mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	This has wider implications than I expected when I reviewed the patch: It can cause JIT crashes where clients have used the default value for AbortOnFailure during symbol lookup. I'm currently investigating alternative approaches and I hope to have this back in tree soon. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227287 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			897 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			897 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Implementation of the MC-JIT runtime dynamic linker.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/ExecutionEngine/RuntimeDyld.h"
 | 
						|
#include "RuntimeDyldCheckerImpl.h"
 | 
						|
#include "RuntimeDyldELF.h"
 | 
						|
#include "RuntimeDyldImpl.h"
 | 
						|
#include "RuntimeDyldMachO.h"
 | 
						|
#include "llvm/Object/ELFObjectFile.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Support/MutexGuard.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
using namespace llvm::object;
 | 
						|
 | 
						|
#define DEBUG_TYPE "dyld"
 | 
						|
 | 
						|
// Empty out-of-line virtual destructor as the key function.
 | 
						|
RuntimeDyldImpl::~RuntimeDyldImpl() {}
 | 
						|
 | 
						|
// Pin LoadedObjectInfo's vtables to this file.
 | 
						|
void RuntimeDyld::LoadedObjectInfo::anchor() {}
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
void RuntimeDyldImpl::registerEHFrames() {}
 | 
						|
 | 
						|
void RuntimeDyldImpl::deregisterEHFrames() {}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
static void dumpSectionMemory(const SectionEntry &S, StringRef State) {
 | 
						|
  dbgs() << "----- Contents of section " << S.Name << " " << State << " -----";
 | 
						|
 | 
						|
  if (S.Address == nullptr) {
 | 
						|
    dbgs() << "\n          <section not emitted>\n";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  const unsigned ColsPerRow = 16;
 | 
						|
 | 
						|
  uint8_t *DataAddr = S.Address;
 | 
						|
  uint64_t LoadAddr = S.LoadAddress;
 | 
						|
 | 
						|
  unsigned StartPadding = LoadAddr & (ColsPerRow - 1);
 | 
						|
  unsigned BytesRemaining = S.Size;
 | 
						|
 | 
						|
  if (StartPadding) {
 | 
						|
    dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr & ~(ColsPerRow - 1)) << ":";
 | 
						|
    while (StartPadding--)
 | 
						|
      dbgs() << "   ";
 | 
						|
  }
 | 
						|
 | 
						|
  while (BytesRemaining > 0) {
 | 
						|
    if ((LoadAddr & (ColsPerRow - 1)) == 0)
 | 
						|
      dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":";
 | 
						|
 | 
						|
    dbgs() << " " << format("%02x", *DataAddr);
 | 
						|
 | 
						|
    ++DataAddr;
 | 
						|
    ++LoadAddr;
 | 
						|
    --BytesRemaining;
 | 
						|
  }
 | 
						|
 | 
						|
  dbgs() << "\n";
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
// Resolve the relocations for all symbols we currently know about.
 | 
						|
void RuntimeDyldImpl::resolveRelocations() {
 | 
						|
  MutexGuard locked(lock);
 | 
						|
 | 
						|
  // First, resolve relocations associated with external symbols.
 | 
						|
  resolveExternalSymbols();
 | 
						|
 | 
						|
  // Just iterate over the sections we have and resolve all the relocations
 | 
						|
  // in them. Gross overkill, but it gets the job done.
 | 
						|
  for (int i = 0, e = Sections.size(); i != e; ++i) {
 | 
						|
    // The Section here (Sections[i]) refers to the section in which the
 | 
						|
    // symbol for the relocation is located.  The SectionID in the relocation
 | 
						|
    // entry provides the section to which the relocation will be applied.
 | 
						|
    uint64_t Addr = Sections[i].LoadAddress;
 | 
						|
    DEBUG(dbgs() << "Resolving relocations Section #" << i << "\t"
 | 
						|
                 << format("0x%x", Addr) << "\n");
 | 
						|
    DEBUG(dumpSectionMemory(Sections[i], "before relocations"));
 | 
						|
    resolveRelocationList(Relocations[i], Addr);
 | 
						|
    DEBUG(dumpSectionMemory(Sections[i], "after relocations"));
 | 
						|
    Relocations.erase(i);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
 | 
						|
                                        uint64_t TargetAddress) {
 | 
						|
  MutexGuard locked(lock);
 | 
						|
  for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
 | 
						|
    if (Sections[i].Address == LocalAddress) {
 | 
						|
      reassignSectionAddress(i, TargetAddress);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  llvm_unreachable("Attempting to remap address of unknown section!");
 | 
						|
}
 | 
						|
 | 
						|
static std::error_code getOffset(const SymbolRef &Sym, uint64_t &Result) {
 | 
						|
  uint64_t Address;
 | 
						|
  if (std::error_code EC = Sym.getAddress(Address))
 | 
						|
    return EC;
 | 
						|
 | 
						|
  if (Address == UnknownAddressOrSize) {
 | 
						|
    Result = UnknownAddressOrSize;
 | 
						|
    return object_error::success;
 | 
						|
  }
 | 
						|
 | 
						|
  const ObjectFile *Obj = Sym.getObject();
 | 
						|
  section_iterator SecI(Obj->section_begin());
 | 
						|
  if (std::error_code EC = Sym.getSection(SecI))
 | 
						|
    return EC;
 | 
						|
 | 
						|
  if (SecI == Obj->section_end()) {
 | 
						|
    Result = UnknownAddressOrSize;
 | 
						|
    return object_error::success;
 | 
						|
  }
 | 
						|
 | 
						|
  uint64_t SectionAddress = SecI->getAddress();
 | 
						|
  Result = Address - SectionAddress;
 | 
						|
  return object_error::success;
 | 
						|
}
 | 
						|
 | 
						|
std::pair<unsigned, unsigned>
 | 
						|
RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) {
 | 
						|
  MutexGuard locked(lock);
 | 
						|
 | 
						|
  // Grab the first Section ID. We'll use this later to construct the underlying
 | 
						|
  // range for the returned LoadedObjectInfo.
 | 
						|
  unsigned SectionsAddedBeginIdx = Sections.size();
 | 
						|
 | 
						|
  // Save information about our target
 | 
						|
  Arch = (Triple::ArchType)Obj.getArch();
 | 
						|
  IsTargetLittleEndian = Obj.isLittleEndian();
 | 
						|
 | 
						|
  // Compute the memory size required to load all sections to be loaded
 | 
						|
  // and pass this information to the memory manager
 | 
						|
  if (MemMgr->needsToReserveAllocationSpace()) {
 | 
						|
    uint64_t CodeSize = 0, DataSizeRO = 0, DataSizeRW = 0;
 | 
						|
    computeTotalAllocSize(Obj, CodeSize, DataSizeRO, DataSizeRW);
 | 
						|
    MemMgr->reserveAllocationSpace(CodeSize, DataSizeRO, DataSizeRW);
 | 
						|
  }
 | 
						|
 | 
						|
  // Used sections from the object file
 | 
						|
  ObjSectionToIDMap LocalSections;
 | 
						|
 | 
						|
  // Common symbols requiring allocation, with their sizes and alignments
 | 
						|
  CommonSymbolList CommonSymbols;
 | 
						|
 | 
						|
  // Parse symbols
 | 
						|
  DEBUG(dbgs() << "Parse symbols:\n");
 | 
						|
  for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
 | 
						|
       ++I) {
 | 
						|
    uint32_t Flags = I->getFlags();
 | 
						|
 | 
						|
    bool IsCommon = Flags & SymbolRef::SF_Common;
 | 
						|
    if (IsCommon)
 | 
						|
      CommonSymbols.push_back(*I);
 | 
						|
    else {
 | 
						|
      object::SymbolRef::Type SymType;
 | 
						|
      Check(I->getType(SymType));
 | 
						|
 | 
						|
      if (SymType == object::SymbolRef::ST_Function ||
 | 
						|
          SymType == object::SymbolRef::ST_Data ||
 | 
						|
          SymType == object::SymbolRef::ST_Unknown) {
 | 
						|
 | 
						|
        StringRef Name;
 | 
						|
        uint64_t SectOffset;
 | 
						|
        Check(I->getName(Name));
 | 
						|
        Check(getOffset(*I, SectOffset));
 | 
						|
        section_iterator SI = Obj.section_end();
 | 
						|
        Check(I->getSection(SI));
 | 
						|
        if (SI == Obj.section_end())
 | 
						|
          continue;
 | 
						|
        StringRef SectionData;
 | 
						|
        Check(SI->getContents(SectionData));
 | 
						|
        bool IsCode = SI->isText();
 | 
						|
        unsigned SectionID =
 | 
						|
            findOrEmitSection(Obj, *SI, IsCode, LocalSections);
 | 
						|
        DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name
 | 
						|
                     << " SID: " << SectionID << " Offset: "
 | 
						|
                     << format("%p", (uintptr_t)SectOffset)
 | 
						|
                     << " flags: " << Flags << "\n");
 | 
						|
        SymbolInfo::Visibility Vis =
 | 
						|
          (Flags & SymbolRef::SF_Exported) ?
 | 
						|
            SymbolInfo::Default : SymbolInfo::Hidden;
 | 
						|
        GlobalSymbolTable[Name] = SymbolInfo(SectionID, SectOffset, Vis);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Allocate common symbols
 | 
						|
  emitCommonSymbols(Obj, CommonSymbols);
 | 
						|
 | 
						|
  // Parse and process relocations
 | 
						|
  DEBUG(dbgs() << "Parse relocations:\n");
 | 
						|
  for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
 | 
						|
       SI != SE; ++SI) {
 | 
						|
    unsigned SectionID = 0;
 | 
						|
    StubMap Stubs;
 | 
						|
    section_iterator RelocatedSection = SI->getRelocatedSection();
 | 
						|
 | 
						|
    relocation_iterator I = SI->relocation_begin();
 | 
						|
    relocation_iterator E = SI->relocation_end();
 | 
						|
 | 
						|
    if (I == E && !ProcessAllSections)
 | 
						|
      continue;
 | 
						|
 | 
						|
    bool IsCode = RelocatedSection->isText();
 | 
						|
    SectionID =
 | 
						|
        findOrEmitSection(Obj, *RelocatedSection, IsCode, LocalSections);
 | 
						|
    DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
 | 
						|
 | 
						|
    for (; I != E;)
 | 
						|
      I = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs);
 | 
						|
 | 
						|
    // If there is an attached checker, notify it about the stubs for this
 | 
						|
    // section so that they can be verified.
 | 
						|
    if (Checker)
 | 
						|
      Checker->registerStubMap(Obj.getFileName(), SectionID, Stubs);
 | 
						|
  }
 | 
						|
 | 
						|
  // Give the subclasses a chance to tie-up any loose ends.
 | 
						|
  finalizeLoad(Obj, LocalSections);
 | 
						|
 | 
						|
  unsigned SectionsAddedEndIdx = Sections.size();
 | 
						|
 | 
						|
  return std::make_pair(SectionsAddedBeginIdx, SectionsAddedEndIdx);
 | 
						|
}
 | 
						|
 | 
						|
// A helper method for computeTotalAllocSize.
 | 
						|
// Computes the memory size required to allocate sections with the given sizes,
 | 
						|
// assuming that all sections are allocated with the given alignment
 | 
						|
static uint64_t
 | 
						|
computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes,
 | 
						|
                                 uint64_t Alignment) {
 | 
						|
  uint64_t TotalSize = 0;
 | 
						|
  for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) {
 | 
						|
    uint64_t AlignedSize =
 | 
						|
        (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment;
 | 
						|
    TotalSize += AlignedSize;
 | 
						|
  }
 | 
						|
  return TotalSize;
 | 
						|
}
 | 
						|
 | 
						|
static bool isRequiredForExecution(const SectionRef &Section) {
 | 
						|
  const ObjectFile *Obj = Section.getObject();
 | 
						|
  if (auto *ELFObj = dyn_cast<object::ELFObjectFileBase>(Obj))
 | 
						|
    return ELFObj->getSectionFlags(Section) & ELF::SHF_ALLOC;
 | 
						|
  assert(isa<MachOObjectFile>(Obj));
 | 
						|
  return true;
 | 
						|
 }
 | 
						|
 | 
						|
static bool isReadOnlyData(const SectionRef &Section) {
 | 
						|
  const ObjectFile *Obj = Section.getObject();
 | 
						|
  if (auto *ELFObj = dyn_cast<object::ELFObjectFileBase>(Obj))
 | 
						|
    return !(ELFObj->getSectionFlags(Section) &
 | 
						|
             (ELF::SHF_WRITE | ELF::SHF_EXECINSTR));
 | 
						|
  assert(isa<MachOObjectFile>(Obj));
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool isZeroInit(const SectionRef &Section) {
 | 
						|
  const ObjectFile *Obj = Section.getObject();
 | 
						|
  if (auto *ELFObj = dyn_cast<object::ELFObjectFileBase>(Obj))
 | 
						|
    return ELFObj->getSectionType(Section) == ELF::SHT_NOBITS;
 | 
						|
 | 
						|
  auto *MachO = cast<MachOObjectFile>(Obj);
 | 
						|
  unsigned SectionType = MachO->getSectionType(Section);
 | 
						|
  return SectionType == MachO::S_ZEROFILL ||
 | 
						|
         SectionType == MachO::S_GB_ZEROFILL;
 | 
						|
}
 | 
						|
 | 
						|
// Compute an upper bound of the memory size that is required to load all
 | 
						|
// sections
 | 
						|
void RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj,
 | 
						|
                                            uint64_t &CodeSize,
 | 
						|
                                            uint64_t &DataSizeRO,
 | 
						|
                                            uint64_t &DataSizeRW) {
 | 
						|
  // Compute the size of all sections required for execution
 | 
						|
  std::vector<uint64_t> CodeSectionSizes;
 | 
						|
  std::vector<uint64_t> ROSectionSizes;
 | 
						|
  std::vector<uint64_t> RWSectionSizes;
 | 
						|
  uint64_t MaxAlignment = sizeof(void *);
 | 
						|
 | 
						|
  // Collect sizes of all sections to be loaded;
 | 
						|
  // also determine the max alignment of all sections
 | 
						|
  for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
 | 
						|
       SI != SE; ++SI) {
 | 
						|
    const SectionRef &Section = *SI;
 | 
						|
 | 
						|
    bool IsRequired = isRequiredForExecution(Section);
 | 
						|
 | 
						|
    // Consider only the sections that are required to be loaded for execution
 | 
						|
    if (IsRequired) {
 | 
						|
      StringRef Name;
 | 
						|
      uint64_t DataSize = Section.getSize();
 | 
						|
      uint64_t Alignment64 = Section.getAlignment();
 | 
						|
      bool IsCode = Section.isText();
 | 
						|
      bool IsReadOnly = isReadOnlyData(Section);
 | 
						|
      Check(Section.getName(Name));
 | 
						|
      unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
 | 
						|
 | 
						|
      uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section);
 | 
						|
      uint64_t SectionSize = DataSize + StubBufSize;
 | 
						|
 | 
						|
      // The .eh_frame section (at least on Linux) needs an extra four bytes
 | 
						|
      // padded
 | 
						|
      // with zeroes added at the end.  For MachO objects, this section has a
 | 
						|
      // slightly different name, so this won't have any effect for MachO
 | 
						|
      // objects.
 | 
						|
      if (Name == ".eh_frame")
 | 
						|
        SectionSize += 4;
 | 
						|
 | 
						|
      if (SectionSize > 0) {
 | 
						|
        // save the total size of the section
 | 
						|
        if (IsCode) {
 | 
						|
          CodeSectionSizes.push_back(SectionSize);
 | 
						|
        } else if (IsReadOnly) {
 | 
						|
          ROSectionSizes.push_back(SectionSize);
 | 
						|
        } else {
 | 
						|
          RWSectionSizes.push_back(SectionSize);
 | 
						|
        }
 | 
						|
        // update the max alignment
 | 
						|
        if (Alignment > MaxAlignment) {
 | 
						|
          MaxAlignment = Alignment;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Compute the size of all common symbols
 | 
						|
  uint64_t CommonSize = 0;
 | 
						|
  for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
 | 
						|
       ++I) {
 | 
						|
    uint32_t Flags = I->getFlags();
 | 
						|
    if (Flags & SymbolRef::SF_Common) {
 | 
						|
      // Add the common symbols to a list.  We'll allocate them all below.
 | 
						|
      uint64_t Size = 0;
 | 
						|
      Check(I->getSize(Size));
 | 
						|
      CommonSize += Size;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (CommonSize != 0) {
 | 
						|
    RWSectionSizes.push_back(CommonSize);
 | 
						|
  }
 | 
						|
 | 
						|
  // Compute the required allocation space for each different type of sections
 | 
						|
  // (code, read-only data, read-write data) assuming that all sections are
 | 
						|
  // allocated with the max alignment. Note that we cannot compute with the
 | 
						|
  // individual alignments of the sections, because then the required size
 | 
						|
  // depends on the order, in which the sections are allocated.
 | 
						|
  CodeSize = computeAllocationSizeForSections(CodeSectionSizes, MaxAlignment);
 | 
						|
  DataSizeRO = computeAllocationSizeForSections(ROSectionSizes, MaxAlignment);
 | 
						|
  DataSizeRW = computeAllocationSizeForSections(RWSectionSizes, MaxAlignment);
 | 
						|
}
 | 
						|
 | 
						|
// compute stub buffer size for the given section
 | 
						|
unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj,
 | 
						|
                                                    const SectionRef &Section) {
 | 
						|
  unsigned StubSize = getMaxStubSize();
 | 
						|
  if (StubSize == 0) {
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  // FIXME: this is an inefficient way to handle this. We should computed the
 | 
						|
  // necessary section allocation size in loadObject by walking all the sections
 | 
						|
  // once.
 | 
						|
  unsigned StubBufSize = 0;
 | 
						|
  for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
 | 
						|
       SI != SE; ++SI) {
 | 
						|
    section_iterator RelSecI = SI->getRelocatedSection();
 | 
						|
    if (!(RelSecI == Section))
 | 
						|
      continue;
 | 
						|
 | 
						|
    for (const RelocationRef &Reloc : SI->relocations()) {
 | 
						|
      (void)Reloc;
 | 
						|
      StubBufSize += StubSize;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Get section data size and alignment
 | 
						|
  uint64_t DataSize = Section.getSize();
 | 
						|
  uint64_t Alignment64 = Section.getAlignment();
 | 
						|
 | 
						|
  // Add stubbuf size alignment
 | 
						|
  unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
 | 
						|
  unsigned StubAlignment = getStubAlignment();
 | 
						|
  unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
 | 
						|
  if (StubAlignment > EndAlignment)
 | 
						|
    StubBufSize += StubAlignment - EndAlignment;
 | 
						|
  return StubBufSize;
 | 
						|
}
 | 
						|
 | 
						|
uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src,
 | 
						|
                                             unsigned Size) const {
 | 
						|
  uint64_t Result = 0;
 | 
						|
  if (IsTargetLittleEndian) {
 | 
						|
    Src += Size - 1;
 | 
						|
    while (Size--)
 | 
						|
      Result = (Result << 8) | *Src--;
 | 
						|
  } else
 | 
						|
    while (Size--)
 | 
						|
      Result = (Result << 8) | *Src++;
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst,
 | 
						|
                                          unsigned Size) const {
 | 
						|
  if (IsTargetLittleEndian) {
 | 
						|
    while (Size--) {
 | 
						|
      *Dst++ = Value & 0xFF;
 | 
						|
      Value >>= 8;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    Dst += Size - 1;
 | 
						|
    while (Size--) {
 | 
						|
      *Dst-- = Value & 0xFF;
 | 
						|
      Value >>= 8;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj,
 | 
						|
                                        CommonSymbolList &CommonSymbols) {
 | 
						|
  if (CommonSymbols.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  uint64_t CommonSize = 0;
 | 
						|
  CommonSymbolList SymbolsToAllocate;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Processing common symbols...\n");
 | 
						|
 | 
						|
  for (const auto &Sym : CommonSymbols) {
 | 
						|
    StringRef Name;
 | 
						|
    Check(Sym.getName(Name));
 | 
						|
 | 
						|
    // Skip common symbols already elsewhere.
 | 
						|
    if (GlobalSymbolTable.count(Name) ||
 | 
						|
        MemMgr->getSymbolAddressInLogicalDylib(Name)) {
 | 
						|
      DEBUG(dbgs() << "\tSkipping already emitted common symbol '" << Name
 | 
						|
                   << "'\n");
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    uint32_t Align = 0;
 | 
						|
    uint64_t Size = 0;
 | 
						|
    Check(Sym.getAlignment(Align));
 | 
						|
    Check(Sym.getSize(Size));
 | 
						|
 | 
						|
    CommonSize += Align + Size;
 | 
						|
    SymbolsToAllocate.push_back(Sym);
 | 
						|
  }
 | 
						|
 | 
						|
  // Allocate memory for the section
 | 
						|
  unsigned SectionID = Sections.size();
 | 
						|
  uint8_t *Addr = MemMgr->allocateDataSection(CommonSize, sizeof(void *),
 | 
						|
                                              SectionID, StringRef(), false);
 | 
						|
  if (!Addr)
 | 
						|
    report_fatal_error("Unable to allocate memory for common symbols!");
 | 
						|
  uint64_t Offset = 0;
 | 
						|
  Sections.push_back(SectionEntry("<common symbols>", Addr, CommonSize, 0));
 | 
						|
  memset(Addr, 0, CommonSize);
 | 
						|
 | 
						|
  DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID << " new addr: "
 | 
						|
               << format("%p", Addr) << " DataSize: " << CommonSize << "\n");
 | 
						|
 | 
						|
  // Assign the address of each symbol
 | 
						|
  for (auto &Sym : SymbolsToAllocate) {
 | 
						|
    uint32_t Align;
 | 
						|
    uint64_t Size;
 | 
						|
    StringRef Name;
 | 
						|
    Check(Sym.getAlignment(Align));
 | 
						|
    Check(Sym.getSize(Size));
 | 
						|
    Check(Sym.getName(Name));
 | 
						|
    if (Align) {
 | 
						|
      // This symbol has an alignment requirement.
 | 
						|
      uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align);
 | 
						|
      Addr += AlignOffset;
 | 
						|
      Offset += AlignOffset;
 | 
						|
    }
 | 
						|
    uint32_t Flags = Sym.getFlags();
 | 
						|
    SymbolInfo::Visibility Vis =
 | 
						|
      (Flags & SymbolRef::SF_Exported) ?
 | 
						|
        SymbolInfo::Default : SymbolInfo::Hidden;
 | 
						|
    DEBUG(dbgs() << "Allocating common symbol " << Name << " address "
 | 
						|
                 << format("%p", Addr) << "\n");
 | 
						|
    GlobalSymbolTable[Name] = SymbolInfo(SectionID, Offset, Vis);
 | 
						|
    Offset += Size;
 | 
						|
    Addr += Size;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
unsigned RuntimeDyldImpl::emitSection(const ObjectFile &Obj,
 | 
						|
                                      const SectionRef &Section, bool IsCode) {
 | 
						|
 | 
						|
  StringRef data;
 | 
						|
  Check(Section.getContents(data));
 | 
						|
  uint64_t Alignment64 = Section.getAlignment();
 | 
						|
 | 
						|
  unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
 | 
						|
  unsigned PaddingSize = 0;
 | 
						|
  unsigned StubBufSize = 0;
 | 
						|
  StringRef Name;
 | 
						|
  bool IsRequired = isRequiredForExecution(Section);
 | 
						|
  bool IsVirtual = Section.isVirtual();
 | 
						|
  bool IsZeroInit = isZeroInit(Section);
 | 
						|
  bool IsReadOnly = isReadOnlyData(Section);
 | 
						|
  uint64_t DataSize = Section.getSize();
 | 
						|
  Check(Section.getName(Name));
 | 
						|
 | 
						|
  StubBufSize = computeSectionStubBufSize(Obj, Section);
 | 
						|
 | 
						|
  // The .eh_frame section (at least on Linux) needs an extra four bytes padded
 | 
						|
  // with zeroes added at the end.  For MachO objects, this section has a
 | 
						|
  // slightly different name, so this won't have any effect for MachO objects.
 | 
						|
  if (Name == ".eh_frame")
 | 
						|
    PaddingSize = 4;
 | 
						|
 | 
						|
  uintptr_t Allocate;
 | 
						|
  unsigned SectionID = Sections.size();
 | 
						|
  uint8_t *Addr;
 | 
						|
  const char *pData = nullptr;
 | 
						|
 | 
						|
  // Some sections, such as debug info, don't need to be loaded for execution.
 | 
						|
  // Leave those where they are.
 | 
						|
  if (IsRequired) {
 | 
						|
    Allocate = DataSize + PaddingSize + StubBufSize;
 | 
						|
    Addr = IsCode ? MemMgr->allocateCodeSection(Allocate, Alignment, SectionID,
 | 
						|
                                                Name)
 | 
						|
                  : MemMgr->allocateDataSection(Allocate, Alignment, SectionID,
 | 
						|
                                                Name, IsReadOnly);
 | 
						|
    if (!Addr)
 | 
						|
      report_fatal_error("Unable to allocate section memory!");
 | 
						|
 | 
						|
    // Virtual sections have no data in the object image, so leave pData = 0
 | 
						|
    if (!IsVirtual)
 | 
						|
      pData = data.data();
 | 
						|
 | 
						|
    // Zero-initialize or copy the data from the image
 | 
						|
    if (IsZeroInit || IsVirtual)
 | 
						|
      memset(Addr, 0, DataSize);
 | 
						|
    else
 | 
						|
      memcpy(Addr, pData, DataSize);
 | 
						|
 | 
						|
    // Fill in any extra bytes we allocated for padding
 | 
						|
    if (PaddingSize != 0) {
 | 
						|
      memset(Addr + DataSize, 0, PaddingSize);
 | 
						|
      // Update the DataSize variable so that the stub offset is set correctly.
 | 
						|
      DataSize += PaddingSize;
 | 
						|
    }
 | 
						|
 | 
						|
    DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
 | 
						|
                 << " obj addr: " << format("%p", pData)
 | 
						|
                 << " new addr: " << format("%p", Addr)
 | 
						|
                 << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
 | 
						|
                 << " Allocate: " << Allocate << "\n");
 | 
						|
  } else {
 | 
						|
    // Even if we didn't load the section, we need to record an entry for it
 | 
						|
    // to handle later processing (and by 'handle' I mean don't do anything
 | 
						|
    // with these sections).
 | 
						|
    Allocate = 0;
 | 
						|
    Addr = nullptr;
 | 
						|
    DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
 | 
						|
                 << " obj addr: " << format("%p", data.data()) << " new addr: 0"
 | 
						|
                 << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
 | 
						|
                 << " Allocate: " << Allocate << "\n");
 | 
						|
  }
 | 
						|
 | 
						|
  Sections.push_back(SectionEntry(Name, Addr, DataSize, (uintptr_t)pData));
 | 
						|
 | 
						|
  if (Checker)
 | 
						|
    Checker->registerSection(Obj.getFileName(), SectionID);
 | 
						|
 | 
						|
  return SectionID;
 | 
						|
}
 | 
						|
 | 
						|
unsigned RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj,
 | 
						|
                                            const SectionRef &Section,
 | 
						|
                                            bool IsCode,
 | 
						|
                                            ObjSectionToIDMap &LocalSections) {
 | 
						|
 | 
						|
  unsigned SectionID = 0;
 | 
						|
  ObjSectionToIDMap::iterator i = LocalSections.find(Section);
 | 
						|
  if (i != LocalSections.end())
 | 
						|
    SectionID = i->second;
 | 
						|
  else {
 | 
						|
    SectionID = emitSection(Obj, Section, IsCode);
 | 
						|
    LocalSections[Section] = SectionID;
 | 
						|
  }
 | 
						|
  return SectionID;
 | 
						|
}
 | 
						|
 | 
						|
void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
 | 
						|
                                              unsigned SectionID) {
 | 
						|
  Relocations[SectionID].push_back(RE);
 | 
						|
}
 | 
						|
 | 
						|
void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
 | 
						|
                                             StringRef SymbolName) {
 | 
						|
  // Relocation by symbol.  If the symbol is found in the global symbol table,
 | 
						|
  // create an appropriate section relocation.  Otherwise, add it to
 | 
						|
  // ExternalSymbolRelocations.
 | 
						|
  RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName);
 | 
						|
  if (Loc == GlobalSymbolTable.end()) {
 | 
						|
    ExternalSymbolRelocations[SymbolName].push_back(RE);
 | 
						|
  } else {
 | 
						|
    // Copy the RE since we want to modify its addend.
 | 
						|
    RelocationEntry RECopy = RE;
 | 
						|
    const auto &SymInfo = Loc->second;
 | 
						|
    RECopy.Addend += SymInfo.getOffset();
 | 
						|
    Relocations[SymInfo.getSectionID()].push_back(RECopy);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr,
 | 
						|
                                             unsigned AbiVariant) {
 | 
						|
  if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be) {
 | 
						|
    // This stub has to be able to access the full address space,
 | 
						|
    // since symbol lookup won't necessarily find a handy, in-range,
 | 
						|
    // PLT stub for functions which could be anywhere.
 | 
						|
    // Stub can use ip0 (== x16) to calculate address
 | 
						|
    writeBytesUnaligned(0xd2e00010, Addr,    4); // movz ip0, #:abs_g3:<addr>
 | 
						|
    writeBytesUnaligned(0xf2c00010, Addr+4,  4); // movk ip0, #:abs_g2_nc:<addr>
 | 
						|
    writeBytesUnaligned(0xf2a00010, Addr+8,  4); // movk ip0, #:abs_g1_nc:<addr>
 | 
						|
    writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr>
 | 
						|
    writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0
 | 
						|
 | 
						|
    return Addr;
 | 
						|
  } else if (Arch == Triple::arm || Arch == Triple::armeb) {
 | 
						|
    // TODO: There is only ARM far stub now. We should add the Thumb stub,
 | 
						|
    // and stubs for branches Thumb - ARM and ARM - Thumb.
 | 
						|
    writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc,<label>
 | 
						|
    return Addr + 4;
 | 
						|
  } else if (Arch == Triple::mipsel || Arch == Triple::mips) {
 | 
						|
    // 0:   3c190000        lui     t9,%hi(addr).
 | 
						|
    // 4:   27390000        addiu   t9,t9,%lo(addr).
 | 
						|
    // 8:   03200008        jr      t9.
 | 
						|
    // c:   00000000        nop.
 | 
						|
    const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
 | 
						|
    const unsigned JrT9Instr = 0x03200008, NopInstr = 0x0;
 | 
						|
 | 
						|
    writeBytesUnaligned(LuiT9Instr, Addr, 4);
 | 
						|
    writeBytesUnaligned(AdduiT9Instr, Addr+4, 4);
 | 
						|
    writeBytesUnaligned(JrT9Instr, Addr+8, 4);
 | 
						|
    writeBytesUnaligned(NopInstr, Addr+12, 4);
 | 
						|
    return Addr;
 | 
						|
  } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
 | 
						|
    // Depending on which version of the ELF ABI is in use, we need to
 | 
						|
    // generate one of two variants of the stub.  They both start with
 | 
						|
    // the same sequence to load the target address into r12.
 | 
						|
    writeInt32BE(Addr,    0x3D800000); // lis   r12, highest(addr)
 | 
						|
    writeInt32BE(Addr+4,  0x618C0000); // ori   r12, higher(addr)
 | 
						|
    writeInt32BE(Addr+8,  0x798C07C6); // sldi  r12, r12, 32
 | 
						|
    writeInt32BE(Addr+12, 0x658C0000); // oris  r12, r12, h(addr)
 | 
						|
    writeInt32BE(Addr+16, 0x618C0000); // ori   r12, r12, l(addr)
 | 
						|
    if (AbiVariant == 2) {
 | 
						|
      // PowerPC64 stub ELFv2 ABI: The address points to the function itself.
 | 
						|
      // The address is already in r12 as required by the ABI.  Branch to it.
 | 
						|
      writeInt32BE(Addr+20, 0xF8410018); // std   r2,  24(r1)
 | 
						|
      writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12
 | 
						|
      writeInt32BE(Addr+28, 0x4E800420); // bctr
 | 
						|
    } else {
 | 
						|
      // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor.
 | 
						|
      // Load the function address on r11 and sets it to control register. Also
 | 
						|
      // loads the function TOC in r2 and environment pointer to r11.
 | 
						|
      writeInt32BE(Addr+20, 0xF8410028); // std   r2,  40(r1)
 | 
						|
      writeInt32BE(Addr+24, 0xE96C0000); // ld    r11, 0(r12)
 | 
						|
      writeInt32BE(Addr+28, 0xE84C0008); // ld    r2,  0(r12)
 | 
						|
      writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
 | 
						|
      writeInt32BE(Addr+36, 0xE96C0010); // ld    r11, 16(r2)
 | 
						|
      writeInt32BE(Addr+40, 0x4E800420); // bctr
 | 
						|
    }
 | 
						|
    return Addr;
 | 
						|
  } else if (Arch == Triple::systemz) {
 | 
						|
    writeInt16BE(Addr,    0xC418);     // lgrl %r1,.+8
 | 
						|
    writeInt16BE(Addr+2,  0x0000);
 | 
						|
    writeInt16BE(Addr+4,  0x0004);
 | 
						|
    writeInt16BE(Addr+6,  0x07F1);     // brc 15,%r1
 | 
						|
    // 8-byte address stored at Addr + 8
 | 
						|
    return Addr;
 | 
						|
  } else if (Arch == Triple::x86_64) {
 | 
						|
    *Addr      = 0xFF; // jmp
 | 
						|
    *(Addr+1)  = 0x25; // rip
 | 
						|
    // 32-bit PC-relative address of the GOT entry will be stored at Addr+2
 | 
						|
  } else if (Arch == Triple::x86) {
 | 
						|
    *Addr      = 0xE9; // 32-bit pc-relative jump.
 | 
						|
  }
 | 
						|
  return Addr;
 | 
						|
}
 | 
						|
 | 
						|
// Assign an address to a symbol name and resolve all the relocations
 | 
						|
// associated with it.
 | 
						|
void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
 | 
						|
                                             uint64_t Addr) {
 | 
						|
  // The address to use for relocation resolution is not
 | 
						|
  // the address of the local section buffer. We must be doing
 | 
						|
  // a remote execution environment of some sort. Relocations can't
 | 
						|
  // be applied until all the sections have been moved.  The client must
 | 
						|
  // trigger this with a call to MCJIT::finalize() or
 | 
						|
  // RuntimeDyld::resolveRelocations().
 | 
						|
  //
 | 
						|
  // Addr is a uint64_t because we can't assume the pointer width
 | 
						|
  // of the target is the same as that of the host. Just use a generic
 | 
						|
  // "big enough" type.
 | 
						|
  DEBUG(dbgs() << "Reassigning address for section "
 | 
						|
               << SectionID << " (" << Sections[SectionID].Name << "): "
 | 
						|
               << format("0x%016" PRIx64, Sections[SectionID].LoadAddress) << " -> "
 | 
						|
               << format("0x%016" PRIx64, Addr) << "\n");
 | 
						|
  Sections[SectionID].LoadAddress = Addr;
 | 
						|
}
 | 
						|
 | 
						|
void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
 | 
						|
                                            uint64_t Value) {
 | 
						|
  for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
 | 
						|
    const RelocationEntry &RE = Relocs[i];
 | 
						|
    // Ignore relocations for sections that were not loaded
 | 
						|
    if (Sections[RE.SectionID].Address == nullptr)
 | 
						|
      continue;
 | 
						|
    resolveRelocation(RE, Value);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void RuntimeDyldImpl::resolveExternalSymbols() {
 | 
						|
  while (!ExternalSymbolRelocations.empty()) {
 | 
						|
    StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin();
 | 
						|
 | 
						|
    StringRef Name = i->first();
 | 
						|
    if (Name.size() == 0) {
 | 
						|
      // This is an absolute symbol, use an address of zero.
 | 
						|
      DEBUG(dbgs() << "Resolving absolute relocations."
 | 
						|
                   << "\n");
 | 
						|
      RelocationList &Relocs = i->second;
 | 
						|
      resolveRelocationList(Relocs, 0);
 | 
						|
    } else {
 | 
						|
      uint64_t Addr = 0;
 | 
						|
      RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name);
 | 
						|
      if (Loc == GlobalSymbolTable.end()) {
 | 
						|
        // This is an external symbol, try to get its address from
 | 
						|
        // MemoryManager.
 | 
						|
        Addr = MemMgr->getSymbolAddress(Name.data());
 | 
						|
        // The call to getSymbolAddress may have caused additional modules to
 | 
						|
        // be loaded, which may have added new entries to the
 | 
						|
        // ExternalSymbolRelocations map.  Consquently, we need to update our
 | 
						|
        // iterator.  This is also why retrieval of the relocation list
 | 
						|
        // associated with this symbol is deferred until below this point.
 | 
						|
        // New entries may have been added to the relocation list.
 | 
						|
        i = ExternalSymbolRelocations.find(Name);
 | 
						|
      } else {
 | 
						|
        // We found the symbol in our global table.  It was probably in a
 | 
						|
        // Module that we loaded previously.
 | 
						|
        const auto &SymInfo = Loc->second;
 | 
						|
        Addr = getSectionLoadAddress(SymInfo.getSectionID()) +
 | 
						|
               SymInfo.getOffset();
 | 
						|
      }
 | 
						|
 | 
						|
      // FIXME: Implement error handling that doesn't kill the host program!
 | 
						|
      if (!Addr)
 | 
						|
        report_fatal_error("Program used external function '" + Name +
 | 
						|
                           "' which could not be resolved!");
 | 
						|
 | 
						|
      updateGOTEntries(Name, Addr);
 | 
						|
      DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t"
 | 
						|
                   << format("0x%lx", Addr) << "\n");
 | 
						|
      // This list may have been updated when we called getSymbolAddress, so
 | 
						|
      // don't change this code to get the list earlier.
 | 
						|
      RelocationList &Relocs = i->second;
 | 
						|
      resolveRelocationList(Relocs, Addr);
 | 
						|
    }
 | 
						|
 | 
						|
    ExternalSymbolRelocations.erase(i);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// RuntimeDyld class implementation
 | 
						|
 | 
						|
uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress(
 | 
						|
                                                  StringRef SectionName) const {
 | 
						|
  for (unsigned I = BeginIdx; I != EndIdx; ++I)
 | 
						|
    if (RTDyld.Sections[I].Name == SectionName)
 | 
						|
      return RTDyld.Sections[I].LoadAddress;
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
RuntimeDyld::RuntimeDyld(RTDyldMemoryManager *mm) {
 | 
						|
  // FIXME: There's a potential issue lurking here if a single instance of
 | 
						|
  // RuntimeDyld is used to load multiple objects.  The current implementation
 | 
						|
  // associates a single memory manager with a RuntimeDyld instance.  Even
 | 
						|
  // though the public class spawns a new 'impl' instance for each load,
 | 
						|
  // they share a single memory manager.  This can become a problem when page
 | 
						|
  // permissions are applied.
 | 
						|
  Dyld = nullptr;
 | 
						|
  MM = mm;
 | 
						|
  ProcessAllSections = false;
 | 
						|
  Checker = nullptr;
 | 
						|
}
 | 
						|
 | 
						|
RuntimeDyld::~RuntimeDyld() {}
 | 
						|
 | 
						|
static std::unique_ptr<RuntimeDyldELF>
 | 
						|
createRuntimeDyldELF(RTDyldMemoryManager *MM, bool ProcessAllSections,
 | 
						|
                     RuntimeDyldCheckerImpl *Checker) {
 | 
						|
  std::unique_ptr<RuntimeDyldELF> Dyld(new RuntimeDyldELF(MM));
 | 
						|
  Dyld->setProcessAllSections(ProcessAllSections);
 | 
						|
  Dyld->setRuntimeDyldChecker(Checker);
 | 
						|
  return Dyld;
 | 
						|
}
 | 
						|
 | 
						|
static std::unique_ptr<RuntimeDyldMachO>
 | 
						|
createRuntimeDyldMachO(Triple::ArchType Arch, RTDyldMemoryManager *MM,
 | 
						|
                       bool ProcessAllSections, RuntimeDyldCheckerImpl *Checker) {
 | 
						|
  std::unique_ptr<RuntimeDyldMachO> Dyld(RuntimeDyldMachO::create(Arch, MM));
 | 
						|
  Dyld->setProcessAllSections(ProcessAllSections);
 | 
						|
  Dyld->setRuntimeDyldChecker(Checker);
 | 
						|
  return Dyld;
 | 
						|
}
 | 
						|
 | 
						|
std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
 | 
						|
RuntimeDyld::loadObject(const ObjectFile &Obj) {
 | 
						|
  if (!Dyld) {
 | 
						|
    if (Obj.isELF())
 | 
						|
      Dyld = createRuntimeDyldELF(MM, ProcessAllSections, Checker);
 | 
						|
    else if (Obj.isMachO())
 | 
						|
      Dyld = createRuntimeDyldMachO(
 | 
						|
               static_cast<Triple::ArchType>(Obj.getArch()), MM,
 | 
						|
               ProcessAllSections, Checker);
 | 
						|
    else
 | 
						|
      report_fatal_error("Incompatible object format!");
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Dyld->isCompatibleFile(Obj))
 | 
						|
    report_fatal_error("Incompatible object format!");
 | 
						|
 | 
						|
  return Dyld->loadObject(Obj);
 | 
						|
}
 | 
						|
 | 
						|
void *RuntimeDyld::getSymbolAddress(StringRef Name) const {
 | 
						|
  if (!Dyld)
 | 
						|
    return nullptr;
 | 
						|
  return Dyld->getSymbolAddress(Name);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t RuntimeDyld::getSymbolLoadAddress(StringRef Name) const {
 | 
						|
  if (!Dyld)
 | 
						|
    return 0;
 | 
						|
  return Dyld->getSymbolLoadAddress(Name);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t RuntimeDyld::getExportedSymbolLoadAddress(StringRef Name) const {
 | 
						|
  if (!Dyld)
 | 
						|
    return 0;
 | 
						|
  return Dyld->getExportedSymbolLoadAddress(Name);
 | 
						|
}
 | 
						|
 | 
						|
void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); }
 | 
						|
 | 
						|
void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
 | 
						|
  Dyld->reassignSectionAddress(SectionID, Addr);
 | 
						|
}
 | 
						|
 | 
						|
void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
 | 
						|
                                    uint64_t TargetAddress) {
 | 
						|
  Dyld->mapSectionAddress(LocalAddress, TargetAddress);
 | 
						|
}
 | 
						|
 | 
						|
bool RuntimeDyld::hasError() { return Dyld->hasError(); }
 | 
						|
 | 
						|
StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); }
 | 
						|
 | 
						|
void RuntimeDyld::registerEHFrames() {
 | 
						|
  if (Dyld)
 | 
						|
    Dyld->registerEHFrames();
 | 
						|
}
 | 
						|
 | 
						|
void RuntimeDyld::deregisterEHFrames() {
 | 
						|
  if (Dyld)
 | 
						|
    Dyld->deregisterEHFrames();
 | 
						|
}
 | 
						|
 | 
						|
} // end namespace llvm
 |