mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	This has wider implications than I expected when I reviewed the patch: It can cause JIT crashes where clients have used the default value for AbortOnFailure during symbol lookup. I'm currently investigating alternative approaches and I hope to have this back in tree soon. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227287 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1500 lines
		
	
	
		
			59 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1500 lines
		
	
	
		
			59 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Implementation of ELF support for the MC-JIT runtime dynamic linker.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "RuntimeDyldELF.h"
 | 
						|
#include "llvm/ADT/IntervalMap.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/StringRef.h"
 | 
						|
#include "llvm/ADT/Triple.h"
 | 
						|
#include "llvm/MC/MCStreamer.h"
 | 
						|
#include "llvm/Object/ELFObjectFile.h"
 | 
						|
#include "llvm/Object/ObjectFile.h"
 | 
						|
#include "llvm/Support/ELF.h"
 | 
						|
#include "llvm/Support/Endian.h"
 | 
						|
#include "llvm/Support/MemoryBuffer.h"
 | 
						|
#include "llvm/Support/TargetRegistry.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
using namespace llvm::object;
 | 
						|
 | 
						|
#define DEBUG_TYPE "dyld"
 | 
						|
 | 
						|
static inline std::error_code check(std::error_code Err) {
 | 
						|
  if (Err) {
 | 
						|
    report_fatal_error(Err.message());
 | 
						|
  }
 | 
						|
  return Err;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> {
 | 
						|
  LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
 | 
						|
 | 
						|
  typedef Elf_Shdr_Impl<ELFT> Elf_Shdr;
 | 
						|
  typedef Elf_Sym_Impl<ELFT> Elf_Sym;
 | 
						|
  typedef Elf_Rel_Impl<ELFT, false> Elf_Rel;
 | 
						|
  typedef Elf_Rel_Impl<ELFT, true> Elf_Rela;
 | 
						|
 | 
						|
  typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr;
 | 
						|
 | 
						|
  typedef typename ELFDataTypeTypedefHelper<ELFT>::value_type addr_type;
 | 
						|
 | 
						|
public:
 | 
						|
  DyldELFObject(MemoryBufferRef Wrapper, std::error_code &ec);
 | 
						|
 | 
						|
  void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
 | 
						|
 | 
						|
  void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr);
 | 
						|
 | 
						|
  // Methods for type inquiry through isa, cast and dyn_cast
 | 
						|
  static inline bool classof(const Binary *v) {
 | 
						|
    return (isa<ELFObjectFile<ELFT>>(v) &&
 | 
						|
            classof(cast<ELFObjectFile<ELFT>>(v)));
 | 
						|
  }
 | 
						|
  static inline bool classof(const ELFObjectFile<ELFT> *v) {
 | 
						|
    return v->isDyldType();
 | 
						|
  }
 | 
						|
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
 | 
						|
// The MemoryBuffer passed into this constructor is just a wrapper around the
 | 
						|
// actual memory.  Ultimately, the Binary parent class will take ownership of
 | 
						|
// this MemoryBuffer object but not the underlying memory.
 | 
						|
template <class ELFT>
 | 
						|
DyldELFObject<ELFT>::DyldELFObject(MemoryBufferRef Wrapper, std::error_code &EC)
 | 
						|
    : ELFObjectFile<ELFT>(Wrapper, EC) {
 | 
						|
  this->isDyldELFObject = true;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
 | 
						|
                                               uint64_t Addr) {
 | 
						|
  DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
 | 
						|
  Elf_Shdr *shdr =
 | 
						|
      const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
 | 
						|
 | 
						|
  // This assumes the address passed in matches the target address bitness
 | 
						|
  // The template-based type cast handles everything else.
 | 
						|
  shdr->sh_addr = static_cast<addr_type>(Addr);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
 | 
						|
                                              uint64_t Addr) {
 | 
						|
 | 
						|
  Elf_Sym *sym = const_cast<Elf_Sym *>(
 | 
						|
      ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl()));
 | 
						|
 | 
						|
  // This assumes the address passed in matches the target address bitness
 | 
						|
  // The template-based type cast handles everything else.
 | 
						|
  sym->st_value = static_cast<addr_type>(Addr);
 | 
						|
}
 | 
						|
 | 
						|
class LoadedELFObjectInfo : public RuntimeDyld::LoadedObjectInfo {
 | 
						|
public:
 | 
						|
  LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, unsigned BeginIdx,
 | 
						|
                      unsigned EndIdx)
 | 
						|
    : RuntimeDyld::LoadedObjectInfo(RTDyld, BeginIdx, EndIdx) {}
 | 
						|
 | 
						|
  OwningBinary<ObjectFile>
 | 
						|
  getObjectForDebug(const ObjectFile &Obj) const override;
 | 
						|
};
 | 
						|
 | 
						|
template <typename ELFT>
 | 
						|
std::unique_ptr<DyldELFObject<ELFT>>
 | 
						|
createRTDyldELFObject(MemoryBufferRef Buffer,
 | 
						|
                      const LoadedELFObjectInfo &L,
 | 
						|
                      std::error_code &ec) {
 | 
						|
  typedef typename ELFFile<ELFT>::Elf_Shdr Elf_Shdr;
 | 
						|
  typedef typename ELFDataTypeTypedefHelper<ELFT>::value_type addr_type;
 | 
						|
 | 
						|
  std::unique_ptr<DyldELFObject<ELFT>> Obj =
 | 
						|
    llvm::make_unique<DyldELFObject<ELFT>>(Buffer, ec);
 | 
						|
 | 
						|
  // Iterate over all sections in the object.
 | 
						|
  for (const auto &Sec : Obj->sections()) {
 | 
						|
    StringRef SectionName;
 | 
						|
    Sec.getName(SectionName);
 | 
						|
    if (SectionName != "") {
 | 
						|
      DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
 | 
						|
      Elf_Shdr *shdr = const_cast<Elf_Shdr *>(
 | 
						|
          reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
 | 
						|
 | 
						|
      if (uint64_t SecLoadAddr = L.getSectionLoadAddress(SectionName)) {
 | 
						|
        // This assumes that the address passed in matches the target address
 | 
						|
        // bitness. The template-based type cast handles everything else.
 | 
						|
        shdr->sh_addr = static_cast<addr_type>(SecLoadAddr);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Obj;
 | 
						|
}
 | 
						|
 | 
						|
OwningBinary<ObjectFile> createELFDebugObject(const ObjectFile &Obj,
 | 
						|
                                              const LoadedELFObjectInfo &L) {
 | 
						|
  assert(Obj.isELF() && "Not an ELF object file.");
 | 
						|
 | 
						|
  std::unique_ptr<MemoryBuffer> Buffer =
 | 
						|
    MemoryBuffer::getMemBufferCopy(Obj.getData(), Obj.getFileName());
 | 
						|
 | 
						|
  std::error_code ec;
 | 
						|
 | 
						|
  std::unique_ptr<ObjectFile> DebugObj;
 | 
						|
  if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian()) {
 | 
						|
    typedef ELFType<support::little, 2, false> ELF32LE;
 | 
						|
    DebugObj = createRTDyldELFObject<ELF32LE>(Buffer->getMemBufferRef(), L, ec);
 | 
						|
  } else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian()) {
 | 
						|
    typedef ELFType<support::big, 2, false> ELF32BE;
 | 
						|
    DebugObj = createRTDyldELFObject<ELF32BE>(Buffer->getMemBufferRef(), L, ec);
 | 
						|
  } else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian()) {
 | 
						|
    typedef ELFType<support::big, 2, true> ELF64BE;
 | 
						|
    DebugObj = createRTDyldELFObject<ELF64BE>(Buffer->getMemBufferRef(), L, ec);
 | 
						|
  } else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian()) {
 | 
						|
    typedef ELFType<support::little, 2, true> ELF64LE;
 | 
						|
    DebugObj = createRTDyldELFObject<ELF64LE>(Buffer->getMemBufferRef(), L, ec);
 | 
						|
  } else
 | 
						|
    llvm_unreachable("Unexpected ELF format");
 | 
						|
 | 
						|
  assert(!ec && "Could not construct copy ELF object file");
 | 
						|
 | 
						|
  return OwningBinary<ObjectFile>(std::move(DebugObj), std::move(Buffer));
 | 
						|
}
 | 
						|
 | 
						|
OwningBinary<ObjectFile>
 | 
						|
LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const {
 | 
						|
  return createELFDebugObject(Obj, *this);
 | 
						|
}
 | 
						|
 | 
						|
} // namespace
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
RuntimeDyldELF::RuntimeDyldELF(RTDyldMemoryManager *mm) : RuntimeDyldImpl(mm) {}
 | 
						|
RuntimeDyldELF::~RuntimeDyldELF() {}
 | 
						|
 | 
						|
void RuntimeDyldELF::registerEHFrames() {
 | 
						|
  if (!MemMgr)
 | 
						|
    return;
 | 
						|
  for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) {
 | 
						|
    SID EHFrameSID = UnregisteredEHFrameSections[i];
 | 
						|
    uint8_t *EHFrameAddr = Sections[EHFrameSID].Address;
 | 
						|
    uint64_t EHFrameLoadAddr = Sections[EHFrameSID].LoadAddress;
 | 
						|
    size_t EHFrameSize = Sections[EHFrameSID].Size;
 | 
						|
    MemMgr->registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
 | 
						|
    RegisteredEHFrameSections.push_back(EHFrameSID);
 | 
						|
  }
 | 
						|
  UnregisteredEHFrameSections.clear();
 | 
						|
}
 | 
						|
 | 
						|
void RuntimeDyldELF::deregisterEHFrames() {
 | 
						|
  if (!MemMgr)
 | 
						|
    return;
 | 
						|
  for (int i = 0, e = RegisteredEHFrameSections.size(); i != e; ++i) {
 | 
						|
    SID EHFrameSID = RegisteredEHFrameSections[i];
 | 
						|
    uint8_t *EHFrameAddr = Sections[EHFrameSID].Address;
 | 
						|
    uint64_t EHFrameLoadAddr = Sections[EHFrameSID].LoadAddress;
 | 
						|
    size_t EHFrameSize = Sections[EHFrameSID].Size;
 | 
						|
    MemMgr->deregisterEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
 | 
						|
  }
 | 
						|
  RegisteredEHFrameSections.clear();
 | 
						|
}
 | 
						|
 | 
						|
std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
 | 
						|
RuntimeDyldELF::loadObject(const object::ObjectFile &O) {
 | 
						|
  unsigned SectionStartIdx, SectionEndIdx;
 | 
						|
  std::tie(SectionStartIdx, SectionEndIdx) = loadObjectImpl(O);
 | 
						|
  return llvm::make_unique<LoadedELFObjectInfo>(*this, SectionStartIdx,
 | 
						|
                                                SectionEndIdx);
 | 
						|
}
 | 
						|
 | 
						|
void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
 | 
						|
                                             uint64_t Offset, uint64_t Value,
 | 
						|
                                             uint32_t Type, int64_t Addend,
 | 
						|
                                             uint64_t SymOffset) {
 | 
						|
  switch (Type) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Relocation type not implemented yet!");
 | 
						|
    break;
 | 
						|
  case ELF::R_X86_64_64: {
 | 
						|
    support::ulittle64_t::ref(Section.Address + Offset) = Value + Addend;
 | 
						|
    DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
 | 
						|
                 << format("%p\n", Section.Address + Offset));
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ELF::R_X86_64_32:
 | 
						|
  case ELF::R_X86_64_32S: {
 | 
						|
    Value += Addend;
 | 
						|
    assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
 | 
						|
           (Type == ELF::R_X86_64_32S &&
 | 
						|
            ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
 | 
						|
    uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
 | 
						|
    support::ulittle32_t::ref(Section.Address + Offset) = TruncatedAddr;
 | 
						|
    DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
 | 
						|
                 << format("%p\n", Section.Address + Offset));
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ELF::R_X86_64_GOTPCREL: {
 | 
						|
    // findGOTEntry returns the 'G + GOT' part of the relocation calculation
 | 
						|
    // based on the load/target address of the GOT (not the current/local addr).
 | 
						|
    uint64_t GOTAddr = findGOTEntry(Value, SymOffset);
 | 
						|
    uint64_t FinalAddress = Section.LoadAddress + Offset;
 | 
						|
    // The processRelocationRef method combines the symbol offset and the addend
 | 
						|
    // and in most cases that's what we want.  For this relocation type, we need
 | 
						|
    // the raw addend, so we subtract the symbol offset to get it.
 | 
						|
    int64_t RealOffset = GOTAddr + Addend - SymOffset - FinalAddress;
 | 
						|
    assert(RealOffset <= INT32_MAX && RealOffset >= INT32_MIN);
 | 
						|
    int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
 | 
						|
    support::ulittle32_t::ref(Section.Address + Offset) = TruncOffset;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ELF::R_X86_64_PC32: {
 | 
						|
    // Get the placeholder value from the generated object since
 | 
						|
    // a previous relocation attempt may have overwritten the loaded version
 | 
						|
    support::ulittle32_t::ref Placeholder(
 | 
						|
        (void *)(Section.ObjAddress + Offset));
 | 
						|
    uint64_t FinalAddress = Section.LoadAddress + Offset;
 | 
						|
    int64_t RealOffset = Placeholder + Value + Addend - FinalAddress;
 | 
						|
    assert(RealOffset <= INT32_MAX && RealOffset >= INT32_MIN);
 | 
						|
    int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
 | 
						|
    support::ulittle32_t::ref(Section.Address + Offset) = TruncOffset;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ELF::R_X86_64_PC64: {
 | 
						|
    // Get the placeholder value from the generated object since
 | 
						|
    // a previous relocation attempt may have overwritten the loaded version
 | 
						|
    support::ulittle64_t::ref Placeholder(
 | 
						|
        (void *)(Section.ObjAddress + Offset));
 | 
						|
    uint64_t FinalAddress = Section.LoadAddress + Offset;
 | 
						|
    support::ulittle64_t::ref(Section.Address + Offset) =
 | 
						|
        Placeholder + Value + Addend - FinalAddress;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
 | 
						|
                                          uint64_t Offset, uint32_t Value,
 | 
						|
                                          uint32_t Type, int32_t Addend) {
 | 
						|
  switch (Type) {
 | 
						|
  case ELF::R_386_32: {
 | 
						|
    // Get the placeholder value from the generated object since
 | 
						|
    // a previous relocation attempt may have overwritten the loaded version
 | 
						|
    support::ulittle32_t::ref Placeholder(
 | 
						|
        (void *)(Section.ObjAddress + Offset));
 | 
						|
    support::ulittle32_t::ref(Section.Address + Offset) =
 | 
						|
        Placeholder + Value + Addend;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ELF::R_386_PC32: {
 | 
						|
    // Get the placeholder value from the generated object since
 | 
						|
    // a previous relocation attempt may have overwritten the loaded version
 | 
						|
    support::ulittle32_t::ref Placeholder(
 | 
						|
        (void *)(Section.ObjAddress + Offset));
 | 
						|
    uint32_t FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF);
 | 
						|
    uint32_t RealOffset = Placeholder + Value + Addend - FinalAddress;
 | 
						|
    support::ulittle32_t::ref(Section.Address + Offset) = RealOffset;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    // There are other relocation types, but it appears these are the
 | 
						|
    // only ones currently used by the LLVM ELF object writer
 | 
						|
    llvm_unreachable("Relocation type not implemented yet!");
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
 | 
						|
                                              uint64_t Offset, uint64_t Value,
 | 
						|
                                              uint32_t Type, int64_t Addend) {
 | 
						|
  uint32_t *TargetPtr = reinterpret_cast<uint32_t *>(Section.Address + Offset);
 | 
						|
  uint64_t FinalAddress = Section.LoadAddress + Offset;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
 | 
						|
               << format("%llx", Section.Address + Offset)
 | 
						|
               << " FinalAddress: 0x" << format("%llx", FinalAddress)
 | 
						|
               << " Value: 0x" << format("%llx", Value) << " Type: 0x"
 | 
						|
               << format("%x", Type) << " Addend: 0x" << format("%llx", Addend)
 | 
						|
               << "\n");
 | 
						|
 | 
						|
  switch (Type) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Relocation type not implemented yet!");
 | 
						|
    break;
 | 
						|
  case ELF::R_AARCH64_ABS64: {
 | 
						|
    uint64_t *TargetPtr =
 | 
						|
        reinterpret_cast<uint64_t *>(Section.Address + Offset);
 | 
						|
    *TargetPtr = Value + Addend;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ELF::R_AARCH64_PREL32: {
 | 
						|
    uint64_t Result = Value + Addend - FinalAddress;
 | 
						|
    assert(static_cast<int64_t>(Result) >= INT32_MIN &&
 | 
						|
           static_cast<int64_t>(Result) <= UINT32_MAX);
 | 
						|
    *TargetPtr = static_cast<uint32_t>(Result & 0xffffffffU);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ELF::R_AARCH64_CALL26: // fallthrough
 | 
						|
  case ELF::R_AARCH64_JUMP26: {
 | 
						|
    // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
 | 
						|
    // calculation.
 | 
						|
    uint64_t BranchImm = Value + Addend - FinalAddress;
 | 
						|
 | 
						|
    // "Check that -2^27 <= result < 2^27".
 | 
						|
    assert(-(1LL << 27) <= static_cast<int64_t>(BranchImm) &&
 | 
						|
           static_cast<int64_t>(BranchImm) < (1LL << 27));
 | 
						|
 | 
						|
    // AArch64 code is emitted with .rela relocations. The data already in any
 | 
						|
    // bits affected by the relocation on entry is garbage.
 | 
						|
    *TargetPtr &= 0xfc000000U;
 | 
						|
    // Immediate goes in bits 25:0 of B and BL.
 | 
						|
    *TargetPtr |= static_cast<uint32_t>(BranchImm & 0xffffffcU) >> 2;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ELF::R_AARCH64_MOVW_UABS_G3: {
 | 
						|
    uint64_t Result = Value + Addend;
 | 
						|
 | 
						|
    // AArch64 code is emitted with .rela relocations. The data already in any
 | 
						|
    // bits affected by the relocation on entry is garbage.
 | 
						|
    *TargetPtr &= 0xffe0001fU;
 | 
						|
    // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
 | 
						|
    *TargetPtr |= Result >> (48 - 5);
 | 
						|
    // Shift must be "lsl #48", in bits 22:21
 | 
						|
    assert((*TargetPtr >> 21 & 0x3) == 3 && "invalid shift for relocation");
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ELF::R_AARCH64_MOVW_UABS_G2_NC: {
 | 
						|
    uint64_t Result = Value + Addend;
 | 
						|
 | 
						|
    // AArch64 code is emitted with .rela relocations. The data already in any
 | 
						|
    // bits affected by the relocation on entry is garbage.
 | 
						|
    *TargetPtr &= 0xffe0001fU;
 | 
						|
    // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
 | 
						|
    *TargetPtr |= ((Result & 0xffff00000000ULL) >> (32 - 5));
 | 
						|
    // Shift must be "lsl #32", in bits 22:21
 | 
						|
    assert((*TargetPtr >> 21 & 0x3) == 2 && "invalid shift for relocation");
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ELF::R_AARCH64_MOVW_UABS_G1_NC: {
 | 
						|
    uint64_t Result = Value + Addend;
 | 
						|
 | 
						|
    // AArch64 code is emitted with .rela relocations. The data already in any
 | 
						|
    // bits affected by the relocation on entry is garbage.
 | 
						|
    *TargetPtr &= 0xffe0001fU;
 | 
						|
    // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
 | 
						|
    *TargetPtr |= ((Result & 0xffff0000U) >> (16 - 5));
 | 
						|
    // Shift must be "lsl #16", in bits 22:2
 | 
						|
    assert((*TargetPtr >> 21 & 0x3) == 1 && "invalid shift for relocation");
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ELF::R_AARCH64_MOVW_UABS_G0_NC: {
 | 
						|
    uint64_t Result = Value + Addend;
 | 
						|
 | 
						|
    // AArch64 code is emitted with .rela relocations. The data already in any
 | 
						|
    // bits affected by the relocation on entry is garbage.
 | 
						|
    *TargetPtr &= 0xffe0001fU;
 | 
						|
    // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
 | 
						|
    *TargetPtr |= ((Result & 0xffffU) << 5);
 | 
						|
    // Shift must be "lsl #0", in bits 22:21.
 | 
						|
    assert((*TargetPtr >> 21 & 0x3) == 0 && "invalid shift for relocation");
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ELF::R_AARCH64_ADR_PREL_PG_HI21: {
 | 
						|
    // Operation: Page(S+A) - Page(P)
 | 
						|
    uint64_t Result =
 | 
						|
        ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL);
 | 
						|
 | 
						|
    // Check that -2^32 <= X < 2^32
 | 
						|
    assert(static_cast<int64_t>(Result) >= (-1LL << 32) &&
 | 
						|
           static_cast<int64_t>(Result) < (1LL << 32) &&
 | 
						|
           "overflow check failed for relocation");
 | 
						|
 | 
						|
    // AArch64 code is emitted with .rela relocations. The data already in any
 | 
						|
    // bits affected by the relocation on entry is garbage.
 | 
						|
    *TargetPtr &= 0x9f00001fU;
 | 
						|
    // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
 | 
						|
    // from bits 32:12 of X.
 | 
						|
    *TargetPtr |= ((Result & 0x3000U) << (29 - 12));
 | 
						|
    *TargetPtr |= ((Result & 0x1ffffc000ULL) >> (14 - 5));
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ELF::R_AARCH64_LDST32_ABS_LO12_NC: {
 | 
						|
    // Operation: S + A
 | 
						|
    uint64_t Result = Value + Addend;
 | 
						|
 | 
						|
    // AArch64 code is emitted with .rela relocations. The data already in any
 | 
						|
    // bits affected by the relocation on entry is garbage.
 | 
						|
    *TargetPtr &= 0xffc003ffU;
 | 
						|
    // Immediate goes in bits 21:10 of LD/ST instruction, taken
 | 
						|
    // from bits 11:2 of X
 | 
						|
    *TargetPtr |= ((Result & 0xffc) << (10 - 2));
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ELF::R_AARCH64_LDST64_ABS_LO12_NC: {
 | 
						|
    // Operation: S + A
 | 
						|
    uint64_t Result = Value + Addend;
 | 
						|
 | 
						|
    // AArch64 code is emitted with .rela relocations. The data already in any
 | 
						|
    // bits affected by the relocation on entry is garbage.
 | 
						|
    *TargetPtr &= 0xffc003ffU;
 | 
						|
    // Immediate goes in bits 21:10 of LD/ST instruction, taken
 | 
						|
    // from bits 11:3 of X
 | 
						|
    *TargetPtr |= ((Result & 0xff8) << (10 - 3));
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
 | 
						|
                                          uint64_t Offset, uint32_t Value,
 | 
						|
                                          uint32_t Type, int32_t Addend) {
 | 
						|
  // TODO: Add Thumb relocations.
 | 
						|
  uint32_t *Placeholder =
 | 
						|
      reinterpret_cast<uint32_t *>(Section.ObjAddress + Offset);
 | 
						|
  uint32_t *TargetPtr = (uint32_t *)(Section.Address + Offset);
 | 
						|
  uint32_t FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF);
 | 
						|
  Value += Addend;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
 | 
						|
               << Section.Address + Offset
 | 
						|
               << " FinalAddress: " << format("%p", FinalAddress) << " Value: "
 | 
						|
               << format("%x", Value) << " Type: " << format("%x", Type)
 | 
						|
               << " Addend: " << format("%x", Addend) << "\n");
 | 
						|
 | 
						|
  switch (Type) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Not implemented relocation type!");
 | 
						|
 | 
						|
  case ELF::R_ARM_NONE:
 | 
						|
    break;
 | 
						|
  // Write a 32bit value to relocation address, taking into account the
 | 
						|
  // implicit addend encoded in the target.
 | 
						|
  case ELF::R_ARM_PREL31:
 | 
						|
  case ELF::R_ARM_TARGET1:
 | 
						|
  case ELF::R_ARM_ABS32:
 | 
						|
    *TargetPtr = *Placeholder + Value;
 | 
						|
    break;
 | 
						|
  // Write first 16 bit of 32 bit value to the mov instruction.
 | 
						|
  // Last 4 bit should be shifted.
 | 
						|
  case ELF::R_ARM_MOVW_ABS_NC:
 | 
						|
    // We are not expecting any other addend in the relocation address.
 | 
						|
    // Using 0x000F0FFF because MOVW has its 16 bit immediate split into 2
 | 
						|
    // non-contiguous fields.
 | 
						|
    assert((*Placeholder & 0x000F0FFF) == 0);
 | 
						|
    Value = Value & 0xFFFF;
 | 
						|
    *TargetPtr = *Placeholder | (Value & 0xFFF);
 | 
						|
    *TargetPtr |= ((Value >> 12) & 0xF) << 16;
 | 
						|
    break;
 | 
						|
  // Write last 16 bit of 32 bit value to the mov instruction.
 | 
						|
  // Last 4 bit should be shifted.
 | 
						|
  case ELF::R_ARM_MOVT_ABS:
 | 
						|
    // We are not expecting any other addend in the relocation address.
 | 
						|
    // Use 0x000F0FFF for the same reason as R_ARM_MOVW_ABS_NC.
 | 
						|
    assert((*Placeholder & 0x000F0FFF) == 0);
 | 
						|
 | 
						|
    Value = (Value >> 16) & 0xFFFF;
 | 
						|
    *TargetPtr = *Placeholder | (Value & 0xFFF);
 | 
						|
    *TargetPtr |= ((Value >> 12) & 0xF) << 16;
 | 
						|
    break;
 | 
						|
  // Write 24 bit relative value to the branch instruction.
 | 
						|
  case ELF::R_ARM_PC24: // Fall through.
 | 
						|
  case ELF::R_ARM_CALL: // Fall through.
 | 
						|
  case ELF::R_ARM_JUMP24: {
 | 
						|
    int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
 | 
						|
    RelValue = (RelValue & 0x03FFFFFC) >> 2;
 | 
						|
    assert((*TargetPtr & 0xFFFFFF) == 0xFFFFFE);
 | 
						|
    *TargetPtr &= 0xFF000000;
 | 
						|
    *TargetPtr |= RelValue;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ELF::R_ARM_PRIVATE_0:
 | 
						|
    // This relocation is reserved by the ARM ELF ABI for internal use. We
 | 
						|
    // appropriate it here to act as an R_ARM_ABS32 without any addend for use
 | 
						|
    // in the stubs created during JIT (which can't put an addend into the
 | 
						|
    // original object file).
 | 
						|
    *TargetPtr = Value;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void RuntimeDyldELF::resolveMIPSRelocation(const SectionEntry &Section,
 | 
						|
                                           uint64_t Offset, uint32_t Value,
 | 
						|
                                           uint32_t Type, int32_t Addend) {
 | 
						|
  uint32_t *Placeholder =
 | 
						|
      reinterpret_cast<uint32_t *>(Section.ObjAddress + Offset);
 | 
						|
  uint32_t *TargetPtr = (uint32_t *)(Section.Address + Offset);
 | 
						|
  Value += Addend;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "resolveMipselocation, LocalAddress: "
 | 
						|
               << Section.Address + Offset << " FinalAddress: "
 | 
						|
               << format("%p", Section.LoadAddress + Offset) << " Value: "
 | 
						|
               << format("%x", Value) << " Type: " << format("%x", Type)
 | 
						|
               << " Addend: " << format("%x", Addend) << "\n");
 | 
						|
 | 
						|
  switch (Type) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Not implemented relocation type!");
 | 
						|
    break;
 | 
						|
  case ELF::R_MIPS_32:
 | 
						|
    *TargetPtr = Value + (*Placeholder);
 | 
						|
    break;
 | 
						|
  case ELF::R_MIPS_26:
 | 
						|
    *TargetPtr = ((*Placeholder) & 0xfc000000) | ((Value & 0x0fffffff) >> 2);
 | 
						|
    break;
 | 
						|
  case ELF::R_MIPS_HI16:
 | 
						|
    // Get the higher 16-bits. Also add 1 if bit 15 is 1.
 | 
						|
    Value += ((*Placeholder) & 0x0000ffff) << 16;
 | 
						|
    *TargetPtr =
 | 
						|
        ((*Placeholder) & 0xffff0000) | (((Value + 0x8000) >> 16) & 0xffff);
 | 
						|
    break;
 | 
						|
  case ELF::R_MIPS_LO16:
 | 
						|
    Value += ((*Placeholder) & 0x0000ffff);
 | 
						|
    *TargetPtr = ((*Placeholder) & 0xffff0000) | (Value & 0xffff);
 | 
						|
    break;
 | 
						|
  case ELF::R_MIPS_UNUSED1:
 | 
						|
    // Similar to ELF::R_ARM_PRIVATE_0, R_MIPS_UNUSED1 and R_MIPS_UNUSED2
 | 
						|
    // are used for internal JIT purpose. These relocations are similar to
 | 
						|
    // R_MIPS_HI16 and R_MIPS_LO16, but they do not take any addend into
 | 
						|
    // account.
 | 
						|
    *TargetPtr =
 | 
						|
        ((*TargetPtr) & 0xffff0000) | (((Value + 0x8000) >> 16) & 0xffff);
 | 
						|
    break;
 | 
						|
  case ELF::R_MIPS_UNUSED2:
 | 
						|
    *TargetPtr = ((*TargetPtr) & 0xffff0000) | (Value & 0xffff);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Return the .TOC. section and offset.
 | 
						|
void RuntimeDyldELF::findPPC64TOCSection(const ObjectFile &Obj,
 | 
						|
                                         ObjSectionToIDMap &LocalSections,
 | 
						|
                                         RelocationValueRef &Rel) {
 | 
						|
  // Set a default SectionID in case we do not find a TOC section below.
 | 
						|
  // This may happen for references to TOC base base (sym@toc, .odp
 | 
						|
  // relocation) without a .toc directive.  In this case just use the
 | 
						|
  // first section (which is usually the .odp) since the code won't
 | 
						|
  // reference the .toc base directly.
 | 
						|
  Rel.SymbolName = NULL;
 | 
						|
  Rel.SectionID = 0;
 | 
						|
 | 
						|
  // The TOC consists of sections .got, .toc, .tocbss, .plt in that
 | 
						|
  // order. The TOC starts where the first of these sections starts.
 | 
						|
  for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
 | 
						|
       si != se; ++si) {
 | 
						|
 | 
						|
    StringRef SectionName;
 | 
						|
    check(si->getName(SectionName));
 | 
						|
 | 
						|
    if (SectionName == ".got"
 | 
						|
        || SectionName == ".toc"
 | 
						|
        || SectionName == ".tocbss"
 | 
						|
        || SectionName == ".plt") {
 | 
						|
      Rel.SectionID = findOrEmitSection(Obj, *si, false, LocalSections);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
 | 
						|
  // thus permitting a full 64 Kbytes segment.
 | 
						|
  Rel.Addend = 0x8000;
 | 
						|
}
 | 
						|
 | 
						|
// Returns the sections and offset associated with the ODP entry referenced
 | 
						|
// by Symbol.
 | 
						|
void RuntimeDyldELF::findOPDEntrySection(const ObjectFile &Obj,
 | 
						|
                                         ObjSectionToIDMap &LocalSections,
 | 
						|
                                         RelocationValueRef &Rel) {
 | 
						|
  // Get the ELF symbol value (st_value) to compare with Relocation offset in
 | 
						|
  // .opd entries
 | 
						|
  for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
 | 
						|
       si != se; ++si) {
 | 
						|
    section_iterator RelSecI = si->getRelocatedSection();
 | 
						|
    if (RelSecI == Obj.section_end())
 | 
						|
      continue;
 | 
						|
 | 
						|
    StringRef RelSectionName;
 | 
						|
    check(RelSecI->getName(RelSectionName));
 | 
						|
    if (RelSectionName != ".opd")
 | 
						|
      continue;
 | 
						|
 | 
						|
    for (relocation_iterator i = si->relocation_begin(),
 | 
						|
                             e = si->relocation_end();
 | 
						|
         i != e;) {
 | 
						|
      // The R_PPC64_ADDR64 relocation indicates the first field
 | 
						|
      // of a .opd entry
 | 
						|
      uint64_t TypeFunc;
 | 
						|
      check(i->getType(TypeFunc));
 | 
						|
      if (TypeFunc != ELF::R_PPC64_ADDR64) {
 | 
						|
        ++i;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      uint64_t TargetSymbolOffset;
 | 
						|
      symbol_iterator TargetSymbol = i->getSymbol();
 | 
						|
      check(i->getOffset(TargetSymbolOffset));
 | 
						|
      int64_t Addend;
 | 
						|
      check(getELFRelocationAddend(*i, Addend));
 | 
						|
 | 
						|
      ++i;
 | 
						|
      if (i == e)
 | 
						|
        break;
 | 
						|
 | 
						|
      // Just check if following relocation is a R_PPC64_TOC
 | 
						|
      uint64_t TypeTOC;
 | 
						|
      check(i->getType(TypeTOC));
 | 
						|
      if (TypeTOC != ELF::R_PPC64_TOC)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Finally compares the Symbol value and the target symbol offset
 | 
						|
      // to check if this .opd entry refers to the symbol the relocation
 | 
						|
      // points to.
 | 
						|
      if (Rel.Addend != (int64_t)TargetSymbolOffset)
 | 
						|
        continue;
 | 
						|
 | 
						|
      section_iterator tsi(Obj.section_end());
 | 
						|
      check(TargetSymbol->getSection(tsi));
 | 
						|
      bool IsCode = tsi->isText();
 | 
						|
      Rel.SectionID = findOrEmitSection(Obj, (*tsi), IsCode, LocalSections);
 | 
						|
      Rel.Addend = (intptr_t)Addend;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  llvm_unreachable("Attempting to get address of ODP entry!");
 | 
						|
}
 | 
						|
 | 
						|
// Relocation masks following the #lo(value), #hi(value), #ha(value),
 | 
						|
// #higher(value), #highera(value), #highest(value), and #highesta(value)
 | 
						|
// macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
 | 
						|
// document.
 | 
						|
 | 
						|
static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; }
 | 
						|
 | 
						|
static inline uint16_t applyPPChi(uint64_t value) {
 | 
						|
  return (value >> 16) & 0xffff;
 | 
						|
}
 | 
						|
 | 
						|
static inline uint16_t applyPPCha (uint64_t value) {
 | 
						|
  return ((value + 0x8000) >> 16) & 0xffff;
 | 
						|
}
 | 
						|
 | 
						|
static inline uint16_t applyPPChigher(uint64_t value) {
 | 
						|
  return (value >> 32) & 0xffff;
 | 
						|
}
 | 
						|
 | 
						|
static inline uint16_t applyPPChighera (uint64_t value) {
 | 
						|
  return ((value + 0x8000) >> 32) & 0xffff;
 | 
						|
}
 | 
						|
 | 
						|
static inline uint16_t applyPPChighest(uint64_t value) {
 | 
						|
  return (value >> 48) & 0xffff;
 | 
						|
}
 | 
						|
 | 
						|
static inline uint16_t applyPPChighesta (uint64_t value) {
 | 
						|
  return ((value + 0x8000) >> 48) & 0xffff;
 | 
						|
}
 | 
						|
 | 
						|
void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
 | 
						|
                                            uint64_t Offset, uint64_t Value,
 | 
						|
                                            uint32_t Type, int64_t Addend) {
 | 
						|
  uint8_t *LocalAddress = Section.Address + Offset;
 | 
						|
  switch (Type) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Relocation type not implemented yet!");
 | 
						|
    break;
 | 
						|
  case ELF::R_PPC64_ADDR16:
 | 
						|
    writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
 | 
						|
    break;
 | 
						|
  case ELF::R_PPC64_ADDR16_DS:
 | 
						|
    writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
 | 
						|
    break;
 | 
						|
  case ELF::R_PPC64_ADDR16_LO:
 | 
						|
    writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
 | 
						|
    break;
 | 
						|
  case ELF::R_PPC64_ADDR16_LO_DS:
 | 
						|
    writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
 | 
						|
    break;
 | 
						|
  case ELF::R_PPC64_ADDR16_HI:
 | 
						|
    writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
 | 
						|
    break;
 | 
						|
  case ELF::R_PPC64_ADDR16_HA:
 | 
						|
    writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
 | 
						|
    break;
 | 
						|
  case ELF::R_PPC64_ADDR16_HIGHER:
 | 
						|
    writeInt16BE(LocalAddress, applyPPChigher(Value + Addend));
 | 
						|
    break;
 | 
						|
  case ELF::R_PPC64_ADDR16_HIGHERA:
 | 
						|
    writeInt16BE(LocalAddress, applyPPChighera(Value + Addend));
 | 
						|
    break;
 | 
						|
  case ELF::R_PPC64_ADDR16_HIGHEST:
 | 
						|
    writeInt16BE(LocalAddress, applyPPChighest(Value + Addend));
 | 
						|
    break;
 | 
						|
  case ELF::R_PPC64_ADDR16_HIGHESTA:
 | 
						|
    writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend));
 | 
						|
    break;
 | 
						|
  case ELF::R_PPC64_ADDR14: {
 | 
						|
    assert(((Value + Addend) & 3) == 0);
 | 
						|
    // Preserve the AA/LK bits in the branch instruction
 | 
						|
    uint8_t aalk = *(LocalAddress + 3);
 | 
						|
    writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
 | 
						|
  } break;
 | 
						|
  case ELF::R_PPC64_REL16_LO: {
 | 
						|
    uint64_t FinalAddress = (Section.LoadAddress + Offset);
 | 
						|
    uint64_t Delta = Value - FinalAddress + Addend;
 | 
						|
    writeInt16BE(LocalAddress, applyPPClo(Delta));
 | 
						|
  } break;
 | 
						|
  case ELF::R_PPC64_REL16_HI: {
 | 
						|
    uint64_t FinalAddress = (Section.LoadAddress + Offset);
 | 
						|
    uint64_t Delta = Value - FinalAddress + Addend;
 | 
						|
    writeInt16BE(LocalAddress, applyPPChi(Delta));
 | 
						|
  } break;
 | 
						|
  case ELF::R_PPC64_REL16_HA: {
 | 
						|
    uint64_t FinalAddress = (Section.LoadAddress + Offset);
 | 
						|
    uint64_t Delta = Value - FinalAddress + Addend;
 | 
						|
    writeInt16BE(LocalAddress, applyPPCha(Delta));
 | 
						|
  } break;
 | 
						|
  case ELF::R_PPC64_ADDR32: {
 | 
						|
    int32_t Result = static_cast<int32_t>(Value + Addend);
 | 
						|
    if (SignExtend32<32>(Result) != Result)
 | 
						|
      llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
 | 
						|
    writeInt32BE(LocalAddress, Result);
 | 
						|
  } break;
 | 
						|
  case ELF::R_PPC64_REL24: {
 | 
						|
    uint64_t FinalAddress = (Section.LoadAddress + Offset);
 | 
						|
    int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
 | 
						|
    if (SignExtend32<24>(delta) != delta)
 | 
						|
      llvm_unreachable("Relocation R_PPC64_REL24 overflow");
 | 
						|
    // Generates a 'bl <address>' instruction
 | 
						|
    writeInt32BE(LocalAddress, 0x48000001 | (delta & 0x03FFFFFC));
 | 
						|
  } break;
 | 
						|
  case ELF::R_PPC64_REL32: {
 | 
						|
    uint64_t FinalAddress = (Section.LoadAddress + Offset);
 | 
						|
    int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
 | 
						|
    if (SignExtend32<32>(delta) != delta)
 | 
						|
      llvm_unreachable("Relocation R_PPC64_REL32 overflow");
 | 
						|
    writeInt32BE(LocalAddress, delta);
 | 
						|
  } break;
 | 
						|
  case ELF::R_PPC64_REL64: {
 | 
						|
    uint64_t FinalAddress = (Section.LoadAddress + Offset);
 | 
						|
    uint64_t Delta = Value - FinalAddress + Addend;
 | 
						|
    writeInt64BE(LocalAddress, Delta);
 | 
						|
  } break;
 | 
						|
  case ELF::R_PPC64_ADDR64:
 | 
						|
    writeInt64BE(LocalAddress, Value + Addend);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
 | 
						|
                                              uint64_t Offset, uint64_t Value,
 | 
						|
                                              uint32_t Type, int64_t Addend) {
 | 
						|
  uint8_t *LocalAddress = Section.Address + Offset;
 | 
						|
  switch (Type) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Relocation type not implemented yet!");
 | 
						|
    break;
 | 
						|
  case ELF::R_390_PC16DBL:
 | 
						|
  case ELF::R_390_PLT16DBL: {
 | 
						|
    int64_t Delta = (Value + Addend) - (Section.LoadAddress + Offset);
 | 
						|
    assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow");
 | 
						|
    writeInt16BE(LocalAddress, Delta / 2);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ELF::R_390_PC32DBL:
 | 
						|
  case ELF::R_390_PLT32DBL: {
 | 
						|
    int64_t Delta = (Value + Addend) - (Section.LoadAddress + Offset);
 | 
						|
    assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow");
 | 
						|
    writeInt32BE(LocalAddress, Delta / 2);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ELF::R_390_PC32: {
 | 
						|
    int64_t Delta = (Value + Addend) - (Section.LoadAddress + Offset);
 | 
						|
    assert(int32_t(Delta) == Delta && "R_390_PC32 overflow");
 | 
						|
    writeInt32BE(LocalAddress, Delta);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ELF::R_390_64:
 | 
						|
    writeInt64BE(LocalAddress, Value + Addend);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// The target location for the relocation is described by RE.SectionID and
 | 
						|
// RE.Offset.  RE.SectionID can be used to find the SectionEntry.  Each
 | 
						|
// SectionEntry has three members describing its location.
 | 
						|
// SectionEntry::Address is the address at which the section has been loaded
 | 
						|
// into memory in the current (host) process.  SectionEntry::LoadAddress is the
 | 
						|
// address that the section will have in the target process.
 | 
						|
// SectionEntry::ObjAddress is the address of the bits for this section in the
 | 
						|
// original emitted object image (also in the current address space).
 | 
						|
//
 | 
						|
// Relocations will be applied as if the section were loaded at
 | 
						|
// SectionEntry::LoadAddress, but they will be applied at an address based
 | 
						|
// on SectionEntry::Address.  SectionEntry::ObjAddress will be used to refer to
 | 
						|
// Target memory contents if they are required for value calculations.
 | 
						|
//
 | 
						|
// The Value parameter here is the load address of the symbol for the
 | 
						|
// relocation to be applied.  For relocations which refer to symbols in the
 | 
						|
// current object Value will be the LoadAddress of the section in which
 | 
						|
// the symbol resides (RE.Addend provides additional information about the
 | 
						|
// symbol location).  For external symbols, Value will be the address of the
 | 
						|
// symbol in the target address space.
 | 
						|
void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE,
 | 
						|
                                       uint64_t Value) {
 | 
						|
  const SectionEntry &Section = Sections[RE.SectionID];
 | 
						|
  return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend,
 | 
						|
                           RE.SymOffset);
 | 
						|
}
 | 
						|
 | 
						|
void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
 | 
						|
                                       uint64_t Offset, uint64_t Value,
 | 
						|
                                       uint32_t Type, int64_t Addend,
 | 
						|
                                       uint64_t SymOffset) {
 | 
						|
  switch (Arch) {
 | 
						|
  case Triple::x86_64:
 | 
						|
    resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset);
 | 
						|
    break;
 | 
						|
  case Triple::x86:
 | 
						|
    resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
 | 
						|
                         (uint32_t)(Addend & 0xffffffffL));
 | 
						|
    break;
 | 
						|
  case Triple::aarch64:
 | 
						|
  case Triple::aarch64_be:
 | 
						|
    resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
 | 
						|
    break;
 | 
						|
  case Triple::arm: // Fall through.
 | 
						|
  case Triple::armeb:
 | 
						|
  case Triple::thumb:
 | 
						|
  case Triple::thumbeb:
 | 
						|
    resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
 | 
						|
                         (uint32_t)(Addend & 0xffffffffL));
 | 
						|
    break;
 | 
						|
  case Triple::mips: // Fall through.
 | 
						|
  case Triple::mipsel:
 | 
						|
    resolveMIPSRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL),
 | 
						|
                          Type, (uint32_t)(Addend & 0xffffffffL));
 | 
						|
    break;
 | 
						|
  case Triple::ppc64: // Fall through.
 | 
						|
  case Triple::ppc64le:
 | 
						|
    resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
 | 
						|
    break;
 | 
						|
  case Triple::systemz:
 | 
						|
    resolveSystemZRelocation(Section, Offset, Value, Type, Addend);
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unsupported CPU type!");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
relocation_iterator RuntimeDyldELF::processRelocationRef(
 | 
						|
    unsigned SectionID, relocation_iterator RelI,
 | 
						|
    const ObjectFile &Obj,
 | 
						|
    ObjSectionToIDMap &ObjSectionToID,
 | 
						|
    StubMap &Stubs) {
 | 
						|
  uint64_t RelType;
 | 
						|
  Check(RelI->getType(RelType));
 | 
						|
  int64_t Addend;
 | 
						|
  Check(getELFRelocationAddend(*RelI, Addend));
 | 
						|
  symbol_iterator Symbol = RelI->getSymbol();
 | 
						|
 | 
						|
  // Obtain the symbol name which is referenced in the relocation
 | 
						|
  StringRef TargetName;
 | 
						|
  if (Symbol != Obj.symbol_end())
 | 
						|
    Symbol->getName(TargetName);
 | 
						|
  DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend
 | 
						|
               << " TargetName: " << TargetName << "\n");
 | 
						|
  RelocationValueRef Value;
 | 
						|
  // First search for the symbol in the local symbol table
 | 
						|
  SymbolRef::Type SymType = SymbolRef::ST_Unknown;
 | 
						|
 | 
						|
  // Search for the symbol in the global symbol table
 | 
						|
  RTDyldSymbolTable::const_iterator gsi = GlobalSymbolTable.end();
 | 
						|
  if (Symbol != Obj.symbol_end()) {
 | 
						|
    gsi = GlobalSymbolTable.find(TargetName.data());
 | 
						|
    Symbol->getType(SymType);
 | 
						|
  }
 | 
						|
  if (gsi != GlobalSymbolTable.end()) {
 | 
						|
    const auto &SymInfo = gsi->second;
 | 
						|
    Value.SectionID = SymInfo.getSectionID();
 | 
						|
    Value.Offset = SymInfo.getOffset();
 | 
						|
    Value.Addend = SymInfo.getOffset() + Addend;
 | 
						|
  } else {
 | 
						|
    switch (SymType) {
 | 
						|
    case SymbolRef::ST_Debug: {
 | 
						|
      // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
 | 
						|
      // and can be changed by another developers. Maybe best way is add
 | 
						|
      // a new symbol type ST_Section to SymbolRef and use it.
 | 
						|
      section_iterator si(Obj.section_end());
 | 
						|
      Symbol->getSection(si);
 | 
						|
      if (si == Obj.section_end())
 | 
						|
        llvm_unreachable("Symbol section not found, bad object file format!");
 | 
						|
      DEBUG(dbgs() << "\t\tThis is section symbol\n");
 | 
						|
      bool isCode = si->isText();
 | 
						|
      Value.SectionID = findOrEmitSection(Obj, (*si), isCode, ObjSectionToID);
 | 
						|
      Value.Addend = Addend;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case SymbolRef::ST_Data:
 | 
						|
    case SymbolRef::ST_Unknown: {
 | 
						|
      Value.SymbolName = TargetName.data();
 | 
						|
      Value.Addend = Addend;
 | 
						|
 | 
						|
      // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
 | 
						|
      // will manifest here as a NULL symbol name.
 | 
						|
      // We can set this as a valid (but empty) symbol name, and rely
 | 
						|
      // on addRelocationForSymbol to handle this.
 | 
						|
      if (!Value.SymbolName)
 | 
						|
        Value.SymbolName = "";
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    default:
 | 
						|
      llvm_unreachable("Unresolved symbol type!");
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  uint64_t Offset;
 | 
						|
  Check(RelI->getOffset(Offset));
 | 
						|
 | 
						|
  DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset
 | 
						|
               << "\n");
 | 
						|
  if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be) &&
 | 
						|
      (RelType == ELF::R_AARCH64_CALL26 || RelType == ELF::R_AARCH64_JUMP26)) {
 | 
						|
    // This is an AArch64 branch relocation, need to use a stub function.
 | 
						|
    DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
 | 
						|
    SectionEntry &Section = Sections[SectionID];
 | 
						|
 | 
						|
    // Look for an existing stub.
 | 
						|
    StubMap::const_iterator i = Stubs.find(Value);
 | 
						|
    if (i != Stubs.end()) {
 | 
						|
      resolveRelocation(Section, Offset, (uint64_t)Section.Address + i->second,
 | 
						|
                        RelType, 0);
 | 
						|
      DEBUG(dbgs() << " Stub function found\n");
 | 
						|
    } else {
 | 
						|
      // Create a new stub function.
 | 
						|
      DEBUG(dbgs() << " Create a new stub function\n");
 | 
						|
      Stubs[Value] = Section.StubOffset;
 | 
						|
      uint8_t *StubTargetAddr =
 | 
						|
          createStubFunction(Section.Address + Section.StubOffset);
 | 
						|
 | 
						|
      RelocationEntry REmovz_g3(SectionID, StubTargetAddr - Section.Address,
 | 
						|
                                ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend);
 | 
						|
      RelocationEntry REmovk_g2(SectionID, StubTargetAddr - Section.Address + 4,
 | 
						|
                                ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend);
 | 
						|
      RelocationEntry REmovk_g1(SectionID, StubTargetAddr - Section.Address + 8,
 | 
						|
                                ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend);
 | 
						|
      RelocationEntry REmovk_g0(SectionID,
 | 
						|
                                StubTargetAddr - Section.Address + 12,
 | 
						|
                                ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend);
 | 
						|
 | 
						|
      if (Value.SymbolName) {
 | 
						|
        addRelocationForSymbol(REmovz_g3, Value.SymbolName);
 | 
						|
        addRelocationForSymbol(REmovk_g2, Value.SymbolName);
 | 
						|
        addRelocationForSymbol(REmovk_g1, Value.SymbolName);
 | 
						|
        addRelocationForSymbol(REmovk_g0, Value.SymbolName);
 | 
						|
      } else {
 | 
						|
        addRelocationForSection(REmovz_g3, Value.SectionID);
 | 
						|
        addRelocationForSection(REmovk_g2, Value.SectionID);
 | 
						|
        addRelocationForSection(REmovk_g1, Value.SectionID);
 | 
						|
        addRelocationForSection(REmovk_g0, Value.SectionID);
 | 
						|
      }
 | 
						|
      resolveRelocation(Section, Offset,
 | 
						|
                        (uint64_t)Section.Address + Section.StubOffset, RelType,
 | 
						|
                        0);
 | 
						|
      Section.StubOffset += getMaxStubSize();
 | 
						|
    }
 | 
						|
  } else if (Arch == Triple::arm &&
 | 
						|
             (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL ||
 | 
						|
              RelType == ELF::R_ARM_JUMP24)) {
 | 
						|
    // This is an ARM branch relocation, need to use a stub function.
 | 
						|
    DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.");
 | 
						|
    SectionEntry &Section = Sections[SectionID];
 | 
						|
 | 
						|
    // Look for an existing stub.
 | 
						|
    StubMap::const_iterator i = Stubs.find(Value);
 | 
						|
    if (i != Stubs.end()) {
 | 
						|
      resolveRelocation(Section, Offset, (uint64_t)Section.Address + i->second,
 | 
						|
                        RelType, 0);
 | 
						|
      DEBUG(dbgs() << " Stub function found\n");
 | 
						|
    } else {
 | 
						|
      // Create a new stub function.
 | 
						|
      DEBUG(dbgs() << " Create a new stub function\n");
 | 
						|
      Stubs[Value] = Section.StubOffset;
 | 
						|
      uint8_t *StubTargetAddr =
 | 
						|
          createStubFunction(Section.Address + Section.StubOffset);
 | 
						|
      RelocationEntry RE(SectionID, StubTargetAddr - Section.Address,
 | 
						|
                         ELF::R_ARM_PRIVATE_0, Value.Addend);
 | 
						|
      if (Value.SymbolName)
 | 
						|
        addRelocationForSymbol(RE, Value.SymbolName);
 | 
						|
      else
 | 
						|
        addRelocationForSection(RE, Value.SectionID);
 | 
						|
 | 
						|
      resolveRelocation(Section, Offset,
 | 
						|
                        (uint64_t)Section.Address + Section.StubOffset, RelType,
 | 
						|
                        0);
 | 
						|
      Section.StubOffset += getMaxStubSize();
 | 
						|
    }
 | 
						|
  } else if ((Arch == Triple::mipsel || Arch == Triple::mips) &&
 | 
						|
             RelType == ELF::R_MIPS_26) {
 | 
						|
    // This is an Mips branch relocation, need to use a stub function.
 | 
						|
    DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
 | 
						|
    SectionEntry &Section = Sections[SectionID];
 | 
						|
    uint8_t *Target = Section.Address + Offset;
 | 
						|
    uint32_t *TargetAddress = (uint32_t *)Target;
 | 
						|
 | 
						|
    // Extract the addend from the instruction.
 | 
						|
    uint32_t Addend = ((*TargetAddress) & 0x03ffffff) << 2;
 | 
						|
 | 
						|
    Value.Addend += Addend;
 | 
						|
 | 
						|
    //  Look up for existing stub.
 | 
						|
    StubMap::const_iterator i = Stubs.find(Value);
 | 
						|
    if (i != Stubs.end()) {
 | 
						|
      RelocationEntry RE(SectionID, Offset, RelType, i->second);
 | 
						|
      addRelocationForSection(RE, SectionID);
 | 
						|
      DEBUG(dbgs() << " Stub function found\n");
 | 
						|
    } else {
 | 
						|
      // Create a new stub function.
 | 
						|
      DEBUG(dbgs() << " Create a new stub function\n");
 | 
						|
      Stubs[Value] = Section.StubOffset;
 | 
						|
      uint8_t *StubTargetAddr =
 | 
						|
          createStubFunction(Section.Address + Section.StubOffset);
 | 
						|
 | 
						|
      // Creating Hi and Lo relocations for the filled stub instructions.
 | 
						|
      RelocationEntry REHi(SectionID, StubTargetAddr - Section.Address,
 | 
						|
                           ELF::R_MIPS_UNUSED1, Value.Addend);
 | 
						|
      RelocationEntry RELo(SectionID, StubTargetAddr - Section.Address + 4,
 | 
						|
                           ELF::R_MIPS_UNUSED2, Value.Addend);
 | 
						|
 | 
						|
      if (Value.SymbolName) {
 | 
						|
        addRelocationForSymbol(REHi, Value.SymbolName);
 | 
						|
        addRelocationForSymbol(RELo, Value.SymbolName);
 | 
						|
      } else {
 | 
						|
        addRelocationForSection(REHi, Value.SectionID);
 | 
						|
        addRelocationForSection(RELo, Value.SectionID);
 | 
						|
      }
 | 
						|
 | 
						|
      RelocationEntry RE(SectionID, Offset, RelType, Section.StubOffset);
 | 
						|
      addRelocationForSection(RE, SectionID);
 | 
						|
      Section.StubOffset += getMaxStubSize();
 | 
						|
    }
 | 
						|
  } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
 | 
						|
    if (RelType == ELF::R_PPC64_REL24) {
 | 
						|
      // Determine ABI variant in use for this object.
 | 
						|
      unsigned AbiVariant;
 | 
						|
      Obj.getPlatformFlags(AbiVariant);
 | 
						|
      AbiVariant &= ELF::EF_PPC64_ABI;
 | 
						|
      // A PPC branch relocation will need a stub function if the target is
 | 
						|
      // an external symbol (Symbol::ST_Unknown) or if the target address
 | 
						|
      // is not within the signed 24-bits branch address.
 | 
						|
      SectionEntry &Section = Sections[SectionID];
 | 
						|
      uint8_t *Target = Section.Address + Offset;
 | 
						|
      bool RangeOverflow = false;
 | 
						|
      if (SymType != SymbolRef::ST_Unknown) {
 | 
						|
        if (AbiVariant != 2) {
 | 
						|
          // In the ELFv1 ABI, a function call may point to the .opd entry,
 | 
						|
          // so the final symbol value is calculated based on the relocation
 | 
						|
          // values in the .opd section.
 | 
						|
          findOPDEntrySection(Obj, ObjSectionToID, Value);
 | 
						|
        } else {
 | 
						|
          // In the ELFv2 ABI, a function symbol may provide a local entry
 | 
						|
          // point, which must be used for direct calls.
 | 
						|
          uint8_t SymOther;
 | 
						|
          Symbol->getOther(SymOther);
 | 
						|
          Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther);
 | 
						|
        }
 | 
						|
        uint8_t *RelocTarget = Sections[Value.SectionID].Address + Value.Addend;
 | 
						|
        int32_t delta = static_cast<int32_t>(Target - RelocTarget);
 | 
						|
        // If it is within 24-bits branch range, just set the branch target
 | 
						|
        if (SignExtend32<24>(delta) == delta) {
 | 
						|
          RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
 | 
						|
          if (Value.SymbolName)
 | 
						|
            addRelocationForSymbol(RE, Value.SymbolName);
 | 
						|
          else
 | 
						|
            addRelocationForSection(RE, Value.SectionID);
 | 
						|
        } else {
 | 
						|
          RangeOverflow = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (SymType == SymbolRef::ST_Unknown || RangeOverflow == true) {
 | 
						|
        // It is an external symbol (SymbolRef::ST_Unknown) or within a range
 | 
						|
        // larger than 24-bits.
 | 
						|
        StubMap::const_iterator i = Stubs.find(Value);
 | 
						|
        if (i != Stubs.end()) {
 | 
						|
          // Symbol function stub already created, just relocate to it
 | 
						|
          resolveRelocation(Section, Offset,
 | 
						|
                            (uint64_t)Section.Address + i->second, RelType, 0);
 | 
						|
          DEBUG(dbgs() << " Stub function found\n");
 | 
						|
        } else {
 | 
						|
          // Create a new stub function.
 | 
						|
          DEBUG(dbgs() << " Create a new stub function\n");
 | 
						|
          Stubs[Value] = Section.StubOffset;
 | 
						|
          uint8_t *StubTargetAddr =
 | 
						|
              createStubFunction(Section.Address + Section.StubOffset,
 | 
						|
                                 AbiVariant);
 | 
						|
          RelocationEntry RE(SectionID, StubTargetAddr - Section.Address,
 | 
						|
                             ELF::R_PPC64_ADDR64, Value.Addend);
 | 
						|
 | 
						|
          // Generates the 64-bits address loads as exemplified in section
 | 
						|
          // 4.5.1 in PPC64 ELF ABI.  Note that the relocations need to
 | 
						|
          // apply to the low part of the instructions, so we have to update
 | 
						|
          // the offset according to the target endianness.
 | 
						|
          uint64_t StubRelocOffset = StubTargetAddr - Section.Address;
 | 
						|
          if (!IsTargetLittleEndian)
 | 
						|
            StubRelocOffset += 2;
 | 
						|
 | 
						|
          RelocationEntry REhst(SectionID, StubRelocOffset + 0,
 | 
						|
                                ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
 | 
						|
          RelocationEntry REhr(SectionID, StubRelocOffset + 4,
 | 
						|
                               ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
 | 
						|
          RelocationEntry REh(SectionID, StubRelocOffset + 12,
 | 
						|
                              ELF::R_PPC64_ADDR16_HI, Value.Addend);
 | 
						|
          RelocationEntry REl(SectionID, StubRelocOffset + 16,
 | 
						|
                              ELF::R_PPC64_ADDR16_LO, Value.Addend);
 | 
						|
 | 
						|
          if (Value.SymbolName) {
 | 
						|
            addRelocationForSymbol(REhst, Value.SymbolName);
 | 
						|
            addRelocationForSymbol(REhr, Value.SymbolName);
 | 
						|
            addRelocationForSymbol(REh, Value.SymbolName);
 | 
						|
            addRelocationForSymbol(REl, Value.SymbolName);
 | 
						|
          } else {
 | 
						|
            addRelocationForSection(REhst, Value.SectionID);
 | 
						|
            addRelocationForSection(REhr, Value.SectionID);
 | 
						|
            addRelocationForSection(REh, Value.SectionID);
 | 
						|
            addRelocationForSection(REl, Value.SectionID);
 | 
						|
          }
 | 
						|
 | 
						|
          resolveRelocation(Section, Offset,
 | 
						|
                            (uint64_t)Section.Address + Section.StubOffset,
 | 
						|
                            RelType, 0);
 | 
						|
          Section.StubOffset += getMaxStubSize();
 | 
						|
        }
 | 
						|
        if (SymType == SymbolRef::ST_Unknown) {
 | 
						|
          // Restore the TOC for external calls
 | 
						|
          if (AbiVariant == 2)
 | 
						|
            writeInt32BE(Target + 4, 0xE8410018); // ld r2,28(r1)
 | 
						|
          else
 | 
						|
            writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1)
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else if (RelType == ELF::R_PPC64_TOC16 ||
 | 
						|
               RelType == ELF::R_PPC64_TOC16_DS ||
 | 
						|
               RelType == ELF::R_PPC64_TOC16_LO ||
 | 
						|
               RelType == ELF::R_PPC64_TOC16_LO_DS ||
 | 
						|
               RelType == ELF::R_PPC64_TOC16_HI ||
 | 
						|
               RelType == ELF::R_PPC64_TOC16_HA) {
 | 
						|
      // These relocations are supposed to subtract the TOC address from
 | 
						|
      // the final value.  This does not fit cleanly into the RuntimeDyld
 | 
						|
      // scheme, since there may be *two* sections involved in determining
 | 
						|
      // the relocation value (the section of the symbol refered to by the
 | 
						|
      // relocation, and the TOC section associated with the current module).
 | 
						|
      //
 | 
						|
      // Fortunately, these relocations are currently only ever generated
 | 
						|
      // refering to symbols that themselves reside in the TOC, which means
 | 
						|
      // that the two sections are actually the same.  Thus they cancel out
 | 
						|
      // and we can immediately resolve the relocation right now.
 | 
						|
      switch (RelType) {
 | 
						|
      case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break;
 | 
						|
      case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break;
 | 
						|
      case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break;
 | 
						|
      case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break;
 | 
						|
      case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break;
 | 
						|
      case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break;
 | 
						|
      default: llvm_unreachable("Wrong relocation type.");
 | 
						|
      }
 | 
						|
 | 
						|
      RelocationValueRef TOCValue;
 | 
						|
      findPPC64TOCSection(Obj, ObjSectionToID, TOCValue);
 | 
						|
      if (Value.SymbolName || Value.SectionID != TOCValue.SectionID)
 | 
						|
        llvm_unreachable("Unsupported TOC relocation.");
 | 
						|
      Value.Addend -= TOCValue.Addend;
 | 
						|
      resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0);
 | 
						|
    } else {
 | 
						|
      // There are two ways to refer to the TOC address directly: either
 | 
						|
      // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
 | 
						|
      // ignored), or via any relocation that refers to the magic ".TOC."
 | 
						|
      // symbols (in which case the addend is respected).
 | 
						|
      if (RelType == ELF::R_PPC64_TOC) {
 | 
						|
        RelType = ELF::R_PPC64_ADDR64;
 | 
						|
        findPPC64TOCSection(Obj, ObjSectionToID, Value);
 | 
						|
      } else if (TargetName == ".TOC.") {
 | 
						|
        findPPC64TOCSection(Obj, ObjSectionToID, Value);
 | 
						|
        Value.Addend += Addend;
 | 
						|
      }
 | 
						|
 | 
						|
      RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
 | 
						|
 | 
						|
      if (Value.SymbolName)
 | 
						|
        addRelocationForSymbol(RE, Value.SymbolName);
 | 
						|
      else
 | 
						|
        addRelocationForSection(RE, Value.SectionID);
 | 
						|
    }
 | 
						|
  } else if (Arch == Triple::systemz &&
 | 
						|
             (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) {
 | 
						|
    // Create function stubs for both PLT and GOT references, regardless of
 | 
						|
    // whether the GOT reference is to data or code.  The stub contains the
 | 
						|
    // full address of the symbol, as needed by GOT references, and the
 | 
						|
    // executable part only adds an overhead of 8 bytes.
 | 
						|
    //
 | 
						|
    // We could try to conserve space by allocating the code and data
 | 
						|
    // parts of the stub separately.  However, as things stand, we allocate
 | 
						|
    // a stub for every relocation, so using a GOT in JIT code should be
 | 
						|
    // no less space efficient than using an explicit constant pool.
 | 
						|
    DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
 | 
						|
    SectionEntry &Section = Sections[SectionID];
 | 
						|
 | 
						|
    // Look for an existing stub.
 | 
						|
    StubMap::const_iterator i = Stubs.find(Value);
 | 
						|
    uintptr_t StubAddress;
 | 
						|
    if (i != Stubs.end()) {
 | 
						|
      StubAddress = uintptr_t(Section.Address) + i->second;
 | 
						|
      DEBUG(dbgs() << " Stub function found\n");
 | 
						|
    } else {
 | 
						|
      // Create a new stub function.
 | 
						|
      DEBUG(dbgs() << " Create a new stub function\n");
 | 
						|
 | 
						|
      uintptr_t BaseAddress = uintptr_t(Section.Address);
 | 
						|
      uintptr_t StubAlignment = getStubAlignment();
 | 
						|
      StubAddress = (BaseAddress + Section.StubOffset + StubAlignment - 1) &
 | 
						|
                    -StubAlignment;
 | 
						|
      unsigned StubOffset = StubAddress - BaseAddress;
 | 
						|
 | 
						|
      Stubs[Value] = StubOffset;
 | 
						|
      createStubFunction((uint8_t *)StubAddress);
 | 
						|
      RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64,
 | 
						|
                         Value.Offset);
 | 
						|
      if (Value.SymbolName)
 | 
						|
        addRelocationForSymbol(RE, Value.SymbolName);
 | 
						|
      else
 | 
						|
        addRelocationForSection(RE, Value.SectionID);
 | 
						|
      Section.StubOffset = StubOffset + getMaxStubSize();
 | 
						|
    }
 | 
						|
 | 
						|
    if (RelType == ELF::R_390_GOTENT)
 | 
						|
      resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL,
 | 
						|
                        Addend);
 | 
						|
    else
 | 
						|
      resolveRelocation(Section, Offset, StubAddress, RelType, Addend);
 | 
						|
  } else if (Arch == Triple::x86_64 && RelType == ELF::R_X86_64_PLT32) {
 | 
						|
    // The way the PLT relocations normally work is that the linker allocates
 | 
						|
    // the
 | 
						|
    // PLT and this relocation makes a PC-relative call into the PLT.  The PLT
 | 
						|
    // entry will then jump to an address provided by the GOT.  On first call,
 | 
						|
    // the
 | 
						|
    // GOT address will point back into PLT code that resolves the symbol. After
 | 
						|
    // the first call, the GOT entry points to the actual function.
 | 
						|
    //
 | 
						|
    // For local functions we're ignoring all of that here and just replacing
 | 
						|
    // the PLT32 relocation type with PC32, which will translate the relocation
 | 
						|
    // into a PC-relative call directly to the function. For external symbols we
 | 
						|
    // can't be sure the function will be within 2^32 bytes of the call site, so
 | 
						|
    // we need to create a stub, which calls into the GOT.  This case is
 | 
						|
    // equivalent to the usual PLT implementation except that we use the stub
 | 
						|
    // mechanism in RuntimeDyld (which puts stubs at the end of the section)
 | 
						|
    // rather than allocating a PLT section.
 | 
						|
    if (Value.SymbolName) {
 | 
						|
      // This is a call to an external function.
 | 
						|
      // Look for an existing stub.
 | 
						|
      SectionEntry &Section = Sections[SectionID];
 | 
						|
      StubMap::const_iterator i = Stubs.find(Value);
 | 
						|
      uintptr_t StubAddress;
 | 
						|
      if (i != Stubs.end()) {
 | 
						|
        StubAddress = uintptr_t(Section.Address) + i->second;
 | 
						|
        DEBUG(dbgs() << " Stub function found\n");
 | 
						|
      } else {
 | 
						|
        // Create a new stub function (equivalent to a PLT entry).
 | 
						|
        DEBUG(dbgs() << " Create a new stub function\n");
 | 
						|
 | 
						|
        uintptr_t BaseAddress = uintptr_t(Section.Address);
 | 
						|
        uintptr_t StubAlignment = getStubAlignment();
 | 
						|
        StubAddress = (BaseAddress + Section.StubOffset + StubAlignment - 1) &
 | 
						|
                      -StubAlignment;
 | 
						|
        unsigned StubOffset = StubAddress - BaseAddress;
 | 
						|
        Stubs[Value] = StubOffset;
 | 
						|
        createStubFunction((uint8_t *)StubAddress);
 | 
						|
 | 
						|
        // Create a GOT entry for the external function.
 | 
						|
        GOTEntries.push_back(Value);
 | 
						|
 | 
						|
        // Make our stub function a relative call to the GOT entry.
 | 
						|
        RelocationEntry RE(SectionID, StubOffset + 2, ELF::R_X86_64_GOTPCREL,
 | 
						|
                           -4);
 | 
						|
        addRelocationForSymbol(RE, Value.SymbolName);
 | 
						|
 | 
						|
        // Bump our stub offset counter
 | 
						|
        Section.StubOffset = StubOffset + getMaxStubSize();
 | 
						|
      }
 | 
						|
 | 
						|
      // Make the target call a call into the stub table.
 | 
						|
      resolveRelocation(Section, Offset, StubAddress, ELF::R_X86_64_PC32,
 | 
						|
                        Addend);
 | 
						|
    } else {
 | 
						|
      RelocationEntry RE(SectionID, Offset, ELF::R_X86_64_PC32, Value.Addend,
 | 
						|
                         Value.Offset);
 | 
						|
      addRelocationForSection(RE, Value.SectionID);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    if (Arch == Triple::x86_64 && RelType == ELF::R_X86_64_GOTPCREL) {
 | 
						|
      GOTEntries.push_back(Value);
 | 
						|
    }
 | 
						|
    RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset);
 | 
						|
    if (Value.SymbolName)
 | 
						|
      addRelocationForSymbol(RE, Value.SymbolName);
 | 
						|
    else
 | 
						|
      addRelocationForSection(RE, Value.SectionID);
 | 
						|
  }
 | 
						|
  return ++RelI;
 | 
						|
}
 | 
						|
 | 
						|
void RuntimeDyldELF::updateGOTEntries(StringRef Name, uint64_t Addr) {
 | 
						|
 | 
						|
  SmallVectorImpl<std::pair<SID, GOTRelocations>>::iterator it;
 | 
						|
  SmallVectorImpl<std::pair<SID, GOTRelocations>>::iterator end = GOTs.end();
 | 
						|
 | 
						|
  for (it = GOTs.begin(); it != end; ++it) {
 | 
						|
    GOTRelocations &GOTEntries = it->second;
 | 
						|
    for (int i = 0, e = GOTEntries.size(); i != e; ++i) {
 | 
						|
      if (GOTEntries[i].SymbolName != nullptr &&
 | 
						|
          GOTEntries[i].SymbolName == Name) {
 | 
						|
        GOTEntries[i].Offset = Addr;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
size_t RuntimeDyldELF::getGOTEntrySize() {
 | 
						|
  // We don't use the GOT in all of these cases, but it's essentially free
 | 
						|
  // to put them all here.
 | 
						|
  size_t Result = 0;
 | 
						|
  switch (Arch) {
 | 
						|
  case Triple::x86_64:
 | 
						|
  case Triple::aarch64:
 | 
						|
  case Triple::aarch64_be:
 | 
						|
  case Triple::ppc64:
 | 
						|
  case Triple::ppc64le:
 | 
						|
  case Triple::systemz:
 | 
						|
    Result = sizeof(uint64_t);
 | 
						|
    break;
 | 
						|
  case Triple::x86:
 | 
						|
  case Triple::arm:
 | 
						|
  case Triple::thumb:
 | 
						|
  case Triple::mips:
 | 
						|
  case Triple::mipsel:
 | 
						|
    Result = sizeof(uint32_t);
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unsupported CPU type!");
 | 
						|
  }
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
uint64_t RuntimeDyldELF::findGOTEntry(uint64_t LoadAddress, uint64_t Offset) {
 | 
						|
 | 
						|
  const size_t GOTEntrySize = getGOTEntrySize();
 | 
						|
 | 
						|
  SmallVectorImpl<std::pair<SID, GOTRelocations>>::const_iterator it;
 | 
						|
  SmallVectorImpl<std::pair<SID, GOTRelocations>>::const_iterator end =
 | 
						|
      GOTs.end();
 | 
						|
 | 
						|
  int GOTIndex = -1;
 | 
						|
  for (it = GOTs.begin(); it != end; ++it) {
 | 
						|
    SID GOTSectionID = it->first;
 | 
						|
    const GOTRelocations &GOTEntries = it->second;
 | 
						|
 | 
						|
    // Find the matching entry in our vector.
 | 
						|
    uint64_t SymbolOffset = 0;
 | 
						|
    for (int i = 0, e = GOTEntries.size(); i != e; ++i) {
 | 
						|
      if (!GOTEntries[i].SymbolName) {
 | 
						|
        if (getSectionLoadAddress(GOTEntries[i].SectionID) == LoadAddress &&
 | 
						|
            GOTEntries[i].Offset == Offset) {
 | 
						|
          GOTIndex = i;
 | 
						|
          SymbolOffset = GOTEntries[i].Offset;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        // GOT entries for external symbols use the addend as the address when
 | 
						|
        // the external symbol has been resolved.
 | 
						|
        if (GOTEntries[i].Offset == LoadAddress) {
 | 
						|
          GOTIndex = i;
 | 
						|
          // Don't use the Addend here.  The relocation handler will use it.
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (GOTIndex != -1) {
 | 
						|
      if (GOTEntrySize == sizeof(uint64_t)) {
 | 
						|
        uint64_t *LocalGOTAddr = (uint64_t *)getSectionAddress(GOTSectionID);
 | 
						|
        // Fill in this entry with the address of the symbol being referenced.
 | 
						|
        LocalGOTAddr[GOTIndex] = LoadAddress + SymbolOffset;
 | 
						|
      } else {
 | 
						|
        uint32_t *LocalGOTAddr = (uint32_t *)getSectionAddress(GOTSectionID);
 | 
						|
        // Fill in this entry with the address of the symbol being referenced.
 | 
						|
        LocalGOTAddr[GOTIndex] = (uint32_t)(LoadAddress + SymbolOffset);
 | 
						|
      }
 | 
						|
 | 
						|
      // Calculate the load address of this entry
 | 
						|
      return getSectionLoadAddress(GOTSectionID) + (GOTIndex * GOTEntrySize);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  assert(GOTIndex != -1 && "Unable to find requested GOT entry.");
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
void RuntimeDyldELF::finalizeLoad(const ObjectFile &Obj,
 | 
						|
                                  ObjSectionToIDMap &SectionMap) {
 | 
						|
  // If necessary, allocate the global offset table
 | 
						|
  if (MemMgr) {
 | 
						|
    // Allocate the GOT if necessary
 | 
						|
    size_t numGOTEntries = GOTEntries.size();
 | 
						|
    if (numGOTEntries != 0) {
 | 
						|
      // Allocate memory for the section
 | 
						|
      unsigned SectionID = Sections.size();
 | 
						|
      size_t TotalSize = numGOTEntries * getGOTEntrySize();
 | 
						|
      uint8_t *Addr = MemMgr->allocateDataSection(TotalSize, getGOTEntrySize(),
 | 
						|
                                                  SectionID, ".got", false);
 | 
						|
      if (!Addr)
 | 
						|
        report_fatal_error("Unable to allocate memory for GOT!");
 | 
						|
 | 
						|
      GOTs.push_back(std::make_pair(SectionID, GOTEntries));
 | 
						|
      Sections.push_back(SectionEntry(".got", Addr, TotalSize, 0));
 | 
						|
      // For now, initialize all GOT entries to zero.  We'll fill them in as
 | 
						|
      // needed when GOT-based relocations are applied.
 | 
						|
      memset(Addr, 0, TotalSize);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    report_fatal_error("Unable to allocate memory for GOT!");
 | 
						|
  }
 | 
						|
 | 
						|
  // Look for and record the EH frame section.
 | 
						|
  ObjSectionToIDMap::iterator i, e;
 | 
						|
  for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
 | 
						|
    const SectionRef &Section = i->first;
 | 
						|
    StringRef Name;
 | 
						|
    Section.getName(Name);
 | 
						|
    if (Name == ".eh_frame") {
 | 
						|
      UnregisteredEHFrameSections.push_back(i->second);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile &Obj) const {
 | 
						|
  return Obj.isELF();
 | 
						|
}
 | 
						|
 | 
						|
} // namespace llvm
 |