[EntryIdx].SpecialHandling) {
 | 
						|
      default:
 | 
						|
        DEBUG(dbgs() << "special:**unknown**");
 | 
						|
        break;
 | 
						|
      case SH_NONE:
 | 
						|
        break;
 | 
						|
      case SH_EXTRACT:
 | 
						|
        DEBUG(dbgs() << "special:extract ");
 | 
						|
        break;
 | 
						|
      case SH_INSERT:
 | 
						|
        DEBUG(dbgs() << "special:insert ");
 | 
						|
        break;
 | 
						|
      case SH_NOSWAP_LD:
 | 
						|
        DEBUG(dbgs() << "special:load ");
 | 
						|
        break;
 | 
						|
      case SH_NOSWAP_ST:
 | 
						|
        DEBUG(dbgs() << "special:store ");
 | 
						|
        break;
 | 
						|
      case SH_SPLAT:
 | 
						|
        DEBUG(dbgs() << "special:splat ");
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (SwapVector[EntryIdx].WebRejected)
 | 
						|
      DEBUG(dbgs() << "rejected ");
 | 
						|
    if (SwapVector[EntryIdx].WillRemove)
 | 
						|
      DEBUG(dbgs() << "remove ");
 | 
						|
 | 
						|
    DEBUG(dbgs() << "\n");
 | 
						|
 | 
						|
    // For no-asserts builds.
 | 
						|
    (void)MI;
 | 
						|
    (void)ID;
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "\n");
 | 
						|
}
 | 
						|
 | 
						|
} // end default namespace
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(PPCVSXSwapRemoval, DEBUG_TYPE,
 | 
						|
                      "PowerPC VSX Swap Removal", false, false)
 | 
						|
INITIALIZE_PASS_END(PPCVSXSwapRemoval, DEBUG_TYPE,
 | 
						|
                    "PowerPC VSX Swap Removal", false, false)
 | 
						|
 | 
						|
char PPCVSXSwapRemoval::ID = 0;
 | 
						|
FunctionPass*
 | 
						|
llvm::createPPCVSXSwapRemovalPass() { return new PPCVSXSwapRemoval(); }
 |