mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	This will allow it to be shared with the new Loop Distribution pass. getFirstInst is currently duplicated across LoopVectorize.cpp and LoopAccessAnalysis.cpp. This is a short-term work-around until we figure out a better solution. NFC. (The code moved is adjusted a bit for the name of the Loop member and that PtrRtCheck is now a reference rather than a pointer.) git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228418 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1191 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1191 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // The implementation for the loop memory dependence that was originally
 | |
| // developed for the loop vectorizer.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/LoopAccessAnalysis.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpander.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/DiagnosticInfo.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Transforms/Utils/VectorUtils.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "loop-vectorize"
 | |
| 
 | |
| void VectorizationReport::emitAnalysis(VectorizationReport &Message,
 | |
|                                        const Function *TheFunction,
 | |
|                                        const Loop *TheLoop) {
 | |
|   DebugLoc DL = TheLoop->getStartLoc();
 | |
|   if (Instruction *I = Message.getInstr())
 | |
|     DL = I->getDebugLoc();
 | |
|   emitOptimizationRemarkAnalysis(TheFunction->getContext(), DEBUG_TYPE,
 | |
|                                  *TheFunction, DL, Message.str());
 | |
| }
 | |
| 
 | |
| Value *llvm::stripIntegerCast(Value *V) {
 | |
|   if (CastInst *CI = dyn_cast<CastInst>(V))
 | |
|     if (CI->getOperand(0)->getType()->isIntegerTy())
 | |
|       return CI->getOperand(0);
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| const SCEV *llvm::replaceSymbolicStrideSCEV(ScalarEvolution *SE,
 | |
|                                             ValueToValueMap &PtrToStride,
 | |
|                                             Value *Ptr, Value *OrigPtr) {
 | |
| 
 | |
|   const SCEV *OrigSCEV = SE->getSCEV(Ptr);
 | |
| 
 | |
|   // If there is an entry in the map return the SCEV of the pointer with the
 | |
|   // symbolic stride replaced by one.
 | |
|   ValueToValueMap::iterator SI = PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
 | |
|   if (SI != PtrToStride.end()) {
 | |
|     Value *StrideVal = SI->second;
 | |
| 
 | |
|     // Strip casts.
 | |
|     StrideVal = stripIntegerCast(StrideVal);
 | |
| 
 | |
|     // Replace symbolic stride by one.
 | |
|     Value *One = ConstantInt::get(StrideVal->getType(), 1);
 | |
|     ValueToValueMap RewriteMap;
 | |
|     RewriteMap[StrideVal] = One;
 | |
| 
 | |
|     const SCEV *ByOne =
 | |
|         SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true);
 | |
|     DEBUG(dbgs() << "LV: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne
 | |
|                  << "\n");
 | |
|     return ByOne;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, just return the SCEV of the original pointer.
 | |
|   return SE->getSCEV(Ptr);
 | |
| }
 | |
| 
 | |
| void LoopAccessAnalysis::RuntimePointerCheck::insert(ScalarEvolution *SE,
 | |
|                                                      Loop *Lp, Value *Ptr,
 | |
|                                                      bool WritePtr,
 | |
|                                                      unsigned DepSetId,
 | |
|                                                      unsigned ASId,
 | |
|                                                      ValueToValueMap &Strides) {
 | |
|   // Get the stride replaced scev.
 | |
|   const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr);
 | |
|   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
 | |
|   assert(AR && "Invalid addrec expression");
 | |
|   const SCEV *Ex = SE->getBackedgeTakenCount(Lp);
 | |
|   const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
 | |
|   Pointers.push_back(Ptr);
 | |
|   Starts.push_back(AR->getStart());
 | |
|   Ends.push_back(ScEnd);
 | |
|   IsWritePtr.push_back(WritePtr);
 | |
|   DependencySetId.push_back(DepSetId);
 | |
|   AliasSetId.push_back(ASId);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// \brief Analyses memory accesses in a loop.
 | |
| ///
 | |
| /// Checks whether run time pointer checks are needed and builds sets for data
 | |
| /// dependence checking.
 | |
| class AccessAnalysis {
 | |
| public:
 | |
|   /// \brief Read or write access location.
 | |
|   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
 | |
|   typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
 | |
| 
 | |
|   /// \brief Set of potential dependent memory accesses.
 | |
|   typedef EquivalenceClasses<MemAccessInfo> DepCandidates;
 | |
| 
 | |
|   AccessAnalysis(const DataLayout *Dl, AliasAnalysis *AA, DepCandidates &DA) :
 | |
|     DL(Dl), AST(*AA), DepCands(DA), IsRTCheckNeeded(false) {}
 | |
| 
 | |
|   /// \brief Register a load  and whether it is only read from.
 | |
|   void addLoad(AliasAnalysis::Location &Loc, bool IsReadOnly) {
 | |
|     Value *Ptr = const_cast<Value*>(Loc.Ptr);
 | |
|     AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.AATags);
 | |
|     Accesses.insert(MemAccessInfo(Ptr, false));
 | |
|     if (IsReadOnly)
 | |
|       ReadOnlyPtr.insert(Ptr);
 | |
|   }
 | |
| 
 | |
|   /// \brief Register a store.
 | |
|   void addStore(AliasAnalysis::Location &Loc) {
 | |
|     Value *Ptr = const_cast<Value*>(Loc.Ptr);
 | |
|     AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.AATags);
 | |
|     Accesses.insert(MemAccessInfo(Ptr, true));
 | |
|   }
 | |
| 
 | |
|   /// \brief Check whether we can check the pointers at runtime for
 | |
|   /// non-intersection.
 | |
|   bool canCheckPtrAtRT(LoopAccessAnalysis::RuntimePointerCheck &RtCheck,
 | |
|                        unsigned &NumComparisons,
 | |
|                        ScalarEvolution *SE, Loop *TheLoop,
 | |
|                        ValueToValueMap &Strides,
 | |
|                        bool ShouldCheckStride = false);
 | |
| 
 | |
|   /// \brief Goes over all memory accesses, checks whether a RT check is needed
 | |
|   /// and builds sets of dependent accesses.
 | |
|   void buildDependenceSets() {
 | |
|     processMemAccesses();
 | |
|   }
 | |
| 
 | |
|   bool isRTCheckNeeded() { return IsRTCheckNeeded; }
 | |
| 
 | |
|   bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
 | |
|   void resetDepChecks() { CheckDeps.clear(); }
 | |
| 
 | |
|   MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
 | |
| 
 | |
| private:
 | |
|   typedef SetVector<MemAccessInfo> PtrAccessSet;
 | |
| 
 | |
|   /// \brief Go over all memory access and check whether runtime pointer checks
 | |
|   /// are needed /// and build sets of dependency check candidates.
 | |
|   void processMemAccesses();
 | |
| 
 | |
|   /// Set of all accesses.
 | |
|   PtrAccessSet Accesses;
 | |
| 
 | |
|   /// Set of accesses that need a further dependence check.
 | |
|   MemAccessInfoSet CheckDeps;
 | |
| 
 | |
|   /// Set of pointers that are read only.
 | |
|   SmallPtrSet<Value*, 16> ReadOnlyPtr;
 | |
| 
 | |
|   const DataLayout *DL;
 | |
| 
 | |
|   /// An alias set tracker to partition the access set by underlying object and
 | |
|   //intrinsic property (such as TBAA metadata).
 | |
|   AliasSetTracker AST;
 | |
| 
 | |
|   /// Sets of potentially dependent accesses - members of one set share an
 | |
|   /// underlying pointer. The set "CheckDeps" identfies which sets really need a
 | |
|   /// dependence check.
 | |
|   DepCandidates &DepCands;
 | |
| 
 | |
|   bool IsRTCheckNeeded;
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// \brief Check whether a pointer can participate in a runtime bounds check.
 | |
| static bool hasComputableBounds(ScalarEvolution *SE, ValueToValueMap &Strides,
 | |
|                                 Value *Ptr) {
 | |
|   const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, Strides, Ptr);
 | |
|   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
 | |
|   if (!AR)
 | |
|     return false;
 | |
| 
 | |
|   return AR->isAffine();
 | |
| }
 | |
| 
 | |
| /// \brief Check the stride of the pointer and ensure that it does not wrap in
 | |
| /// the address space.
 | |
| static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr,
 | |
|                         const Loop *Lp, ValueToValueMap &StridesMap);
 | |
| 
 | |
| bool AccessAnalysis::canCheckPtrAtRT(
 | |
|     LoopAccessAnalysis::RuntimePointerCheck &RtCheck,
 | |
|     unsigned &NumComparisons, ScalarEvolution *SE, Loop *TheLoop,
 | |
|     ValueToValueMap &StridesMap, bool ShouldCheckStride) {
 | |
|   // Find pointers with computable bounds. We are going to use this information
 | |
|   // to place a runtime bound check.
 | |
|   bool CanDoRT = true;
 | |
| 
 | |
|   bool IsDepCheckNeeded = isDependencyCheckNeeded();
 | |
|   NumComparisons = 0;
 | |
| 
 | |
|   // We assign a consecutive id to access from different alias sets.
 | |
|   // Accesses between different groups doesn't need to be checked.
 | |
|   unsigned ASId = 1;
 | |
|   for (auto &AS : AST) {
 | |
|     unsigned NumReadPtrChecks = 0;
 | |
|     unsigned NumWritePtrChecks = 0;
 | |
| 
 | |
|     // We assign consecutive id to access from different dependence sets.
 | |
|     // Accesses within the same set don't need a runtime check.
 | |
|     unsigned RunningDepId = 1;
 | |
|     DenseMap<Value *, unsigned> DepSetId;
 | |
| 
 | |
|     for (auto A : AS) {
 | |
|       Value *Ptr = A.getValue();
 | |
|       bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
 | |
|       MemAccessInfo Access(Ptr, IsWrite);
 | |
| 
 | |
|       if (IsWrite)
 | |
|         ++NumWritePtrChecks;
 | |
|       else
 | |
|         ++NumReadPtrChecks;
 | |
| 
 | |
|       if (hasComputableBounds(SE, StridesMap, Ptr) &&
 | |
|           // When we run after a failing dependency check we have to make sure we
 | |
|           // don't have wrapping pointers.
 | |
|           (!ShouldCheckStride ||
 | |
|            isStridedPtr(SE, DL, Ptr, TheLoop, StridesMap) == 1)) {
 | |
|         // The id of the dependence set.
 | |
|         unsigned DepId;
 | |
| 
 | |
|         if (IsDepCheckNeeded) {
 | |
|           Value *Leader = DepCands.getLeaderValue(Access).getPointer();
 | |
|           unsigned &LeaderId = DepSetId[Leader];
 | |
|           if (!LeaderId)
 | |
|             LeaderId = RunningDepId++;
 | |
|           DepId = LeaderId;
 | |
|         } else
 | |
|           // Each access has its own dependence set.
 | |
|           DepId = RunningDepId++;
 | |
| 
 | |
|         RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap);
 | |
| 
 | |
|         DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *Ptr << '\n');
 | |
|       } else {
 | |
|         CanDoRT = false;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (IsDepCheckNeeded && CanDoRT && RunningDepId == 2)
 | |
|       NumComparisons += 0; // Only one dependence set.
 | |
|     else {
 | |
|       NumComparisons += (NumWritePtrChecks * (NumReadPtrChecks +
 | |
|                                               NumWritePtrChecks - 1));
 | |
|     }
 | |
| 
 | |
|     ++ASId;
 | |
|   }
 | |
| 
 | |
|   // If the pointers that we would use for the bounds comparison have different
 | |
|   // address spaces, assume the values aren't directly comparable, so we can't
 | |
|   // use them for the runtime check. We also have to assume they could
 | |
|   // overlap. In the future there should be metadata for whether address spaces
 | |
|   // are disjoint.
 | |
|   unsigned NumPointers = RtCheck.Pointers.size();
 | |
|   for (unsigned i = 0; i < NumPointers; ++i) {
 | |
|     for (unsigned j = i + 1; j < NumPointers; ++j) {
 | |
|       // Only need to check pointers between two different dependency sets.
 | |
|       if (RtCheck.DependencySetId[i] == RtCheck.DependencySetId[j])
 | |
|        continue;
 | |
|       // Only need to check pointers in the same alias set.
 | |
|       if (RtCheck.AliasSetId[i] != RtCheck.AliasSetId[j])
 | |
|         continue;
 | |
| 
 | |
|       Value *PtrI = RtCheck.Pointers[i];
 | |
|       Value *PtrJ = RtCheck.Pointers[j];
 | |
| 
 | |
|       unsigned ASi = PtrI->getType()->getPointerAddressSpace();
 | |
|       unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
 | |
|       if (ASi != ASj) {
 | |
|         DEBUG(dbgs() << "LV: Runtime check would require comparison between"
 | |
|                        " different address spaces\n");
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return CanDoRT;
 | |
| }
 | |
| 
 | |
| void AccessAnalysis::processMemAccesses() {
 | |
|   // We process the set twice: first we process read-write pointers, last we
 | |
|   // process read-only pointers. This allows us to skip dependence tests for
 | |
|   // read-only pointers.
 | |
| 
 | |
|   DEBUG(dbgs() << "LV: Processing memory accesses...\n");
 | |
|   DEBUG(dbgs() << "  AST: "; AST.dump());
 | |
|   DEBUG(dbgs() << "LV:   Accesses:\n");
 | |
|   DEBUG({
 | |
|     for (auto A : Accesses)
 | |
|       dbgs() << "\t" << *A.getPointer() << " (" <<
 | |
|                 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
 | |
|                                          "read-only" : "read")) << ")\n";
 | |
|   });
 | |
| 
 | |
|   // The AliasSetTracker has nicely partitioned our pointers by metadata
 | |
|   // compatibility and potential for underlying-object overlap. As a result, we
 | |
|   // only need to check for potential pointer dependencies within each alias
 | |
|   // set.
 | |
|   for (auto &AS : AST) {
 | |
|     // Note that both the alias-set tracker and the alias sets themselves used
 | |
|     // linked lists internally and so the iteration order here is deterministic
 | |
|     // (matching the original instruction order within each set).
 | |
| 
 | |
|     bool SetHasWrite = false;
 | |
| 
 | |
|     // Map of pointers to last access encountered.
 | |
|     typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
 | |
|     UnderlyingObjToAccessMap ObjToLastAccess;
 | |
| 
 | |
|     // Set of access to check after all writes have been processed.
 | |
|     PtrAccessSet DeferredAccesses;
 | |
| 
 | |
|     // Iterate over each alias set twice, once to process read/write pointers,
 | |
|     // and then to process read-only pointers.
 | |
|     for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
 | |
|       bool UseDeferred = SetIteration > 0;
 | |
|       PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
 | |
| 
 | |
|       for (auto AV : AS) {
 | |
|         Value *Ptr = AV.getValue();
 | |
| 
 | |
|         // For a single memory access in AliasSetTracker, Accesses may contain
 | |
|         // both read and write, and they both need to be handled for CheckDeps.
 | |
|         for (auto AC : S) {
 | |
|           if (AC.getPointer() != Ptr)
 | |
|             continue;
 | |
| 
 | |
|           bool IsWrite = AC.getInt();
 | |
| 
 | |
|           // If we're using the deferred access set, then it contains only
 | |
|           // reads.
 | |
|           bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
 | |
|           if (UseDeferred && !IsReadOnlyPtr)
 | |
|             continue;
 | |
|           // Otherwise, the pointer must be in the PtrAccessSet, either as a
 | |
|           // read or a write.
 | |
|           assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
 | |
|                   S.count(MemAccessInfo(Ptr, false))) &&
 | |
|                  "Alias-set pointer not in the access set?");
 | |
| 
 | |
|           MemAccessInfo Access(Ptr, IsWrite);
 | |
|           DepCands.insert(Access);
 | |
| 
 | |
|           // Memorize read-only pointers for later processing and skip them in
 | |
|           // the first round (they need to be checked after we have seen all
 | |
|           // write pointers). Note: we also mark pointer that are not
 | |
|           // consecutive as "read-only" pointers (so that we check
 | |
|           // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
 | |
|           if (!UseDeferred && IsReadOnlyPtr) {
 | |
|             DeferredAccesses.insert(Access);
 | |
|             continue;
 | |
|           }
 | |
| 
 | |
|           // If this is a write - check other reads and writes for conflicts. If
 | |
|           // this is a read only check other writes for conflicts (but only if
 | |
|           // there is no other write to the ptr - this is an optimization to
 | |
|           // catch "a[i] = a[i] + " without having to do a dependence check).
 | |
|           if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
 | |
|             CheckDeps.insert(Access);
 | |
|             IsRTCheckNeeded = true;
 | |
|           }
 | |
| 
 | |
|           if (IsWrite)
 | |
|             SetHasWrite = true;
 | |
| 
 | |
|           // Create sets of pointers connected by a shared alias set and
 | |
|           // underlying object.
 | |
|           typedef SmallVector<Value *, 16> ValueVector;
 | |
|           ValueVector TempObjects;
 | |
|           GetUnderlyingObjects(Ptr, TempObjects, DL);
 | |
|           for (Value *UnderlyingObj : TempObjects) {
 | |
|             UnderlyingObjToAccessMap::iterator Prev =
 | |
|                 ObjToLastAccess.find(UnderlyingObj);
 | |
|             if (Prev != ObjToLastAccess.end())
 | |
|               DepCands.unionSets(Access, Prev->second);
 | |
| 
 | |
|             ObjToLastAccess[UnderlyingObj] = Access;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// \brief Checks memory dependences among accesses to the same underlying
 | |
| /// object to determine whether there vectorization is legal or not (and at
 | |
| /// which vectorization factor).
 | |
| ///
 | |
| /// This class works under the assumption that we already checked that memory
 | |
| /// locations with different underlying pointers are "must-not alias".
 | |
| /// We use the ScalarEvolution framework to symbolically evalutate access
 | |
| /// functions pairs. Since we currently don't restructure the loop we can rely
 | |
| /// on the program order of memory accesses to determine their safety.
 | |
| /// At the moment we will only deem accesses as safe for:
 | |
| ///  * A negative constant distance assuming program order.
 | |
| ///
 | |
| ///      Safe: tmp = a[i + 1];     OR     a[i + 1] = x;
 | |
| ///            a[i] = tmp;                y = a[i];
 | |
| ///
 | |
| ///   The latter case is safe because later checks guarantuee that there can't
 | |
| ///   be a cycle through a phi node (that is, we check that "x" and "y" is not
 | |
| ///   the same variable: a header phi can only be an induction or a reduction, a
 | |
| ///   reduction can't have a memory sink, an induction can't have a memory
 | |
| ///   source). This is important and must not be violated (or we have to
 | |
| ///   resort to checking for cycles through memory).
 | |
| ///
 | |
| ///  * A positive constant distance assuming program order that is bigger
 | |
| ///    than the biggest memory access.
 | |
| ///
 | |
| ///     tmp = a[i]        OR              b[i] = x
 | |
| ///     a[i+2] = tmp                      y = b[i+2];
 | |
| ///
 | |
| ///     Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively.
 | |
| ///
 | |
| ///  * Zero distances and all accesses have the same size.
 | |
| ///
 | |
| class MemoryDepChecker {
 | |
| public:
 | |
|   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
 | |
|   typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
 | |
| 
 | |
|   MemoryDepChecker(ScalarEvolution *Se, const DataLayout *Dl, const Loop *L,
 | |
|                    const LoopAccessAnalysis::VectorizerParams &VectParams)
 | |
|       : SE(Se), DL(Dl), InnermostLoop(L), AccessIdx(0),
 | |
|         ShouldRetryWithRuntimeCheck(false), VectParams(VectParams) {}
 | |
| 
 | |
|   /// \brief Register the location (instructions are given increasing numbers)
 | |
|   /// of a write access.
 | |
|   void addAccess(StoreInst *SI) {
 | |
|     Value *Ptr = SI->getPointerOperand();
 | |
|     Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
 | |
|     InstMap.push_back(SI);
 | |
|     ++AccessIdx;
 | |
|   }
 | |
| 
 | |
|   /// \brief Register the location (instructions are given increasing numbers)
 | |
|   /// of a write access.
 | |
|   void addAccess(LoadInst *LI) {
 | |
|     Value *Ptr = LI->getPointerOperand();
 | |
|     Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
 | |
|     InstMap.push_back(LI);
 | |
|     ++AccessIdx;
 | |
|   }
 | |
| 
 | |
|   /// \brief Check whether the dependencies between the accesses are safe.
 | |
|   ///
 | |
|   /// Only checks sets with elements in \p CheckDeps.
 | |
|   bool areDepsSafe(AccessAnalysis::DepCandidates &AccessSets,
 | |
|                    MemAccessInfoSet &CheckDeps, ValueToValueMap &Strides);
 | |
| 
 | |
|   /// \brief The maximum number of bytes of a vector register we can vectorize
 | |
|   /// the accesses safely with.
 | |
|   unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
 | |
| 
 | |
|   /// \brief In same cases when the dependency check fails we can still
 | |
|   /// vectorize the loop with a dynamic array access check.
 | |
|   bool shouldRetryWithRuntimeCheck() { return ShouldRetryWithRuntimeCheck; }
 | |
| 
 | |
| private:
 | |
|   ScalarEvolution *SE;
 | |
|   const DataLayout *DL;
 | |
|   const Loop *InnermostLoop;
 | |
| 
 | |
|   /// \brief Maps access locations (ptr, read/write) to program order.
 | |
|   DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses;
 | |
| 
 | |
|   /// \brief Memory access instructions in program order.
 | |
|   SmallVector<Instruction *, 16> InstMap;
 | |
| 
 | |
|   /// \brief The program order index to be used for the next instruction.
 | |
|   unsigned AccessIdx;
 | |
| 
 | |
|   // We can access this many bytes in parallel safely.
 | |
|   unsigned MaxSafeDepDistBytes;
 | |
| 
 | |
|   /// \brief If we see a non-constant dependence distance we can still try to
 | |
|   /// vectorize this loop with runtime checks.
 | |
|   bool ShouldRetryWithRuntimeCheck;
 | |
| 
 | |
|   /// \brief Vectorizer parameters used by the analysis.
 | |
|   LoopAccessAnalysis::VectorizerParams VectParams;
 | |
| 
 | |
|   /// \brief Check whether there is a plausible dependence between the two
 | |
|   /// accesses.
 | |
|   ///
 | |
|   /// Access \p A must happen before \p B in program order. The two indices
 | |
|   /// identify the index into the program order map.
 | |
|   ///
 | |
|   /// This function checks  whether there is a plausible dependence (or the
 | |
|   /// absence of such can't be proved) between the two accesses. If there is a
 | |
|   /// plausible dependence but the dependence distance is bigger than one
 | |
|   /// element access it records this distance in \p MaxSafeDepDistBytes (if this
 | |
|   /// distance is smaller than any other distance encountered so far).
 | |
|   /// Otherwise, this function returns true signaling a possible dependence.
 | |
|   bool isDependent(const MemAccessInfo &A, unsigned AIdx,
 | |
|                    const MemAccessInfo &B, unsigned BIdx,
 | |
|                    ValueToValueMap &Strides);
 | |
| 
 | |
|   /// \brief Check whether the data dependence could prevent store-load
 | |
|   /// forwarding.
 | |
|   bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize);
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| static bool isInBoundsGep(Value *Ptr) {
 | |
|   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
 | |
|     return GEP->isInBounds();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// \brief Check whether the access through \p Ptr has a constant stride.
 | |
| static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr,
 | |
|                         const Loop *Lp, ValueToValueMap &StridesMap) {
 | |
|   const Type *Ty = Ptr->getType();
 | |
|   assert(Ty->isPointerTy() && "Unexpected non-ptr");
 | |
| 
 | |
|   // Make sure that the pointer does not point to aggregate types.
 | |
|   const PointerType *PtrTy = cast<PointerType>(Ty);
 | |
|   if (PtrTy->getElementType()->isAggregateType()) {
 | |
|     DEBUG(dbgs() << "LV: Bad stride - Not a pointer to a scalar type" << *Ptr <<
 | |
|           "\n");
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, StridesMap, Ptr);
 | |
| 
 | |
|   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
 | |
|   if (!AR) {
 | |
|     DEBUG(dbgs() << "LV: Bad stride - Not an AddRecExpr pointer "
 | |
|           << *Ptr << " SCEV: " << *PtrScev << "\n");
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // The accesss function must stride over the innermost loop.
 | |
|   if (Lp != AR->getLoop()) {
 | |
|     DEBUG(dbgs() << "LV: Bad stride - Not striding over innermost loop " <<
 | |
|           *Ptr << " SCEV: " << *PtrScev << "\n");
 | |
|   }
 | |
| 
 | |
|   // The address calculation must not wrap. Otherwise, a dependence could be
 | |
|   // inverted.
 | |
|   // An inbounds getelementptr that is a AddRec with a unit stride
 | |
|   // cannot wrap per definition. The unit stride requirement is checked later.
 | |
|   // An getelementptr without an inbounds attribute and unit stride would have
 | |
|   // to access the pointer value "0" which is undefined behavior in address
 | |
|   // space 0, therefore we can also vectorize this case.
 | |
|   bool IsInBoundsGEP = isInBoundsGep(Ptr);
 | |
|   bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask);
 | |
|   bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
 | |
|   if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
 | |
|     DEBUG(dbgs() << "LV: Bad stride - Pointer may wrap in the address space "
 | |
|           << *Ptr << " SCEV: " << *PtrScev << "\n");
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // Check the step is constant.
 | |
|   const SCEV *Step = AR->getStepRecurrence(*SE);
 | |
| 
 | |
|   // Calculate the pointer stride and check if it is consecutive.
 | |
|   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
 | |
|   if (!C) {
 | |
|     DEBUG(dbgs() << "LV: Bad stride - Not a constant strided " << *Ptr <<
 | |
|           " SCEV: " << *PtrScev << "\n");
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   int64_t Size = DL->getTypeAllocSize(PtrTy->getElementType());
 | |
|   const APInt &APStepVal = C->getValue()->getValue();
 | |
| 
 | |
|   // Huge step value - give up.
 | |
|   if (APStepVal.getBitWidth() > 64)
 | |
|     return 0;
 | |
| 
 | |
|   int64_t StepVal = APStepVal.getSExtValue();
 | |
| 
 | |
|   // Strided access.
 | |
|   int64_t Stride = StepVal / Size;
 | |
|   int64_t Rem = StepVal % Size;
 | |
|   if (Rem)
 | |
|     return 0;
 | |
| 
 | |
|   // If the SCEV could wrap but we have an inbounds gep with a unit stride we
 | |
|   // know we can't "wrap around the address space". In case of address space
 | |
|   // zero we know that this won't happen without triggering undefined behavior.
 | |
|   if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
 | |
|       Stride != 1 && Stride != -1)
 | |
|     return 0;
 | |
| 
 | |
|   return Stride;
 | |
| }
 | |
| 
 | |
| bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance,
 | |
|                                                     unsigned TypeByteSize) {
 | |
|   // If loads occur at a distance that is not a multiple of a feasible vector
 | |
|   // factor store-load forwarding does not take place.
 | |
|   // Positive dependences might cause troubles because vectorizing them might
 | |
|   // prevent store-load forwarding making vectorized code run a lot slower.
 | |
|   //   a[i] = a[i-3] ^ a[i-8];
 | |
|   //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
 | |
|   //   hence on your typical architecture store-load forwarding does not take
 | |
|   //   place. Vectorizing in such cases does not make sense.
 | |
|   // Store-load forwarding distance.
 | |
|   const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize;
 | |
|   // Maximum vector factor.
 | |
|   unsigned MaxVFWithoutSLForwardIssues = VectParams.MaxVectorWidth*TypeByteSize;
 | |
|   if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues)
 | |
|     MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes;
 | |
| 
 | |
|   for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues;
 | |
|        vf *= 2) {
 | |
|     if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) {
 | |
|       MaxVFWithoutSLForwardIssues = (vf >>=1);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) {
 | |
|     DEBUG(dbgs() << "LV: Distance " << Distance <<
 | |
|           " that could cause a store-load forwarding conflict\n");
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
 | |
|       MaxVFWithoutSLForwardIssues != VectParams.MaxVectorWidth*TypeByteSize)
 | |
|     MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
 | |
|                                    const MemAccessInfo &B, unsigned BIdx,
 | |
|                                    ValueToValueMap &Strides) {
 | |
|   assert (AIdx < BIdx && "Must pass arguments in program order");
 | |
| 
 | |
|   Value *APtr = A.getPointer();
 | |
|   Value *BPtr = B.getPointer();
 | |
|   bool AIsWrite = A.getInt();
 | |
|   bool BIsWrite = B.getInt();
 | |
| 
 | |
|   // Two reads are independent.
 | |
|   if (!AIsWrite && !BIsWrite)
 | |
|     return false;
 | |
| 
 | |
|   // We cannot check pointers in different address spaces.
 | |
|   if (APtr->getType()->getPointerAddressSpace() !=
 | |
|       BPtr->getType()->getPointerAddressSpace())
 | |
|     return true;
 | |
| 
 | |
|   const SCEV *AScev = replaceSymbolicStrideSCEV(SE, Strides, APtr);
 | |
|   const SCEV *BScev = replaceSymbolicStrideSCEV(SE, Strides, BPtr);
 | |
| 
 | |
|   int StrideAPtr = isStridedPtr(SE, DL, APtr, InnermostLoop, Strides);
 | |
|   int StrideBPtr = isStridedPtr(SE, DL, BPtr, InnermostLoop, Strides);
 | |
| 
 | |
|   const SCEV *Src = AScev;
 | |
|   const SCEV *Sink = BScev;
 | |
| 
 | |
|   // If the induction step is negative we have to invert source and sink of the
 | |
|   // dependence.
 | |
|   if (StrideAPtr < 0) {
 | |
|     //Src = BScev;
 | |
|     //Sink = AScev;
 | |
|     std::swap(APtr, BPtr);
 | |
|     std::swap(Src, Sink);
 | |
|     std::swap(AIsWrite, BIsWrite);
 | |
|     std::swap(AIdx, BIdx);
 | |
|     std::swap(StrideAPtr, StrideBPtr);
 | |
|   }
 | |
| 
 | |
|   const SCEV *Dist = SE->getMinusSCEV(Sink, Src);
 | |
| 
 | |
|   DEBUG(dbgs() << "LV: Src Scev: " << *Src << "Sink Scev: " << *Sink
 | |
|         << "(Induction step: " << StrideAPtr <<  ")\n");
 | |
|   DEBUG(dbgs() << "LV: Distance for " << *InstMap[AIdx] << " to "
 | |
|         << *InstMap[BIdx] << ": " << *Dist << "\n");
 | |
| 
 | |
|   // Need consecutive accesses. We don't want to vectorize
 | |
|   // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
 | |
|   // the address space.
 | |
|   if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
 | |
|     DEBUG(dbgs() << "Non-consecutive pointer access\n");
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
 | |
|   if (!C) {
 | |
|     DEBUG(dbgs() << "LV: Dependence because of non-constant distance\n");
 | |
|     ShouldRetryWithRuntimeCheck = true;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   Type *ATy = APtr->getType()->getPointerElementType();
 | |
|   Type *BTy = BPtr->getType()->getPointerElementType();
 | |
|   unsigned TypeByteSize = DL->getTypeAllocSize(ATy);
 | |
| 
 | |
|   // Negative distances are not plausible dependencies.
 | |
|   const APInt &Val = C->getValue()->getValue();
 | |
|   if (Val.isNegative()) {
 | |
|     bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
 | |
|     if (IsTrueDataDependence &&
 | |
|         (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
 | |
|          ATy != BTy))
 | |
|       return true;
 | |
| 
 | |
|     DEBUG(dbgs() << "LV: Dependence is negative: NoDep\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Write to the same location with the same size.
 | |
|   // Could be improved to assert type sizes are the same (i32 == float, etc).
 | |
|   if (Val == 0) {
 | |
|     if (ATy == BTy)
 | |
|       return false;
 | |
|     DEBUG(dbgs() << "LV: Zero dependence difference but different types\n");
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   assert(Val.isStrictlyPositive() && "Expect a positive value");
 | |
| 
 | |
|   // Positive distance bigger than max vectorization factor.
 | |
|   if (ATy != BTy) {
 | |
|     DEBUG(dbgs() <<
 | |
|           "LV: ReadWrite-Write positive dependency with different types\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   unsigned Distance = (unsigned) Val.getZExtValue();
 | |
| 
 | |
|   // Bail out early if passed-in parameters make vectorization not feasible.
 | |
|   unsigned ForcedFactor = (VectParams.VectorizationFactor ?
 | |
|                            VectParams.VectorizationFactor : 1);
 | |
|   unsigned ForcedUnroll = (VectParams.VectorizationInterleave ?
 | |
|                            VectParams.VectorizationInterleave : 1);
 | |
| 
 | |
|   // The distance must be bigger than the size needed for a vectorized version
 | |
|   // of the operation and the size of the vectorized operation must not be
 | |
|   // bigger than the currrent maximum size.
 | |
|   if (Distance < 2*TypeByteSize ||
 | |
|       2*TypeByteSize > MaxSafeDepDistBytes ||
 | |
|       Distance < TypeByteSize * ForcedUnroll * ForcedFactor) {
 | |
|     DEBUG(dbgs() << "LV: Failure because of Positive distance "
 | |
|         << Val.getSExtValue() << '\n');
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   MaxSafeDepDistBytes = Distance < MaxSafeDepDistBytes ?
 | |
|     Distance : MaxSafeDepDistBytes;
 | |
| 
 | |
|   bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
 | |
|   if (IsTrueDataDependence &&
 | |
|       couldPreventStoreLoadForward(Distance, TypeByteSize))
 | |
|      return true;
 | |
| 
 | |
|   DEBUG(dbgs() << "LV: Positive distance " << Val.getSExtValue() <<
 | |
|         " with max VF = " << MaxSafeDepDistBytes / TypeByteSize << '\n');
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool MemoryDepChecker::areDepsSafe(AccessAnalysis::DepCandidates &AccessSets,
 | |
|                                    MemAccessInfoSet &CheckDeps,
 | |
|                                    ValueToValueMap &Strides) {
 | |
| 
 | |
|   MaxSafeDepDistBytes = -1U;
 | |
|   while (!CheckDeps.empty()) {
 | |
|     MemAccessInfo CurAccess = *CheckDeps.begin();
 | |
| 
 | |
|     // Get the relevant memory access set.
 | |
|     EquivalenceClasses<MemAccessInfo>::iterator I =
 | |
|       AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
 | |
| 
 | |
|     // Check accesses within this set.
 | |
|     EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE;
 | |
|     AI = AccessSets.member_begin(I), AE = AccessSets.member_end();
 | |
| 
 | |
|     // Check every access pair.
 | |
|     while (AI != AE) {
 | |
|       CheckDeps.erase(*AI);
 | |
|       EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI);
 | |
|       while (OI != AE) {
 | |
|         // Check every accessing instruction pair in program order.
 | |
|         for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
 | |
|              I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
 | |
|           for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
 | |
|                I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
 | |
|             if (*I1 < *I2 && isDependent(*AI, *I1, *OI, *I2, Strides))
 | |
|               return false;
 | |
|             if (*I2 < *I1 && isDependent(*OI, *I2, *AI, *I1, Strides))
 | |
|               return false;
 | |
|           }
 | |
|         ++OI;
 | |
|       }
 | |
|       AI++;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool LoopAccessAnalysis::canVectorizeMemory(ValueToValueMap &Strides) {
 | |
| 
 | |
|   typedef SmallVector<Value*, 16> ValueVector;
 | |
|   typedef SmallPtrSet<Value*, 16> ValueSet;
 | |
| 
 | |
|   // Holds the Load and Store *instructions*.
 | |
|   ValueVector Loads;
 | |
|   ValueVector Stores;
 | |
| 
 | |
|   // Holds all the different accesses in the loop.
 | |
|   unsigned NumReads = 0;
 | |
|   unsigned NumReadWrites = 0;
 | |
| 
 | |
|   PtrRtCheck.Pointers.clear();
 | |
|   PtrRtCheck.Need = false;
 | |
| 
 | |
|   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
 | |
|   MemoryDepChecker DepChecker(SE, DL, TheLoop, VectParams);
 | |
| 
 | |
|   // For each block.
 | |
|   for (Loop::block_iterator bb = TheLoop->block_begin(),
 | |
|        be = TheLoop->block_end(); bb != be; ++bb) {
 | |
| 
 | |
|     // Scan the BB and collect legal loads and stores.
 | |
|     for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
 | |
|          ++it) {
 | |
| 
 | |
|       // If this is a load, save it. If this instruction can read from memory
 | |
|       // but is not a load, then we quit. Notice that we don't handle function
 | |
|       // calls that read or write.
 | |
|       if (it->mayReadFromMemory()) {
 | |
|         // Many math library functions read the rounding mode. We will only
 | |
|         // vectorize a loop if it contains known function calls that don't set
 | |
|         // the flag. Therefore, it is safe to ignore this read from memory.
 | |
|         CallInst *Call = dyn_cast<CallInst>(it);
 | |
|         if (Call && getIntrinsicIDForCall(Call, TLI))
 | |
|           continue;
 | |
| 
 | |
|         LoadInst *Ld = dyn_cast<LoadInst>(it);
 | |
|         if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) {
 | |
|           emitAnalysis(VectorizationReport(Ld)
 | |
|                        << "read with atomic ordering or volatile read");
 | |
|           DEBUG(dbgs() << "LV: Found a non-simple load.\n");
 | |
|           return false;
 | |
|         }
 | |
|         NumLoads++;
 | |
|         Loads.push_back(Ld);
 | |
|         DepChecker.addAccess(Ld);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Save 'store' instructions. Abort if other instructions write to memory.
 | |
|       if (it->mayWriteToMemory()) {
 | |
|         StoreInst *St = dyn_cast<StoreInst>(it);
 | |
|         if (!St) {
 | |
|           emitAnalysis(VectorizationReport(it) <<
 | |
|                        "instruction cannot be vectorized");
 | |
|           return false;
 | |
|         }
 | |
|         if (!St->isSimple() && !IsAnnotatedParallel) {
 | |
|           emitAnalysis(VectorizationReport(St)
 | |
|                        << "write with atomic ordering or volatile write");
 | |
|           DEBUG(dbgs() << "LV: Found a non-simple store.\n");
 | |
|           return false;
 | |
|         }
 | |
|         NumStores++;
 | |
|         Stores.push_back(St);
 | |
|         DepChecker.addAccess(St);
 | |
|       }
 | |
|     } // Next instr.
 | |
|   } // Next block.
 | |
| 
 | |
|   // Now we have two lists that hold the loads and the stores.
 | |
|   // Next, we find the pointers that they use.
 | |
| 
 | |
|   // Check if we see any stores. If there are no stores, then we don't
 | |
|   // care if the pointers are *restrict*.
 | |
|   if (!Stores.size()) {
 | |
|     DEBUG(dbgs() << "LV: Found a read-only loop!\n");
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   AccessAnalysis::DepCandidates DependentAccesses;
 | |
|   AccessAnalysis Accesses(DL, AA, DependentAccesses);
 | |
| 
 | |
|   // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
 | |
|   // multiple times on the same object. If the ptr is accessed twice, once
 | |
|   // for read and once for write, it will only appear once (on the write
 | |
|   // list). This is okay, since we are going to check for conflicts between
 | |
|   // writes and between reads and writes, but not between reads and reads.
 | |
|   ValueSet Seen;
 | |
| 
 | |
|   ValueVector::iterator I, IE;
 | |
|   for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
 | |
|     StoreInst *ST = cast<StoreInst>(*I);
 | |
|     Value* Ptr = ST->getPointerOperand();
 | |
| 
 | |
|     if (isUniform(Ptr)) {
 | |
|       emitAnalysis(
 | |
|           VectorizationReport(ST)
 | |
|           << "write to a loop invariant address could not be vectorized");
 | |
|       DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // If we did *not* see this pointer before, insert it to  the read-write
 | |
|     // list. At this phase it is only a 'write' list.
 | |
|     if (Seen.insert(Ptr).second) {
 | |
|       ++NumReadWrites;
 | |
| 
 | |
|       AliasAnalysis::Location Loc = AA->getLocation(ST);
 | |
|       // The TBAA metadata could have a control dependency on the predication
 | |
|       // condition, so we cannot rely on it when determining whether or not we
 | |
|       // need runtime pointer checks.
 | |
|       if (blockNeedsPredication(ST->getParent()))
 | |
|         Loc.AATags.TBAA = nullptr;
 | |
| 
 | |
|       Accesses.addStore(Loc);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (IsAnnotatedParallel) {
 | |
|     DEBUG(dbgs()
 | |
|           << "LV: A loop annotated parallel, ignore memory dependency "
 | |
|           << "checks.\n");
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
 | |
|     LoadInst *LD = cast<LoadInst>(*I);
 | |
|     Value* Ptr = LD->getPointerOperand();
 | |
|     // If we did *not* see this pointer before, insert it to the
 | |
|     // read list. If we *did* see it before, then it is already in
 | |
|     // the read-write list. This allows us to vectorize expressions
 | |
|     // such as A[i] += x;  Because the address of A[i] is a read-write
 | |
|     // pointer. This only works if the index of A[i] is consecutive.
 | |
|     // If the address of i is unknown (for example A[B[i]]) then we may
 | |
|     // read a few words, modify, and write a few words, and some of the
 | |
|     // words may be written to the same address.
 | |
|     bool IsReadOnlyPtr = false;
 | |
|     if (Seen.insert(Ptr).second ||
 | |
|         !isStridedPtr(SE, DL, Ptr, TheLoop, Strides)) {
 | |
|       ++NumReads;
 | |
|       IsReadOnlyPtr = true;
 | |
|     }
 | |
| 
 | |
|     AliasAnalysis::Location Loc = AA->getLocation(LD);
 | |
|     // The TBAA metadata could have a control dependency on the predication
 | |
|     // condition, so we cannot rely on it when determining whether or not we
 | |
|     // need runtime pointer checks.
 | |
|     if (blockNeedsPredication(LD->getParent()))
 | |
|       Loc.AATags.TBAA = nullptr;
 | |
| 
 | |
|     Accesses.addLoad(Loc, IsReadOnlyPtr);
 | |
|   }
 | |
| 
 | |
|   // If we write (or read-write) to a single destination and there are no
 | |
|   // other reads in this loop then is it safe to vectorize.
 | |
|   if (NumReadWrites == 1 && NumReads == 0) {
 | |
|     DEBUG(dbgs() << "LV: Found a write-only loop!\n");
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Build dependence sets and check whether we need a runtime pointer bounds
 | |
|   // check.
 | |
|   Accesses.buildDependenceSets();
 | |
|   bool NeedRTCheck = Accesses.isRTCheckNeeded();
 | |
| 
 | |
|   // Find pointers with computable bounds. We are going to use this information
 | |
|   // to place a runtime bound check.
 | |
|   unsigned NumComparisons = 0;
 | |
|   bool CanDoRT = false;
 | |
|   if (NeedRTCheck)
 | |
|     CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop,
 | |
|                                        Strides);
 | |
| 
 | |
|   DEBUG(dbgs() << "LV: We need to do " << NumComparisons <<
 | |
|         " pointer comparisons.\n");
 | |
| 
 | |
|   // If we only have one set of dependences to check pointers among we don't
 | |
|   // need a runtime check.
 | |
|   if (NumComparisons == 0 && NeedRTCheck)
 | |
|     NeedRTCheck = false;
 | |
| 
 | |
|   // Check that we did not collect too many pointers or found an unsizeable
 | |
|   // pointer.
 | |
|   if (!CanDoRT || NumComparisons > VectParams.RuntimeMemoryCheckThreshold) {
 | |
|     PtrRtCheck.reset();
 | |
|     CanDoRT = false;
 | |
|   }
 | |
| 
 | |
|   if (CanDoRT) {
 | |
|     DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n");
 | |
|   }
 | |
| 
 | |
|   if (NeedRTCheck && !CanDoRT) {
 | |
|     emitAnalysis(VectorizationReport() << "cannot identify array bounds");
 | |
|     DEBUG(dbgs() << "LV: We can't vectorize because we can't find " <<
 | |
|           "the array bounds.\n");
 | |
|     PtrRtCheck.reset();
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   PtrRtCheck.Need = NeedRTCheck;
 | |
| 
 | |
|   bool CanVecMem = true;
 | |
|   if (Accesses.isDependencyCheckNeeded()) {
 | |
|     DEBUG(dbgs() << "LV: Checking memory dependencies\n");
 | |
|     CanVecMem = DepChecker.areDepsSafe(
 | |
|         DependentAccesses, Accesses.getDependenciesToCheck(), Strides);
 | |
|     MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes();
 | |
| 
 | |
|     if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) {
 | |
|       DEBUG(dbgs() << "LV: Retrying with memory checks\n");
 | |
|       NeedRTCheck = true;
 | |
| 
 | |
|       // Clear the dependency checks. We assume they are not needed.
 | |
|       Accesses.resetDepChecks();
 | |
| 
 | |
|       PtrRtCheck.reset();
 | |
|       PtrRtCheck.Need = true;
 | |
| 
 | |
|       CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE,
 | |
|                                          TheLoop, Strides, true);
 | |
|       // Check that we did not collect too many pointers or found an unsizeable
 | |
|       // pointer.
 | |
|       if (!CanDoRT || NumComparisons > VectParams.RuntimeMemoryCheckThreshold) {
 | |
|         if (!CanDoRT && NumComparisons > 0)
 | |
|           emitAnalysis(VectorizationReport()
 | |
|                        << "cannot check memory dependencies at runtime");
 | |
|         else
 | |
|           emitAnalysis(VectorizationReport()
 | |
|                        << NumComparisons << " exceeds limit of "
 | |
|                        << VectParams.RuntimeMemoryCheckThreshold
 | |
|                        << " dependent memory operations checked at runtime");
 | |
|         DEBUG(dbgs() << "LV: Can't vectorize with memory checks\n");
 | |
|         PtrRtCheck.reset();
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       CanVecMem = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!CanVecMem)
 | |
|     emitAnalysis(VectorizationReport() <<
 | |
|                  "unsafe dependent memory operations in loop");
 | |
| 
 | |
|   DEBUG(dbgs() << "LV: We" << (NeedRTCheck ? "" : " don't") <<
 | |
|         " need a runtime memory check.\n");
 | |
| 
 | |
|   return CanVecMem;
 | |
| }
 | |
| 
 | |
| bool LoopAccessAnalysis::blockNeedsPredication(BasicBlock *BB)  {
 | |
|   assert(TheLoop->contains(BB) && "Unknown block used");
 | |
| 
 | |
|   // Blocks that do not dominate the latch need predication.
 | |
|   BasicBlock* Latch = TheLoop->getLoopLatch();
 | |
|   return !DT->dominates(BB, Latch);
 | |
| }
 | |
| 
 | |
| void LoopAccessAnalysis::emitAnalysis(VectorizationReport &Message) {
 | |
|   VectorizationReport::emitAnalysis(Message, TheFunction, TheLoop);
 | |
| }
 | |
| 
 | |
| bool LoopAccessAnalysis::isUniform(Value *V) {
 | |
|   return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
 | |
| }
 | |
| 
 | |
| // FIXME: this function is currently a duplicate of the one in
 | |
| // LoopVectorize.cpp.
 | |
| static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
 | |
|                                  Instruction *Loc) {
 | |
|   if (FirstInst)
 | |
|     return FirstInst;
 | |
|   if (Instruction *I = dyn_cast<Instruction>(V))
 | |
|     return I->getParent() == Loc->getParent() ? I : nullptr;
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| std::pair<Instruction *, Instruction *>
 | |
| LoopAccessAnalysis::addRuntimeCheck(Instruction *Loc) {
 | |
|   Instruction *tnullptr = nullptr;
 | |
|   if (!PtrRtCheck.Need)
 | |
|     return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr);
 | |
| 
 | |
|   unsigned NumPointers = PtrRtCheck.Pointers.size();
 | |
|   SmallVector<TrackingVH<Value> , 2> Starts;
 | |
|   SmallVector<TrackingVH<Value> , 2> Ends;
 | |
| 
 | |
|   LLVMContext &Ctx = Loc->getContext();
 | |
|   SCEVExpander Exp(*SE, "induction");
 | |
|   Instruction *FirstInst = nullptr;
 | |
| 
 | |
|   for (unsigned i = 0; i < NumPointers; ++i) {
 | |
|     Value *Ptr = PtrRtCheck.Pointers[i];
 | |
|     const SCEV *Sc = SE->getSCEV(Ptr);
 | |
| 
 | |
|     if (SE->isLoopInvariant(Sc, TheLoop)) {
 | |
|       DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" <<
 | |
|             *Ptr <<"\n");
 | |
|       Starts.push_back(Ptr);
 | |
|       Ends.push_back(Ptr);
 | |
|     } else {
 | |
|       DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr << '\n');
 | |
|       unsigned AS = Ptr->getType()->getPointerAddressSpace();
 | |
| 
 | |
|       // Use this type for pointer arithmetic.
 | |
|       Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
 | |
| 
 | |
|       Value *Start = Exp.expandCodeFor(PtrRtCheck.Starts[i], PtrArithTy, Loc);
 | |
|       Value *End = Exp.expandCodeFor(PtrRtCheck.Ends[i], PtrArithTy, Loc);
 | |
|       Starts.push_back(Start);
 | |
|       Ends.push_back(End);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   IRBuilder<> ChkBuilder(Loc);
 | |
|   // Our instructions might fold to a constant.
 | |
|   Value *MemoryRuntimeCheck = nullptr;
 | |
|   for (unsigned i = 0; i < NumPointers; ++i) {
 | |
|     for (unsigned j = i+1; j < NumPointers; ++j) {
 | |
|       // No need to check if two readonly pointers intersect.
 | |
|       if (!PtrRtCheck.IsWritePtr[i] && !PtrRtCheck.IsWritePtr[j])
 | |
|         continue;
 | |
| 
 | |
|       // Only need to check pointers between two different dependency sets.
 | |
|       if (PtrRtCheck.DependencySetId[i] == PtrRtCheck.DependencySetId[j])
 | |
|        continue;
 | |
|       // Only need to check pointers in the same alias set.
 | |
|       if (PtrRtCheck.AliasSetId[i] != PtrRtCheck.AliasSetId[j])
 | |
|         continue;
 | |
| 
 | |
|       unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace();
 | |
|       unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace();
 | |
| 
 | |
|       assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) &&
 | |
|              (AS1 == Ends[i]->getType()->getPointerAddressSpace()) &&
 | |
|              "Trying to bounds check pointers with different address spaces");
 | |
| 
 | |
|       Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
 | |
|       Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
 | |
| 
 | |
|       Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc");
 | |
|       Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc");
 | |
|       Value *End0 =   ChkBuilder.CreateBitCast(Ends[i],   PtrArithTy1, "bc");
 | |
|       Value *End1 =   ChkBuilder.CreateBitCast(Ends[j],   PtrArithTy0, "bc");
 | |
| 
 | |
|       Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
 | |
|       FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
 | |
|       Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
 | |
|       FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
 | |
|       Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
 | |
|       FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
 | |
|       if (MemoryRuntimeCheck) {
 | |
|         IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict,
 | |
|                                          "conflict.rdx");
 | |
|         FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
 | |
|       }
 | |
|       MemoryRuntimeCheck = IsConflict;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We have to do this trickery because the IRBuilder might fold the check to a
 | |
|   // constant expression in which case there is no Instruction anchored in a
 | |
|   // the block.
 | |
|   Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
 | |
|                                                  ConstantInt::getTrue(Ctx));
 | |
|   ChkBuilder.Insert(Check, "memcheck.conflict");
 | |
|   FirstInst = getFirstInst(FirstInst, Check, Loc);
 | |
|   return std::make_pair(FirstInst, Check);
 | |
| }
 |