mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168030 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			10014 lines
		
	
	
		
			384 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			10014 lines
		
	
	
		
			384 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the interfaces that ARM uses to lower LLVM code into a
 | |
| // selection DAG.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "arm-isel"
 | |
| #include "ARMISelLowering.h"
 | |
| #include "ARM.h"
 | |
| #include "ARMCallingConv.h"
 | |
| #include "ARMConstantPoolValue.h"
 | |
| #include "ARMMachineFunctionInfo.h"
 | |
| #include "ARMPerfectShuffle.h"
 | |
| #include "ARMSubtarget.h"
 | |
| #include "ARMTargetMachine.h"
 | |
| #include "ARMTargetObjectFile.h"
 | |
| #include "MCTargetDesc/ARMAddressingModes.h"
 | |
| #include "llvm/CallingConv.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/GlobalValue.h"
 | |
| #include "llvm/Instruction.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Intrinsics.h"
 | |
| #include "llvm/Type.h"
 | |
| #include "llvm/CodeGen/CallingConvLower.h"
 | |
| #include "llvm/CodeGen/IntrinsicLowering.h"
 | |
| #include "llvm/CodeGen/MachineBasicBlock.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineModuleInfo.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/SelectionDAG.h"
 | |
| #include "llvm/MC/MCSectionMachO.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumTailCalls, "Number of tail calls");
 | |
| STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
 | |
| STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments");
 | |
| 
 | |
| // This option should go away when tail calls fully work.
 | |
| static cl::opt<bool>
 | |
| EnableARMTailCalls("arm-tail-calls", cl::Hidden,
 | |
|   cl::desc("Generate tail calls (TEMPORARY OPTION)."),
 | |
|   cl::init(false));
 | |
| 
 | |
| cl::opt<bool>
 | |
| EnableARMLongCalls("arm-long-calls", cl::Hidden,
 | |
|   cl::desc("Generate calls via indirect call instructions"),
 | |
|   cl::init(false));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| ARMInterworking("arm-interworking", cl::Hidden,
 | |
|   cl::desc("Enable / disable ARM interworking (for debugging only)"),
 | |
|   cl::init(true));
 | |
| 
 | |
| namespace {
 | |
|   class ARMCCState : public CCState {
 | |
|   public:
 | |
|     ARMCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
 | |
|                const TargetMachine &TM, SmallVector<CCValAssign, 16> &locs,
 | |
|                LLVMContext &C, ParmContext PC)
 | |
|         : CCState(CC, isVarArg, MF, TM, locs, C) {
 | |
|       assert(((PC == Call) || (PC == Prologue)) &&
 | |
|              "ARMCCState users must specify whether their context is call"
 | |
|              "or prologue generation.");
 | |
|       CallOrPrologue = PC;
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| // The APCS parameter registers.
 | |
| static const uint16_t GPRArgRegs[] = {
 | |
|   ARM::R0, ARM::R1, ARM::R2, ARM::R3
 | |
| };
 | |
| 
 | |
| void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT,
 | |
|                                        MVT PromotedBitwiseVT) {
 | |
|   if (VT != PromotedLdStVT) {
 | |
|     setOperationAction(ISD::LOAD, VT, Promote);
 | |
|     AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
 | |
| 
 | |
|     setOperationAction(ISD::STORE, VT, Promote);
 | |
|     AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
 | |
|   }
 | |
| 
 | |
|   MVT ElemTy = VT.getVectorElementType();
 | |
|   if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
 | |
|     setOperationAction(ISD::SETCC, VT, Custom);
 | |
|   setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
 | |
|   setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
 | |
|   if (ElemTy == MVT::i32) {
 | |
|     setOperationAction(ISD::SINT_TO_FP, VT, Custom);
 | |
|     setOperationAction(ISD::UINT_TO_FP, VT, Custom);
 | |
|     setOperationAction(ISD::FP_TO_SINT, VT, Custom);
 | |
|     setOperationAction(ISD::FP_TO_UINT, VT, Custom);
 | |
|   } else {
 | |
|     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
 | |
|     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
 | |
|     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
 | |
|     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
 | |
|   }
 | |
|   setOperationAction(ISD::BUILD_VECTOR,      VT, Custom);
 | |
|   setOperationAction(ISD::VECTOR_SHUFFLE,    VT, Custom);
 | |
|   setOperationAction(ISD::CONCAT_VECTORS,    VT, Legal);
 | |
|   setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
 | |
|   setOperationAction(ISD::SELECT,            VT, Expand);
 | |
|   setOperationAction(ISD::SELECT_CC,         VT, Expand);
 | |
|   setOperationAction(ISD::VSELECT,           VT, Expand);
 | |
|   setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
 | |
|   if (VT.isInteger()) {
 | |
|     setOperationAction(ISD::SHL, VT, Custom);
 | |
|     setOperationAction(ISD::SRA, VT, Custom);
 | |
|     setOperationAction(ISD::SRL, VT, Custom);
 | |
|   }
 | |
| 
 | |
|   // Promote all bit-wise operations.
 | |
|   if (VT.isInteger() && VT != PromotedBitwiseVT) {
 | |
|     setOperationAction(ISD::AND, VT, Promote);
 | |
|     AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT);
 | |
|     setOperationAction(ISD::OR,  VT, Promote);
 | |
|     AddPromotedToType (ISD::OR,  VT, PromotedBitwiseVT);
 | |
|     setOperationAction(ISD::XOR, VT, Promote);
 | |
|     AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT);
 | |
|   }
 | |
| 
 | |
|   // Neon does not support vector divide/remainder operations.
 | |
|   setOperationAction(ISD::SDIV, VT, Expand);
 | |
|   setOperationAction(ISD::UDIV, VT, Expand);
 | |
|   setOperationAction(ISD::FDIV, VT, Expand);
 | |
|   setOperationAction(ISD::SREM, VT, Expand);
 | |
|   setOperationAction(ISD::UREM, VT, Expand);
 | |
|   setOperationAction(ISD::FREM, VT, Expand);
 | |
| }
 | |
| 
 | |
| void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
 | |
|   addRegisterClass(VT, &ARM::DPRRegClass);
 | |
|   addTypeForNEON(VT, MVT::f64, MVT::v2i32);
 | |
| }
 | |
| 
 | |
| void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
 | |
|   addRegisterClass(VT, &ARM::QPRRegClass);
 | |
|   addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
 | |
| }
 | |
| 
 | |
| static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
 | |
|   if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
 | |
|     return new TargetLoweringObjectFileMachO();
 | |
| 
 | |
|   return new ARMElfTargetObjectFile();
 | |
| }
 | |
| 
 | |
| ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
 | |
|     : TargetLowering(TM, createTLOF(TM)) {
 | |
|   Subtarget = &TM.getSubtarget<ARMSubtarget>();
 | |
|   RegInfo = TM.getRegisterInfo();
 | |
|   Itins = TM.getInstrItineraryData();
 | |
| 
 | |
|   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
 | |
| 
 | |
|   if (Subtarget->isTargetDarwin()) {
 | |
|     // Uses VFP for Thumb libfuncs if available.
 | |
|     if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
 | |
|       // Single-precision floating-point arithmetic.
 | |
|       setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
 | |
|       setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
 | |
|       setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
 | |
|       setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
 | |
| 
 | |
|       // Double-precision floating-point arithmetic.
 | |
|       setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
 | |
|       setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
 | |
|       setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
 | |
|       setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
 | |
| 
 | |
|       // Single-precision comparisons.
 | |
|       setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
 | |
|       setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
 | |
|       setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
 | |
|       setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
 | |
|       setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
 | |
|       setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
 | |
|       setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
 | |
|       setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
 | |
| 
 | |
|       setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
 | |
|       setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
 | |
|       setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
 | |
|       setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
 | |
|       setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
 | |
|       setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
 | |
|       setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
 | |
|       setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
 | |
| 
 | |
|       // Double-precision comparisons.
 | |
|       setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
 | |
|       setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
 | |
|       setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
 | |
|       setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
 | |
|       setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
 | |
|       setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
 | |
|       setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
 | |
|       setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
 | |
| 
 | |
|       setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
 | |
|       setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
 | |
|       setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
 | |
|       setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
 | |
|       setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
 | |
|       setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
 | |
|       setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
 | |
|       setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
 | |
| 
 | |
|       // Floating-point to integer conversions.
 | |
|       // i64 conversions are done via library routines even when generating VFP
 | |
|       // instructions, so use the same ones.
 | |
|       setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
 | |
|       setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
 | |
|       setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
 | |
|       setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
 | |
| 
 | |
|       // Conversions between floating types.
 | |
|       setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
 | |
|       setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
 | |
| 
 | |
|       // Integer to floating-point conversions.
 | |
|       // i64 conversions are done via library routines even when generating VFP
 | |
|       // instructions, so use the same ones.
 | |
|       // FIXME: There appears to be some naming inconsistency in ARM libgcc:
 | |
|       // e.g., __floatunsidf vs. __floatunssidfvfp.
 | |
|       setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
 | |
|       setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
 | |
|       setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
 | |
|       setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // These libcalls are not available in 32-bit.
 | |
|   setLibcallName(RTLIB::SHL_I128, 0);
 | |
|   setLibcallName(RTLIB::SRL_I128, 0);
 | |
|   setLibcallName(RTLIB::SRA_I128, 0);
 | |
| 
 | |
|   if (Subtarget->isAAPCS_ABI() && !Subtarget->isTargetDarwin()) {
 | |
|     // Double-precision floating-point arithmetic helper functions
 | |
|     // RTABI chapter 4.1.2, Table 2
 | |
|     setLibcallName(RTLIB::ADD_F64, "__aeabi_dadd");
 | |
|     setLibcallName(RTLIB::DIV_F64, "__aeabi_ddiv");
 | |
|     setLibcallName(RTLIB::MUL_F64, "__aeabi_dmul");
 | |
|     setLibcallName(RTLIB::SUB_F64, "__aeabi_dsub");
 | |
|     setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::ARM_AAPCS);
 | |
|     setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::ARM_AAPCS);
 | |
|     setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::ARM_AAPCS);
 | |
|     setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::ARM_AAPCS);
 | |
| 
 | |
|     // Double-precision floating-point comparison helper functions
 | |
|     // RTABI chapter 4.1.2, Table 3
 | |
|     setLibcallName(RTLIB::OEQ_F64, "__aeabi_dcmpeq");
 | |
|     setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
 | |
|     setLibcallName(RTLIB::UNE_F64, "__aeabi_dcmpeq");
 | |
|     setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETEQ);
 | |
|     setLibcallName(RTLIB::OLT_F64, "__aeabi_dcmplt");
 | |
|     setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
 | |
|     setLibcallName(RTLIB::OLE_F64, "__aeabi_dcmple");
 | |
|     setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
 | |
|     setLibcallName(RTLIB::OGE_F64, "__aeabi_dcmpge");
 | |
|     setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
 | |
|     setLibcallName(RTLIB::OGT_F64, "__aeabi_dcmpgt");
 | |
|     setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
 | |
|     setLibcallName(RTLIB::UO_F64,  "__aeabi_dcmpun");
 | |
|     setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
 | |
|     setLibcallName(RTLIB::O_F64,   "__aeabi_dcmpun");
 | |
|     setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
 | |
|     setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::ARM_AAPCS);
 | |
|     setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::ARM_AAPCS);
 | |
|     setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::ARM_AAPCS);
 | |
|     setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::ARM_AAPCS);
 | |
|     setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::ARM_AAPCS);
 | |
|     setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::ARM_AAPCS);
 | |
|     setLibcallCallingConv(RTLIB::UO_F64, CallingConv::ARM_AAPCS);
 | |
|     setLibcallCallingConv(RTLIB::O_F64, CallingConv::ARM_AAPCS);
 | |
| 
 | |
|     // Single-precision floating-point arithmetic helper functions
 | |
|     // RTABI chapter 4.1.2, Table 4
 | |
|     setLibcallName(RTLIB::ADD_F32, "__aeabi_fadd");
 | |
|     setLibcallName(RTLIB::DIV_F32, "__aeabi_fdiv");
 | |
|     setLibcallName(RTLIB::MUL_F32, "__aeabi_fmul");
 | |
|     setLibcallName(RTLIB::SUB_F32, "__aeabi_fsub");
 | |
|     setLibcallCallingConv(RTLIB::ADD_F32, CallingConv::ARM_AAPCS);
 | |
|     setLibcallCallingConv(RTLIB::DIV_F32, CallingConv::ARM_AAPCS);
 | |
|     setLibcallCallingConv(RTLIB::MUL_F32, CallingConv::ARM_AAPCS);
 | |
|     setLibcallCallingConv(RTLIB::SUB_F32, CallingConv::ARM_AAPCS);
 | |
| 
 | |
|     // Single-precision floating-point comparison helper functions
 | |
|     // RTABI chapter 4.1.2, Table 5
 | |
|     setLibcallName(RTLIB::OEQ_F32, "__aeabi_fcmpeq");
 | |
|     setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
 | |
|     setLibcallName(RTLIB::UNE_F32, "__aeabi_fcmpeq");
 | |
|     setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETEQ);
 | |
|     setLibcallName(RTLIB::OLT_F32, "__aeabi_fcmplt");
 | |
|     setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
 | |
|     setLibcallName(RTLIB::OLE_F32, "__aeabi_fcmple");
 | |
|     setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
 | |
|     setLibcallName(RTLIB::OGE_F32, "__aeabi_fcmpge");
 | |
|     setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
 | |
|     setLibcallName(RTLIB::OGT_F32, "__aeabi_fcmpgt");
 | |
|     setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
 | |
|     setLibcallName(RTLIB::UO_F32,  "__aeabi_fcmpun");
 | |
|     setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
 | |
|     setLibcallName(RTLIB::O_F32,   "__aeabi_fcmpun");
 | |
|     setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
 | |
|     setLibcallCallingConv(RTLIB::OEQ_F32, CallingConv::ARM_AAPCS);
 | |
|     setLibcallCallingConv(RTLIB::UNE_F32, CallingConv::ARM_AAPCS);
 | |
|     setLibcallCallingConv(RTLIB::OLT_F32, CallingConv::ARM_AAPCS);
 | |
|     setLibcallCallingConv(RTLIB::OLE_F32, CallingConv::ARM_AAPCS);
 | |
|     setLibcallCallingConv(RTLIB::OGE_F32, CallingConv::ARM_AAPCS);
 | |
|     setLibcallCallingConv(RTLIB::OGT_F32, CallingConv::ARM_AAPCS);
 | |
|     setLibcallCallingConv(RTLIB::UO_F32, CallingConv::ARM_AAPCS);
 | |
|     setLibcallCallingConv(RTLIB::O_F32, CallingConv::ARM_AAPCS);
 | |
| 
 | |
|     // Floating-point to integer conversions.
 | |
|     // RTABI chapter 4.1.2, Table 6
 | |
|     setLibcallName(RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz");
 | |
|     setLibcallName(RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz");
 | |
|     setLibcallName(RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz");
 | |
|     setLibcallName(RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz");
 | |
|     setLibcallName(RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz");
 | |
|     setLibcallName(RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz");
 | |
|     setLibcallName(RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz");
 | |
|     setLibcallName(RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz");
 | |
|     setLibcallCallingConv(RTLIB::FPTOSINT_F64_I32, CallingConv::ARM_AAPCS);
 | |
|     setLibcallCallingConv(RTLIB::FPTOUINT_F64_I32, CallingConv::ARM_AAPCS);
 | |
|     setLibcallCallingConv(RTLIB::FPTOSINT_F64_I64, CallingConv::ARM_AAPCS);
 | |
|     setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::ARM_AAPCS);
 | |
|     setLibcallCallingConv(RTLIB::FPTOSINT_F32_I32, CallingConv::ARM_AAPCS);
 | |
|     setLibcallCallingConv(RTLIB::FPTOUINT_F32_I32, CallingConv::ARM_AAPCS);
 | |
|     setLibcallCallingConv(RTLIB::FPTOSINT_F32_I64, CallingConv::ARM_AAPCS);
 | |
|     setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::ARM_AAPCS);
 | |
| 
 | |
|     // Conversions between floating types.
 | |
|     // RTABI chapter 4.1.2, Table 7
 | |
|     setLibcallName(RTLIB::FPROUND_F64_F32, "__aeabi_d2f");
 | |
|     setLibcallName(RTLIB::FPEXT_F32_F64,   "__aeabi_f2d");
 | |
|     setLibcallCallingConv(RTLIB::FPROUND_F64_F32, CallingConv::ARM_AAPCS);
 | |
|     setLibcallCallingConv(RTLIB::FPEXT_F32_F64, CallingConv::ARM_AAPCS);
 | |
| 
 | |
|     // Integer to floating-point conversions.
 | |
|     // RTABI chapter 4.1.2, Table 8
 | |
|     setLibcallName(RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d");
 | |
|     setLibcallName(RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d");
 | |
|     setLibcallName(RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d");
 | |
|     setLibcallName(RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d");
 | |
|     setLibcallName(RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f");
 | |
|     setLibcallName(RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f");
 | |
|     setLibcallName(RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f");
 | |
|     setLibcallName(RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f");
 | |
|     setLibcallCallingConv(RTLIB::SINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
 | |
|     setLibcallCallingConv(RTLIB::UINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
 | |
|     setLibcallCallingConv(RTLIB::SINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
 | |
|     setLibcallCallingConv(RTLIB::UINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
 | |
|     setLibcallCallingConv(RTLIB::SINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
 | |
|     setLibcallCallingConv(RTLIB::UINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
 | |
|     setLibcallCallingConv(RTLIB::SINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
 | |
|     setLibcallCallingConv(RTLIB::UINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
 | |
| 
 | |
|     // Long long helper functions
 | |
|     // RTABI chapter 4.2, Table 9
 | |
|     setLibcallName(RTLIB::MUL_I64,  "__aeabi_lmul");
 | |
|     setLibcallName(RTLIB::SHL_I64, "__aeabi_llsl");
 | |
|     setLibcallName(RTLIB::SRL_I64, "__aeabi_llsr");
 | |
|     setLibcallName(RTLIB::SRA_I64, "__aeabi_lasr");
 | |
|     setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::ARM_AAPCS);
 | |
|     setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
 | |
|     setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
 | |
|     setLibcallCallingConv(RTLIB::SHL_I64, CallingConv::ARM_AAPCS);
 | |
|     setLibcallCallingConv(RTLIB::SRL_I64, CallingConv::ARM_AAPCS);
 | |
|     setLibcallCallingConv(RTLIB::SRA_I64, CallingConv::ARM_AAPCS);
 | |
| 
 | |
|     // Integer division functions
 | |
|     // RTABI chapter 4.3.1
 | |
|     setLibcallName(RTLIB::SDIV_I8,  "__aeabi_idiv");
 | |
|     setLibcallName(RTLIB::SDIV_I16, "__aeabi_idiv");
 | |
|     setLibcallName(RTLIB::SDIV_I32, "__aeabi_idiv");
 | |
|     setLibcallName(RTLIB::SDIV_I64, "__aeabi_ldivmod");
 | |
|     setLibcallName(RTLIB::UDIV_I8,  "__aeabi_uidiv");
 | |
|     setLibcallName(RTLIB::UDIV_I16, "__aeabi_uidiv");
 | |
|     setLibcallName(RTLIB::UDIV_I32, "__aeabi_uidiv");
 | |
|     setLibcallName(RTLIB::UDIV_I64, "__aeabi_uldivmod");
 | |
|     setLibcallCallingConv(RTLIB::SDIV_I8, CallingConv::ARM_AAPCS);
 | |
|     setLibcallCallingConv(RTLIB::SDIV_I16, CallingConv::ARM_AAPCS);
 | |
|     setLibcallCallingConv(RTLIB::SDIV_I32, CallingConv::ARM_AAPCS);
 | |
|     setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
 | |
|     setLibcallCallingConv(RTLIB::UDIV_I8, CallingConv::ARM_AAPCS);
 | |
|     setLibcallCallingConv(RTLIB::UDIV_I16, CallingConv::ARM_AAPCS);
 | |
|     setLibcallCallingConv(RTLIB::UDIV_I32, CallingConv::ARM_AAPCS);
 | |
|     setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
 | |
| 
 | |
|     // Memory operations
 | |
|     // RTABI chapter 4.3.4
 | |
|     setLibcallName(RTLIB::MEMCPY,  "__aeabi_memcpy");
 | |
|     setLibcallName(RTLIB::MEMMOVE, "__aeabi_memmove");
 | |
|     setLibcallName(RTLIB::MEMSET,  "__aeabi_memset");
 | |
|     setLibcallCallingConv(RTLIB::MEMCPY, CallingConv::ARM_AAPCS);
 | |
|     setLibcallCallingConv(RTLIB::MEMMOVE, CallingConv::ARM_AAPCS);
 | |
|     setLibcallCallingConv(RTLIB::MEMSET, CallingConv::ARM_AAPCS);
 | |
|   }
 | |
| 
 | |
|   // Use divmod compiler-rt calls for iOS 5.0 and later.
 | |
|   if (Subtarget->getTargetTriple().getOS() == Triple::IOS &&
 | |
|       !Subtarget->getTargetTriple().isOSVersionLT(5, 0)) {
 | |
|     setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
 | |
|     setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
 | |
|   }
 | |
| 
 | |
|   if (Subtarget->isThumb1Only())
 | |
|     addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
 | |
|   else
 | |
|     addRegisterClass(MVT::i32, &ARM::GPRRegClass);
 | |
|   if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
 | |
|       !Subtarget->isThumb1Only()) {
 | |
|     addRegisterClass(MVT::f32, &ARM::SPRRegClass);
 | |
|     if (!Subtarget->isFPOnlySP())
 | |
|       addRegisterClass(MVT::f64, &ARM::DPRRegClass);
 | |
| 
 | |
|     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
 | |
|   }
 | |
| 
 | |
|   for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
 | |
|        VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
 | |
|     for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
 | |
|          InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
 | |
|       setTruncStoreAction((MVT::SimpleValueType)VT,
 | |
|                           (MVT::SimpleValueType)InnerVT, Expand);
 | |
|     setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
 | |
|     setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
 | |
|     setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
 | |
|   }
 | |
| 
 | |
|   setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
 | |
| 
 | |
|   if (Subtarget->hasNEON()) {
 | |
|     addDRTypeForNEON(MVT::v2f32);
 | |
|     addDRTypeForNEON(MVT::v8i8);
 | |
|     addDRTypeForNEON(MVT::v4i16);
 | |
|     addDRTypeForNEON(MVT::v2i32);
 | |
|     addDRTypeForNEON(MVT::v1i64);
 | |
| 
 | |
|     addQRTypeForNEON(MVT::v4f32);
 | |
|     addQRTypeForNEON(MVT::v2f64);
 | |
|     addQRTypeForNEON(MVT::v16i8);
 | |
|     addQRTypeForNEON(MVT::v8i16);
 | |
|     addQRTypeForNEON(MVT::v4i32);
 | |
|     addQRTypeForNEON(MVT::v2i64);
 | |
| 
 | |
|     // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
 | |
|     // neither Neon nor VFP support any arithmetic operations on it.
 | |
|     // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
 | |
|     // supported for v4f32.
 | |
|     setOperationAction(ISD::FADD, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
 | |
|     // FIXME: Code duplication: FDIV and FREM are expanded always, see
 | |
|     // ARMTargetLowering::addTypeForNEON method for details.
 | |
|     setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FREM, MVT::v2f64, Expand);
 | |
|     // FIXME: Create unittest.
 | |
|     // In another words, find a way when "copysign" appears in DAG with vector
 | |
|     // operands.
 | |
|     setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
 | |
|     // FIXME: Code duplication: SETCC has custom operation action, see
 | |
|     // ARMTargetLowering::addTypeForNEON method for details.
 | |
|     setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
 | |
|     // FIXME: Create unittest for FNEG and for FABS.
 | |
|     setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FABS, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
 | |
|     // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
 | |
|     setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
 | |
| 
 | |
|     setOperationAction(ISD::FABS, MVT::v4f32, Expand);
 | |
|     setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
 | |
|     setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
 | |
|     setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
 | |
|     setOperationAction(ISD::FPOWI, MVT::v4f32, Expand);
 | |
|     setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
 | |
|     setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
 | |
|     setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
 | |
|     setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
 | |
|     setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
 | |
|     setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
 | |
|     setOperationAction(ISD::FCEIL, MVT::v4f32, Expand);
 | |
|     setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand);
 | |
|     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
 | |
|     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
 | |
|     setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand);
 | |
| 
 | |
|     // Neon does not support some operations on v1i64 and v2i64 types.
 | |
|     setOperationAction(ISD::MUL, MVT::v1i64, Expand);
 | |
|     // Custom handling for some quad-vector types to detect VMULL.
 | |
|     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
 | |
|     setOperationAction(ISD::MUL, MVT::v4i32, Custom);
 | |
|     setOperationAction(ISD::MUL, MVT::v2i64, Custom);
 | |
|     // Custom handling for some vector types to avoid expensive expansions
 | |
|     setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
 | |
|     setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
 | |
|     setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
 | |
|     setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
 | |
|     setOperationAction(ISD::SETCC, MVT::v1i64, Expand);
 | |
|     setOperationAction(ISD::SETCC, MVT::v2i64, Expand);
 | |
|     // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
 | |
|     // a destination type that is wider than the source, and nor does
 | |
|     // it have a FP_TO_[SU]INT instruction with a narrower destination than
 | |
|     // source.
 | |
|     setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
 | |
|     setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
 | |
|     setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
 | |
|     setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
 | |
| 
 | |
|     setTargetDAGCombine(ISD::INTRINSIC_VOID);
 | |
|     setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
 | |
|     setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
 | |
|     setTargetDAGCombine(ISD::SHL);
 | |
|     setTargetDAGCombine(ISD::SRL);
 | |
|     setTargetDAGCombine(ISD::SRA);
 | |
|     setTargetDAGCombine(ISD::SIGN_EXTEND);
 | |
|     setTargetDAGCombine(ISD::ZERO_EXTEND);
 | |
|     setTargetDAGCombine(ISD::ANY_EXTEND);
 | |
|     setTargetDAGCombine(ISD::SELECT_CC);
 | |
|     setTargetDAGCombine(ISD::BUILD_VECTOR);
 | |
|     setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
 | |
|     setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
 | |
|     setTargetDAGCombine(ISD::STORE);
 | |
|     setTargetDAGCombine(ISD::FP_TO_SINT);
 | |
|     setTargetDAGCombine(ISD::FP_TO_UINT);
 | |
|     setTargetDAGCombine(ISD::FDIV);
 | |
| 
 | |
|     // It is legal to extload from v4i8 to v4i16 or v4i32.
 | |
|     MVT Tys[6] = {MVT::v8i8, MVT::v4i8, MVT::v2i8,
 | |
|                   MVT::v4i16, MVT::v2i16,
 | |
|                   MVT::v2i32};
 | |
|     for (unsigned i = 0; i < 6; ++i) {
 | |
|       setLoadExtAction(ISD::EXTLOAD, Tys[i], Legal);
 | |
|       setLoadExtAction(ISD::ZEXTLOAD, Tys[i], Legal);
 | |
|       setLoadExtAction(ISD::SEXTLOAD, Tys[i], Legal);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // ARM and Thumb2 support UMLAL/SMLAL.
 | |
|   if (!Subtarget->isThumb1Only())
 | |
|     setTargetDAGCombine(ISD::ADDC);
 | |
| 
 | |
| 
 | |
|   computeRegisterProperties();
 | |
| 
 | |
|   // ARM does not have f32 extending load.
 | |
|   setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
 | |
| 
 | |
|   // ARM does not have i1 sign extending load.
 | |
|   setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
 | |
| 
 | |
|   // ARM supports all 4 flavors of integer indexed load / store.
 | |
|   if (!Subtarget->isThumb1Only()) {
 | |
|     for (unsigned im = (unsigned)ISD::PRE_INC;
 | |
|          im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
 | |
|       setIndexedLoadAction(im,  MVT::i1,  Legal);
 | |
|       setIndexedLoadAction(im,  MVT::i8,  Legal);
 | |
|       setIndexedLoadAction(im,  MVT::i16, Legal);
 | |
|       setIndexedLoadAction(im,  MVT::i32, Legal);
 | |
|       setIndexedStoreAction(im, MVT::i1,  Legal);
 | |
|       setIndexedStoreAction(im, MVT::i8,  Legal);
 | |
|       setIndexedStoreAction(im, MVT::i16, Legal);
 | |
|       setIndexedStoreAction(im, MVT::i32, Legal);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // i64 operation support.
 | |
|   setOperationAction(ISD::MUL,     MVT::i64, Expand);
 | |
|   setOperationAction(ISD::MULHU,   MVT::i32, Expand);
 | |
|   if (Subtarget->isThumb1Only()) {
 | |
|     setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
 | |
|     setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
 | |
|   }
 | |
|   if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
 | |
|       || (Subtarget->isThumb2() && !Subtarget->hasThumb2DSP()))
 | |
|     setOperationAction(ISD::MULHS, MVT::i32, Expand);
 | |
| 
 | |
|   setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::SRL,       MVT::i64, Custom);
 | |
|   setOperationAction(ISD::SRA,       MVT::i64, Custom);
 | |
| 
 | |
|   if (!Subtarget->isThumb1Only()) {
 | |
|     // FIXME: We should do this for Thumb1 as well.
 | |
|     setOperationAction(ISD::ADDC,    MVT::i32, Custom);
 | |
|     setOperationAction(ISD::ADDE,    MVT::i32, Custom);
 | |
|     setOperationAction(ISD::SUBC,    MVT::i32, Custom);
 | |
|     setOperationAction(ISD::SUBE,    MVT::i32, Custom);
 | |
|   }
 | |
| 
 | |
|   // ARM does not have ROTL.
 | |
|   setOperationAction(ISD::ROTL,  MVT::i32, Expand);
 | |
|   setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
 | |
|   setOperationAction(ISD::CTPOP, MVT::i32, Expand);
 | |
|   if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
 | |
|     setOperationAction(ISD::CTLZ, MVT::i32, Expand);
 | |
| 
 | |
|   // These just redirect to CTTZ and CTLZ on ARM.
 | |
|   setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i32  , Expand);
 | |
|   setOperationAction(ISD::CTLZ_ZERO_UNDEF  , MVT::i32  , Expand);
 | |
| 
 | |
|   // Only ARMv6 has BSWAP.
 | |
|   if (!Subtarget->hasV6Ops())
 | |
|     setOperationAction(ISD::BSWAP, MVT::i32, Expand);
 | |
| 
 | |
|   if (!(Subtarget->hasDivide() && Subtarget->isThumb2()) &&
 | |
|       !(Subtarget->hasDivideInARMMode() && !Subtarget->isThumb())) {
 | |
|     // These are expanded into libcalls if the cpu doesn't have HW divider.
 | |
|     setOperationAction(ISD::SDIV,  MVT::i32, Expand);
 | |
|     setOperationAction(ISD::UDIV,  MVT::i32, Expand);
 | |
|   }
 | |
|   setOperationAction(ISD::SREM,  MVT::i32, Expand);
 | |
|   setOperationAction(ISD::UREM,  MVT::i32, Expand);
 | |
|   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
 | |
| 
 | |
|   setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
 | |
|   setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
 | |
|   setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
 | |
| 
 | |
|   setOperationAction(ISD::TRAP, MVT::Other, Legal);
 | |
| 
 | |
|   // Use the default implementation.
 | |
|   setOperationAction(ISD::VASTART,            MVT::Other, Custom);
 | |
|   setOperationAction(ISD::VAARG,              MVT::Other, Expand);
 | |
|   setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
 | |
|   setOperationAction(ISD::VAEND,              MVT::Other, Expand);
 | |
|   setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
 | |
|   setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
 | |
| 
 | |
|   if (!Subtarget->isTargetDarwin()) {
 | |
|     // Non-Darwin platforms may return values in these registers via the
 | |
|     // personality function.
 | |
|     setOperationAction(ISD::EHSELECTION,      MVT::i32,   Expand);
 | |
|     setOperationAction(ISD::EXCEPTIONADDR,    MVT::i32,   Expand);
 | |
|     setExceptionPointerRegister(ARM::R0);
 | |
|     setExceptionSelectorRegister(ARM::R1);
 | |
|   }
 | |
| 
 | |
|   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
 | |
|   // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
 | |
|   // the default expansion.
 | |
|   // FIXME: This should be checking for v6k, not just v6.
 | |
|   if (Subtarget->hasDataBarrier() ||
 | |
|       (Subtarget->hasV6Ops() && !Subtarget->isThumb())) {
 | |
|     // membarrier needs custom lowering; the rest are legal and handled
 | |
|     // normally.
 | |
|     setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom);
 | |
|     setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
 | |
|     // Custom lowering for 64-bit ops
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i64, Custom);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i64, Custom);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i64, Custom);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i64, Custom);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i64, Custom);
 | |
|     setOperationAction(ISD::ATOMIC_SWAP,  MVT::i64, Custom);
 | |
|     setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Custom);
 | |
|     // Automatically insert fences (dmb ist) around ATOMIC_SWAP etc.
 | |
|     setInsertFencesForAtomic(true);
 | |
|   } else {
 | |
|     // Set them all for expansion, which will force libcalls.
 | |
|     setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
 | |
|     setOperationAction(ISD::ATOMIC_FENCE,   MVT::Other, Expand);
 | |
|     setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
 | |
|     setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
 | |
|     // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
 | |
|     // Unordered/Monotonic case.
 | |
|     setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
 | |
|     setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
 | |
|     // Since the libcalls include locking, fold in the fences
 | |
|     setShouldFoldAtomicFences(true);
 | |
|   }
 | |
| 
 | |
|   setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
 | |
| 
 | |
|   // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
 | |
|   if (!Subtarget->hasV6Ops()) {
 | |
|     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
 | |
|     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
 | |
|   }
 | |
|   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
 | |
| 
 | |
|   if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
 | |
|       !Subtarget->isThumb1Only()) {
 | |
|     // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
 | |
|     // iff target supports vfp2.
 | |
|     setOperationAction(ISD::BITCAST, MVT::i64, Custom);
 | |
|     setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
 | |
|   }
 | |
| 
 | |
|   // We want to custom lower some of our intrinsics.
 | |
|   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
 | |
|   if (Subtarget->isTargetDarwin()) {
 | |
|     setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
 | |
|     setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
 | |
|     setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
 | |
|   }
 | |
| 
 | |
|   setOperationAction(ISD::SETCC,     MVT::i32, Expand);
 | |
|   setOperationAction(ISD::SETCC,     MVT::f32, Expand);
 | |
|   setOperationAction(ISD::SETCC,     MVT::f64, Expand);
 | |
|   setOperationAction(ISD::SELECT,    MVT::i32, Custom);
 | |
|   setOperationAction(ISD::SELECT,    MVT::f32, Custom);
 | |
|   setOperationAction(ISD::SELECT,    MVT::f64, Custom);
 | |
|   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
 | |
|   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
 | |
| 
 | |
|   setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
 | |
|   setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
 | |
|   setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
 | |
|   setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
 | |
|   setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
 | |
| 
 | |
|   // We don't support sin/cos/fmod/copysign/pow
 | |
|   setOperationAction(ISD::FSIN,      MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FSIN,      MVT::f32, Expand);
 | |
|   setOperationAction(ISD::FCOS,      MVT::f32, Expand);
 | |
|   setOperationAction(ISD::FCOS,      MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FREM,      MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FREM,      MVT::f32, Expand);
 | |
|   if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
 | |
|       !Subtarget->isThumb1Only()) {
 | |
|     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
 | |
|     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
 | |
|   }
 | |
|   setOperationAction(ISD::FPOW,      MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FPOW,      MVT::f32, Expand);
 | |
| 
 | |
|   if (!Subtarget->hasVFP4()) {
 | |
|     setOperationAction(ISD::FMA, MVT::f64, Expand);
 | |
|     setOperationAction(ISD::FMA, MVT::f32, Expand);
 | |
|   }
 | |
| 
 | |
|   // Various VFP goodness
 | |
|   if (!TM.Options.UseSoftFloat && !Subtarget->isThumb1Only()) {
 | |
|     // int <-> fp are custom expanded into bit_convert + ARMISD ops.
 | |
|     if (Subtarget->hasVFP2()) {
 | |
|       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
 | |
|       setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
 | |
|       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
 | |
|       setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
 | |
|     }
 | |
|     // Special handling for half-precision FP.
 | |
|     if (!Subtarget->hasFP16()) {
 | |
|       setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
 | |
|       setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We have target-specific dag combine patterns for the following nodes:
 | |
|   // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
 | |
|   setTargetDAGCombine(ISD::ADD);
 | |
|   setTargetDAGCombine(ISD::SUB);
 | |
|   setTargetDAGCombine(ISD::MUL);
 | |
|   setTargetDAGCombine(ISD::AND);
 | |
|   setTargetDAGCombine(ISD::OR);
 | |
|   setTargetDAGCombine(ISD::XOR);
 | |
| 
 | |
|   if (Subtarget->hasV6Ops())
 | |
|     setTargetDAGCombine(ISD::SRL);
 | |
| 
 | |
|   setStackPointerRegisterToSaveRestore(ARM::SP);
 | |
| 
 | |
|   if (TM.Options.UseSoftFloat || Subtarget->isThumb1Only() ||
 | |
|       !Subtarget->hasVFP2())
 | |
|     setSchedulingPreference(Sched::RegPressure);
 | |
|   else
 | |
|     setSchedulingPreference(Sched::Hybrid);
 | |
| 
 | |
|   //// temporary - rewrite interface to use type
 | |
|   maxStoresPerMemcpy = maxStoresPerMemcpyOptSize = 1;
 | |
|   maxStoresPerMemset = 16;
 | |
|   maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
 | |
| 
 | |
|   // On ARM arguments smaller than 4 bytes are extended, so all arguments
 | |
|   // are at least 4 bytes aligned.
 | |
|   setMinStackArgumentAlignment(4);
 | |
| 
 | |
|   benefitFromCodePlacementOpt = true;
 | |
| 
 | |
|   // Prefer likely predicted branches to selects on out-of-order cores.
 | |
|   predictableSelectIsExpensive = Subtarget->isLikeA9();
 | |
| 
 | |
|   setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
 | |
| }
 | |
| 
 | |
| // FIXME: It might make sense to define the representative register class as the
 | |
| // nearest super-register that has a non-null superset. For example, DPR_VFP2 is
 | |
| // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
 | |
| // SPR's representative would be DPR_VFP2. This should work well if register
 | |
| // pressure tracking were modified such that a register use would increment the
 | |
| // pressure of the register class's representative and all of it's super
 | |
| // classes' representatives transitively. We have not implemented this because
 | |
| // of the difficulty prior to coalescing of modeling operand register classes
 | |
| // due to the common occurrence of cross class copies and subregister insertions
 | |
| // and extractions.
 | |
| std::pair<const TargetRegisterClass*, uint8_t>
 | |
| ARMTargetLowering::findRepresentativeClass(EVT VT) const{
 | |
|   const TargetRegisterClass *RRC = 0;
 | |
|   uint8_t Cost = 1;
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   default:
 | |
|     return TargetLowering::findRepresentativeClass(VT);
 | |
|   // Use DPR as representative register class for all floating point
 | |
|   // and vector types. Since there are 32 SPR registers and 32 DPR registers so
 | |
|   // the cost is 1 for both f32 and f64.
 | |
|   case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
 | |
|   case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
 | |
|     RRC = &ARM::DPRRegClass;
 | |
|     // When NEON is used for SP, only half of the register file is available
 | |
|     // because operations that define both SP and DP results will be constrained
 | |
|     // to the VFP2 class (D0-D15). We currently model this constraint prior to
 | |
|     // coalescing by double-counting the SP regs. See the FIXME above.
 | |
|     if (Subtarget->useNEONForSinglePrecisionFP())
 | |
|       Cost = 2;
 | |
|     break;
 | |
|   case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
 | |
|   case MVT::v4f32: case MVT::v2f64:
 | |
|     RRC = &ARM::DPRRegClass;
 | |
|     Cost = 2;
 | |
|     break;
 | |
|   case MVT::v4i64:
 | |
|     RRC = &ARM::DPRRegClass;
 | |
|     Cost = 4;
 | |
|     break;
 | |
|   case MVT::v8i64:
 | |
|     RRC = &ARM::DPRRegClass;
 | |
|     Cost = 8;
 | |
|     break;
 | |
|   }
 | |
|   return std::make_pair(RRC, Cost);
 | |
| }
 | |
| 
 | |
| const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
 | |
|   switch (Opcode) {
 | |
|   default: return 0;
 | |
|   case ARMISD::Wrapper:       return "ARMISD::Wrapper";
 | |
|   case ARMISD::WrapperDYN:    return "ARMISD::WrapperDYN";
 | |
|   case ARMISD::WrapperPIC:    return "ARMISD::WrapperPIC";
 | |
|   case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
 | |
|   case ARMISD::CALL:          return "ARMISD::CALL";
 | |
|   case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
 | |
|   case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
 | |
|   case ARMISD::tCALL:         return "ARMISD::tCALL";
 | |
|   case ARMISD::BRCOND:        return "ARMISD::BRCOND";
 | |
|   case ARMISD::BR_JT:         return "ARMISD::BR_JT";
 | |
|   case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
 | |
|   case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
 | |
|   case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
 | |
|   case ARMISD::CMP:           return "ARMISD::CMP";
 | |
|   case ARMISD::CMN:           return "ARMISD::CMN";
 | |
|   case ARMISD::CMPZ:          return "ARMISD::CMPZ";
 | |
|   case ARMISD::CMPFP:         return "ARMISD::CMPFP";
 | |
|   case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
 | |
|   case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
 | |
|   case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
 | |
| 
 | |
|   case ARMISD::CMOV:          return "ARMISD::CMOV";
 | |
| 
 | |
|   case ARMISD::RBIT:          return "ARMISD::RBIT";
 | |
| 
 | |
|   case ARMISD::FTOSI:         return "ARMISD::FTOSI";
 | |
|   case ARMISD::FTOUI:         return "ARMISD::FTOUI";
 | |
|   case ARMISD::SITOF:         return "ARMISD::SITOF";
 | |
|   case ARMISD::UITOF:         return "ARMISD::UITOF";
 | |
| 
 | |
|   case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
 | |
|   case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
 | |
|   case ARMISD::RRX:           return "ARMISD::RRX";
 | |
| 
 | |
|   case ARMISD::ADDC:          return "ARMISD::ADDC";
 | |
|   case ARMISD::ADDE:          return "ARMISD::ADDE";
 | |
|   case ARMISD::SUBC:          return "ARMISD::SUBC";
 | |
|   case ARMISD::SUBE:          return "ARMISD::SUBE";
 | |
| 
 | |
|   case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
 | |
|   case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
 | |
| 
 | |
|   case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
 | |
|   case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
 | |
| 
 | |
|   case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
 | |
| 
 | |
|   case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
 | |
| 
 | |
|   case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
 | |
| 
 | |
|   case ARMISD::MEMBARRIER:    return "ARMISD::MEMBARRIER";
 | |
|   case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
 | |
| 
 | |
|   case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";
 | |
| 
 | |
|   case ARMISD::VCEQ:          return "ARMISD::VCEQ";
 | |
|   case ARMISD::VCEQZ:         return "ARMISD::VCEQZ";
 | |
|   case ARMISD::VCGE:          return "ARMISD::VCGE";
 | |
|   case ARMISD::VCGEZ:         return "ARMISD::VCGEZ";
 | |
|   case ARMISD::VCLEZ:         return "ARMISD::VCLEZ";
 | |
|   case ARMISD::VCGEU:         return "ARMISD::VCGEU";
 | |
|   case ARMISD::VCGT:          return "ARMISD::VCGT";
 | |
|   case ARMISD::VCGTZ:         return "ARMISD::VCGTZ";
 | |
|   case ARMISD::VCLTZ:         return "ARMISD::VCLTZ";
 | |
|   case ARMISD::VCGTU:         return "ARMISD::VCGTU";
 | |
|   case ARMISD::VTST:          return "ARMISD::VTST";
 | |
| 
 | |
|   case ARMISD::VSHL:          return "ARMISD::VSHL";
 | |
|   case ARMISD::VSHRs:         return "ARMISD::VSHRs";
 | |
|   case ARMISD::VSHRu:         return "ARMISD::VSHRu";
 | |
|   case ARMISD::VSHLLs:        return "ARMISD::VSHLLs";
 | |
|   case ARMISD::VSHLLu:        return "ARMISD::VSHLLu";
 | |
|   case ARMISD::VSHLLi:        return "ARMISD::VSHLLi";
 | |
|   case ARMISD::VSHRN:         return "ARMISD::VSHRN";
 | |
|   case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
 | |
|   case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
 | |
|   case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
 | |
|   case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
 | |
|   case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
 | |
|   case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
 | |
|   case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
 | |
|   case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
 | |
|   case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
 | |
|   case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
 | |
|   case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
 | |
|   case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
 | |
|   case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
 | |
|   case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
 | |
|   case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
 | |
|   case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
 | |
|   case ARMISD::VMOVFPIMM:     return "ARMISD::VMOVFPIMM";
 | |
|   case ARMISD::VDUP:          return "ARMISD::VDUP";
 | |
|   case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
 | |
|   case ARMISD::VEXT:          return "ARMISD::VEXT";
 | |
|   case ARMISD::VREV64:        return "ARMISD::VREV64";
 | |
|   case ARMISD::VREV32:        return "ARMISD::VREV32";
 | |
|   case ARMISD::VREV16:        return "ARMISD::VREV16";
 | |
|   case ARMISD::VZIP:          return "ARMISD::VZIP";
 | |
|   case ARMISD::VUZP:          return "ARMISD::VUZP";
 | |
|   case ARMISD::VTRN:          return "ARMISD::VTRN";
 | |
|   case ARMISD::VTBL1:         return "ARMISD::VTBL1";
 | |
|   case ARMISD::VTBL2:         return "ARMISD::VTBL2";
 | |
|   case ARMISD::VMULLs:        return "ARMISD::VMULLs";
 | |
|   case ARMISD::VMULLu:        return "ARMISD::VMULLu";
 | |
|   case ARMISD::UMLAL:         return "ARMISD::UMLAL";
 | |
|   case ARMISD::SMLAL:         return "ARMISD::SMLAL";
 | |
|   case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
 | |
|   case ARMISD::FMAX:          return "ARMISD::FMAX";
 | |
|   case ARMISD::FMIN:          return "ARMISD::FMIN";
 | |
|   case ARMISD::BFI:           return "ARMISD::BFI";
 | |
|   case ARMISD::VORRIMM:       return "ARMISD::VORRIMM";
 | |
|   case ARMISD::VBICIMM:       return "ARMISD::VBICIMM";
 | |
|   case ARMISD::VBSL:          return "ARMISD::VBSL";
 | |
|   case ARMISD::VLD2DUP:       return "ARMISD::VLD2DUP";
 | |
|   case ARMISD::VLD3DUP:       return "ARMISD::VLD3DUP";
 | |
|   case ARMISD::VLD4DUP:       return "ARMISD::VLD4DUP";
 | |
|   case ARMISD::VLD1_UPD:      return "ARMISD::VLD1_UPD";
 | |
|   case ARMISD::VLD2_UPD:      return "ARMISD::VLD2_UPD";
 | |
|   case ARMISD::VLD3_UPD:      return "ARMISD::VLD3_UPD";
 | |
|   case ARMISD::VLD4_UPD:      return "ARMISD::VLD4_UPD";
 | |
|   case ARMISD::VLD2LN_UPD:    return "ARMISD::VLD2LN_UPD";
 | |
|   case ARMISD::VLD3LN_UPD:    return "ARMISD::VLD3LN_UPD";
 | |
|   case ARMISD::VLD4LN_UPD:    return "ARMISD::VLD4LN_UPD";
 | |
|   case ARMISD::VLD2DUP_UPD:   return "ARMISD::VLD2DUP_UPD";
 | |
|   case ARMISD::VLD3DUP_UPD:   return "ARMISD::VLD3DUP_UPD";
 | |
|   case ARMISD::VLD4DUP_UPD:   return "ARMISD::VLD4DUP_UPD";
 | |
|   case ARMISD::VST1_UPD:      return "ARMISD::VST1_UPD";
 | |
|   case ARMISD::VST2_UPD:      return "ARMISD::VST2_UPD";
 | |
|   case ARMISD::VST3_UPD:      return "ARMISD::VST3_UPD";
 | |
|   case ARMISD::VST4_UPD:      return "ARMISD::VST4_UPD";
 | |
|   case ARMISD::VST2LN_UPD:    return "ARMISD::VST2LN_UPD";
 | |
|   case ARMISD::VST3LN_UPD:    return "ARMISD::VST3LN_UPD";
 | |
|   case ARMISD::VST4LN_UPD:    return "ARMISD::VST4LN_UPD";
 | |
|   }
 | |
| }
 | |
| 
 | |
| EVT ARMTargetLowering::getSetCCResultType(EVT VT) const {
 | |
|   if (!VT.isVector()) return getPointerTy();
 | |
|   return VT.changeVectorElementTypeToInteger();
 | |
| }
 | |
| 
 | |
| /// getRegClassFor - Return the register class that should be used for the
 | |
| /// specified value type.
 | |
| const TargetRegisterClass *ARMTargetLowering::getRegClassFor(EVT VT) const {
 | |
|   // Map v4i64 to QQ registers but do not make the type legal. Similarly map
 | |
|   // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
 | |
|   // load / store 4 to 8 consecutive D registers.
 | |
|   if (Subtarget->hasNEON()) {
 | |
|     if (VT == MVT::v4i64)
 | |
|       return &ARM::QQPRRegClass;
 | |
|     if (VT == MVT::v8i64)
 | |
|       return &ARM::QQQQPRRegClass;
 | |
|   }
 | |
|   return TargetLowering::getRegClassFor(VT);
 | |
| }
 | |
| 
 | |
| // Create a fast isel object.
 | |
| FastISel *
 | |
| ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
 | |
|                                   const TargetLibraryInfo *libInfo) const {
 | |
|   return ARM::createFastISel(funcInfo, libInfo);
 | |
| }
 | |
| 
 | |
| /// getMaximalGlobalOffset - Returns the maximal possible offset which can
 | |
| /// be used for loads / stores from the global.
 | |
| unsigned ARMTargetLowering::getMaximalGlobalOffset() const {
 | |
|   return (Subtarget->isThumb1Only() ? 127 : 4095);
 | |
| }
 | |
| 
 | |
| Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
 | |
|   unsigned NumVals = N->getNumValues();
 | |
|   if (!NumVals)
 | |
|     return Sched::RegPressure;
 | |
| 
 | |
|   for (unsigned i = 0; i != NumVals; ++i) {
 | |
|     EVT VT = N->getValueType(i);
 | |
|     if (VT == MVT::Glue || VT == MVT::Other)
 | |
|       continue;
 | |
|     if (VT.isFloatingPoint() || VT.isVector())
 | |
|       return Sched::ILP;
 | |
|   }
 | |
| 
 | |
|   if (!N->isMachineOpcode())
 | |
|     return Sched::RegPressure;
 | |
| 
 | |
|   // Load are scheduled for latency even if there instruction itinerary
 | |
|   // is not available.
 | |
|   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
 | |
|   const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
 | |
| 
 | |
|   if (MCID.getNumDefs() == 0)
 | |
|     return Sched::RegPressure;
 | |
|   if (!Itins->isEmpty() &&
 | |
|       Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
 | |
|     return Sched::ILP;
 | |
| 
 | |
|   return Sched::RegPressure;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Lowering Code
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
 | |
| static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
 | |
|   switch (CC) {
 | |
|   default: llvm_unreachable("Unknown condition code!");
 | |
|   case ISD::SETNE:  return ARMCC::NE;
 | |
|   case ISD::SETEQ:  return ARMCC::EQ;
 | |
|   case ISD::SETGT:  return ARMCC::GT;
 | |
|   case ISD::SETGE:  return ARMCC::GE;
 | |
|   case ISD::SETLT:  return ARMCC::LT;
 | |
|   case ISD::SETLE:  return ARMCC::LE;
 | |
|   case ISD::SETUGT: return ARMCC::HI;
 | |
|   case ISD::SETUGE: return ARMCC::HS;
 | |
|   case ISD::SETULT: return ARMCC::LO;
 | |
|   case ISD::SETULE: return ARMCC::LS;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
 | |
| static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
 | |
|                         ARMCC::CondCodes &CondCode2) {
 | |
|   CondCode2 = ARMCC::AL;
 | |
|   switch (CC) {
 | |
|   default: llvm_unreachable("Unknown FP condition!");
 | |
|   case ISD::SETEQ:
 | |
|   case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
 | |
|   case ISD::SETGT:
 | |
|   case ISD::SETOGT: CondCode = ARMCC::GT; break;
 | |
|   case ISD::SETGE:
 | |
|   case ISD::SETOGE: CondCode = ARMCC::GE; break;
 | |
|   case ISD::SETOLT: CondCode = ARMCC::MI; break;
 | |
|   case ISD::SETOLE: CondCode = ARMCC::LS; break;
 | |
|   case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
 | |
|   case ISD::SETO:   CondCode = ARMCC::VC; break;
 | |
|   case ISD::SETUO:  CondCode = ARMCC::VS; break;
 | |
|   case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
 | |
|   case ISD::SETUGT: CondCode = ARMCC::HI; break;
 | |
|   case ISD::SETUGE: CondCode = ARMCC::PL; break;
 | |
|   case ISD::SETLT:
 | |
|   case ISD::SETULT: CondCode = ARMCC::LT; break;
 | |
|   case ISD::SETLE:
 | |
|   case ISD::SETULE: CondCode = ARMCC::LE; break;
 | |
|   case ISD::SETNE:
 | |
|   case ISD::SETUNE: CondCode = ARMCC::NE; break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                      Calling Convention Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "ARMGenCallingConv.inc"
 | |
| 
 | |
| /// CCAssignFnForNode - Selects the correct CCAssignFn for a the
 | |
| /// given CallingConvention value.
 | |
| CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
 | |
|                                                  bool Return,
 | |
|                                                  bool isVarArg) const {
 | |
|   switch (CC) {
 | |
|   default:
 | |
|     llvm_unreachable("Unsupported calling convention");
 | |
|   case CallingConv::Fast:
 | |
|     if (Subtarget->hasVFP2() && !isVarArg) {
 | |
|       if (!Subtarget->isAAPCS_ABI())
 | |
|         return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
 | |
|       // For AAPCS ABI targets, just use VFP variant of the calling convention.
 | |
|       return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
 | |
|     }
 | |
|     // Fallthrough
 | |
|   case CallingConv::C: {
 | |
|     // Use target triple & subtarget features to do actual dispatch.
 | |
|     if (!Subtarget->isAAPCS_ABI())
 | |
|       return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
 | |
|     else if (Subtarget->hasVFP2() &&
 | |
|              getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
 | |
|              !isVarArg)
 | |
|       return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
 | |
|     return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
 | |
|   }
 | |
|   case CallingConv::ARM_AAPCS_VFP:
 | |
|     if (!isVarArg)
 | |
|       return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
 | |
|     // Fallthrough
 | |
|   case CallingConv::ARM_AAPCS:
 | |
|     return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
 | |
|   case CallingConv::ARM_APCS:
 | |
|     return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
 | |
|   case CallingConv::GHC:
 | |
|     return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// LowerCallResult - Lower the result values of a call into the
 | |
| /// appropriate copies out of appropriate physical registers.
 | |
| SDValue
 | |
| ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
 | |
|                                    CallingConv::ID CallConv, bool isVarArg,
 | |
|                                    const SmallVectorImpl<ISD::InputArg> &Ins,
 | |
|                                    DebugLoc dl, SelectionDAG &DAG,
 | |
|                                    SmallVectorImpl<SDValue> &InVals) const {
 | |
| 
 | |
|   // Assign locations to each value returned by this call.
 | |
|   SmallVector<CCValAssign, 16> RVLocs;
 | |
|   ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
 | |
|                     getTargetMachine(), RVLocs, *DAG.getContext(), Call);
 | |
|   CCInfo.AnalyzeCallResult(Ins,
 | |
|                            CCAssignFnForNode(CallConv, /* Return*/ true,
 | |
|                                              isVarArg));
 | |
| 
 | |
|   // Copy all of the result registers out of their specified physreg.
 | |
|   for (unsigned i = 0; i != RVLocs.size(); ++i) {
 | |
|     CCValAssign VA = RVLocs[i];
 | |
| 
 | |
|     SDValue Val;
 | |
|     if (VA.needsCustom()) {
 | |
|       // Handle f64 or half of a v2f64.
 | |
|       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
 | |
|                                       InFlag);
 | |
|       Chain = Lo.getValue(1);
 | |
|       InFlag = Lo.getValue(2);
 | |
|       VA = RVLocs[++i]; // skip ahead to next loc
 | |
|       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
 | |
|                                       InFlag);
 | |
|       Chain = Hi.getValue(1);
 | |
|       InFlag = Hi.getValue(2);
 | |
|       Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
 | |
| 
 | |
|       if (VA.getLocVT() == MVT::v2f64) {
 | |
|         SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
 | |
|         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
 | |
|                           DAG.getConstant(0, MVT::i32));
 | |
| 
 | |
|         VA = RVLocs[++i]; // skip ahead to next loc
 | |
|         Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
 | |
|         Chain = Lo.getValue(1);
 | |
|         InFlag = Lo.getValue(2);
 | |
|         VA = RVLocs[++i]; // skip ahead to next loc
 | |
|         Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
 | |
|         Chain = Hi.getValue(1);
 | |
|         InFlag = Hi.getValue(2);
 | |
|         Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
 | |
|         Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
 | |
|                           DAG.getConstant(1, MVT::i32));
 | |
|       }
 | |
|     } else {
 | |
|       Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
 | |
|                                InFlag);
 | |
|       Chain = Val.getValue(1);
 | |
|       InFlag = Val.getValue(2);
 | |
|     }
 | |
| 
 | |
|     switch (VA.getLocInfo()) {
 | |
|     default: llvm_unreachable("Unknown loc info!");
 | |
|     case CCValAssign::Full: break;
 | |
|     case CCValAssign::BCvt:
 | |
|       Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     InVals.push_back(Val);
 | |
|   }
 | |
| 
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| /// LowerMemOpCallTo - Store the argument to the stack.
 | |
| SDValue
 | |
| ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
 | |
|                                     SDValue StackPtr, SDValue Arg,
 | |
|                                     DebugLoc dl, SelectionDAG &DAG,
 | |
|                                     const CCValAssign &VA,
 | |
|                                     ISD::ArgFlagsTy Flags) const {
 | |
|   unsigned LocMemOffset = VA.getLocMemOffset();
 | |
|   SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
 | |
|   PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
 | |
|   return DAG.getStore(Chain, dl, Arg, PtrOff,
 | |
|                       MachinePointerInfo::getStack(LocMemOffset),
 | |
|                       false, false, 0);
 | |
| }
 | |
| 
 | |
| void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
 | |
|                                          SDValue Chain, SDValue &Arg,
 | |
|                                          RegsToPassVector &RegsToPass,
 | |
|                                          CCValAssign &VA, CCValAssign &NextVA,
 | |
|                                          SDValue &StackPtr,
 | |
|                                          SmallVector<SDValue, 8> &MemOpChains,
 | |
|                                          ISD::ArgFlagsTy Flags) const {
 | |
| 
 | |
|   SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
 | |
|                               DAG.getVTList(MVT::i32, MVT::i32), Arg);
 | |
|   RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
 | |
| 
 | |
|   if (NextVA.isRegLoc())
 | |
|     RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
 | |
|   else {
 | |
|     assert(NextVA.isMemLoc());
 | |
|     if (StackPtr.getNode() == 0)
 | |
|       StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
 | |
| 
 | |
|     MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
 | |
|                                            dl, DAG, NextVA,
 | |
|                                            Flags));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// LowerCall - Lowering a call into a callseq_start <-
 | |
| /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
 | |
| /// nodes.
 | |
| SDValue
 | |
| ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
 | |
|                              SmallVectorImpl<SDValue> &InVals) const {
 | |
|   SelectionDAG &DAG                     = CLI.DAG;
 | |
|   DebugLoc &dl                          = CLI.DL;
 | |
|   SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
 | |
|   SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
 | |
|   SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
 | |
|   SDValue Chain                         = CLI.Chain;
 | |
|   SDValue Callee                        = CLI.Callee;
 | |
|   bool &isTailCall                      = CLI.IsTailCall;
 | |
|   CallingConv::ID CallConv              = CLI.CallConv;
 | |
|   bool doesNotRet                       = CLI.DoesNotReturn;
 | |
|   bool isVarArg                         = CLI.IsVarArg;
 | |
| 
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   bool IsStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
 | |
|   bool IsSibCall = false;
 | |
|   // Disable tail calls if they're not supported.
 | |
|   if (!EnableARMTailCalls && !Subtarget->supportsTailCall())
 | |
|     isTailCall = false;
 | |
|   if (isTailCall) {
 | |
|     // Check if it's really possible to do a tail call.
 | |
|     isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
 | |
|                     isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
 | |
|                                                    Outs, OutVals, Ins, DAG);
 | |
|     // We don't support GuaranteedTailCallOpt for ARM, only automatically
 | |
|     // detected sibcalls.
 | |
|     if (isTailCall) {
 | |
|       ++NumTailCalls;
 | |
|       IsSibCall = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Analyze operands of the call, assigning locations to each operand.
 | |
|   SmallVector<CCValAssign, 16> ArgLocs;
 | |
|   ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
 | |
|                  getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
 | |
|   CCInfo.AnalyzeCallOperands(Outs,
 | |
|                              CCAssignFnForNode(CallConv, /* Return*/ false,
 | |
|                                                isVarArg));
 | |
| 
 | |
|   // Get a count of how many bytes are to be pushed on the stack.
 | |
|   unsigned NumBytes = CCInfo.getNextStackOffset();
 | |
| 
 | |
|   // For tail calls, memory operands are available in our caller's stack.
 | |
|   if (IsSibCall)
 | |
|     NumBytes = 0;
 | |
| 
 | |
|   // Adjust the stack pointer for the new arguments...
 | |
|   // These operations are automatically eliminated by the prolog/epilog pass
 | |
|   if (!IsSibCall)
 | |
|     Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
 | |
| 
 | |
|   SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
 | |
| 
 | |
|   RegsToPassVector RegsToPass;
 | |
|   SmallVector<SDValue, 8> MemOpChains;
 | |
| 
 | |
|   // Walk the register/memloc assignments, inserting copies/loads.  In the case
 | |
|   // of tail call optimization, arguments are handled later.
 | |
|   for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
 | |
|        i != e;
 | |
|        ++i, ++realArgIdx) {
 | |
|     CCValAssign &VA = ArgLocs[i];
 | |
|     SDValue Arg = OutVals[realArgIdx];
 | |
|     ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
 | |
|     bool isByVal = Flags.isByVal();
 | |
| 
 | |
|     // Promote the value if needed.
 | |
|     switch (VA.getLocInfo()) {
 | |
|     default: llvm_unreachable("Unknown loc info!");
 | |
|     case CCValAssign::Full: break;
 | |
|     case CCValAssign::SExt:
 | |
|       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
 | |
|       break;
 | |
|     case CCValAssign::ZExt:
 | |
|       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
 | |
|       break;
 | |
|     case CCValAssign::AExt:
 | |
|       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
 | |
|       break;
 | |
|     case CCValAssign::BCvt:
 | |
|       Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
 | |
|     if (VA.needsCustom()) {
 | |
|       if (VA.getLocVT() == MVT::v2f64) {
 | |
|         SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
 | |
|                                   DAG.getConstant(0, MVT::i32));
 | |
|         SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
 | |
|                                   DAG.getConstant(1, MVT::i32));
 | |
| 
 | |
|         PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
 | |
|                          VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
 | |
| 
 | |
|         VA = ArgLocs[++i]; // skip ahead to next loc
 | |
|         if (VA.isRegLoc()) {
 | |
|           PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
 | |
|                            VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
 | |
|         } else {
 | |
|           assert(VA.isMemLoc());
 | |
| 
 | |
|           MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
 | |
|                                                  dl, DAG, VA, Flags));
 | |
|         }
 | |
|       } else {
 | |
|         PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
 | |
|                          StackPtr, MemOpChains, Flags);
 | |
|       }
 | |
|     } else if (VA.isRegLoc()) {
 | |
|       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
 | |
|     } else if (isByVal) {
 | |
|       assert(VA.isMemLoc());
 | |
|       unsigned offset = 0;
 | |
| 
 | |
|       // True if this byval aggregate will be split between registers
 | |
|       // and memory.
 | |
|       if (CCInfo.isFirstByValRegValid()) {
 | |
|         EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | |
|         unsigned int i, j;
 | |
|         for (i = 0, j = CCInfo.getFirstByValReg(); j < ARM::R4; i++, j++) {
 | |
|           SDValue Const = DAG.getConstant(4*i, MVT::i32);
 | |
|           SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
 | |
|           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
 | |
|                                      MachinePointerInfo(),
 | |
|                                      false, false, false, 0);
 | |
|           MemOpChains.push_back(Load.getValue(1));
 | |
|           RegsToPass.push_back(std::make_pair(j, Load));
 | |
|         }
 | |
|         offset = ARM::R4 - CCInfo.getFirstByValReg();
 | |
|         CCInfo.clearFirstByValReg();
 | |
|       }
 | |
| 
 | |
|       if (Flags.getByValSize() - 4*offset > 0) {
 | |
|         unsigned LocMemOffset = VA.getLocMemOffset();
 | |
|         SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset);
 | |
|         SDValue Dst = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr,
 | |
|                                   StkPtrOff);
 | |
|         SDValue SrcOffset = DAG.getIntPtrConstant(4*offset);
 | |
|         SDValue Src = DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg, SrcOffset);
 | |
|         SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset,
 | |
|                                            MVT::i32);
 | |
|         SDValue AlignNode = DAG.getConstant(Flags.getByValAlign(), MVT::i32);
 | |
| 
 | |
|         SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
 | |
|         SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
 | |
|         MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
 | |
|                                           Ops, array_lengthof(Ops)));
 | |
|       }
 | |
|     } else if (!IsSibCall) {
 | |
|       assert(VA.isMemLoc());
 | |
| 
 | |
|       MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
 | |
|                                              dl, DAG, VA, Flags));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!MemOpChains.empty())
 | |
|     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
 | |
|                         &MemOpChains[0], MemOpChains.size());
 | |
| 
 | |
|   // Build a sequence of copy-to-reg nodes chained together with token chain
 | |
|   // and flag operands which copy the outgoing args into the appropriate regs.
 | |
|   SDValue InFlag;
 | |
|   // Tail call byval lowering might overwrite argument registers so in case of
 | |
|   // tail call optimization the copies to registers are lowered later.
 | |
|   if (!isTailCall)
 | |
|     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
 | |
|       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
 | |
|                                RegsToPass[i].second, InFlag);
 | |
|       InFlag = Chain.getValue(1);
 | |
|     }
 | |
| 
 | |
|   // For tail calls lower the arguments to the 'real' stack slot.
 | |
|   if (isTailCall) {
 | |
|     // Force all the incoming stack arguments to be loaded from the stack
 | |
|     // before any new outgoing arguments are stored to the stack, because the
 | |
|     // outgoing stack slots may alias the incoming argument stack slots, and
 | |
|     // the alias isn't otherwise explicit. This is slightly more conservative
 | |
|     // than necessary, because it means that each store effectively depends
 | |
|     // on every argument instead of just those arguments it would clobber.
 | |
| 
 | |
|     // Do not flag preceding copytoreg stuff together with the following stuff.
 | |
|     InFlag = SDValue();
 | |
|     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
 | |
|       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
 | |
|                                RegsToPass[i].second, InFlag);
 | |
|       InFlag = Chain.getValue(1);
 | |
|     }
 | |
|     InFlag =SDValue();
 | |
|   }
 | |
| 
 | |
|   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
 | |
|   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
 | |
|   // node so that legalize doesn't hack it.
 | |
|   bool isDirect = false;
 | |
|   bool isARMFunc = false;
 | |
|   bool isLocalARMFunc = false;
 | |
|   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
 | |
| 
 | |
|   if (EnableARMLongCalls) {
 | |
|     assert (getTargetMachine().getRelocationModel() == Reloc::Static
 | |
|             && "long-calls with non-static relocation model!");
 | |
|     // Handle a global address or an external symbol. If it's not one of
 | |
|     // those, the target's already in a register, so we don't need to do
 | |
|     // anything extra.
 | |
|     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
 | |
|       const GlobalValue *GV = G->getGlobal();
 | |
|       // Create a constant pool entry for the callee address
 | |
|       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
 | |
|       ARMConstantPoolValue *CPV =
 | |
|         ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
 | |
| 
 | |
|       // Get the address of the callee into a register
 | |
|       SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
 | |
|       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
 | |
|       Callee = DAG.getLoad(getPointerTy(), dl,
 | |
|                            DAG.getEntryNode(), CPAddr,
 | |
|                            MachinePointerInfo::getConstantPool(),
 | |
|                            false, false, false, 0);
 | |
|     } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
 | |
|       const char *Sym = S->getSymbol();
 | |
| 
 | |
|       // Create a constant pool entry for the callee address
 | |
|       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
 | |
|       ARMConstantPoolValue *CPV =
 | |
|         ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
 | |
|                                       ARMPCLabelIndex, 0);
 | |
|       // Get the address of the callee into a register
 | |
|       SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
 | |
|       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
 | |
|       Callee = DAG.getLoad(getPointerTy(), dl,
 | |
|                            DAG.getEntryNode(), CPAddr,
 | |
|                            MachinePointerInfo::getConstantPool(),
 | |
|                            false, false, false, 0);
 | |
|     }
 | |
|   } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
 | |
|     const GlobalValue *GV = G->getGlobal();
 | |
|     isDirect = true;
 | |
|     bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
 | |
|     bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
 | |
|                    getTargetMachine().getRelocationModel() != Reloc::Static;
 | |
|     isARMFunc = !Subtarget->isThumb() || isStub;
 | |
|     // ARM call to a local ARM function is predicable.
 | |
|     isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
 | |
|     // tBX takes a register source operand.
 | |
|     if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
 | |
|       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
 | |
|       ARMConstantPoolValue *CPV =
 | |
|         ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 4);
 | |
|       SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
 | |
|       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
 | |
|       Callee = DAG.getLoad(getPointerTy(), dl,
 | |
|                            DAG.getEntryNode(), CPAddr,
 | |
|                            MachinePointerInfo::getConstantPool(),
 | |
|                            false, false, false, 0);
 | |
|       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
 | |
|       Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
 | |
|                            getPointerTy(), Callee, PICLabel);
 | |
|     } else {
 | |
|       // On ELF targets for PIC code, direct calls should go through the PLT
 | |
|       unsigned OpFlags = 0;
 | |
|       if (Subtarget->isTargetELF() &&
 | |
|                   getTargetMachine().getRelocationModel() == Reloc::PIC_)
 | |
|         OpFlags = ARMII::MO_PLT;
 | |
|       Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
 | |
|     }
 | |
|   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
 | |
|     isDirect = true;
 | |
|     bool isStub = Subtarget->isTargetDarwin() &&
 | |
|                   getTargetMachine().getRelocationModel() != Reloc::Static;
 | |
|     isARMFunc = !Subtarget->isThumb() || isStub;
 | |
|     // tBX takes a register source operand.
 | |
|     const char *Sym = S->getSymbol();
 | |
|     if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
 | |
|       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
 | |
|       ARMConstantPoolValue *CPV =
 | |
|         ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
 | |
|                                       ARMPCLabelIndex, 4);
 | |
|       SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
 | |
|       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
 | |
|       Callee = DAG.getLoad(getPointerTy(), dl,
 | |
|                            DAG.getEntryNode(), CPAddr,
 | |
|                            MachinePointerInfo::getConstantPool(),
 | |
|                            false, false, false, 0);
 | |
|       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
 | |
|       Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
 | |
|                            getPointerTy(), Callee, PICLabel);
 | |
|     } else {
 | |
|       unsigned OpFlags = 0;
 | |
|       // On ELF targets for PIC code, direct calls should go through the PLT
 | |
|       if (Subtarget->isTargetELF() &&
 | |
|                   getTargetMachine().getRelocationModel() == Reloc::PIC_)
 | |
|         OpFlags = ARMII::MO_PLT;
 | |
|       Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // FIXME: handle tail calls differently.
 | |
|   unsigned CallOpc;
 | |
|   bool HasMinSizeAttr = MF.getFunction()->getFnAttributes().
 | |
|     hasAttribute(Attributes::MinSize);
 | |
|   if (Subtarget->isThumb()) {
 | |
|     if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
 | |
|       CallOpc = ARMISD::CALL_NOLINK;
 | |
|     else
 | |
|       CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
 | |
|   } else {
 | |
|     if (!isDirect && !Subtarget->hasV5TOps())
 | |
|       CallOpc = ARMISD::CALL_NOLINK;
 | |
|     else if (doesNotRet && isDirect && Subtarget->hasRAS() &&
 | |
|                // Emit regular call when code size is the priority
 | |
|                !HasMinSizeAttr)
 | |
|       // "mov lr, pc; b _foo" to avoid confusing the RSP
 | |
|       CallOpc = ARMISD::CALL_NOLINK;
 | |
|     else
 | |
|       CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
 | |
|   }
 | |
| 
 | |
|   std::vector<SDValue> Ops;
 | |
|   Ops.push_back(Chain);
 | |
|   Ops.push_back(Callee);
 | |
| 
 | |
|   // Add argument registers to the end of the list so that they are known live
 | |
|   // into the call.
 | |
|   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
 | |
|     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
 | |
|                                   RegsToPass[i].second.getValueType()));
 | |
| 
 | |
|   // Add a register mask operand representing the call-preserved registers.
 | |
|   const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
 | |
|   const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
 | |
|   assert(Mask && "Missing call preserved mask for calling convention");
 | |
|   Ops.push_back(DAG.getRegisterMask(Mask));
 | |
| 
 | |
|   if (InFlag.getNode())
 | |
|     Ops.push_back(InFlag);
 | |
| 
 | |
|   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
 | |
|   if (isTailCall)
 | |
|     return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
 | |
| 
 | |
|   // Returns a chain and a flag for retval copy to use.
 | |
|   Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
 | |
|   InFlag = Chain.getValue(1);
 | |
| 
 | |
|   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
 | |
|                              DAG.getIntPtrConstant(0, true), InFlag);
 | |
|   if (!Ins.empty())
 | |
|     InFlag = Chain.getValue(1);
 | |
| 
 | |
|   // Handle result values, copying them out of physregs into vregs that we
 | |
|   // return.
 | |
|   return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
 | |
|                          dl, DAG, InVals);
 | |
| }
 | |
| 
 | |
| /// HandleByVal - Every parameter *after* a byval parameter is passed
 | |
| /// on the stack.  Remember the next parameter register to allocate,
 | |
| /// and then confiscate the rest of the parameter registers to insure
 | |
| /// this.
 | |
| void
 | |
| ARMTargetLowering::HandleByVal(
 | |
|     CCState *State, unsigned &size, unsigned Align) const {
 | |
|   unsigned reg = State->AllocateReg(GPRArgRegs, 4);
 | |
|   assert((State->getCallOrPrologue() == Prologue ||
 | |
|           State->getCallOrPrologue() == Call) &&
 | |
|          "unhandled ParmContext");
 | |
|   if ((!State->isFirstByValRegValid()) &&
 | |
|       (ARM::R0 <= reg) && (reg <= ARM::R3)) {
 | |
|     if (Subtarget->isAAPCS_ABI() && Align > 4) {
 | |
|       unsigned AlignInRegs = Align / 4;
 | |
|       unsigned Waste = (ARM::R4 - reg) % AlignInRegs;
 | |
|       for (unsigned i = 0; i < Waste; ++i)
 | |
|         reg = State->AllocateReg(GPRArgRegs, 4);
 | |
|     }
 | |
|     if (reg != 0) {
 | |
|       State->setFirstByValReg(reg);
 | |
|       // At a call site, a byval parameter that is split between
 | |
|       // registers and memory needs its size truncated here.  In a
 | |
|       // function prologue, such byval parameters are reassembled in
 | |
|       // memory, and are not truncated.
 | |
|       if (State->getCallOrPrologue() == Call) {
 | |
|         unsigned excess = 4 * (ARM::R4 - reg);
 | |
|         assert(size >= excess && "expected larger existing stack allocation");
 | |
|         size -= excess;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   // Confiscate any remaining parameter registers to preclude their
 | |
|   // assignment to subsequent parameters.
 | |
|   while (State->AllocateReg(GPRArgRegs, 4))
 | |
|     ;
 | |
| }
 | |
| 
 | |
| /// MatchingStackOffset - Return true if the given stack call argument is
 | |
| /// already available in the same position (relatively) of the caller's
 | |
| /// incoming argument stack.
 | |
| static
 | |
| bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
 | |
|                          MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
 | |
|                          const TargetInstrInfo *TII) {
 | |
|   unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
 | |
|   int FI = INT_MAX;
 | |
|   if (Arg.getOpcode() == ISD::CopyFromReg) {
 | |
|     unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
 | |
|     if (!TargetRegisterInfo::isVirtualRegister(VR))
 | |
|       return false;
 | |
|     MachineInstr *Def = MRI->getVRegDef(VR);
 | |
|     if (!Def)
 | |
|       return false;
 | |
|     if (!Flags.isByVal()) {
 | |
|       if (!TII->isLoadFromStackSlot(Def, FI))
 | |
|         return false;
 | |
|     } else {
 | |
|       return false;
 | |
|     }
 | |
|   } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
 | |
|     if (Flags.isByVal())
 | |
|       // ByVal argument is passed in as a pointer but it's now being
 | |
|       // dereferenced. e.g.
 | |
|       // define @foo(%struct.X* %A) {
 | |
|       //   tail call @bar(%struct.X* byval %A)
 | |
|       // }
 | |
|       return false;
 | |
|     SDValue Ptr = Ld->getBasePtr();
 | |
|     FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
 | |
|     if (!FINode)
 | |
|       return false;
 | |
|     FI = FINode->getIndex();
 | |
|   } else
 | |
|     return false;
 | |
| 
 | |
|   assert(FI != INT_MAX);
 | |
|   if (!MFI->isFixedObjectIndex(FI))
 | |
|     return false;
 | |
|   return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
 | |
| }
 | |
| 
 | |
| /// IsEligibleForTailCallOptimization - Check whether the call is eligible
 | |
| /// for tail call optimization. Targets which want to do tail call
 | |
| /// optimization should implement this function.
 | |
| bool
 | |
| ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
 | |
|                                                      CallingConv::ID CalleeCC,
 | |
|                                                      bool isVarArg,
 | |
|                                                      bool isCalleeStructRet,
 | |
|                                                      bool isCallerStructRet,
 | |
|                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
 | |
|                                     const SmallVectorImpl<SDValue> &OutVals,
 | |
|                                     const SmallVectorImpl<ISD::InputArg> &Ins,
 | |
|                                                      SelectionDAG& DAG) const {
 | |
|   const Function *CallerF = DAG.getMachineFunction().getFunction();
 | |
|   CallingConv::ID CallerCC = CallerF->getCallingConv();
 | |
|   bool CCMatch = CallerCC == CalleeCC;
 | |
| 
 | |
|   // Look for obvious safe cases to perform tail call optimization that do not
 | |
|   // require ABI changes. This is what gcc calls sibcall.
 | |
| 
 | |
|   // Do not sibcall optimize vararg calls unless the call site is not passing
 | |
|   // any arguments.
 | |
|   if (isVarArg && !Outs.empty())
 | |
|     return false;
 | |
| 
 | |
|   // Also avoid sibcall optimization if either caller or callee uses struct
 | |
|   // return semantics.
 | |
|   if (isCalleeStructRet || isCallerStructRet)
 | |
|     return false;
 | |
| 
 | |
|   // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo::
 | |
|   // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as
 | |
|   // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation
 | |
|   // support in the assembler and linker to be used. This would need to be
 | |
|   // fixed to fully support tail calls in Thumb1.
 | |
|   //
 | |
|   // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
 | |
|   // LR.  This means if we need to reload LR, it takes an extra instructions,
 | |
|   // which outweighs the value of the tail call; but here we don't know yet
 | |
|   // whether LR is going to be used.  Probably the right approach is to
 | |
|   // generate the tail call here and turn it back into CALL/RET in
 | |
|   // emitEpilogue if LR is used.
 | |
| 
 | |
|   // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
 | |
|   // but we need to make sure there are enough registers; the only valid
 | |
|   // registers are the 4 used for parameters.  We don't currently do this
 | |
|   // case.
 | |
|   if (Subtarget->isThumb1Only())
 | |
|     return false;
 | |
| 
 | |
|   // If the calling conventions do not match, then we'd better make sure the
 | |
|   // results are returned in the same way as what the caller expects.
 | |
|   if (!CCMatch) {
 | |
|     SmallVector<CCValAssign, 16> RVLocs1;
 | |
|     ARMCCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
 | |
|                        getTargetMachine(), RVLocs1, *DAG.getContext(), Call);
 | |
|     CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
 | |
| 
 | |
|     SmallVector<CCValAssign, 16> RVLocs2;
 | |
|     ARMCCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
 | |
|                        getTargetMachine(), RVLocs2, *DAG.getContext(), Call);
 | |
|     CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
 | |
| 
 | |
|     if (RVLocs1.size() != RVLocs2.size())
 | |
|       return false;
 | |
|     for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
 | |
|       if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
 | |
|         return false;
 | |
|       if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
 | |
|         return false;
 | |
|       if (RVLocs1[i].isRegLoc()) {
 | |
|         if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
 | |
|           return false;
 | |
|       } else {
 | |
|         if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
 | |
|           return false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If Caller's vararg or byval argument has been split between registers and
 | |
|   // stack, do not perform tail call, since part of the argument is in caller's
 | |
|   // local frame.
 | |
|   const ARMFunctionInfo *AFI_Caller = DAG.getMachineFunction().
 | |
|                                       getInfo<ARMFunctionInfo>();
 | |
|   if (AFI_Caller->getVarArgsRegSaveSize())
 | |
|     return false;
 | |
| 
 | |
|   // If the callee takes no arguments then go on to check the results of the
 | |
|   // call.
 | |
|   if (!Outs.empty()) {
 | |
|     // Check if stack adjustment is needed. For now, do not do this if any
 | |
|     // argument is passed on the stack.
 | |
|     SmallVector<CCValAssign, 16> ArgLocs;
 | |
|     ARMCCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
 | |
|                       getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
 | |
|     CCInfo.AnalyzeCallOperands(Outs,
 | |
|                                CCAssignFnForNode(CalleeCC, false, isVarArg));
 | |
|     if (CCInfo.getNextStackOffset()) {
 | |
|       MachineFunction &MF = DAG.getMachineFunction();
 | |
| 
 | |
|       // Check if the arguments are already laid out in the right way as
 | |
|       // the caller's fixed stack objects.
 | |
|       MachineFrameInfo *MFI = MF.getFrameInfo();
 | |
|       const MachineRegisterInfo *MRI = &MF.getRegInfo();
 | |
|       const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
 | |
|       for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
 | |
|            i != e;
 | |
|            ++i, ++realArgIdx) {
 | |
|         CCValAssign &VA = ArgLocs[i];
 | |
|         EVT RegVT = VA.getLocVT();
 | |
|         SDValue Arg = OutVals[realArgIdx];
 | |
|         ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
 | |
|         if (VA.getLocInfo() == CCValAssign::Indirect)
 | |
|           return false;
 | |
|         if (VA.needsCustom()) {
 | |
|           // f64 and vector types are split into multiple registers or
 | |
|           // register/stack-slot combinations.  The types will not match
 | |
|           // the registers; give up on memory f64 refs until we figure
 | |
|           // out what to do about this.
 | |
|           if (!VA.isRegLoc())
 | |
|             return false;
 | |
|           if (!ArgLocs[++i].isRegLoc())
 | |
|             return false;
 | |
|           if (RegVT == MVT::v2f64) {
 | |
|             if (!ArgLocs[++i].isRegLoc())
 | |
|               return false;
 | |
|             if (!ArgLocs[++i].isRegLoc())
 | |
|               return false;
 | |
|           }
 | |
|         } else if (!VA.isRegLoc()) {
 | |
|           if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
 | |
|                                    MFI, MRI, TII))
 | |
|             return false;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| ARMTargetLowering::LowerReturn(SDValue Chain,
 | |
|                                CallingConv::ID CallConv, bool isVarArg,
 | |
|                                const SmallVectorImpl<ISD::OutputArg> &Outs,
 | |
|                                const SmallVectorImpl<SDValue> &OutVals,
 | |
|                                DebugLoc dl, SelectionDAG &DAG) const {
 | |
| 
 | |
|   // CCValAssign - represent the assignment of the return value to a location.
 | |
|   SmallVector<CCValAssign, 16> RVLocs;
 | |
| 
 | |
|   // CCState - Info about the registers and stack slots.
 | |
|   ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
 | |
|                     getTargetMachine(), RVLocs, *DAG.getContext(), Call);
 | |
| 
 | |
|   // Analyze outgoing return values.
 | |
|   CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
 | |
|                                                isVarArg));
 | |
| 
 | |
|   // If this is the first return lowered for this function, add
 | |
|   // the regs to the liveout set for the function.
 | |
|   if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
 | |
|     for (unsigned i = 0; i != RVLocs.size(); ++i)
 | |
|       if (RVLocs[i].isRegLoc())
 | |
|         DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
 | |
|   }
 | |
| 
 | |
|   SDValue Flag;
 | |
| 
 | |
|   // Copy the result values into the output registers.
 | |
|   for (unsigned i = 0, realRVLocIdx = 0;
 | |
|        i != RVLocs.size();
 | |
|        ++i, ++realRVLocIdx) {
 | |
|     CCValAssign &VA = RVLocs[i];
 | |
|     assert(VA.isRegLoc() && "Can only return in registers!");
 | |
| 
 | |
|     SDValue Arg = OutVals[realRVLocIdx];
 | |
| 
 | |
|     switch (VA.getLocInfo()) {
 | |
|     default: llvm_unreachable("Unknown loc info!");
 | |
|     case CCValAssign::Full: break;
 | |
|     case CCValAssign::BCvt:
 | |
|       Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     if (VA.needsCustom()) {
 | |
|       if (VA.getLocVT() == MVT::v2f64) {
 | |
|         // Extract the first half and return it in two registers.
 | |
|         SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
 | |
|                                    DAG.getConstant(0, MVT::i32));
 | |
|         SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
 | |
|                                        DAG.getVTList(MVT::i32, MVT::i32), Half);
 | |
| 
 | |
|         Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
 | |
|         Flag = Chain.getValue(1);
 | |
|         VA = RVLocs[++i]; // skip ahead to next loc
 | |
|         Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
 | |
|                                  HalfGPRs.getValue(1), Flag);
 | |
|         Flag = Chain.getValue(1);
 | |
|         VA = RVLocs[++i]; // skip ahead to next loc
 | |
| 
 | |
|         // Extract the 2nd half and fall through to handle it as an f64 value.
 | |
|         Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
 | |
|                           DAG.getConstant(1, MVT::i32));
 | |
|       }
 | |
|       // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
 | |
|       // available.
 | |
|       SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
 | |
|                                   DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
 | |
|       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
 | |
|       Flag = Chain.getValue(1);
 | |
|       VA = RVLocs[++i]; // skip ahead to next loc
 | |
|       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
 | |
|                                Flag);
 | |
|     } else
 | |
|       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
 | |
| 
 | |
|     // Guarantee that all emitted copies are
 | |
|     // stuck together, avoiding something bad.
 | |
|     Flag = Chain.getValue(1);
 | |
|   }
 | |
| 
 | |
|   SDValue result;
 | |
|   if (Flag.getNode())
 | |
|     result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
 | |
|   else // Return Void
 | |
|     result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
 | |
| 
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
 | |
|   if (N->getNumValues() != 1)
 | |
|     return false;
 | |
|   if (!N->hasNUsesOfValue(1, 0))
 | |
|     return false;
 | |
| 
 | |
|   SDValue TCChain = Chain;
 | |
|   SDNode *Copy = *N->use_begin();
 | |
|   if (Copy->getOpcode() == ISD::CopyToReg) {
 | |
|     // If the copy has a glue operand, we conservatively assume it isn't safe to
 | |
|     // perform a tail call.
 | |
|     if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
 | |
|       return false;
 | |
|     TCChain = Copy->getOperand(0);
 | |
|   } else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
 | |
|     SDNode *VMov = Copy;
 | |
|     // f64 returned in a pair of GPRs.
 | |
|     SmallPtrSet<SDNode*, 2> Copies;
 | |
|     for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
 | |
|          UI != UE; ++UI) {
 | |
|       if (UI->getOpcode() != ISD::CopyToReg)
 | |
|         return false;
 | |
|       Copies.insert(*UI);
 | |
|     }
 | |
|     if (Copies.size() > 2)
 | |
|       return false;
 | |
| 
 | |
|     for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
 | |
|          UI != UE; ++UI) {
 | |
|       SDValue UseChain = UI->getOperand(0);
 | |
|       if (Copies.count(UseChain.getNode()))
 | |
|         // Second CopyToReg
 | |
|         Copy = *UI;
 | |
|       else
 | |
|         // First CopyToReg
 | |
|         TCChain = UseChain;
 | |
|     }
 | |
|   } else if (Copy->getOpcode() == ISD::BITCAST) {
 | |
|     // f32 returned in a single GPR.
 | |
|     if (!Copy->hasOneUse())
 | |
|       return false;
 | |
|     Copy = *Copy->use_begin();
 | |
|     if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
 | |
|       return false;
 | |
|     Chain = Copy->getOperand(0);
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   bool HasRet = false;
 | |
|   for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
 | |
|        UI != UE; ++UI) {
 | |
|     if (UI->getOpcode() != ARMISD::RET_FLAG)
 | |
|       return false;
 | |
|     HasRet = true;
 | |
|   }
 | |
| 
 | |
|   if (!HasRet)
 | |
|     return false;
 | |
| 
 | |
|   Chain = TCChain;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
 | |
|   if (!EnableARMTailCalls && !Subtarget->supportsTailCall())
 | |
|     return false;
 | |
| 
 | |
|   if (!CI->isTailCall())
 | |
|     return false;
 | |
| 
 | |
|   return !Subtarget->isThumb1Only();
 | |
| }
 | |
| 
 | |
| // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
 | |
| // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
 | |
| // one of the above mentioned nodes. It has to be wrapped because otherwise
 | |
| // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
 | |
| // be used to form addressing mode. These wrapped nodes will be selected
 | |
| // into MOVi.
 | |
| static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
 | |
|   EVT PtrVT = Op.getValueType();
 | |
|   // FIXME there is no actual debug info here
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
 | |
|   SDValue Res;
 | |
|   if (CP->isMachineConstantPoolEntry())
 | |
|     Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
 | |
|                                     CP->getAlignment());
 | |
|   else
 | |
|     Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
 | |
|                                     CP->getAlignment());
 | |
|   return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
 | |
| }
 | |
| 
 | |
| unsigned ARMTargetLowering::getJumpTableEncoding() const {
 | |
|   return MachineJumpTableInfo::EK_Inline;
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
 | |
|                                              SelectionDAG &DAG) const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
 | |
|   unsigned ARMPCLabelIndex = 0;
 | |
|   DebugLoc DL = Op.getDebugLoc();
 | |
|   EVT PtrVT = getPointerTy();
 | |
|   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
 | |
|   Reloc::Model RelocM = getTargetMachine().getRelocationModel();
 | |
|   SDValue CPAddr;
 | |
|   if (RelocM == Reloc::Static) {
 | |
|     CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
 | |
|   } else {
 | |
|     unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
 | |
|     ARMPCLabelIndex = AFI->createPICLabelUId();
 | |
|     ARMConstantPoolValue *CPV =
 | |
|       ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
 | |
|                                       ARMCP::CPBlockAddress, PCAdj);
 | |
|     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
 | |
|   }
 | |
|   CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
 | |
|   SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
 | |
|                                MachinePointerInfo::getConstantPool(),
 | |
|                                false, false, false, 0);
 | |
|   if (RelocM == Reloc::Static)
 | |
|     return Result;
 | |
|   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
 | |
|   return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
 | |
| }
 | |
| 
 | |
| // Lower ISD::GlobalTLSAddress using the "general dynamic" model
 | |
| SDValue
 | |
| ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
 | |
|                                                  SelectionDAG &DAG) const {
 | |
|   DebugLoc dl = GA->getDebugLoc();
 | |
|   EVT PtrVT = getPointerTy();
 | |
|   unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
 | |
|   unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
 | |
|   ARMConstantPoolValue *CPV =
 | |
|     ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
 | |
|                                     ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
 | |
|   SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
 | |
|   Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
 | |
|   Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
 | |
|                          MachinePointerInfo::getConstantPool(),
 | |
|                          false, false, false, 0);
 | |
|   SDValue Chain = Argument.getValue(1);
 | |
| 
 | |
|   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
 | |
|   Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
 | |
| 
 | |
|   // call __tls_get_addr.
 | |
|   ArgListTy Args;
 | |
|   ArgListEntry Entry;
 | |
|   Entry.Node = Argument;
 | |
|   Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
 | |
|   Args.push_back(Entry);
 | |
|   // FIXME: is there useful debug info available here?
 | |
|   TargetLowering::CallLoweringInfo CLI(Chain,
 | |
|                 (Type *) Type::getInt32Ty(*DAG.getContext()),
 | |
|                 false, false, false, false,
 | |
|                 0, CallingConv::C, /*isTailCall=*/false,
 | |
|                 /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
 | |
|                 DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
 | |
|   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
 | |
|   return CallResult.first;
 | |
| }
 | |
| 
 | |
| // Lower ISD::GlobalTLSAddress using the "initial exec" or
 | |
| // "local exec" model.
 | |
| SDValue
 | |
| ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
 | |
|                                         SelectionDAG &DAG,
 | |
|                                         TLSModel::Model model) const {
 | |
|   const GlobalValue *GV = GA->getGlobal();
 | |
|   DebugLoc dl = GA->getDebugLoc();
 | |
|   SDValue Offset;
 | |
|   SDValue Chain = DAG.getEntryNode();
 | |
|   EVT PtrVT = getPointerTy();
 | |
|   // Get the Thread Pointer
 | |
|   SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
 | |
| 
 | |
|   if (model == TLSModel::InitialExec) {
 | |
|     MachineFunction &MF = DAG.getMachineFunction();
 | |
|     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
 | |
|     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
 | |
|     // Initial exec model.
 | |
|     unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
 | |
|     ARMConstantPoolValue *CPV =
 | |
|       ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
 | |
|                                       ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
 | |
|                                       true);
 | |
|     Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
 | |
|     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
 | |
|     Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
 | |
|                          MachinePointerInfo::getConstantPool(),
 | |
|                          false, false, false, 0);
 | |
|     Chain = Offset.getValue(1);
 | |
| 
 | |
|     SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
 | |
|     Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
 | |
| 
 | |
|     Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
 | |
|                          MachinePointerInfo::getConstantPool(),
 | |
|                          false, false, false, 0);
 | |
|   } else {
 | |
|     // local exec model
 | |
|     assert(model == TLSModel::LocalExec);
 | |
|     ARMConstantPoolValue *CPV =
 | |
|       ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
 | |
|     Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
 | |
|     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
 | |
|     Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
 | |
|                          MachinePointerInfo::getConstantPool(),
 | |
|                          false, false, false, 0);
 | |
|   }
 | |
| 
 | |
|   // The address of the thread local variable is the add of the thread
 | |
|   // pointer with the offset of the variable.
 | |
|   return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
 | |
|   // TODO: implement the "local dynamic" model
 | |
|   assert(Subtarget->isTargetELF() &&
 | |
|          "TLS not implemented for non-ELF targets");
 | |
|   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
 | |
| 
 | |
|   TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
 | |
| 
 | |
|   switch (model) {
 | |
|     case TLSModel::GeneralDynamic:
 | |
|     case TLSModel::LocalDynamic:
 | |
|       return LowerToTLSGeneralDynamicModel(GA, DAG);
 | |
|     case TLSModel::InitialExec:
 | |
|     case TLSModel::LocalExec:
 | |
|       return LowerToTLSExecModels(GA, DAG, model);
 | |
|   }
 | |
|   llvm_unreachable("bogus TLS model");
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
 | |
|                                                  SelectionDAG &DAG) const {
 | |
|   EVT PtrVT = getPointerTy();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
 | |
|   Reloc::Model RelocM = getTargetMachine().getRelocationModel();
 | |
|   if (RelocM == Reloc::PIC_) {
 | |
|     bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
 | |
|     ARMConstantPoolValue *CPV =
 | |
|       ARMConstantPoolConstant::Create(GV,
 | |
|                                       UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT);
 | |
|     SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
 | |
|     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
 | |
|     SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
 | |
|                                  CPAddr,
 | |
|                                  MachinePointerInfo::getConstantPool(),
 | |
|                                  false, false, false, 0);
 | |
|     SDValue Chain = Result.getValue(1);
 | |
|     SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
 | |
|     Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
 | |
|     if (!UseGOTOFF)
 | |
|       Result = DAG.getLoad(PtrVT, dl, Chain, Result,
 | |
|                            MachinePointerInfo::getGOT(),
 | |
|                            false, false, false, 0);
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   // If we have T2 ops, we can materialize the address directly via movt/movw
 | |
|   // pair. This is always cheaper.
 | |
|   if (Subtarget->useMovt()) {
 | |
|     ++NumMovwMovt;
 | |
|     // FIXME: Once remat is capable of dealing with instructions with register
 | |
|     // operands, expand this into two nodes.
 | |
|     return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
 | |
|                        DAG.getTargetGlobalAddress(GV, dl, PtrVT));
 | |
|   } else {
 | |
|     SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
 | |
|     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
 | |
|     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
 | |
|                        MachinePointerInfo::getConstantPool(),
 | |
|                        false, false, false, 0);
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
 | |
|                                                     SelectionDAG &DAG) const {
 | |
|   EVT PtrVT = getPointerTy();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
 | |
|   Reloc::Model RelocM = getTargetMachine().getRelocationModel();
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
 | |
| 
 | |
|   // FIXME: Enable this for static codegen when tool issues are fixed.  Also
 | |
|   // update ARMFastISel::ARMMaterializeGV.
 | |
|   if (Subtarget->useMovt() && RelocM != Reloc::Static) {
 | |
|     ++NumMovwMovt;
 | |
|     // FIXME: Once remat is capable of dealing with instructions with register
 | |
|     // operands, expand this into two nodes.
 | |
|     if (RelocM == Reloc::Static)
 | |
|       return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
 | |
|                                  DAG.getTargetGlobalAddress(GV, dl, PtrVT));
 | |
| 
 | |
|     unsigned Wrapper = (RelocM == Reloc::PIC_)
 | |
|       ? ARMISD::WrapperPIC : ARMISD::WrapperDYN;
 | |
|     SDValue Result = DAG.getNode(Wrapper, dl, PtrVT,
 | |
|                                  DAG.getTargetGlobalAddress(GV, dl, PtrVT));
 | |
|     if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
 | |
|       Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
 | |
|                            MachinePointerInfo::getGOT(),
 | |
|                            false, false, false, 0);
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   unsigned ARMPCLabelIndex = 0;
 | |
|   SDValue CPAddr;
 | |
|   if (RelocM == Reloc::Static) {
 | |
|     CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
 | |
|   } else {
 | |
|     ARMPCLabelIndex = AFI->createPICLabelUId();
 | |
|     unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
 | |
|     ARMConstantPoolValue *CPV =
 | |
|       ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue,
 | |
|                                       PCAdj);
 | |
|     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
 | |
|   }
 | |
|   CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
 | |
| 
 | |
|   SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
 | |
|                                MachinePointerInfo::getConstantPool(),
 | |
|                                false, false, false, 0);
 | |
|   SDValue Chain = Result.getValue(1);
 | |
| 
 | |
|   if (RelocM == Reloc::PIC_) {
 | |
|     SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
 | |
|     Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
 | |
|   }
 | |
| 
 | |
|   if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
 | |
|     Result = DAG.getLoad(PtrVT, dl, Chain, Result, MachinePointerInfo::getGOT(),
 | |
|                          false, false, false, 0);
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
 | |
|                                                     SelectionDAG &DAG) const {
 | |
|   assert(Subtarget->isTargetELF() &&
 | |
|          "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
 | |
|   unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
 | |
|   EVT PtrVT = getPointerTy();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
 | |
|   ARMConstantPoolValue *CPV =
 | |
|     ARMConstantPoolSymbol::Create(*DAG.getContext(), "_GLOBAL_OFFSET_TABLE_",
 | |
|                                   ARMPCLabelIndex, PCAdj);
 | |
|   SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
 | |
|   CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
 | |
|   SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
 | |
|                                MachinePointerInfo::getConstantPool(),
 | |
|                                false, false, false, 0);
 | |
|   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
 | |
|   return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   SDValue Val = DAG.getConstant(0, MVT::i32);
 | |
|   return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
 | |
|                      DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
 | |
|                      Op.getOperand(1), Val);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
 | |
|                      Op.getOperand(1), DAG.getConstant(0, MVT::i32));
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
 | |
|                                           const ARMSubtarget *Subtarget) const {
 | |
|   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   switch (IntNo) {
 | |
|   default: return SDValue();    // Don't custom lower most intrinsics.
 | |
|   case Intrinsic::arm_thread_pointer: {
 | |
|     EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | |
|     return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
 | |
|   }
 | |
|   case Intrinsic::eh_sjlj_lsda: {
 | |
|     MachineFunction &MF = DAG.getMachineFunction();
 | |
|     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
 | |
|     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
 | |
|     EVT PtrVT = getPointerTy();
 | |
|     DebugLoc dl = Op.getDebugLoc();
 | |
|     Reloc::Model RelocM = getTargetMachine().getRelocationModel();
 | |
|     SDValue CPAddr;
 | |
|     unsigned PCAdj = (RelocM != Reloc::PIC_)
 | |
|       ? 0 : (Subtarget->isThumb() ? 4 : 8);
 | |
|     ARMConstantPoolValue *CPV =
 | |
|       ARMConstantPoolConstant::Create(MF.getFunction(), ARMPCLabelIndex,
 | |
|                                       ARMCP::CPLSDA, PCAdj);
 | |
|     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
 | |
|     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
 | |
|     SDValue Result =
 | |
|       DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
 | |
|                   MachinePointerInfo::getConstantPool(),
 | |
|                   false, false, false, 0);
 | |
| 
 | |
|     if (RelocM == Reloc::PIC_) {
 | |
|       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
 | |
|       Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
 | |
|     }
 | |
|     return Result;
 | |
|   }
 | |
|   case Intrinsic::arm_neon_vmulls:
 | |
|   case Intrinsic::arm_neon_vmullu: {
 | |
|     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
 | |
|       ? ARMISD::VMULLs : ARMISD::VMULLu;
 | |
|     return DAG.getNode(NewOpc, Op.getDebugLoc(), Op.getValueType(),
 | |
|                        Op.getOperand(1), Op.getOperand(2));
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG,
 | |
|                                const ARMSubtarget *Subtarget) {
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   if (!Subtarget->hasDataBarrier()) {
 | |
|     // Some ARMv6 cpus can support data barriers with an mcr instruction.
 | |
|     // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
 | |
|     // here.
 | |
|     assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
 | |
|            "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
 | |
|     return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
 | |
|                        DAG.getConstant(0, MVT::i32));
 | |
|   }
 | |
| 
 | |
|   SDValue Op5 = Op.getOperand(5);
 | |
|   bool isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue() != 0;
 | |
|   unsigned isLL = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
 | |
|   unsigned isLS = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
 | |
|   bool isOnlyStoreBarrier = (isLL == 0 && isLS == 0);
 | |
| 
 | |
|   ARM_MB::MemBOpt DMBOpt;
 | |
|   if (isDeviceBarrier)
 | |
|     DMBOpt = isOnlyStoreBarrier ? ARM_MB::ST : ARM_MB::SY;
 | |
|   else
 | |
|     DMBOpt = isOnlyStoreBarrier ? ARM_MB::ISHST : ARM_MB::ISH;
 | |
|   return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
 | |
|                      DAG.getConstant(DMBOpt, MVT::i32));
 | |
| }
 | |
| 
 | |
| 
 | |
| static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
 | |
|                                  const ARMSubtarget *Subtarget) {
 | |
|   // FIXME: handle "fence singlethread" more efficiently.
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   if (!Subtarget->hasDataBarrier()) {
 | |
|     // Some ARMv6 cpus can support data barriers with an mcr instruction.
 | |
|     // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
 | |
|     // here.
 | |
|     assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
 | |
|            "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
 | |
|     return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
 | |
|                        DAG.getConstant(0, MVT::i32));
 | |
|   }
 | |
| 
 | |
|   return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
 | |
|                      DAG.getConstant(ARM_MB::ISH, MVT::i32));
 | |
| }
 | |
| 
 | |
| static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
 | |
|                              const ARMSubtarget *Subtarget) {
 | |
|   // ARM pre v5TE and Thumb1 does not have preload instructions.
 | |
|   if (!(Subtarget->isThumb2() ||
 | |
|         (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
 | |
|     // Just preserve the chain.
 | |
|     return Op.getOperand(0);
 | |
| 
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
 | |
|   if (!isRead &&
 | |
|       (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
 | |
|     // ARMv7 with MP extension has PLDW.
 | |
|     return Op.getOperand(0);
 | |
| 
 | |
|   unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
 | |
|   if (Subtarget->isThumb()) {
 | |
|     // Invert the bits.
 | |
|     isRead = ~isRead & 1;
 | |
|     isData = ~isData & 1;
 | |
|   }
 | |
| 
 | |
|   return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
 | |
|                      Op.getOperand(1), DAG.getConstant(isRead, MVT::i32),
 | |
|                      DAG.getConstant(isData, MVT::i32));
 | |
| }
 | |
| 
 | |
| static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
 | |
| 
 | |
|   // vastart just stores the address of the VarArgsFrameIndex slot into the
 | |
|   // memory location argument.
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | |
|   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
 | |
|   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
 | |
|   return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
 | |
|                       MachinePointerInfo(SV), false, false, 0);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
 | |
|                                         SDValue &Root, SelectionDAG &DAG,
 | |
|                                         DebugLoc dl) const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
 | |
| 
 | |
|   const TargetRegisterClass *RC;
 | |
|   if (AFI->isThumb1OnlyFunction())
 | |
|     RC = &ARM::tGPRRegClass;
 | |
|   else
 | |
|     RC = &ARM::GPRRegClass;
 | |
| 
 | |
|   // Transform the arguments stored in physical registers into virtual ones.
 | |
|   unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
 | |
|   SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
 | |
| 
 | |
|   SDValue ArgValue2;
 | |
|   if (NextVA.isMemLoc()) {
 | |
|     MachineFrameInfo *MFI = MF.getFrameInfo();
 | |
|     int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
 | |
| 
 | |
|     // Create load node to retrieve arguments from the stack.
 | |
|     SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
 | |
|     ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
 | |
|                             MachinePointerInfo::getFixedStack(FI),
 | |
|                             false, false, false, 0);
 | |
|   } else {
 | |
|     Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
 | |
|     ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
 | |
|   }
 | |
| 
 | |
|   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
 | |
| }
 | |
| 
 | |
| void
 | |
| ARMTargetLowering::computeRegArea(CCState &CCInfo, MachineFunction &MF,
 | |
|                                   unsigned &VARegSize, unsigned &VARegSaveSize)
 | |
|   const {
 | |
|   unsigned NumGPRs;
 | |
|   if (CCInfo.isFirstByValRegValid())
 | |
|     NumGPRs = ARM::R4 - CCInfo.getFirstByValReg();
 | |
|   else {
 | |
|     unsigned int firstUnalloced;
 | |
|     firstUnalloced = CCInfo.getFirstUnallocated(GPRArgRegs,
 | |
|                                                 sizeof(GPRArgRegs) /
 | |
|                                                 sizeof(GPRArgRegs[0]));
 | |
|     NumGPRs = (firstUnalloced <= 3) ? (4 - firstUnalloced) : 0;
 | |
|   }
 | |
| 
 | |
|   unsigned Align = MF.getTarget().getFrameLowering()->getStackAlignment();
 | |
|   VARegSize = NumGPRs * 4;
 | |
|   VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
 | |
| }
 | |
| 
 | |
| // The remaining GPRs hold either the beginning of variable-argument
 | |
| // data, or the beginning of an aggregate passed by value (usuall
 | |
| // byval).  Either way, we allocate stack slots adjacent to the data
 | |
| // provided by our caller, and store the unallocated registers there.
 | |
| // If this is a variadic function, the va_list pointer will begin with
 | |
| // these values; otherwise, this reassembles a (byval) structure that
 | |
| // was split between registers and memory.
 | |
| void
 | |
| ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
 | |
|                                         DebugLoc dl, SDValue &Chain,
 | |
|                                         const Value *OrigArg,
 | |
|                                         unsigned OffsetFromOrigArg,
 | |
|                                         unsigned ArgOffset,
 | |
|                                         bool ForceMutable) const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo *MFI = MF.getFrameInfo();
 | |
|   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
 | |
|   unsigned firstRegToSaveIndex;
 | |
|   if (CCInfo.isFirstByValRegValid())
 | |
|     firstRegToSaveIndex = CCInfo.getFirstByValReg() - ARM::R0;
 | |
|   else {
 | |
|     firstRegToSaveIndex = CCInfo.getFirstUnallocated
 | |
|       (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
 | |
|   }
 | |
| 
 | |
|   unsigned VARegSize, VARegSaveSize;
 | |
|   computeRegArea(CCInfo, MF, VARegSize, VARegSaveSize);
 | |
|   if (VARegSaveSize) {
 | |
|     // If this function is vararg, store any remaining integer argument regs
 | |
|     // to their spots on the stack so that they may be loaded by deferencing
 | |
|     // the result of va_next.
 | |
|     AFI->setVarArgsRegSaveSize(VARegSaveSize);
 | |
|     AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(VARegSaveSize,
 | |
|                                                      ArgOffset + VARegSaveSize
 | |
|                                                      - VARegSize,
 | |
|                                                      false));
 | |
|     SDValue FIN = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(),
 | |
|                                     getPointerTy());
 | |
| 
 | |
|     SmallVector<SDValue, 4> MemOps;
 | |
|     for (unsigned i = 0; firstRegToSaveIndex < 4; ++firstRegToSaveIndex, ++i) {
 | |
|       const TargetRegisterClass *RC;
 | |
|       if (AFI->isThumb1OnlyFunction())
 | |
|         RC = &ARM::tGPRRegClass;
 | |
|       else
 | |
|         RC = &ARM::GPRRegClass;
 | |
| 
 | |
|       unsigned VReg = MF.addLiveIn(GPRArgRegs[firstRegToSaveIndex], RC);
 | |
|       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
 | |
|       SDValue Store =
 | |
|         DAG.getStore(Val.getValue(1), dl, Val, FIN,
 | |
|                      MachinePointerInfo(OrigArg, OffsetFromOrigArg + 4*i),
 | |
|                      false, false, 0);
 | |
|       MemOps.push_back(Store);
 | |
|       FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
 | |
|                         DAG.getConstant(4, getPointerTy()));
 | |
|     }
 | |
|     if (!MemOps.empty())
 | |
|       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
 | |
|                           &MemOps[0], MemOps.size());
 | |
|   } else
 | |
|     // This will point to the next argument passed via stack.
 | |
|     AFI->setVarArgsFrameIndex(
 | |
|         MFI->CreateFixedObject(4, ArgOffset, !ForceMutable));
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| ARMTargetLowering::LowerFormalArguments(SDValue Chain,
 | |
|                                         CallingConv::ID CallConv, bool isVarArg,
 | |
|                                         const SmallVectorImpl<ISD::InputArg>
 | |
|                                           &Ins,
 | |
|                                         DebugLoc dl, SelectionDAG &DAG,
 | |
|                                         SmallVectorImpl<SDValue> &InVals)
 | |
|                                           const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo *MFI = MF.getFrameInfo();
 | |
| 
 | |
|   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
 | |
| 
 | |
|   // Assign locations to all of the incoming arguments.
 | |
|   SmallVector<CCValAssign, 16> ArgLocs;
 | |
|   ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
 | |
|                     getTargetMachine(), ArgLocs, *DAG.getContext(), Prologue);
 | |
|   CCInfo.AnalyzeFormalArguments(Ins,
 | |
|                                 CCAssignFnForNode(CallConv, /* Return*/ false,
 | |
|                                                   isVarArg));
 | |
|   
 | |
|   SmallVector<SDValue, 16> ArgValues;
 | |
|   int lastInsIndex = -1;
 | |
|   SDValue ArgValue;
 | |
|   Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
 | |
|   unsigned CurArgIdx = 0;
 | |
|   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
 | |
|     CCValAssign &VA = ArgLocs[i];
 | |
|     std::advance(CurOrigArg, Ins[VA.getValNo()].OrigArgIndex - CurArgIdx);
 | |
|     CurArgIdx = Ins[VA.getValNo()].OrigArgIndex;
 | |
|     // Arguments stored in registers.
 | |
|     if (VA.isRegLoc()) {
 | |
|       EVT RegVT = VA.getLocVT();
 | |
| 
 | |
|       if (VA.needsCustom()) {
 | |
|         // f64 and vector types are split up into multiple registers or
 | |
|         // combinations of registers and stack slots.
 | |
|         if (VA.getLocVT() == MVT::v2f64) {
 | |
|           SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
 | |
|                                                    Chain, DAG, dl);
 | |
|           VA = ArgLocs[++i]; // skip ahead to next loc
 | |
|           SDValue ArgValue2;
 | |
|           if (VA.isMemLoc()) {
 | |
|             int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
 | |
|             SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
 | |
|             ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
 | |
|                                     MachinePointerInfo::getFixedStack(FI),
 | |
|                                     false, false, false, 0);
 | |
|           } else {
 | |
|             ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
 | |
|                                              Chain, DAG, dl);
 | |
|           }
 | |
|           ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
 | |
|           ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
 | |
|                                  ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
 | |
|           ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
 | |
|                                  ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
 | |
|         } else
 | |
|           ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
 | |
| 
 | |
|       } else {
 | |
|         const TargetRegisterClass *RC;
 | |
| 
 | |
|         if (RegVT == MVT::f32)
 | |
|           RC = &ARM::SPRRegClass;
 | |
|         else if (RegVT == MVT::f64)
 | |
|           RC = &ARM::DPRRegClass;
 | |
|         else if (RegVT == MVT::v2f64)
 | |
|           RC = &ARM::QPRRegClass;
 | |
|         else if (RegVT == MVT::i32)
 | |
|           RC = AFI->isThumb1OnlyFunction() ?
 | |
|             (const TargetRegisterClass*)&ARM::tGPRRegClass :
 | |
|             (const TargetRegisterClass*)&ARM::GPRRegClass;
 | |
|         else
 | |
|           llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
 | |
| 
 | |
|         // Transform the arguments in physical registers into virtual ones.
 | |
|         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
 | |
|         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
 | |
|       }
 | |
| 
 | |
|       // If this is an 8 or 16-bit value, it is really passed promoted
 | |
|       // to 32 bits.  Insert an assert[sz]ext to capture this, then
 | |
|       // truncate to the right size.
 | |
|       switch (VA.getLocInfo()) {
 | |
|       default: llvm_unreachable("Unknown loc info!");
 | |
|       case CCValAssign::Full: break;
 | |
|       case CCValAssign::BCvt:
 | |
|         ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
 | |
|         break;
 | |
|       case CCValAssign::SExt:
 | |
|         ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
 | |
|                                DAG.getValueType(VA.getValVT()));
 | |
|         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
 | |
|         break;
 | |
|       case CCValAssign::ZExt:
 | |
|         ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
 | |
|                                DAG.getValueType(VA.getValVT()));
 | |
|         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       InVals.push_back(ArgValue);
 | |
| 
 | |
|     } else { // VA.isRegLoc()
 | |
| 
 | |
|       // sanity check
 | |
|       assert(VA.isMemLoc());
 | |
|       assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
 | |
| 
 | |
|       int index = ArgLocs[i].getValNo();
 | |
| 
 | |
|       // Some Ins[] entries become multiple ArgLoc[] entries.
 | |
|       // Process them only once.
 | |
|       if (index != lastInsIndex)
 | |
|         {
 | |
|           ISD::ArgFlagsTy Flags = Ins[index].Flags;
 | |
|           // FIXME: For now, all byval parameter objects are marked mutable.
 | |
|           // This can be changed with more analysis.
 | |
|           // In case of tail call optimization mark all arguments mutable.
 | |
|           // Since they could be overwritten by lowering of arguments in case of
 | |
|           // a tail call.
 | |
|           if (Flags.isByVal()) {
 | |
|             ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
 | |
|             if (!AFI->getVarArgsFrameIndex()) {
 | |
|               VarArgStyleRegisters(CCInfo, DAG,
 | |
|                                    dl, Chain, CurOrigArg,
 | |
|                                    Ins[VA.getValNo()].PartOffset,
 | |
|                                    VA.getLocMemOffset(),
 | |
|                                    true /*force mutable frames*/);
 | |
|               int VAFrameIndex = AFI->getVarArgsFrameIndex();
 | |
|               InVals.push_back(DAG.getFrameIndex(VAFrameIndex, getPointerTy()));
 | |
|             } else {
 | |
|               int FI = MFI->CreateFixedObject(Flags.getByValSize(),
 | |
|                                               VA.getLocMemOffset(), false);
 | |
|               InVals.push_back(DAG.getFrameIndex(FI, getPointerTy()));              
 | |
|             }
 | |
|           } else {
 | |
|             int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
 | |
|                                             VA.getLocMemOffset(), true);
 | |
| 
 | |
|             // Create load nodes to retrieve arguments from the stack.
 | |
|             SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
 | |
|             InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
 | |
|                                          MachinePointerInfo::getFixedStack(FI),
 | |
|                                          false, false, false, 0));
 | |
|           }
 | |
|           lastInsIndex = index;
 | |
|         }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // varargs
 | |
|   if (isVarArg)
 | |
|     VarArgStyleRegisters(CCInfo, DAG, dl, Chain, 0, 0,
 | |
|                          CCInfo.getNextStackOffset());
 | |
| 
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| /// isFloatingPointZero - Return true if this is +0.0.
 | |
| static bool isFloatingPointZero(SDValue Op) {
 | |
|   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
 | |
|     return CFP->getValueAPF().isPosZero();
 | |
|   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
 | |
|     // Maybe this has already been legalized into the constant pool?
 | |
|     if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
 | |
|       SDValue WrapperOp = Op.getOperand(1).getOperand(0);
 | |
|       if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
 | |
|         if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
 | |
|           return CFP->getValueAPF().isPosZero();
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
 | |
| /// the given operands.
 | |
| SDValue
 | |
| ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
 | |
|                              SDValue &ARMcc, SelectionDAG &DAG,
 | |
|                              DebugLoc dl) const {
 | |
|   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
 | |
|     unsigned C = RHSC->getZExtValue();
 | |
|     if (!isLegalICmpImmediate(C)) {
 | |
|       // Constant does not fit, try adjusting it by one?
 | |
|       switch (CC) {
 | |
|       default: break;
 | |
|       case ISD::SETLT:
 | |
|       case ISD::SETGE:
 | |
|         if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
 | |
|           CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
 | |
|           RHS = DAG.getConstant(C-1, MVT::i32);
 | |
|         }
 | |
|         break;
 | |
|       case ISD::SETULT:
 | |
|       case ISD::SETUGE:
 | |
|         if (C != 0 && isLegalICmpImmediate(C-1)) {
 | |
|           CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
 | |
|           RHS = DAG.getConstant(C-1, MVT::i32);
 | |
|         }
 | |
|         break;
 | |
|       case ISD::SETLE:
 | |
|       case ISD::SETGT:
 | |
|         if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
 | |
|           CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
 | |
|           RHS = DAG.getConstant(C+1, MVT::i32);
 | |
|         }
 | |
|         break;
 | |
|       case ISD::SETULE:
 | |
|       case ISD::SETUGT:
 | |
|         if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
 | |
|           CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
 | |
|           RHS = DAG.getConstant(C+1, MVT::i32);
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
 | |
|   ARMISD::NodeType CompareType;
 | |
|   switch (CondCode) {
 | |
|   default:
 | |
|     CompareType = ARMISD::CMP;
 | |
|     break;
 | |
|   case ARMCC::EQ:
 | |
|   case ARMCC::NE:
 | |
|     // Uses only Z Flag
 | |
|     CompareType = ARMISD::CMPZ;
 | |
|     break;
 | |
|   }
 | |
|   ARMcc = DAG.getConstant(CondCode, MVT::i32);
 | |
|   return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
 | |
| }
 | |
| 
 | |
| /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
 | |
| SDValue
 | |
| ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
 | |
|                              DebugLoc dl) const {
 | |
|   SDValue Cmp;
 | |
|   if (!isFloatingPointZero(RHS))
 | |
|     Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
 | |
|   else
 | |
|     Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
 | |
|   return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
 | |
| }
 | |
| 
 | |
| /// duplicateCmp - Glue values can have only one use, so this function
 | |
| /// duplicates a comparison node.
 | |
| SDValue
 | |
| ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
 | |
|   unsigned Opc = Cmp.getOpcode();
 | |
|   DebugLoc DL = Cmp.getDebugLoc();
 | |
|   if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
 | |
|     return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
 | |
| 
 | |
|   assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
 | |
|   Cmp = Cmp.getOperand(0);
 | |
|   Opc = Cmp.getOpcode();
 | |
|   if (Opc == ARMISD::CMPFP)
 | |
|     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
 | |
|   else {
 | |
|     assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
 | |
|     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
 | |
|   }
 | |
|   return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
 | |
|   SDValue Cond = Op.getOperand(0);
 | |
|   SDValue SelectTrue = Op.getOperand(1);
 | |
|   SDValue SelectFalse = Op.getOperand(2);
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   // Convert:
 | |
|   //
 | |
|   //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
 | |
|   //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
 | |
|   //
 | |
|   if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
 | |
|     const ConstantSDNode *CMOVTrue =
 | |
|       dyn_cast<ConstantSDNode>(Cond.getOperand(0));
 | |
|     const ConstantSDNode *CMOVFalse =
 | |
|       dyn_cast<ConstantSDNode>(Cond.getOperand(1));
 | |
| 
 | |
|     if (CMOVTrue && CMOVFalse) {
 | |
|       unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
 | |
|       unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
 | |
| 
 | |
|       SDValue True;
 | |
|       SDValue False;
 | |
|       if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
 | |
|         True = SelectTrue;
 | |
|         False = SelectFalse;
 | |
|       } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
 | |
|         True = SelectFalse;
 | |
|         False = SelectTrue;
 | |
|       }
 | |
| 
 | |
|       if (True.getNode() && False.getNode()) {
 | |
|         EVT VT = Op.getValueType();
 | |
|         SDValue ARMcc = Cond.getOperand(2);
 | |
|         SDValue CCR = Cond.getOperand(3);
 | |
|         SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
 | |
|         assert(True.getValueType() == VT);
 | |
|         return DAG.getNode(ARMISD::CMOV, dl, VT, True, False, ARMcc, CCR, Cmp);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
 | |
|   // undefined bits before doing a full-word comparison with zero.
 | |
|   Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
 | |
|                      DAG.getConstant(1, Cond.getValueType()));
 | |
| 
 | |
|   return DAG.getSelectCC(dl, Cond,
 | |
|                          DAG.getConstant(0, Cond.getValueType()),
 | |
|                          SelectTrue, SelectFalse, ISD::SETNE);
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
 | |
|   EVT VT = Op.getValueType();
 | |
|   SDValue LHS = Op.getOperand(0);
 | |
|   SDValue RHS = Op.getOperand(1);
 | |
|   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
 | |
|   SDValue TrueVal = Op.getOperand(2);
 | |
|   SDValue FalseVal = Op.getOperand(3);
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   if (LHS.getValueType() == MVT::i32) {
 | |
|     SDValue ARMcc;
 | |
|     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
 | |
|     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
 | |
|     return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,Cmp);
 | |
|   }
 | |
| 
 | |
|   ARMCC::CondCodes CondCode, CondCode2;
 | |
|   FPCCToARMCC(CC, CondCode, CondCode2);
 | |
| 
 | |
|   SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
 | |
|   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
 | |
|   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
 | |
|   SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
 | |
|                                ARMcc, CCR, Cmp);
 | |
|   if (CondCode2 != ARMCC::AL) {
 | |
|     SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
 | |
|     // FIXME: Needs another CMP because flag can have but one use.
 | |
|     SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
 | |
|     Result = DAG.getNode(ARMISD::CMOV, dl, VT,
 | |
|                          Result, TrueVal, ARMcc2, CCR, Cmp2);
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// canChangeToInt - Given the fp compare operand, return true if it is suitable
 | |
| /// to morph to an integer compare sequence.
 | |
| static bool canChangeToInt(SDValue Op, bool &SeenZero,
 | |
|                            const ARMSubtarget *Subtarget) {
 | |
|   SDNode *N = Op.getNode();
 | |
|   if (!N->hasOneUse())
 | |
|     // Otherwise it requires moving the value from fp to integer registers.
 | |
|     return false;
 | |
|   if (!N->getNumValues())
 | |
|     return false;
 | |
|   EVT VT = Op.getValueType();
 | |
|   if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
 | |
|     // f32 case is generally profitable. f64 case only makes sense when vcmpe +
 | |
|     // vmrs are very slow, e.g. cortex-a8.
 | |
|     return false;
 | |
| 
 | |
|   if (isFloatingPointZero(Op)) {
 | |
|     SeenZero = true;
 | |
|     return true;
 | |
|   }
 | |
|   return ISD::isNormalLoad(N);
 | |
| }
 | |
| 
 | |
| static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
 | |
|   if (isFloatingPointZero(Op))
 | |
|     return DAG.getConstant(0, MVT::i32);
 | |
| 
 | |
|   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
 | |
|     return DAG.getLoad(MVT::i32, Op.getDebugLoc(),
 | |
|                        Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
 | |
|                        Ld->isVolatile(), Ld->isNonTemporal(),
 | |
|                        Ld->isInvariant(), Ld->getAlignment());
 | |
| 
 | |
|   llvm_unreachable("Unknown VFP cmp argument!");
 | |
| }
 | |
| 
 | |
| static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
 | |
|                            SDValue &RetVal1, SDValue &RetVal2) {
 | |
|   if (isFloatingPointZero(Op)) {
 | |
|     RetVal1 = DAG.getConstant(0, MVT::i32);
 | |
|     RetVal2 = DAG.getConstant(0, MVT::i32);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
 | |
|     SDValue Ptr = Ld->getBasePtr();
 | |
|     RetVal1 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
 | |
|                           Ld->getChain(), Ptr,
 | |
|                           Ld->getPointerInfo(),
 | |
|                           Ld->isVolatile(), Ld->isNonTemporal(),
 | |
|                           Ld->isInvariant(), Ld->getAlignment());
 | |
| 
 | |
|     EVT PtrType = Ptr.getValueType();
 | |
|     unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
 | |
|     SDValue NewPtr = DAG.getNode(ISD::ADD, Op.getDebugLoc(),
 | |
|                                  PtrType, Ptr, DAG.getConstant(4, PtrType));
 | |
|     RetVal2 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
 | |
|                           Ld->getChain(), NewPtr,
 | |
|                           Ld->getPointerInfo().getWithOffset(4),
 | |
|                           Ld->isVolatile(), Ld->isNonTemporal(),
 | |
|                           Ld->isInvariant(), NewAlign);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Unknown VFP cmp argument!");
 | |
| }
 | |
| 
 | |
| /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
 | |
| /// f32 and even f64 comparisons to integer ones.
 | |
| SDValue
 | |
| ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
 | |
|   SDValue Chain = Op.getOperand(0);
 | |
|   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
 | |
|   SDValue LHS = Op.getOperand(2);
 | |
|   SDValue RHS = Op.getOperand(3);
 | |
|   SDValue Dest = Op.getOperand(4);
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   bool LHSSeenZero = false;
 | |
|   bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
 | |
|   bool RHSSeenZero = false;
 | |
|   bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
 | |
|   if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
 | |
|     // If unsafe fp math optimization is enabled and there are no other uses of
 | |
|     // the CMP operands, and the condition code is EQ or NE, we can optimize it
 | |
|     // to an integer comparison.
 | |
|     if (CC == ISD::SETOEQ)
 | |
|       CC = ISD::SETEQ;
 | |
|     else if (CC == ISD::SETUNE)
 | |
|       CC = ISD::SETNE;
 | |
| 
 | |
|     SDValue Mask = DAG.getConstant(0x7fffffff, MVT::i32);
 | |
|     SDValue ARMcc;
 | |
|     if (LHS.getValueType() == MVT::f32) {
 | |
|       LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
 | |
|                         bitcastf32Toi32(LHS, DAG), Mask);
 | |
|       RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
 | |
|                         bitcastf32Toi32(RHS, DAG), Mask);
 | |
|       SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
 | |
|       SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
 | |
|       return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
 | |
|                          Chain, Dest, ARMcc, CCR, Cmp);
 | |
|     }
 | |
| 
 | |
|     SDValue LHS1, LHS2;
 | |
|     SDValue RHS1, RHS2;
 | |
|     expandf64Toi32(LHS, DAG, LHS1, LHS2);
 | |
|     expandf64Toi32(RHS, DAG, RHS1, RHS2);
 | |
|     LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
 | |
|     RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
 | |
|     ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
 | |
|     ARMcc = DAG.getConstant(CondCode, MVT::i32);
 | |
|     SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
 | |
|     SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
 | |
|     return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops, 7);
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
 | |
|   SDValue Chain = Op.getOperand(0);
 | |
|   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
 | |
|   SDValue LHS = Op.getOperand(2);
 | |
|   SDValue RHS = Op.getOperand(3);
 | |
|   SDValue Dest = Op.getOperand(4);
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   if (LHS.getValueType() == MVT::i32) {
 | |
|     SDValue ARMcc;
 | |
|     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
 | |
|     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
 | |
|     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
 | |
|                        Chain, Dest, ARMcc, CCR, Cmp);
 | |
|   }
 | |
| 
 | |
|   assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
 | |
| 
 | |
|   if (getTargetMachine().Options.UnsafeFPMath &&
 | |
|       (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
 | |
|        CC == ISD::SETNE || CC == ISD::SETUNE)) {
 | |
|     SDValue Result = OptimizeVFPBrcond(Op, DAG);
 | |
|     if (Result.getNode())
 | |
|       return Result;
 | |
|   }
 | |
| 
 | |
|   ARMCC::CondCodes CondCode, CondCode2;
 | |
|   FPCCToARMCC(CC, CondCode, CondCode2);
 | |
| 
 | |
|   SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
 | |
|   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
 | |
|   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
 | |
|   SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
 | |
|   SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
 | |
|   SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
 | |
|   if (CondCode2 != ARMCC::AL) {
 | |
|     ARMcc = DAG.getConstant(CondCode2, MVT::i32);
 | |
|     SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
 | |
|     Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
 | |
|   }
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
 | |
|   SDValue Chain = Op.getOperand(0);
 | |
|   SDValue Table = Op.getOperand(1);
 | |
|   SDValue Index = Op.getOperand(2);
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   EVT PTy = getPointerTy();
 | |
|   JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
 | |
|   ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
 | |
|   SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
 | |
|   SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
 | |
|   Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
 | |
|   Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
 | |
|   SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
 | |
|   if (Subtarget->isThumb2()) {
 | |
|     // Thumb2 uses a two-level jump. That is, it jumps into the jump table
 | |
|     // which does another jump to the destination. This also makes it easier
 | |
|     // to translate it to TBB / TBH later.
 | |
|     // FIXME: This might not work if the function is extremely large.
 | |
|     return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
 | |
|                        Addr, Op.getOperand(2), JTI, UId);
 | |
|   }
 | |
|   if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
 | |
|     Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
 | |
|                        MachinePointerInfo::getJumpTable(),
 | |
|                        false, false, false, 0);
 | |
|     Chain = Addr.getValue(1);
 | |
|     Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
 | |
|     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
 | |
|   } else {
 | |
|     Addr = DAG.getLoad(PTy, dl, Chain, Addr,
 | |
|                        MachinePointerInfo::getJumpTable(),
 | |
|                        false, false, false, 0);
 | |
|     Chain = Addr.getValue(1);
 | |
|     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
 | |
|   EVT VT = Op.getValueType();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   if (Op.getValueType().getVectorElementType() == MVT::i32) {
 | |
|     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
 | |
|       return Op;
 | |
|     return DAG.UnrollVectorOp(Op.getNode());
 | |
|   }
 | |
| 
 | |
|   assert(Op.getOperand(0).getValueType() == MVT::v4f32 &&
 | |
|          "Invalid type for custom lowering!");
 | |
|   if (VT != MVT::v4i16)
 | |
|     return DAG.UnrollVectorOp(Op.getNode());
 | |
| 
 | |
|   Op = DAG.getNode(Op.getOpcode(), dl, MVT::v4i32, Op.getOperand(0));
 | |
|   return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
 | |
| }
 | |
| 
 | |
| static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
 | |
|   EVT VT = Op.getValueType();
 | |
|   if (VT.isVector())
 | |
|     return LowerVectorFP_TO_INT(Op, DAG);
 | |
| 
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   unsigned Opc;
 | |
| 
 | |
|   switch (Op.getOpcode()) {
 | |
|   default: llvm_unreachable("Invalid opcode!");
 | |
|   case ISD::FP_TO_SINT:
 | |
|     Opc = ARMISD::FTOSI;
 | |
|     break;
 | |
|   case ISD::FP_TO_UINT:
 | |
|     Opc = ARMISD::FTOUI;
 | |
|     break;
 | |
|   }
 | |
|   Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
 | |
|   return DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
 | |
| }
 | |
| 
 | |
| static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
 | |
|   EVT VT = Op.getValueType();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
 | |
|     if (VT.getVectorElementType() == MVT::f32)
 | |
|       return Op;
 | |
|     return DAG.UnrollVectorOp(Op.getNode());
 | |
|   }
 | |
| 
 | |
|   assert(Op.getOperand(0).getValueType() == MVT::v4i16 &&
 | |
|          "Invalid type for custom lowering!");
 | |
|   if (VT != MVT::v4f32)
 | |
|     return DAG.UnrollVectorOp(Op.getNode());
 | |
| 
 | |
|   unsigned CastOpc;
 | |
|   unsigned Opc;
 | |
|   switch (Op.getOpcode()) {
 | |
|   default: llvm_unreachable("Invalid opcode!");
 | |
|   case ISD::SINT_TO_FP:
 | |
|     CastOpc = ISD::SIGN_EXTEND;
 | |
|     Opc = ISD::SINT_TO_FP;
 | |
|     break;
 | |
|   case ISD::UINT_TO_FP:
 | |
|     CastOpc = ISD::ZERO_EXTEND;
 | |
|     Opc = ISD::UINT_TO_FP;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
 | |
|   return DAG.getNode(Opc, dl, VT, Op);
 | |
| }
 | |
| 
 | |
| static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
 | |
|   EVT VT = Op.getValueType();
 | |
|   if (VT.isVector())
 | |
|     return LowerVectorINT_TO_FP(Op, DAG);
 | |
| 
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   unsigned Opc;
 | |
| 
 | |
|   switch (Op.getOpcode()) {
 | |
|   default: llvm_unreachable("Invalid opcode!");
 | |
|   case ISD::SINT_TO_FP:
 | |
|     Opc = ARMISD::SITOF;
 | |
|     break;
 | |
|   case ISD::UINT_TO_FP:
 | |
|     Opc = ARMISD::UITOF;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op.getOperand(0));
 | |
|   return DAG.getNode(Opc, dl, VT, Op);
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
 | |
|   // Implement fcopysign with a fabs and a conditional fneg.
 | |
|   SDValue Tmp0 = Op.getOperand(0);
 | |
|   SDValue Tmp1 = Op.getOperand(1);
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   EVT VT = Op.getValueType();
 | |
|   EVT SrcVT = Tmp1.getValueType();
 | |
|   bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
 | |
|     Tmp0.getOpcode() == ARMISD::VMOVDRR;
 | |
|   bool UseNEON = !InGPR && Subtarget->hasNEON();
 | |
| 
 | |
|   if (UseNEON) {
 | |
|     // Use VBSL to copy the sign bit.
 | |
|     unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
 | |
|     SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
 | |
|                                DAG.getTargetConstant(EncodedVal, MVT::i32));
 | |
|     EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
 | |
|     if (VT == MVT::f64)
 | |
|       Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
 | |
|                          DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
 | |
|                          DAG.getConstant(32, MVT::i32));
 | |
|     else /*if (VT == MVT::f32)*/
 | |
|       Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
 | |
|     if (SrcVT == MVT::f32) {
 | |
|       Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
 | |
|       if (VT == MVT::f64)
 | |
|         Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
 | |
|                            DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
 | |
|                            DAG.getConstant(32, MVT::i32));
 | |
|     } else if (VT == MVT::f32)
 | |
|       Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
 | |
|                          DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
 | |
|                          DAG.getConstant(32, MVT::i32));
 | |
|     Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
 | |
|     Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
 | |
| 
 | |
|     SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
 | |
|                                             MVT::i32);
 | |
|     AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
 | |
|     SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
 | |
|                                   DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
 | |
| 
 | |
|     SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
 | |
|                               DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
 | |
|                               DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
 | |
|     if (VT == MVT::f32) {
 | |
|       Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
 | |
|       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
 | |
|                         DAG.getConstant(0, MVT::i32));
 | |
|     } else {
 | |
|       Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
 | |
|     }
 | |
| 
 | |
|     return Res;
 | |
|   }
 | |
| 
 | |
|   // Bitcast operand 1 to i32.
 | |
|   if (SrcVT == MVT::f64)
 | |
|     Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
 | |
|                        &Tmp1, 1).getValue(1);
 | |
|   Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
 | |
| 
 | |
|   // Or in the signbit with integer operations.
 | |
|   SDValue Mask1 = DAG.getConstant(0x80000000, MVT::i32);
 | |
|   SDValue Mask2 = DAG.getConstant(0x7fffffff, MVT::i32);
 | |
|   Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
 | |
|   if (VT == MVT::f32) {
 | |
|     Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
 | |
|                        DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
 | |
|     return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
 | |
|                        DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
 | |
|   }
 | |
| 
 | |
|   // f64: Or the high part with signbit and then combine two parts.
 | |
|   Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
 | |
|                      &Tmp0, 1);
 | |
|   SDValue Lo = Tmp0.getValue(0);
 | |
|   SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
 | |
|   Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
 | |
|   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo *MFI = MF.getFrameInfo();
 | |
|   MFI->setReturnAddressIsTaken(true);
 | |
| 
 | |
|   EVT VT = Op.getValueType();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | |
|   if (Depth) {
 | |
|     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
 | |
|     SDValue Offset = DAG.getConstant(4, MVT::i32);
 | |
|     return DAG.getLoad(VT, dl, DAG.getEntryNode(),
 | |
|                        DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
 | |
|                        MachinePointerInfo(), false, false, false, 0);
 | |
|   }
 | |
| 
 | |
|   // Return LR, which contains the return address. Mark it an implicit live-in.
 | |
|   unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
 | |
|   return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
 | |
|   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
 | |
|   MFI->setFrameAddressIsTaken(true);
 | |
| 
 | |
|   EVT VT = Op.getValueType();
 | |
|   DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
 | |
|   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | |
|   unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
 | |
|     ? ARM::R7 : ARM::R11;
 | |
|   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
 | |
|   while (Depth--)
 | |
|     FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
 | |
|                             MachinePointerInfo(),
 | |
|                             false, false, false, 0);
 | |
|   return FrameAddr;
 | |
| }
 | |
| 
 | |
| /// ExpandBITCAST - If the target supports VFP, this function is called to
 | |
| /// expand a bit convert where either the source or destination type is i64 to
 | |
| /// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
 | |
| /// operand type is illegal (e.g., v2f32 for a target that doesn't support
 | |
| /// vectors), since the legalizer won't know what to do with that.
 | |
| static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) {
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   DebugLoc dl = N->getDebugLoc();
 | |
|   SDValue Op = N->getOperand(0);
 | |
| 
 | |
|   // This function is only supposed to be called for i64 types, either as the
 | |
|   // source or destination of the bit convert.
 | |
|   EVT SrcVT = Op.getValueType();
 | |
|   EVT DstVT = N->getValueType(0);
 | |
|   assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
 | |
|          "ExpandBITCAST called for non-i64 type");
 | |
| 
 | |
|   // Turn i64->f64 into VMOVDRR.
 | |
|   if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
 | |
|     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
 | |
|                              DAG.getConstant(0, MVT::i32));
 | |
|     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
 | |
|                              DAG.getConstant(1, MVT::i32));
 | |
|     return DAG.getNode(ISD::BITCAST, dl, DstVT,
 | |
|                        DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
 | |
|   }
 | |
| 
 | |
|   // Turn f64->i64 into VMOVRRD.
 | |
|   if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
 | |
|     SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
 | |
|                               DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
 | |
|     // Merge the pieces into a single i64 value.
 | |
|     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// getZeroVector - Returns a vector of specified type with all zero elements.
 | |
| /// Zero vectors are used to represent vector negation and in those cases
 | |
| /// will be implemented with the NEON VNEG instruction.  However, VNEG does
 | |
| /// not support i64 elements, so sometimes the zero vectors will need to be
 | |
| /// explicitly constructed.  Regardless, use a canonical VMOV to create the
 | |
| /// zero vector.
 | |
| static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
 | |
|   assert(VT.isVector() && "Expected a vector type");
 | |
|   // The canonical modified immediate encoding of a zero vector is....0!
 | |
|   SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
 | |
|   EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
 | |
|   SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
 | |
|   return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
 | |
| }
 | |
| 
 | |
| /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
 | |
| /// i32 values and take a 2 x i32 value to shift plus a shift amount.
 | |
| SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
 | |
|                                                 SelectionDAG &DAG) const {
 | |
|   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
 | |
|   EVT VT = Op.getValueType();
 | |
|   unsigned VTBits = VT.getSizeInBits();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   SDValue ShOpLo = Op.getOperand(0);
 | |
|   SDValue ShOpHi = Op.getOperand(1);
 | |
|   SDValue ShAmt  = Op.getOperand(2);
 | |
|   SDValue ARMcc;
 | |
|   unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
 | |
| 
 | |
|   assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
 | |
| 
 | |
|   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
 | |
|                                  DAG.getConstant(VTBits, MVT::i32), ShAmt);
 | |
|   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
 | |
|   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
 | |
|                                    DAG.getConstant(VTBits, MVT::i32));
 | |
|   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
 | |
|   SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
 | |
|   SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
 | |
| 
 | |
|   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
 | |
|   SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
 | |
|                           ARMcc, DAG, dl);
 | |
|   SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
 | |
|   SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
 | |
|                            CCR, Cmp);
 | |
| 
 | |
|   SDValue Ops[2] = { Lo, Hi };
 | |
|   return DAG.getMergeValues(Ops, 2, dl);
 | |
| }
 | |
| 
 | |
| /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
 | |
| /// i32 values and take a 2 x i32 value to shift plus a shift amount.
 | |
| SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
 | |
|                                                SelectionDAG &DAG) const {
 | |
|   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
 | |
|   EVT VT = Op.getValueType();
 | |
|   unsigned VTBits = VT.getSizeInBits();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   SDValue ShOpLo = Op.getOperand(0);
 | |
|   SDValue ShOpHi = Op.getOperand(1);
 | |
|   SDValue ShAmt  = Op.getOperand(2);
 | |
|   SDValue ARMcc;
 | |
| 
 | |
|   assert(Op.getOpcode() == ISD::SHL_PARTS);
 | |
|   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
 | |
|                                  DAG.getConstant(VTBits, MVT::i32), ShAmt);
 | |
|   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
 | |
|   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
 | |
|                                    DAG.getConstant(VTBits, MVT::i32));
 | |
|   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
 | |
|   SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
 | |
| 
 | |
|   SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
 | |
|   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
 | |
|   SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
 | |
|                           ARMcc, DAG, dl);
 | |
|   SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
 | |
|   SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
 | |
|                            CCR, Cmp);
 | |
| 
 | |
|   SDValue Ops[2] = { Lo, Hi };
 | |
|   return DAG.getMergeValues(Ops, 2, dl);
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
 | |
|                                             SelectionDAG &DAG) const {
 | |
|   // The rounding mode is in bits 23:22 of the FPSCR.
 | |
|   // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
 | |
|   // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
 | |
|   // so that the shift + and get folded into a bitfield extract.
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
 | |
|                               DAG.getConstant(Intrinsic::arm_get_fpscr,
 | |
|                                               MVT::i32));
 | |
|   SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
 | |
|                                   DAG.getConstant(1U << 22, MVT::i32));
 | |
|   SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
 | |
|                               DAG.getConstant(22, MVT::i32));
 | |
|   return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
 | |
|                      DAG.getConstant(3, MVT::i32));
 | |
| }
 | |
| 
 | |
| static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
 | |
|                          const ARMSubtarget *ST) {
 | |
|   EVT VT = N->getValueType(0);
 | |
|   DebugLoc dl = N->getDebugLoc();
 | |
| 
 | |
|   if (!ST->hasV6T2Ops())
 | |
|     return SDValue();
 | |
| 
 | |
|   SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
 | |
|   return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
 | |
| }
 | |
| 
 | |
| static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
 | |
|                           const ARMSubtarget *ST) {
 | |
|   EVT VT = N->getValueType(0);
 | |
|   DebugLoc dl = N->getDebugLoc();
 | |
| 
 | |
|   if (!VT.isVector())
 | |
|     return SDValue();
 | |
| 
 | |
|   // Lower vector shifts on NEON to use VSHL.
 | |
|   assert(ST->hasNEON() && "unexpected vector shift");
 | |
| 
 | |
|   // Left shifts translate directly to the vshiftu intrinsic.
 | |
|   if (N->getOpcode() == ISD::SHL)
 | |
|     return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
 | |
|                        DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
 | |
|                        N->getOperand(0), N->getOperand(1));
 | |
| 
 | |
|   assert((N->getOpcode() == ISD::SRA ||
 | |
|           N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
 | |
| 
 | |
|   // NEON uses the same intrinsics for both left and right shifts.  For
 | |
|   // right shifts, the shift amounts are negative, so negate the vector of
 | |
|   // shift amounts.
 | |
|   EVT ShiftVT = N->getOperand(1).getValueType();
 | |
|   SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
 | |
|                                      getZeroVector(ShiftVT, DAG, dl),
 | |
|                                      N->getOperand(1));
 | |
|   Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
 | |
|                              Intrinsic::arm_neon_vshifts :
 | |
|                              Intrinsic::arm_neon_vshiftu);
 | |
|   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
 | |
|                      DAG.getConstant(vshiftInt, MVT::i32),
 | |
|                      N->getOperand(0), NegatedCount);
 | |
| }
 | |
| 
 | |
| static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
 | |
|                                 const ARMSubtarget *ST) {
 | |
|   EVT VT = N->getValueType(0);
 | |
|   DebugLoc dl = N->getDebugLoc();
 | |
| 
 | |
|   // We can get here for a node like i32 = ISD::SHL i32, i64
 | |
|   if (VT != MVT::i64)
 | |
|     return SDValue();
 | |
| 
 | |
|   assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
 | |
|          "Unknown shift to lower!");
 | |
| 
 | |
|   // We only lower SRA, SRL of 1 here, all others use generic lowering.
 | |
|   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
 | |
|       cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
 | |
|     return SDValue();
 | |
| 
 | |
|   // If we are in thumb mode, we don't have RRX.
 | |
|   if (ST->isThumb1Only()) return SDValue();
 | |
| 
 | |
|   // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
 | |
|   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
 | |
|                            DAG.getConstant(0, MVT::i32));
 | |
|   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
 | |
|                            DAG.getConstant(1, MVT::i32));
 | |
| 
 | |
|   // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
 | |
|   // captures the result into a carry flag.
 | |
|   unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
 | |
|   Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), &Hi, 1);
 | |
| 
 | |
|   // The low part is an ARMISD::RRX operand, which shifts the carry in.
 | |
|   Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
 | |
| 
 | |
|   // Merge the pieces into a single i64 value.
 | |
|  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
 | |
| }
 | |
| 
 | |
| static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
 | |
|   SDValue TmpOp0, TmpOp1;
 | |
|   bool Invert = false;
 | |
|   bool Swap = false;
 | |
|   unsigned Opc = 0;
 | |
| 
 | |
|   SDValue Op0 = Op.getOperand(0);
 | |
|   SDValue Op1 = Op.getOperand(1);
 | |
|   SDValue CC = Op.getOperand(2);
 | |
|   EVT VT = Op.getValueType();
 | |
|   ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   if (Op.getOperand(1).getValueType().isFloatingPoint()) {
 | |
|     switch (SetCCOpcode) {
 | |
|     default: llvm_unreachable("Illegal FP comparison");
 | |
|     case ISD::SETUNE:
 | |
|     case ISD::SETNE:  Invert = true; // Fallthrough
 | |
|     case ISD::SETOEQ:
 | |
|     case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
 | |
|     case ISD::SETOLT:
 | |
|     case ISD::SETLT: Swap = true; // Fallthrough
 | |
|     case ISD::SETOGT:
 | |
|     case ISD::SETGT:  Opc = ARMISD::VCGT; break;
 | |
|     case ISD::SETOLE:
 | |
|     case ISD::SETLE:  Swap = true; // Fallthrough
 | |
|     case ISD::SETOGE:
 | |
|     case ISD::SETGE: Opc = ARMISD::VCGE; break;
 | |
|     case ISD::SETUGE: Swap = true; // Fallthrough
 | |
|     case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
 | |
|     case ISD::SETUGT: Swap = true; // Fallthrough
 | |
|     case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
 | |
|     case ISD::SETUEQ: Invert = true; // Fallthrough
 | |
|     case ISD::SETONE:
 | |
|       // Expand this to (OLT | OGT).
 | |
|       TmpOp0 = Op0;
 | |
|       TmpOp1 = Op1;
 | |
|       Opc = ISD::OR;
 | |
|       Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
 | |
|       Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
 | |
|       break;
 | |
|     case ISD::SETUO: Invert = true; // Fallthrough
 | |
|     case ISD::SETO:
 | |
|       // Expand this to (OLT | OGE).
 | |
|       TmpOp0 = Op0;
 | |
|       TmpOp1 = Op1;
 | |
|       Opc = ISD::OR;
 | |
|       Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
 | |
|       Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
 | |
|       break;
 | |
|     }
 | |
|   } else {
 | |
|     // Integer comparisons.
 | |
|     switch (SetCCOpcode) {
 | |
|     default: llvm_unreachable("Illegal integer comparison");
 | |
|     case ISD::SETNE:  Invert = true;
 | |
|     case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
 | |
|     case ISD::SETLT:  Swap = true;
 | |
|     case ISD::SETGT:  Opc = ARMISD::VCGT; break;
 | |
|     case ISD::SETLE:  Swap = true;
 | |
|     case ISD::SETGE:  Opc = ARMISD::VCGE; break;
 | |
|     case ISD::SETULT: Swap = true;
 | |
|     case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
 | |
|     case ISD::SETULE: Swap = true;
 | |
|     case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
 | |
|     }
 | |
| 
 | |
|     // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
 | |
|     if (Opc == ARMISD::VCEQ) {
 | |
| 
 | |
|       SDValue AndOp;
 | |
|       if (ISD::isBuildVectorAllZeros(Op1.getNode()))
 | |
|         AndOp = Op0;
 | |
|       else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
 | |
|         AndOp = Op1;
 | |
| 
 | |
|       // Ignore bitconvert.
 | |
|       if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
 | |
|         AndOp = AndOp.getOperand(0);
 | |
| 
 | |
|       if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
 | |
|         Opc = ARMISD::VTST;
 | |
|         Op0 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(0));
 | |
|         Op1 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(1));
 | |
|         Invert = !Invert;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Swap)
 | |
|     std::swap(Op0, Op1);
 | |
| 
 | |
|   // If one of the operands is a constant vector zero, attempt to fold the
 | |
|   // comparison to a specialized compare-against-zero form.
 | |
|   SDValue SingleOp;
 | |
|   if (ISD::isBuildVectorAllZeros(Op1.getNode()))
 | |
|     SingleOp = Op0;
 | |
|   else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
 | |
|     if (Opc == ARMISD::VCGE)
 | |
|       Opc = ARMISD::VCLEZ;
 | |
|     else if (Opc == ARMISD::VCGT)
 | |
|       Opc = ARMISD::VCLTZ;
 | |
|     SingleOp = Op1;
 | |
|   }
 | |
| 
 | |
|   SDValue Result;
 | |
|   if (SingleOp.getNode()) {
 | |
|     switch (Opc) {
 | |
|     case ARMISD::VCEQ:
 | |
|       Result = DAG.getNode(ARMISD::VCEQZ, dl, VT, SingleOp); break;
 | |
|     case ARMISD::VCGE:
 | |
|       Result = DAG.getNode(ARMISD::VCGEZ, dl, VT, SingleOp); break;
 | |
|     case ARMISD::VCLEZ:
 | |
|       Result = DAG.getNode(ARMISD::VCLEZ, dl, VT, SingleOp); break;
 | |
|     case ARMISD::VCGT:
 | |
|       Result = DAG.getNode(ARMISD::VCGTZ, dl, VT, SingleOp); break;
 | |
|     case ARMISD::VCLTZ:
 | |
|       Result = DAG.getNode(ARMISD::VCLTZ, dl, VT, SingleOp); break;
 | |
|     default:
 | |
|       Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
 | |
|     }
 | |
|   } else {
 | |
|      Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
 | |
|   }
 | |
| 
 | |
|   if (Invert)
 | |
|     Result = DAG.getNOT(dl, Result, VT);
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// isNEONModifiedImm - Check if the specified splat value corresponds to a
 | |
| /// valid vector constant for a NEON instruction with a "modified immediate"
 | |
| /// operand (e.g., VMOV).  If so, return the encoded value.
 | |
| static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
 | |
|                                  unsigned SplatBitSize, SelectionDAG &DAG,
 | |
|                                  EVT &VT, bool is128Bits, NEONModImmType type) {
 | |
|   unsigned OpCmode, Imm;
 | |
| 
 | |
|   // SplatBitSize is set to the smallest size that splats the vector, so a
 | |
|   // zero vector will always have SplatBitSize == 8.  However, NEON modified
 | |
|   // immediate instructions others than VMOV do not support the 8-bit encoding
 | |
|   // of a zero vector, and the default encoding of zero is supposed to be the
 | |
|   // 32-bit version.
 | |
|   if (SplatBits == 0)
 | |
|     SplatBitSize = 32;
 | |
| 
 | |
|   switch (SplatBitSize) {
 | |
|   case 8:
 | |
|     if (type != VMOVModImm)
 | |
|       return SDValue();
 | |
|     // Any 1-byte value is OK.  Op=0, Cmode=1110.
 | |
|     assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
 | |
|     OpCmode = 0xe;
 | |
|     Imm = SplatBits;
 | |
|     VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
 | |
|     break;
 | |
| 
 | |
|   case 16:
 | |
|     // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
 | |
|     VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
 | |
|     if ((SplatBits & ~0xff) == 0) {
 | |
|       // Value = 0x00nn: Op=x, Cmode=100x.
 | |
|       OpCmode = 0x8;
 | |
|       Imm = SplatBits;
 | |
|       break;
 | |
|     }
 | |
|     if ((SplatBits & ~0xff00) == 0) {
 | |
|       // Value = 0xnn00: Op=x, Cmode=101x.
 | |
|       OpCmode = 0xa;
 | |
|       Imm = SplatBits >> 8;
 | |
|       break;
 | |
|     }
 | |
|     return SDValue();
 | |
| 
 | |
|   case 32:
 | |
|     // NEON's 32-bit VMOV supports splat values where:
 | |
|     // * only one byte is nonzero, or
 | |
|     // * the least significant byte is 0xff and the second byte is nonzero, or
 | |
|     // * the least significant 2 bytes are 0xff and the third is nonzero.
 | |
|     VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
 | |
|     if ((SplatBits & ~0xff) == 0) {
 | |
|       // Value = 0x000000nn: Op=x, Cmode=000x.
 | |
|       OpCmode = 0;
 | |
|       Imm = SplatBits;
 | |
|       break;
 | |
|     }
 | |
|     if ((SplatBits & ~0xff00) == 0) {
 | |
|       // Value = 0x0000nn00: Op=x, Cmode=001x.
 | |
|       OpCmode = 0x2;
 | |
|       Imm = SplatBits >> 8;
 | |
|       break;
 | |
|     }
 | |
|     if ((SplatBits & ~0xff0000) == 0) {
 | |
|       // Value = 0x00nn0000: Op=x, Cmode=010x.
 | |
|       OpCmode = 0x4;
 | |
|       Imm = SplatBits >> 16;
 | |
|       break;
 | |
|     }
 | |
|     if ((SplatBits & ~0xff000000) == 0) {
 | |
|       // Value = 0xnn000000: Op=x, Cmode=011x.
 | |
|       OpCmode = 0x6;
 | |
|       Imm = SplatBits >> 24;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
 | |
|     if (type == OtherModImm) return SDValue();
 | |
| 
 | |
|     if ((SplatBits & ~0xffff) == 0 &&
 | |
|         ((SplatBits | SplatUndef) & 0xff) == 0xff) {
 | |
|       // Value = 0x0000nnff: Op=x, Cmode=1100.
 | |
|       OpCmode = 0xc;
 | |
|       Imm = SplatBits >> 8;
 | |
|       SplatBits |= 0xff;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     if ((SplatBits & ~0xffffff) == 0 &&
 | |
|         ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
 | |
|       // Value = 0x00nnffff: Op=x, Cmode=1101.
 | |
|       OpCmode = 0xd;
 | |
|       Imm = SplatBits >> 16;
 | |
|       SplatBits |= 0xffff;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // Note: there are a few 32-bit splat values (specifically: 00ffff00,
 | |
|     // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
 | |
|     // VMOV.I32.  A (very) minor optimization would be to replicate the value
 | |
|     // and fall through here to test for a valid 64-bit splat.  But, then the
 | |
|     // caller would also need to check and handle the change in size.
 | |
|     return SDValue();
 | |
| 
 | |
|   case 64: {
 | |
|     if (type != VMOVModImm)
 | |
|       return SDValue();
 | |
|     // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
 | |
|     uint64_t BitMask = 0xff;
 | |
|     uint64_t Val = 0;
 | |
|     unsigned ImmMask = 1;
 | |
|     Imm = 0;
 | |
|     for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
 | |
|       if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
 | |
|         Val |= BitMask;
 | |
|         Imm |= ImmMask;
 | |
|       } else if ((SplatBits & BitMask) != 0) {
 | |
|         return SDValue();
 | |
|       }
 | |
|       BitMask <<= 8;
 | |
|       ImmMask <<= 1;
 | |
|     }
 | |
|     // Op=1, Cmode=1110.
 | |
|     OpCmode = 0x1e;
 | |
|     SplatBits = Val;
 | |
|     VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   default:
 | |
|     llvm_unreachable("unexpected size for isNEONModifiedImm");
 | |
|   }
 | |
| 
 | |
|   unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
 | |
|   return DAG.getTargetConstant(EncodedVal, MVT::i32);
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
 | |
|                                            const ARMSubtarget *ST) const {
 | |
|   if (!ST->useNEONForSinglePrecisionFP() || !ST->hasVFP3() || ST->hasD16())
 | |
|     return SDValue();
 | |
| 
 | |
|   ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
 | |
|   assert(Op.getValueType() == MVT::f32 &&
 | |
|          "ConstantFP custom lowering should only occur for f32.");
 | |
| 
 | |
|   // Try splatting with a VMOV.f32...
 | |
|   APFloat FPVal = CFP->getValueAPF();
 | |
|   int ImmVal = ARM_AM::getFP32Imm(FPVal);
 | |
|   if (ImmVal != -1) {
 | |
|     DebugLoc DL = Op.getDebugLoc();
 | |
|     SDValue NewVal = DAG.getTargetConstant(ImmVal, MVT::i32);
 | |
|     SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
 | |
|                                       NewVal);
 | |
|     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
 | |
|                        DAG.getConstant(0, MVT::i32));
 | |
|   }
 | |
| 
 | |
|   // If that fails, try a VMOV.i32
 | |
|   EVT VMovVT;
 | |
|   unsigned iVal = FPVal.bitcastToAPInt().getZExtValue();
 | |
|   SDValue NewVal = isNEONModifiedImm(iVal, 0, 32, DAG, VMovVT, false,
 | |
|                                      VMOVModImm);
 | |
|   if (NewVal != SDValue()) {
 | |
|     DebugLoc DL = Op.getDebugLoc();
 | |
|     SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
 | |
|                                       NewVal);
 | |
|     SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
 | |
|                                        VecConstant);
 | |
|     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
 | |
|                        DAG.getConstant(0, MVT::i32));
 | |
|   }
 | |
| 
 | |
|   // Finally, try a VMVN.i32
 | |
|   NewVal = isNEONModifiedImm(~iVal & 0xffffffff, 0, 32, DAG, VMovVT, false,
 | |
|                              VMVNModImm);
 | |
|   if (NewVal != SDValue()) {
 | |
|     DebugLoc DL = Op.getDebugLoc();
 | |
|     SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
 | |
|     SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
 | |
|                                        VecConstant);
 | |
|     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
 | |
|                        DAG.getConstant(0, MVT::i32));
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| // check if an VEXT instruction can handle the shuffle mask when the
 | |
| // vector sources of the shuffle are the same.
 | |
| static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
| 
 | |
|   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
 | |
|   if (M[0] < 0)
 | |
|     return false;
 | |
| 
 | |
|   Imm = M[0];
 | |
| 
 | |
|   // If this is a VEXT shuffle, the immediate value is the index of the first
 | |
|   // element.  The other shuffle indices must be the successive elements after
 | |
|   // the first one.
 | |
|   unsigned ExpectedElt = Imm;
 | |
|   for (unsigned i = 1; i < NumElts; ++i) {
 | |
|     // Increment the expected index.  If it wraps around, just follow it
 | |
|     // back to index zero and keep going.
 | |
|     ++ExpectedElt;
 | |
|     if (ExpectedElt == NumElts)
 | |
|       ExpectedElt = 0;
 | |
| 
 | |
|     if (M[i] < 0) continue; // ignore UNDEF indices
 | |
|     if (ExpectedElt != static_cast<unsigned>(M[i]))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| static bool isVEXTMask(ArrayRef<int> M, EVT VT,
 | |
|                        bool &ReverseVEXT, unsigned &Imm) {
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   ReverseVEXT = false;
 | |
| 
 | |
|   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
 | |
|   if (M[0] < 0)
 | |
|     return false;
 | |
| 
 | |
|   Imm = M[0];
 | |
| 
 | |
|   // If this is a VEXT shuffle, the immediate value is the index of the first
 | |
|   // element.  The other shuffle indices must be the successive elements after
 | |
|   // the first one.
 | |
|   unsigned ExpectedElt = Imm;
 | |
|   for (unsigned i = 1; i < NumElts; ++i) {
 | |
|     // Increment the expected index.  If it wraps around, it may still be
 | |
|     // a VEXT but the source vectors must be swapped.
 | |
|     ExpectedElt += 1;
 | |
|     if (ExpectedElt == NumElts * 2) {
 | |
|       ExpectedElt = 0;
 | |
|       ReverseVEXT = true;
 | |
|     }
 | |
| 
 | |
|     if (M[i] < 0) continue; // ignore UNDEF indices
 | |
|     if (ExpectedElt != static_cast<unsigned>(M[i]))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Adjust the index value if the source operands will be swapped.
 | |
|   if (ReverseVEXT)
 | |
|     Imm -= NumElts;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isVREVMask - Check if a vector shuffle corresponds to a VREV
 | |
| /// instruction with the specified blocksize.  (The order of the elements
 | |
| /// within each block of the vector is reversed.)
 | |
| static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
 | |
|   assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
 | |
|          "Only possible block sizes for VREV are: 16, 32, 64");
 | |
| 
 | |
|   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
 | |
|   if (EltSz == 64)
 | |
|     return false;
 | |
| 
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   unsigned BlockElts = M[0] + 1;
 | |
|   // If the first shuffle index is UNDEF, be optimistic.
 | |
|   if (M[0] < 0)
 | |
|     BlockElts = BlockSize / EltSz;
 | |
| 
 | |
|   if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
 | |
|     return false;
 | |
| 
 | |
|   for (unsigned i = 0; i < NumElts; ++i) {
 | |
|     if (M[i] < 0) continue; // ignore UNDEF indices
 | |
|     if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
 | |
|   // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
 | |
|   // range, then 0 is placed into the resulting vector. So pretty much any mask
 | |
|   // of 8 elements can work here.
 | |
|   return VT == MVT::v8i8 && M.size() == 8;
 | |
| }
 | |
| 
 | |
| static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
 | |
|   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
 | |
|   if (EltSz == 64)
 | |
|     return false;
 | |
| 
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   WhichResult = (M[0] == 0 ? 0 : 1);
 | |
|   for (unsigned i = 0; i < NumElts; i += 2) {
 | |
|     if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
 | |
|         (M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult))
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
 | |
| /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
 | |
| /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
 | |
| static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
 | |
|   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
 | |
|   if (EltSz == 64)
 | |
|     return false;
 | |
| 
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   WhichResult = (M[0] == 0 ? 0 : 1);
 | |
|   for (unsigned i = 0; i < NumElts; i += 2) {
 | |
|     if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
 | |
|         (M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult))
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
 | |
|   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
 | |
|   if (EltSz == 64)
 | |
|     return false;
 | |
| 
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   WhichResult = (M[0] == 0 ? 0 : 1);
 | |
|   for (unsigned i = 0; i != NumElts; ++i) {
 | |
|     if (M[i] < 0) continue; // ignore UNDEF indices
 | |
|     if ((unsigned) M[i] != 2 * i + WhichResult)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
 | |
|   if (VT.is64BitVector() && EltSz == 32)
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
 | |
| /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
 | |
| /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
 | |
| static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
 | |
|   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
 | |
|   if (EltSz == 64)
 | |
|     return false;
 | |
| 
 | |
|   unsigned Half = VT.getVectorNumElements() / 2;
 | |
|   WhichResult = (M[0] == 0 ? 0 : 1);
 | |
|   for (unsigned j = 0; j != 2; ++j) {
 | |
|     unsigned Idx = WhichResult;
 | |
|     for (unsigned i = 0; i != Half; ++i) {
 | |
|       int MIdx = M[i + j * Half];
 | |
|       if (MIdx >= 0 && (unsigned) MIdx != Idx)
 | |
|         return false;
 | |
|       Idx += 2;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
 | |
|   if (VT.is64BitVector() && EltSz == 32)
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
 | |
|   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
 | |
|   if (EltSz == 64)
 | |
|     return false;
 | |
| 
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   WhichResult = (M[0] == 0 ? 0 : 1);
 | |
|   unsigned Idx = WhichResult * NumElts / 2;
 | |
|   for (unsigned i = 0; i != NumElts; i += 2) {
 | |
|     if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
 | |
|         (M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts))
 | |
|       return false;
 | |
|     Idx += 1;
 | |
|   }
 | |
| 
 | |
|   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
 | |
|   if (VT.is64BitVector() && EltSz == 32)
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
 | |
| /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
 | |
| /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
 | |
| static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
 | |
|   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
 | |
|   if (EltSz == 64)
 | |
|     return false;
 | |
| 
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   WhichResult = (M[0] == 0 ? 0 : 1);
 | |
|   unsigned Idx = WhichResult * NumElts / 2;
 | |
|   for (unsigned i = 0; i != NumElts; i += 2) {
 | |
|     if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
 | |
|         (M[i+1] >= 0 && (unsigned) M[i+1] != Idx))
 | |
|       return false;
 | |
|     Idx += 1;
 | |
|   }
 | |
| 
 | |
|   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
 | |
|   if (VT.is64BitVector() && EltSz == 32)
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // If N is an integer constant that can be moved into a register in one
 | |
| // instruction, return an SDValue of such a constant (will become a MOV
 | |
| // instruction).  Otherwise return null.
 | |
| static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
 | |
|                                      const ARMSubtarget *ST, DebugLoc dl) {
 | |
|   uint64_t Val;
 | |
|   if (!isa<ConstantSDNode>(N))
 | |
|     return SDValue();
 | |
|   Val = cast<ConstantSDNode>(N)->getZExtValue();
 | |
| 
 | |
|   if (ST->isThumb1Only()) {
 | |
|     if (Val <= 255 || ~Val <= 255)
 | |
|       return DAG.getConstant(Val, MVT::i32);
 | |
|   } else {
 | |
|     if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
 | |
|       return DAG.getConstant(Val, MVT::i32);
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| // If this is a case we can't handle, return null and let the default
 | |
| // expansion code take care of it.
 | |
| SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
 | |
|                                              const ARMSubtarget *ST) const {
 | |
|   BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   EVT VT = Op.getValueType();
 | |
| 
 | |
|   APInt SplatBits, SplatUndef;
 | |
|   unsigned SplatBitSize;
 | |
|   bool HasAnyUndefs;
 | |
|   if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
 | |
|     if (SplatBitSize <= 64) {
 | |
|       // Check if an immediate VMOV works.
 | |
|       EVT VmovVT;
 | |
|       SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
 | |
|                                       SplatUndef.getZExtValue(), SplatBitSize,
 | |
|                                       DAG, VmovVT, VT.is128BitVector(),
 | |
|                                       VMOVModImm);
 | |
|       if (Val.getNode()) {
 | |
|         SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
 | |
|         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
 | |
|       }
 | |
| 
 | |
|       // Try an immediate VMVN.
 | |
|       uint64_t NegatedImm = (~SplatBits).getZExtValue();
 | |
|       Val = isNEONModifiedImm(NegatedImm,
 | |
|                                       SplatUndef.getZExtValue(), SplatBitSize,
 | |
|                                       DAG, VmovVT, VT.is128BitVector(),
 | |
|                                       VMVNModImm);
 | |
|       if (Val.getNode()) {
 | |
|         SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
 | |
|         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
 | |
|       }
 | |
| 
 | |
|       // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
 | |
|       if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
 | |
|         int ImmVal = ARM_AM::getFP32Imm(SplatBits);
 | |
|         if (ImmVal != -1) {
 | |
|           SDValue Val = DAG.getTargetConstant(ImmVal, MVT::i32);
 | |
|           return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Scan through the operands to see if only one value is used.
 | |
|   //
 | |
|   // As an optimisation, even if more than one value is used it may be more
 | |
|   // profitable to splat with one value then change some lanes.
 | |
|   //
 | |
|   // Heuristically we decide to do this if the vector has a "dominant" value,
 | |
|   // defined as splatted to more than half of the lanes.
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   bool isOnlyLowElement = true;
 | |
|   bool usesOnlyOneValue = true;
 | |
|   bool hasDominantValue = false;
 | |
|   bool isConstant = true;
 | |
| 
 | |
|   // Map of the number of times a particular SDValue appears in the
 | |
|   // element list.
 | |
|   DenseMap<SDValue, unsigned> ValueCounts;
 | |
|   SDValue Value;
 | |
|   for (unsigned i = 0; i < NumElts; ++i) {
 | |
|     SDValue V = Op.getOperand(i);
 | |
|     if (V.getOpcode() == ISD::UNDEF)
 | |
|       continue;
 | |
|     if (i > 0)
 | |
|       isOnlyLowElement = false;
 | |
|     if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
 | |
|       isConstant = false;
 | |
| 
 | |
|     ValueCounts.insert(std::make_pair(V, 0));
 | |
|     unsigned &Count = ValueCounts[V];
 | |
|     
 | |
|     // Is this value dominant? (takes up more than half of the lanes)
 | |
|     if (++Count > (NumElts / 2)) {
 | |
|       hasDominantValue = true;
 | |
|       Value = V;
 | |
|     }
 | |
|   }
 | |
|   if (ValueCounts.size() != 1)
 | |
|     usesOnlyOneValue = false;
 | |
|   if (!Value.getNode() && ValueCounts.size() > 0)
 | |
|     Value = ValueCounts.begin()->first;
 | |
| 
 | |
|   if (ValueCounts.size() == 0)
 | |
|     return DAG.getUNDEF(VT);
 | |
| 
 | |
|   if (isOnlyLowElement)
 | |
|     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
 | |
| 
 | |
|   unsigned EltSize = VT.getVectorElementType().getSizeInBits();
 | |
| 
 | |
|   // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
 | |
|   // i32 and try again.
 | |
|   if (hasDominantValue && EltSize <= 32) {
 | |
|     if (!isConstant) {
 | |
|       SDValue N;
 | |
| 
 | |
|       // If we are VDUPing a value that comes directly from a vector, that will
 | |
|       // cause an unnecessary move to and from a GPR, where instead we could
 | |
|       // just use VDUPLANE.
 | |
|       if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
 | |
|         // We need to create a new undef vector to use for the VDUPLANE if the
 | |
|         // size of the vector from which we get the value is different than the
 | |
|         // size of the vector that we need to create. We will insert the element
 | |
|         // such that the register coalescer will remove unnecessary copies.
 | |
|         if (VT != Value->getOperand(0).getValueType()) {
 | |
|           ConstantSDNode *constIndex;
 | |
|           constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1));
 | |
|           assert(constIndex && "The index is not a constant!");
 | |
|           unsigned index = constIndex->getAPIntValue().getLimitedValue() %
 | |
|                              VT.getVectorNumElements();
 | |
|           N =  DAG.getNode(ARMISD::VDUPLANE, dl, VT,
 | |
|                  DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT),
 | |
|                         Value, DAG.getConstant(index, MVT::i32)),
 | |
|                            DAG.getConstant(index, MVT::i32));
 | |
|         } else {
 | |
|           N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
 | |
|                         Value->getOperand(0), Value->getOperand(1));
 | |
|         }
 | |
|       }
 | |
|       else
 | |
|         N = DAG.getNode(ARMISD::VDUP, dl, VT, Value);
 | |
| 
 | |
|       if (!usesOnlyOneValue) {
 | |
|         // The dominant value was splatted as 'N', but we now have to insert
 | |
|         // all differing elements.
 | |
|         for (unsigned I = 0; I < NumElts; ++I) {
 | |
|           if (Op.getOperand(I) == Value)
 | |
|             continue;
 | |
|           SmallVector<SDValue, 3> Ops;
 | |
|           Ops.push_back(N);
 | |
|           Ops.push_back(Op.getOperand(I));
 | |
|           Ops.push_back(DAG.getConstant(I, MVT::i32));
 | |
|           N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, &Ops[0], 3);
 | |
|         }
 | |
|       }
 | |
|       return N;
 | |
|     }
 | |
|     if (VT.getVectorElementType().isFloatingPoint()) {
 | |
|       SmallVector<SDValue, 8> Ops;
 | |
|       for (unsigned i = 0; i < NumElts; ++i)
 | |
|         Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
 | |
|                                   Op.getOperand(i)));
 | |
|       EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
 | |
|       SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], NumElts);
 | |
|       Val = LowerBUILD_VECTOR(Val, DAG, ST);
 | |
|       if (Val.getNode())
 | |
|         return DAG.getNode(ISD::BITCAST, dl, VT, Val);
 | |
|     }
 | |
|     if (usesOnlyOneValue) {
 | |
|       SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
 | |
|       if (isConstant && Val.getNode())
 | |
|         return DAG.getNode(ARMISD::VDUP, dl, VT, Val); 
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If all elements are constants and the case above didn't get hit, fall back
 | |
|   // to the default expansion, which will generate a load from the constant
 | |
|   // pool.
 | |
|   if (isConstant)
 | |
|     return SDValue();
 | |
| 
 | |
|   // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
 | |
|   if (NumElts >= 4) {
 | |
|     SDValue shuffle = ReconstructShuffle(Op, DAG);
 | |
|     if (shuffle != SDValue())
 | |
|       return shuffle;
 | |
|   }
 | |
| 
 | |
|   // Vectors with 32- or 64-bit elements can be built by directly assigning
 | |
|   // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
 | |
|   // will be legalized.
 | |
|   if (EltSize >= 32) {
 | |
|     // Do the expansion with floating-point types, since that is what the VFP
 | |
|     // registers are defined to use, and since i64 is not legal.
 | |
|     EVT EltVT = EVT::getFloatingPointVT(EltSize);
 | |
|     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
 | |
|     SmallVector<SDValue, 8> Ops;
 | |
|     for (unsigned i = 0; i < NumElts; ++i)
 | |
|       Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
 | |
|     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
 | |
|     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| // Gather data to see if the operation can be modelled as a
 | |
| // shuffle in combination with VEXTs.
 | |
| SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
 | |
|                                               SelectionDAG &DAG) const {
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   EVT VT = Op.getValueType();
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
| 
 | |
|   SmallVector<SDValue, 2> SourceVecs;
 | |
|   SmallVector<unsigned, 2> MinElts;
 | |
|   SmallVector<unsigned, 2> MaxElts;
 | |
| 
 | |
|   for (unsigned i = 0; i < NumElts; ++i) {
 | |
|     SDValue V = Op.getOperand(i);
 | |
|     if (V.getOpcode() == ISD::UNDEF)
 | |
|       continue;
 | |
|     else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
 | |
|       // A shuffle can only come from building a vector from various
 | |
|       // elements of other vectors.
 | |
|       return SDValue();
 | |
|     } else if (V.getOperand(0).getValueType().getVectorElementType() !=
 | |
|                VT.getVectorElementType()) {
 | |
|       // This code doesn't know how to handle shuffles where the vector
 | |
|       // element types do not match (this happens because type legalization
 | |
|       // promotes the return type of EXTRACT_VECTOR_ELT).
 | |
|       // FIXME: It might be appropriate to extend this code to handle
 | |
|       // mismatched types.
 | |
|       return SDValue();
 | |
|     }
 | |
| 
 | |
|     // Record this extraction against the appropriate vector if possible...
 | |
|     SDValue SourceVec = V.getOperand(0);
 | |
|     // If the element number isn't a constant, we can't effectively
 | |
|     // analyze what's going on.
 | |
|     if (!isa<ConstantSDNode>(V.getOperand(1)))
 | |
|       return SDValue();
 | |
|     unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
 | |
|     bool FoundSource = false;
 | |
|     for (unsigned j = 0; j < SourceVecs.size(); ++j) {
 | |
|       if (SourceVecs[j] == SourceVec) {
 | |
|         if (MinElts[j] > EltNo)
 | |
|           MinElts[j] = EltNo;
 | |
|         if (MaxElts[j] < EltNo)
 | |
|           MaxElts[j] = EltNo;
 | |
|         FoundSource = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Or record a new source if not...
 | |
|     if (!FoundSource) {
 | |
|       SourceVecs.push_back(SourceVec);
 | |
|       MinElts.push_back(EltNo);
 | |
|       MaxElts.push_back(EltNo);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Currently only do something sane when at most two source vectors
 | |
|   // involved.
 | |
|   if (SourceVecs.size() > 2)
 | |
|     return SDValue();
 | |
| 
 | |
|   SDValue ShuffleSrcs[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT) };
 | |
|   int VEXTOffsets[2] = {0, 0};
 | |
| 
 | |
|   // This loop extracts the usage patterns of the source vectors
 | |
|   // and prepares appropriate SDValues for a shuffle if possible.
 | |
|   for (unsigned i = 0; i < SourceVecs.size(); ++i) {
 | |
|     if (SourceVecs[i].getValueType() == VT) {
 | |
|       // No VEXT necessary
 | |
|       ShuffleSrcs[i] = SourceVecs[i];
 | |
|       VEXTOffsets[i] = 0;
 | |
|       continue;
 | |
|     } else if (SourceVecs[i].getValueType().getVectorNumElements() < NumElts) {
 | |
|       // It probably isn't worth padding out a smaller vector just to
 | |
|       // break it down again in a shuffle.
 | |
|       return SDValue();
 | |
|     }
 | |
| 
 | |
|     // Since only 64-bit and 128-bit vectors are legal on ARM and
 | |
|     // we've eliminated the other cases...
 | |
|     assert(SourceVecs[i].getValueType().getVectorNumElements() == 2*NumElts &&
 | |
|            "unexpected vector sizes in ReconstructShuffle");
 | |
| 
 | |
|     if (MaxElts[i] - MinElts[i] >= NumElts) {
 | |
|       // Span too large for a VEXT to cope
 | |
|       return SDValue();
 | |
|     }
 | |
| 
 | |
|     if (MinElts[i] >= NumElts) {
 | |
|       // The extraction can just take the second half
 | |
|       VEXTOffsets[i] = NumElts;
 | |
|       ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
 | |
|                                    SourceVecs[i],
 | |
|                                    DAG.getIntPtrConstant(NumElts));
 | |
|     } else if (MaxElts[i] < NumElts) {
 | |
|       // The extraction can just take the first half
 | |
|       VEXTOffsets[i] = 0;
 | |
|       ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
 | |
|                                    SourceVecs[i],
 | |
|                                    DAG.getIntPtrConstant(0));
 | |
|     } else {
 | |
|       // An actual VEXT is needed
 | |
|       VEXTOffsets[i] = MinElts[i];
 | |
|       SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
 | |
|                                      SourceVecs[i],
 | |
|                                      DAG.getIntPtrConstant(0));
 | |
|       SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
 | |
|                                      SourceVecs[i],
 | |
|                                      DAG.getIntPtrConstant(NumElts));
 | |
|       ShuffleSrcs[i] = DAG.getNode(ARMISD::VEXT, dl, VT, VEXTSrc1, VEXTSrc2,
 | |
|                                    DAG.getConstant(VEXTOffsets[i], MVT::i32));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SmallVector<int, 8> Mask;
 | |
| 
 | |
|   for (unsigned i = 0; i < NumElts; ++i) {
 | |
|     SDValue Entry = Op.getOperand(i);
 | |
|     if (Entry.getOpcode() == ISD::UNDEF) {
 | |
|       Mask.push_back(-1);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     SDValue ExtractVec = Entry.getOperand(0);
 | |
|     int ExtractElt = cast<ConstantSDNode>(Op.getOperand(i)
 | |
|                                           .getOperand(1))->getSExtValue();
 | |
|     if (ExtractVec == SourceVecs[0]) {
 | |
|       Mask.push_back(ExtractElt - VEXTOffsets[0]);
 | |
|     } else {
 | |
|       Mask.push_back(ExtractElt + NumElts - VEXTOffsets[1]);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Final check before we try to produce nonsense...
 | |
|   if (isShuffleMaskLegal(Mask, VT))
 | |
|     return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1],
 | |
|                                 &Mask[0]);
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// isShuffleMaskLegal - Targets can use this to indicate that they only
 | |
| /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
 | |
| /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
 | |
| /// are assumed to be legal.
 | |
| bool
 | |
| ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
 | |
|                                       EVT VT) const {
 | |
|   if (VT.getVectorNumElements() == 4 &&
 | |
|       (VT.is128BitVector() || VT.is64BitVector())) {
 | |
|     unsigned PFIndexes[4];
 | |
|     for (unsigned i = 0; i != 4; ++i) {
 | |
|       if (M[i] < 0)
 | |
|         PFIndexes[i] = 8;
 | |
|       else
 | |
|         PFIndexes[i] = M[i];
 | |
|     }
 | |
| 
 | |
|     // Compute the index in the perfect shuffle table.
 | |
|     unsigned PFTableIndex =
 | |
|       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
 | |
|     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
 | |
|     unsigned Cost = (PFEntry >> 30);
 | |
| 
 | |
|     if (Cost <= 4)
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   bool ReverseVEXT;
 | |
|   unsigned Imm, WhichResult;
 | |
| 
 | |
|   unsigned EltSize = VT.getVectorElementType().getSizeInBits();
 | |
|   return (EltSize >= 32 ||
 | |
|           ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
 | |
|           isVREVMask(M, VT, 64) ||
 | |
|           isVREVMask(M, VT, 32) ||
 | |
|           isVREVMask(M, VT, 16) ||
 | |
|           isVEXTMask(M, VT, ReverseVEXT, Imm) ||
 | |
|           isVTBLMask(M, VT) ||
 | |
|           isVTRNMask(M, VT, WhichResult) ||
 | |
|           isVUZPMask(M, VT, WhichResult) ||
 | |
|           isVZIPMask(M, VT, WhichResult) ||
 | |
|           isVTRN_v_undef_Mask(M, VT, WhichResult) ||
 | |
|           isVUZP_v_undef_Mask(M, VT, WhichResult) ||
 | |
|           isVZIP_v_undef_Mask(M, VT, WhichResult));
 | |
| }
 | |
| 
 | |
| /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
 | |
| /// the specified operations to build the shuffle.
 | |
| static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
 | |
|                                       SDValue RHS, SelectionDAG &DAG,
 | |
|                                       DebugLoc dl) {
 | |
|   unsigned OpNum = (PFEntry >> 26) & 0x0F;
 | |
|   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
 | |
|   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
 | |
| 
 | |
|   enum {
 | |
|     OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
 | |
|     OP_VREV,
 | |
|     OP_VDUP0,
 | |
|     OP_VDUP1,
 | |
|     OP_VDUP2,
 | |
|     OP_VDUP3,
 | |
|     OP_VEXT1,
 | |
|     OP_VEXT2,
 | |
|     OP_VEXT3,
 | |
|     OP_VUZPL, // VUZP, left result
 | |
|     OP_VUZPR, // VUZP, right result
 | |
|     OP_VZIPL, // VZIP, left result
 | |
|     OP_VZIPR, // VZIP, right result
 | |
|     OP_VTRNL, // VTRN, left result
 | |
|     OP_VTRNR  // VTRN, right result
 | |
|   };
 | |
| 
 | |
|   if (OpNum == OP_COPY) {
 | |
|     if (LHSID == (1*9+2)*9+3) return LHS;
 | |
|     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
 | |
|     return RHS;
 | |
|   }
 | |
| 
 | |
|   SDValue OpLHS, OpRHS;
 | |
|   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
 | |
|   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
 | |
|   EVT VT = OpLHS.getValueType();
 | |
| 
 | |
|   switch (OpNum) {
 | |
|   default: llvm_unreachable("Unknown shuffle opcode!");
 | |
|   case OP_VREV:
 | |
|     // VREV divides the vector in half and swaps within the half.
 | |
|     if (VT.getVectorElementType() == MVT::i32 ||
 | |
|         VT.getVectorElementType() == MVT::f32)
 | |
|       return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
 | |
|     // vrev <4 x i16> -> VREV32
 | |
|     if (VT.getVectorElementType() == MVT::i16)
 | |
|       return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
 | |
|     // vrev <4 x i8> -> VREV16
 | |
|     assert(VT.getVectorElementType() == MVT::i8);
 | |
|     return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
 | |
|   case OP_VDUP0:
 | |
|   case OP_VDUP1:
 | |
|   case OP_VDUP2:
 | |
|   case OP_VDUP3:
 | |
|     return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
 | |
|                        OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
 | |
|   case OP_VEXT1:
 | |
|   case OP_VEXT2:
 | |
|   case OP_VEXT3:
 | |
|     return DAG.getNode(ARMISD::VEXT, dl, VT,
 | |
|                        OpLHS, OpRHS,
 | |
|                        DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
 | |
|   case OP_VUZPL:
 | |
|   case OP_VUZPR:
 | |
|     return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
 | |
|                        OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
 | |
|   case OP_VZIPL:
 | |
|   case OP_VZIPR:
 | |
|     return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
 | |
|                        OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
 | |
|   case OP_VTRNL:
 | |
|   case OP_VTRNR:
 | |
|     return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
 | |
|                        OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
 | |
|                                        ArrayRef<int> ShuffleMask,
 | |
|                                        SelectionDAG &DAG) {
 | |
|   // Check to see if we can use the VTBL instruction.
 | |
|   SDValue V1 = Op.getOperand(0);
 | |
|   SDValue V2 = Op.getOperand(1);
 | |
|   DebugLoc DL = Op.getDebugLoc();
 | |
| 
 | |
|   SmallVector<SDValue, 8> VTBLMask;
 | |
|   for (ArrayRef<int>::iterator
 | |
|          I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
 | |
|     VTBLMask.push_back(DAG.getConstant(*I, MVT::i32));
 | |
| 
 | |
|   if (V2.getNode()->getOpcode() == ISD::UNDEF)
 | |
|     return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
 | |
|                        DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
 | |
|                                    &VTBLMask[0], 8));
 | |
| 
 | |
|   return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
 | |
|                      DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
 | |
|                                  &VTBLMask[0], 8));
 | |
| }
 | |
| 
 | |
| static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
 | |
|   SDValue V1 = Op.getOperand(0);
 | |
|   SDValue V2 = Op.getOperand(1);
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   EVT VT = Op.getValueType();
 | |
|   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
 | |
| 
 | |
|   // Convert shuffles that are directly supported on NEON to target-specific
 | |
|   // DAG nodes, instead of keeping them as shuffles and matching them again
 | |
|   // during code selection.  This is more efficient and avoids the possibility
 | |
|   // of inconsistencies between legalization and selection.
 | |
|   // FIXME: floating-point vectors should be canonicalized to integer vectors
 | |
|   // of the same time so that they get CSEd properly.
 | |
|   ArrayRef<int> ShuffleMask = SVN->getMask();
 | |
| 
 | |
|   unsigned EltSize = VT.getVectorElementType().getSizeInBits();
 | |
|   if (EltSize <= 32) {
 | |
|     if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
 | |
|       int Lane = SVN->getSplatIndex();
 | |
|       // If this is undef splat, generate it via "just" vdup, if possible.
 | |
|       if (Lane == -1) Lane = 0;
 | |
| 
 | |
|       // Test if V1 is a SCALAR_TO_VECTOR.
 | |
|       if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
 | |
|         return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
 | |
|       }
 | |
|       // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
 | |
|       // (and probably will turn into a SCALAR_TO_VECTOR once legalization
 | |
|       // reaches it).
 | |
|       if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
 | |
|           !isa<ConstantSDNode>(V1.getOperand(0))) {
 | |
|         bool IsScalarToVector = true;
 | |
|         for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
 | |
|           if (V1.getOperand(i).getOpcode() != ISD::UNDEF) {
 | |
|             IsScalarToVector = false;
 | |
|             break;
 | |
|           }
 | |
|         if (IsScalarToVector)
 | |
|           return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
 | |
|       }
 | |
|       return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
 | |
|                          DAG.getConstant(Lane, MVT::i32));
 | |
|     }
 | |
| 
 | |
|     bool ReverseVEXT;
 | |
|     unsigned Imm;
 | |
|     if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
 | |
|       if (ReverseVEXT)
 | |
|         std::swap(V1, V2);
 | |
|       return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
 | |
|                          DAG.getConstant(Imm, MVT::i32));
 | |
|     }
 | |
| 
 | |
|     if (isVREVMask(ShuffleMask, VT, 64))
 | |
|       return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
 | |
|     if (isVREVMask(ShuffleMask, VT, 32))
 | |
|       return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
 | |
|     if (isVREVMask(ShuffleMask, VT, 16))
 | |
|       return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
 | |
| 
 | |
|     if (V2->getOpcode() == ISD::UNDEF &&
 | |
|         isSingletonVEXTMask(ShuffleMask, VT, Imm)) {
 | |
|       return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1,
 | |
|                          DAG.getConstant(Imm, MVT::i32));
 | |
|     }
 | |
| 
 | |
|     // Check for Neon shuffles that modify both input vectors in place.
 | |
|     // If both results are used, i.e., if there are two shuffles with the same
 | |
|     // source operands and with masks corresponding to both results of one of
 | |
|     // these operations, DAG memoization will ensure that a single node is
 | |
|     // used for both shuffles.
 | |
|     unsigned WhichResult;
 | |
|     if (isVTRNMask(ShuffleMask, VT, WhichResult))
 | |
|       return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
 | |
|                          V1, V2).getValue(WhichResult);
 | |
|     if (isVUZPMask(ShuffleMask, VT, WhichResult))
 | |
|       return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
 | |
|                          V1, V2).getValue(WhichResult);
 | |
|     if (isVZIPMask(ShuffleMask, VT, WhichResult))
 | |
|       return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
 | |
|                          V1, V2).getValue(WhichResult);
 | |
| 
 | |
|     if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
 | |
|       return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
 | |
|                          V1, V1).getValue(WhichResult);
 | |
|     if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
 | |
|       return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
 | |
|                          V1, V1).getValue(WhichResult);
 | |
|     if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
 | |
|       return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
 | |
|                          V1, V1).getValue(WhichResult);
 | |
|   }
 | |
| 
 | |
|   // If the shuffle is not directly supported and it has 4 elements, use
 | |
|   // the PerfectShuffle-generated table to synthesize it from other shuffles.
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   if (NumElts == 4) {
 | |
|     unsigned PFIndexes[4];
 | |
|     for (unsigned i = 0; i != 4; ++i) {
 | |
|       if (ShuffleMask[i] < 0)
 | |
|         PFIndexes[i] = 8;
 | |
|       else
 | |
|         PFIndexes[i] = ShuffleMask[i];
 | |
|     }
 | |
| 
 | |
|     // Compute the index in the perfect shuffle table.
 | |
|     unsigned PFTableIndex =
 | |
|       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
 | |
|     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
 | |
|     unsigned Cost = (PFEntry >> 30);
 | |
| 
 | |
|     if (Cost <= 4)
 | |
|       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
 | |
|   }
 | |
| 
 | |
|   // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
 | |
|   if (EltSize >= 32) {
 | |
|     // Do the expansion with floating-point types, since that is what the VFP
 | |
|     // registers are defined to use, and since i64 is not legal.
 | |
|     EVT EltVT = EVT::getFloatingPointVT(EltSize);
 | |
|     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
 | |
|     V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
 | |
|     V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
 | |
|     SmallVector<SDValue, 8> Ops;
 | |
|     for (unsigned i = 0; i < NumElts; ++i) {
 | |
|       if (ShuffleMask[i] < 0)
 | |
|         Ops.push_back(DAG.getUNDEF(EltVT));
 | |
|       else
 | |
|         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
 | |
|                                   ShuffleMask[i] < (int)NumElts ? V1 : V2,
 | |
|                                   DAG.getConstant(ShuffleMask[i] & (NumElts-1),
 | |
|                                                   MVT::i32)));
 | |
|     }
 | |
|     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
 | |
|     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
 | |
|   }
 | |
| 
 | |
|   if (VT == MVT::v8i8) {
 | |
|     SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG);
 | |
|     if (NewOp.getNode())
 | |
|       return NewOp;
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
 | |
|   // INSERT_VECTOR_ELT is legal only for immediate indexes.
 | |
|   SDValue Lane = Op.getOperand(2);
 | |
|   if (!isa<ConstantSDNode>(Lane))
 | |
|     return SDValue();
 | |
| 
 | |
|   return Op;
 | |
| }
 | |
| 
 | |
| static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
 | |
|   // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
 | |
|   SDValue Lane = Op.getOperand(1);
 | |
|   if (!isa<ConstantSDNode>(Lane))
 | |
|     return SDValue();
 | |
| 
 | |
|   SDValue Vec = Op.getOperand(0);
 | |
|   if (Op.getValueType() == MVT::i32 &&
 | |
|       Vec.getValueType().getVectorElementType().getSizeInBits() < 32) {
 | |
|     DebugLoc dl = Op.getDebugLoc();
 | |
|     return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
 | |
|   }
 | |
| 
 | |
|   return Op;
 | |
| }
 | |
| 
 | |
| static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
 | |
|   // The only time a CONCAT_VECTORS operation can have legal types is when
 | |
|   // two 64-bit vectors are concatenated to a 128-bit vector.
 | |
|   assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
 | |
|          "unexpected CONCAT_VECTORS");
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   SDValue Val = DAG.getUNDEF(MVT::v2f64);
 | |
|   SDValue Op0 = Op.getOperand(0);
 | |
|   SDValue Op1 = Op.getOperand(1);
 | |
|   if (Op0.getOpcode() != ISD::UNDEF)
 | |
|     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
 | |
|                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
 | |
|                       DAG.getIntPtrConstant(0));
 | |
|   if (Op1.getOpcode() != ISD::UNDEF)
 | |
|     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
 | |
|                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
 | |
|                       DAG.getIntPtrConstant(1));
 | |
|   return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
 | |
| }
 | |
| 
 | |
| /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
 | |
| /// element has been zero/sign-extended, depending on the isSigned parameter,
 | |
| /// from an integer type half its size.
 | |
| static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
 | |
|                                    bool isSigned) {
 | |
|   // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
 | |
|   EVT VT = N->getValueType(0);
 | |
|   if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
 | |
|     SDNode *BVN = N->getOperand(0).getNode();
 | |
|     if (BVN->getValueType(0) != MVT::v4i32 ||
 | |
|         BVN->getOpcode() != ISD::BUILD_VECTOR)
 | |
|       return false;
 | |
|     unsigned LoElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
 | |
|     unsigned HiElt = 1 - LoElt;
 | |
|     ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
 | |
|     ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
 | |
|     ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
 | |
|     ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
 | |
|     if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
 | |
|       return false;
 | |
|     if (isSigned) {
 | |
|       if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
 | |
|           Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
 | |
|         return true;
 | |
|     } else {
 | |
|       if (Hi0->isNullValue() && Hi1->isNullValue())
 | |
|         return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (N->getOpcode() != ISD::BUILD_VECTOR)
 | |
|     return false;
 | |
| 
 | |
|   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
 | |
|     SDNode *Elt = N->getOperand(i).getNode();
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
 | |
|       unsigned EltSize = VT.getVectorElementType().getSizeInBits();
 | |
|       unsigned HalfSize = EltSize / 2;
 | |
|       if (isSigned) {
 | |
|         if (!isIntN(HalfSize, C->getSExtValue()))
 | |
|           return false;
 | |
|       } else {
 | |
|         if (!isUIntN(HalfSize, C->getZExtValue()))
 | |
|           return false;
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isSignExtended - Check if a node is a vector value that is sign-extended
 | |
| /// or a constant BUILD_VECTOR with sign-extended elements.
 | |
| static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
 | |
|   if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
 | |
|     return true;
 | |
|   if (isExtendedBUILD_VECTOR(N, DAG, true))
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isZeroExtended - Check if a node is a vector value that is zero-extended
 | |
| /// or a constant BUILD_VECTOR with zero-extended elements.
 | |
| static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
 | |
|   if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
 | |
|     return true;
 | |
|   if (isExtendedBUILD_VECTOR(N, DAG, false))
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SkipExtension - For a node that is a SIGN_EXTEND, ZERO_EXTEND, extending
 | |
| /// load, or BUILD_VECTOR with extended elements, return the unextended value.
 | |
| static SDValue SkipExtension(SDNode *N, SelectionDAG &DAG) {
 | |
|   if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
 | |
|     return N->getOperand(0);
 | |
|   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
 | |
|     return DAG.getLoad(LD->getMemoryVT(), N->getDebugLoc(), LD->getChain(),
 | |
|                        LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
 | |
|                        LD->isNonTemporal(), LD->isInvariant(),
 | |
|                        LD->getAlignment());
 | |
|   // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
 | |
|   // have been legalized as a BITCAST from v4i32.
 | |
|   if (N->getOpcode() == ISD::BITCAST) {
 | |
|     SDNode *BVN = N->getOperand(0).getNode();
 | |
|     assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
 | |
|            BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
 | |
|     unsigned LowElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
 | |
|     return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), MVT::v2i32,
 | |
|                        BVN->getOperand(LowElt), BVN->getOperand(LowElt+2));
 | |
|   }
 | |
|   // Construct a new BUILD_VECTOR with elements truncated to half the size.
 | |
|   assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
 | |
|   EVT VT = N->getValueType(0);
 | |
|   unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   MVT TruncVT = MVT::getIntegerVT(EltSize);
 | |
|   SmallVector<SDValue, 8> Ops;
 | |
|   for (unsigned i = 0; i != NumElts; ++i) {
 | |
|     ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
 | |
|     const APInt &CInt = C->getAPIntValue();
 | |
|     // Element types smaller than 32 bits are not legal, so use i32 elements.
 | |
|     // The values are implicitly truncated so sext vs. zext doesn't matter.
 | |
|     Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), MVT::i32));
 | |
|   }
 | |
|   return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
 | |
|                      MVT::getVectorVT(TruncVT, NumElts), Ops.data(), NumElts);
 | |
| }
 | |
| 
 | |
| static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
 | |
|   unsigned Opcode = N->getOpcode();
 | |
|   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
 | |
|     SDNode *N0 = N->getOperand(0).getNode();
 | |
|     SDNode *N1 = N->getOperand(1).getNode();
 | |
|     return N0->hasOneUse() && N1->hasOneUse() &&
 | |
|       isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
 | |
|   unsigned Opcode = N->getOpcode();
 | |
|   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
 | |
|     SDNode *N0 = N->getOperand(0).getNode();
 | |
|     SDNode *N1 = N->getOperand(1).getNode();
 | |
|     return N0->hasOneUse() && N1->hasOneUse() &&
 | |
|       isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
 | |
|   // Multiplications are only custom-lowered for 128-bit vectors so that
 | |
|   // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
 | |
|   EVT VT = Op.getValueType();
 | |
|   assert(VT.is128BitVector() && "unexpected type for custom-lowering ISD::MUL");
 | |
|   SDNode *N0 = Op.getOperand(0).getNode();
 | |
|   SDNode *N1 = Op.getOperand(1).getNode();
 | |
|   unsigned NewOpc = 0;
 | |
|   bool isMLA = false;
 | |
|   bool isN0SExt = isSignExtended(N0, DAG);
 | |
|   bool isN1SExt = isSignExtended(N1, DAG);
 | |
|   if (isN0SExt && isN1SExt)
 | |
|     NewOpc = ARMISD::VMULLs;
 | |
|   else {
 | |
|     bool isN0ZExt = isZeroExtended(N0, DAG);
 | |
|     bool isN1ZExt = isZeroExtended(N1, DAG);
 | |
|     if (isN0ZExt && isN1ZExt)
 | |
|       NewOpc = ARMISD::VMULLu;
 | |
|     else if (isN1SExt || isN1ZExt) {
 | |
|       // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
 | |
|       // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
 | |
|       if (isN1SExt && isAddSubSExt(N0, DAG)) {
 | |
|         NewOpc = ARMISD::VMULLs;
 | |
|         isMLA = true;
 | |
|       } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
 | |
|         NewOpc = ARMISD::VMULLu;
 | |
|         isMLA = true;
 | |
|       } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
 | |
|         std::swap(N0, N1);
 | |
|         NewOpc = ARMISD::VMULLu;
 | |
|         isMLA = true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!NewOpc) {
 | |
|       if (VT == MVT::v2i64)
 | |
|         // Fall through to expand this.  It is not legal.
 | |
|         return SDValue();
 | |
|       else
 | |
|         // Other vector multiplications are legal.
 | |
|         return Op;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Legalize to a VMULL instruction.
 | |
|   DebugLoc DL = Op.getDebugLoc();
 | |
|   SDValue Op0;
 | |
|   SDValue Op1 = SkipExtension(N1, DAG);
 | |
|   if (!isMLA) {
 | |
|     Op0 = SkipExtension(N0, DAG);
 | |
|     assert(Op0.getValueType().is64BitVector() &&
 | |
|            Op1.getValueType().is64BitVector() &&
 | |
|            "unexpected types for extended operands to VMULL");
 | |
|     return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
 | |
|   }
 | |
| 
 | |
|   // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
 | |
|   // isel lowering to take advantage of no-stall back to back vmul + vmla.
 | |
|   //   vmull q0, d4, d6
 | |
|   //   vmlal q0, d5, d6
 | |
|   // is faster than
 | |
|   //   vaddl q0, d4, d5
 | |
|   //   vmovl q1, d6
 | |
|   //   vmul  q0, q0, q1
 | |
|   SDValue N00 = SkipExtension(N0->getOperand(0).getNode(), DAG);
 | |
|   SDValue N01 = SkipExtension(N0->getOperand(1).getNode(), DAG);
 | |
|   EVT Op1VT = Op1.getValueType();
 | |
|   return DAG.getNode(N0->getOpcode(), DL, VT,
 | |
|                      DAG.getNode(NewOpc, DL, VT,
 | |
|                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
 | |
|                      DAG.getNode(NewOpc, DL, VT,
 | |
|                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
 | |
| }
 | |
| 
 | |
| static SDValue
 | |
| LowerSDIV_v4i8(SDValue X, SDValue Y, DebugLoc dl, SelectionDAG &DAG) {
 | |
|   // Convert to float
 | |
|   // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
 | |
|   // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
 | |
|   X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
 | |
|   Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
 | |
|   X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
 | |
|   Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
 | |
|   // Get reciprocal estimate.
 | |
|   // float4 recip = vrecpeq_f32(yf);
 | |
|   Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
 | |
|                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), Y);
 | |
|   // Because char has a smaller range than uchar, we can actually get away
 | |
|   // without any newton steps.  This requires that we use a weird bias
 | |
|   // of 0xb000, however (again, this has been exhaustively tested).
 | |
|   // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
 | |
|   X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
 | |
|   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
 | |
|   Y = DAG.getConstant(0xb000, MVT::i32);
 | |
|   Y = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Y, Y, Y, Y);
 | |
|   X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
 | |
|   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
 | |
|   // Convert back to short.
 | |
|   X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
 | |
|   X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
 | |
|   return X;
 | |
| }
 | |
| 
 | |
| static SDValue
 | |
| LowerSDIV_v4i16(SDValue N0, SDValue N1, DebugLoc dl, SelectionDAG &DAG) {
 | |
|   SDValue N2;
 | |
|   // Convert to float.
 | |
|   // float4 yf = vcvt_f32_s32(vmovl_s16(y));
 | |
|   // float4 xf = vcvt_f32_s32(vmovl_s16(x));
 | |
|   N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
 | |
|   N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
 | |
|   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
 | |
|   N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
 | |
| 
 | |
|   // Use reciprocal estimate and one refinement step.
 | |
|   // float4 recip = vrecpeq_f32(yf);
 | |
|   // recip *= vrecpsq_f32(yf, recip);
 | |
|   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
 | |
|                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), N1);
 | |
|   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
 | |
|                    DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
 | |
|                    N1, N2);
 | |
|   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
 | |
|   // Because short has a smaller range than ushort, we can actually get away
 | |
|   // with only a single newton step.  This requires that we use a weird bias
 | |
|   // of 89, however (again, this has been exhaustively tested).
 | |
|   // float4 result = as_float4(as_int4(xf*recip) + 0x89);
 | |
|   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
 | |
|   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
 | |
|   N1 = DAG.getConstant(0x89, MVT::i32);
 | |
|   N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
 | |
|   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
 | |
|   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
 | |
|   // Convert back to integer and return.
 | |
|   // return vmovn_s32(vcvt_s32_f32(result));
 | |
|   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
 | |
|   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
 | |
|   return N0;
 | |
| }
 | |
| 
 | |
| static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
 | |
|   EVT VT = Op.getValueType();
 | |
|   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
 | |
|          "unexpected type for custom-lowering ISD::SDIV");
 | |
| 
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   SDValue N0 = Op.getOperand(0);
 | |
|   SDValue N1 = Op.getOperand(1);
 | |
|   SDValue N2, N3;
 | |
| 
 | |
|   if (VT == MVT::v8i8) {
 | |
|     N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
 | |
|     N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
 | |
| 
 | |
|     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
 | |
|                      DAG.getIntPtrConstant(4));
 | |
|     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
 | |
|                      DAG.getIntPtrConstant(4));
 | |
|     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
 | |
|                      DAG.getIntPtrConstant(0));
 | |
|     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
 | |
|                      DAG.getIntPtrConstant(0));
 | |
| 
 | |
|     N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
 | |
|     N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
 | |
| 
 | |
|     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
 | |
|     N0 = LowerCONCAT_VECTORS(N0, DAG);
 | |
| 
 | |
|     N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
 | |
|     return N0;
 | |
|   }
 | |
|   return LowerSDIV_v4i16(N0, N1, dl, DAG);
 | |
| }
 | |
| 
 | |
| static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
 | |
|   EVT VT = Op.getValueType();
 | |
|   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
 | |
|          "unexpected type for custom-lowering ISD::UDIV");
 | |
| 
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   SDValue N0 = Op.getOperand(0);
 | |
|   SDValue N1 = Op.getOperand(1);
 | |
|   SDValue N2, N3;
 | |
| 
 | |
|   if (VT == MVT::v8i8) {
 | |
|     N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
 | |
|     N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
 | |
| 
 | |
|     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
 | |
|                      DAG.getIntPtrConstant(4));
 | |
|     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
 | |
|                      DAG.getIntPtrConstant(4));
 | |
|     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
 | |
|                      DAG.getIntPtrConstant(0));
 | |
|     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
 | |
|                      DAG.getIntPtrConstant(0));
 | |
| 
 | |
|     N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
 | |
|     N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
 | |
| 
 | |
|     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
 | |
|     N0 = LowerCONCAT_VECTORS(N0, DAG);
 | |
| 
 | |
|     N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
 | |
|                      DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, MVT::i32),
 | |
|                      N0);
 | |
|     return N0;
 | |
|   }
 | |
| 
 | |
|   // v4i16 sdiv ... Convert to float.
 | |
|   // float4 yf = vcvt_f32_s32(vmovl_u16(y));
 | |
|   // float4 xf = vcvt_f32_s32(vmovl_u16(x));
 | |
|   N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
 | |
|   N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
 | |
|   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
 | |
|   SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
 | |
| 
 | |
|   // Use reciprocal estimate and two refinement steps.
 | |
|   // float4 recip = vrecpeq_f32(yf);
 | |
|   // recip *= vrecpsq_f32(yf, recip);
 | |
|   // recip *= vrecpsq_f32(yf, recip);
 | |
|   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
 | |
|                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), BN1);
 | |
|   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
 | |
|                    DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
 | |
|                    BN1, N2);
 | |
|   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
 | |
|   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
 | |
|                    DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
 | |
|                    BN1, N2);
 | |
|   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
 | |
|   // Simply multiplying by the reciprocal estimate can leave us a few ulps
 | |
|   // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
 | |
|   // and that it will never cause us to return an answer too large).
 | |
|   // float4 result = as_float4(as_int4(xf*recip) + 2);
 | |
|   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
 | |
|   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
 | |
|   N1 = DAG.getConstant(2, MVT::i32);
 | |
|   N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
 | |
|   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
 | |
|   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
 | |
|   // Convert back to integer and return.
 | |
|   // return vmovn_u32(vcvt_s32_f32(result));
 | |
|   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
 | |
|   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
 | |
|   return N0;
 | |
| }
 | |
| 
 | |
| static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
 | |
|   EVT VT = Op.getNode()->getValueType(0);
 | |
|   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
 | |
| 
 | |
|   unsigned Opc;
 | |
|   bool ExtraOp = false;
 | |
|   switch (Op.getOpcode()) {
 | |
|   default: llvm_unreachable("Invalid code");
 | |
|   case ISD::ADDC: Opc = ARMISD::ADDC; break;
 | |
|   case ISD::ADDE: Opc = ARMISD::ADDE; ExtraOp = true; break;
 | |
|   case ISD::SUBC: Opc = ARMISD::SUBC; break;
 | |
|   case ISD::SUBE: Opc = ARMISD::SUBE; ExtraOp = true; break;
 | |
|   }
 | |
| 
 | |
|   if (!ExtraOp)
 | |
|     return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
 | |
|                        Op.getOperand(1));
 | |
|   return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
 | |
|                      Op.getOperand(1), Op.getOperand(2));
 | |
| }
 | |
| 
 | |
| static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
 | |
|   // Monotonic load/store is legal for all targets
 | |
|   if (cast<AtomicSDNode>(Op)->getOrdering() <= Monotonic)
 | |
|     return Op;
 | |
| 
 | |
|   // Aquire/Release load/store is not legal for targets without a
 | |
|   // dmb or equivalent available.
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| 
 | |
| static void
 | |
| ReplaceATOMIC_OP_64(SDNode *Node, SmallVectorImpl<SDValue>& Results,
 | |
|                     SelectionDAG &DAG, unsigned NewOp) {
 | |
|   DebugLoc dl = Node->getDebugLoc();
 | |
|   assert (Node->getValueType(0) == MVT::i64 &&
 | |
|           "Only know how to expand i64 atomics");
 | |
| 
 | |
|   SmallVector<SDValue, 6> Ops;
 | |
|   Ops.push_back(Node->getOperand(0)); // Chain
 | |
|   Ops.push_back(Node->getOperand(1)); // Ptr
 | |
|   // Low part of Val1
 | |
|   Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
 | |
|                             Node->getOperand(2), DAG.getIntPtrConstant(0)));
 | |
|   // High part of Val1
 | |
|   Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
 | |
|                             Node->getOperand(2), DAG.getIntPtrConstant(1)));
 | |
|   if (NewOp == ARMISD::ATOMCMPXCHG64_DAG) {
 | |
|     // High part of Val1
 | |
|     Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
 | |
|                               Node->getOperand(3), DAG.getIntPtrConstant(0)));
 | |
|     // High part of Val2
 | |
|     Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
 | |
|                               Node->getOperand(3), DAG.getIntPtrConstant(1)));
 | |
|   }
 | |
|   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
 | |
|   SDValue Result =
 | |
|     DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops.data(), Ops.size(), MVT::i64,
 | |
|                             cast<MemSDNode>(Node)->getMemOperand());
 | |
|   SDValue OpsF[] = { Result.getValue(0), Result.getValue(1) };
 | |
|   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
 | |
|   Results.push_back(Result.getValue(2));
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
 | |
|   switch (Op.getOpcode()) {
 | |
|   default: llvm_unreachable("Don't know how to custom lower this!");
 | |
|   case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
 | |
|   case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
 | |
|   case ISD::GlobalAddress:
 | |
|     return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
 | |
|       LowerGlobalAddressELF(Op, DAG);
 | |
|   case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
 | |
|   case ISD::SELECT:        return LowerSELECT(Op, DAG);
 | |
|   case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
 | |
|   case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
 | |
|   case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
 | |
|   case ISD::VASTART:       return LowerVASTART(Op, DAG);
 | |
|   case ISD::MEMBARRIER:    return LowerMEMBARRIER(Op, DAG, Subtarget);
 | |
|   case ISD::ATOMIC_FENCE:  return LowerATOMIC_FENCE(Op, DAG, Subtarget);
 | |
|   case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
 | |
|   case ISD::SINT_TO_FP:
 | |
|   case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
 | |
|   case ISD::FP_TO_SINT:
 | |
|   case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
 | |
|   case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
 | |
|   case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
 | |
|   case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
 | |
|   case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
 | |
|   case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
 | |
|   case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
 | |
|   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
 | |
|                                                                Subtarget);
 | |
|   case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG);
 | |
|   case ISD::SHL:
 | |
|   case ISD::SRL:
 | |
|   case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
 | |
|   case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
 | |
|   case ISD::SRL_PARTS:
 | |
|   case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
 | |
|   case ISD::CTTZ:          return LowerCTTZ(Op.getNode(), DAG, Subtarget);
 | |
|   case ISD::SETCC:         return LowerVSETCC(Op, DAG);
 | |
|   case ISD::ConstantFP:    return LowerConstantFP(Op, DAG, Subtarget);
 | |
|   case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
 | |
|   case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
 | |
|   case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
 | |
|   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
 | |
|   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
 | |
|   case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
 | |
|   case ISD::MUL:           return LowerMUL(Op, DAG);
 | |
|   case ISD::SDIV:          return LowerSDIV(Op, DAG);
 | |
|   case ISD::UDIV:          return LowerUDIV(Op, DAG);
 | |
|   case ISD::ADDC:
 | |
|   case ISD::ADDE:
 | |
|   case ISD::SUBC:
 | |
|   case ISD::SUBE:          return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
 | |
|   case ISD::ATOMIC_LOAD:
 | |
|   case ISD::ATOMIC_STORE:  return LowerAtomicLoadStore(Op, DAG);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ReplaceNodeResults - Replace the results of node with an illegal result
 | |
| /// type with new values built out of custom code.
 | |
| void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
 | |
|                                            SmallVectorImpl<SDValue>&Results,
 | |
|                                            SelectionDAG &DAG) const {
 | |
|   SDValue Res;
 | |
|   switch (N->getOpcode()) {
 | |
|   default:
 | |
|     llvm_unreachable("Don't know how to custom expand this!");
 | |
|   case ISD::BITCAST:
 | |
|     Res = ExpandBITCAST(N, DAG);
 | |
|     break;
 | |
|   case ISD::SRL:
 | |
|   case ISD::SRA:
 | |
|     Res = Expand64BitShift(N, DAG, Subtarget);
 | |
|     break;
 | |
|   case ISD::ATOMIC_LOAD_ADD:
 | |
|     ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMADD64_DAG);
 | |
|     return;
 | |
|   case ISD::ATOMIC_LOAD_AND:
 | |
|     ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMAND64_DAG);
 | |
|     return;
 | |
|   case ISD::ATOMIC_LOAD_NAND:
 | |
|     ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMNAND64_DAG);
 | |
|     return;
 | |
|   case ISD::ATOMIC_LOAD_OR:
 | |
|     ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMOR64_DAG);
 | |
|     return;
 | |
|   case ISD::ATOMIC_LOAD_SUB:
 | |
|     ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSUB64_DAG);
 | |
|     return;
 | |
|   case ISD::ATOMIC_LOAD_XOR:
 | |
|     ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMXOR64_DAG);
 | |
|     return;
 | |
|   case ISD::ATOMIC_SWAP:
 | |
|     ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSWAP64_DAG);
 | |
|     return;
 | |
|   case ISD::ATOMIC_CMP_SWAP:
 | |
|     ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMCMPXCHG64_DAG);
 | |
|     return;
 | |
|   }
 | |
|   if (Res.getNode())
 | |
|     Results.push_back(Res);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                           ARM Scheduler Hooks
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| MachineBasicBlock *
 | |
| ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
 | |
|                                      MachineBasicBlock *BB,
 | |
|                                      unsigned Size) const {
 | |
|   unsigned dest    = MI->getOperand(0).getReg();
 | |
|   unsigned ptr     = MI->getOperand(1).getReg();
 | |
|   unsigned oldval  = MI->getOperand(2).getReg();
 | |
|   unsigned newval  = MI->getOperand(3).getReg();
 | |
|   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
 | |
|   DebugLoc dl = MI->getDebugLoc();
 | |
|   bool isThumb2 = Subtarget->isThumb2();
 | |
| 
 | |
|   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
 | |
|   unsigned scratch = MRI.createVirtualRegister(isThumb2 ?
 | |
|     (const TargetRegisterClass*)&ARM::rGPRRegClass :
 | |
|     (const TargetRegisterClass*)&ARM::GPRRegClass);
 | |
| 
 | |
|   if (isThumb2) {
 | |
|     MRI.constrainRegClass(dest, &ARM::rGPRRegClass);
 | |
|     MRI.constrainRegClass(oldval, &ARM::rGPRRegClass);
 | |
|     MRI.constrainRegClass(newval, &ARM::rGPRRegClass);
 | |
|   }
 | |
| 
 | |
|   unsigned ldrOpc, strOpc;
 | |
|   switch (Size) {
 | |
|   default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
 | |
|   case 1:
 | |
|     ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
 | |
|     strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
 | |
|     break;
 | |
|   case 2:
 | |
|     ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
 | |
|     strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
 | |
|     break;
 | |
|   case 4:
 | |
|     ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
 | |
|     strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   MachineFunction *MF = BB->getParent();
 | |
|   const BasicBlock *LLVM_BB = BB->getBasicBlock();
 | |
|   MachineFunction::iterator It = BB;
 | |
|   ++It; // insert the new blocks after the current block
 | |
| 
 | |
|   MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
 | |
|   MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
 | |
|   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
 | |
|   MF->insert(It, loop1MBB);
 | |
|   MF->insert(It, loop2MBB);
 | |
|   MF->insert(It, exitMBB);
 | |
| 
 | |
|   // Transfer the remainder of BB and its successor edges to exitMBB.
 | |
|   exitMBB->splice(exitMBB->begin(), BB,
 | |
|                   llvm::next(MachineBasicBlock::iterator(MI)),
 | |
|                   BB->end());
 | |
|   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
 | |
| 
 | |
|   //  thisMBB:
 | |
|   //   ...
 | |
|   //   fallthrough --> loop1MBB
 | |
|   BB->addSuccessor(loop1MBB);
 | |
| 
 | |
|   // loop1MBB:
 | |
|   //   ldrex dest, [ptr]
 | |
|   //   cmp dest, oldval
 | |
|   //   bne exitMBB
 | |
|   BB = loop1MBB;
 | |
|   MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
 | |
|   if (ldrOpc == ARM::t2LDREX)
 | |
|     MIB.addImm(0);
 | |
|   AddDefaultPred(MIB);
 | |
|   AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
 | |
|                  .addReg(dest).addReg(oldval));
 | |
|   BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
 | |
|     .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
 | |
|   BB->addSuccessor(loop2MBB);
 | |
|   BB->addSuccessor(exitMBB);
 | |
| 
 | |
|   // loop2MBB:
 | |
|   //   strex scratch, newval, [ptr]
 | |
|   //   cmp scratch, #0
 | |
|   //   bne loop1MBB
 | |
|   BB = loop2MBB;
 | |
|   MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval).addReg(ptr);
 | |
|   if (strOpc == ARM::t2STREX)
 | |
|     MIB.addImm(0);
 | |
|   AddDefaultPred(MIB);
 | |
|   AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
 | |
|                  .addReg(scratch).addImm(0));
 | |
|   BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
 | |
|     .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
 | |
|   BB->addSuccessor(loop1MBB);
 | |
|   BB->addSuccessor(exitMBB);
 | |
| 
 | |
|   //  exitMBB:
 | |
|   //   ...
 | |
|   BB = exitMBB;
 | |
| 
 | |
|   MI->eraseFromParent();   // The instruction is gone now.
 | |
| 
 | |
|   return BB;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *
 | |
| ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
 | |
|                                     unsigned Size, unsigned BinOpcode) const {
 | |
|   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
 | |
|   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
 | |
| 
 | |
|   const BasicBlock *LLVM_BB = BB->getBasicBlock();
 | |
|   MachineFunction *MF = BB->getParent();
 | |
|   MachineFunction::iterator It = BB;
 | |
|   ++It;
 | |
| 
 | |
|   unsigned dest = MI->getOperand(0).getReg();
 | |
|   unsigned ptr = MI->getOperand(1).getReg();
 | |
|   unsigned incr = MI->getOperand(2).getReg();
 | |
|   DebugLoc dl = MI->getDebugLoc();
 | |
|   bool isThumb2 = Subtarget->isThumb2();
 | |
| 
 | |
|   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
 | |
|   if (isThumb2) {
 | |
|     MRI.constrainRegClass(dest, &ARM::rGPRRegClass);
 | |
|     MRI.constrainRegClass(ptr, &ARM::rGPRRegClass);
 | |
|   }
 | |
| 
 | |
|   unsigned ldrOpc, strOpc;
 | |
|   switch (Size) {
 | |
|   default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
 | |
|   case 1:
 | |
|     ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
 | |
|     strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
 | |
|     break;
 | |
|   case 2:
 | |
|     ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
 | |
|     strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
 | |
|     break;
 | |
|   case 4:
 | |
|     ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
 | |
|     strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
 | |
|   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
 | |
|   MF->insert(It, loopMBB);
 | |
|   MF->insert(It, exitMBB);
 | |
| 
 | |
|   // Transfer the remainder of BB and its successor edges to exitMBB.
 | |
|   exitMBB->splice(exitMBB->begin(), BB,
 | |
|                   llvm::next(MachineBasicBlock::iterator(MI)),
 | |
|                   BB->end());
 | |
|   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
 | |
| 
 | |
|   const TargetRegisterClass *TRC = isThumb2 ?
 | |
|     (const TargetRegisterClass*)&ARM::rGPRRegClass :
 | |
|     (const TargetRegisterClass*)&ARM::GPRRegClass;
 | |
|   unsigned scratch = MRI.createVirtualRegister(TRC);
 | |
|   unsigned scratch2 = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC);
 | |
| 
 | |
|   //  thisMBB:
 | |
|   //   ...
 | |
|   //   fallthrough --> loopMBB
 | |
|   BB->addSuccessor(loopMBB);
 | |
| 
 | |
|   //  loopMBB:
 | |
|   //   ldrex dest, ptr
 | |
|   //   <binop> scratch2, dest, incr
 | |
|   //   strex scratch, scratch2, ptr
 | |
|   //   cmp scratch, #0
 | |
|   //   bne- loopMBB
 | |
|   //   fallthrough --> exitMBB
 | |
|   BB = loopMBB;
 | |
|   MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
 | |
|   if (ldrOpc == ARM::t2LDREX)
 | |
|     MIB.addImm(0);
 | |
|   AddDefaultPred(MIB);
 | |
|   if (BinOpcode) {
 | |
|     // operand order needs to go the other way for NAND
 | |
|     if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
 | |
|       AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
 | |
|                      addReg(incr).addReg(dest)).addReg(0);
 | |
|     else
 | |
|       AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
 | |
|                      addReg(dest).addReg(incr)).addReg(0);
 | |
|   }
 | |
| 
 | |
|   MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
 | |
|   if (strOpc == ARM::t2STREX)
 | |
|     MIB.addImm(0);
 | |
|   AddDefaultPred(MIB);
 | |
|   AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
 | |
|                  .addReg(scratch).addImm(0));
 | |
|   BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
 | |
|     .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
 | |
| 
 | |
|   BB->addSuccessor(loopMBB);
 | |
|   BB->addSuccessor(exitMBB);
 | |
| 
 | |
|   //  exitMBB:
 | |
|   //   ...
 | |
|   BB = exitMBB;
 | |
| 
 | |
|   MI->eraseFromParent();   // The instruction is gone now.
 | |
| 
 | |
|   return BB;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *
 | |
| ARMTargetLowering::EmitAtomicBinaryMinMax(MachineInstr *MI,
 | |
|                                           MachineBasicBlock *BB,
 | |
|                                           unsigned Size,
 | |
|                                           bool signExtend,
 | |
|                                           ARMCC::CondCodes Cond) const {
 | |
|   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
 | |
| 
 | |
|   const BasicBlock *LLVM_BB = BB->getBasicBlock();
 | |
|   MachineFunction *MF = BB->getParent();
 | |
|   MachineFunction::iterator It = BB;
 | |
|   ++It;
 | |
| 
 | |
|   unsigned dest = MI->getOperand(0).getReg();
 | |
|   unsigned ptr = MI->getOperand(1).getReg();
 | |
|   unsigned incr = MI->getOperand(2).getReg();
 | |
|   unsigned oldval = dest;
 | |
|   DebugLoc dl = MI->getDebugLoc();
 | |
|   bool isThumb2 = Subtarget->isThumb2();
 | |
| 
 | |
|   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
 | |
|   if (isThumb2) {
 | |
|     MRI.constrainRegClass(dest, &ARM::rGPRRegClass);
 | |
|     MRI.constrainRegClass(ptr, &ARM::rGPRRegClass);
 | |
|   }
 | |
| 
 | |
|   unsigned ldrOpc, strOpc, extendOpc;
 | |
|   switch (Size) {
 | |
|   default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
 | |
|   case 1:
 | |
|     ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
 | |
|     strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
 | |
|     extendOpc = isThumb2 ? ARM::t2SXTB : ARM::SXTB;
 | |
|     break;
 | |
|   case 2:
 | |
|     ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
 | |
|     strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
 | |
|     extendOpc = isThumb2 ? ARM::t2SXTH : ARM::SXTH;
 | |
|     break;
 | |
|   case 4:
 | |
|     ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
 | |
|     strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
 | |
|     extendOpc = 0;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
 | |
|   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
 | |
|   MF->insert(It, loopMBB);
 | |
|   MF->insert(It, exitMBB);
 | |
| 
 | |
|   // Transfer the remainder of BB and its successor edges to exitMBB.
 | |
|   exitMBB->splice(exitMBB->begin(), BB,
 | |
|                   llvm::next(MachineBasicBlock::iterator(MI)),
 | |
|                   BB->end());
 | |
|   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
 | |
| 
 | |
|   const TargetRegisterClass *TRC = isThumb2 ?
 | |
|     (const TargetRegisterClass*)&ARM::rGPRRegClass :
 | |
|     (const TargetRegisterClass*)&ARM::GPRRegClass;
 | |
|   unsigned scratch = MRI.createVirtualRegister(TRC);
 | |
|   unsigned scratch2 = MRI.createVirtualRegister(TRC);
 | |
| 
 | |
|   //  thisMBB:
 | |
|   //   ...
 | |
|   //   fallthrough --> loopMBB
 | |
|   BB->addSuccessor(loopMBB);
 | |
| 
 | |
|   //  loopMBB:
 | |
|   //   ldrex dest, ptr
 | |
|   //   (sign extend dest, if required)
 | |
|   //   cmp dest, incr
 | |
|   //   cmov.cond scratch2, incr, dest
 | |
|   //   strex scratch, scratch2, ptr
 | |
|   //   cmp scratch, #0
 | |
|   //   bne- loopMBB
 | |
|   //   fallthrough --> exitMBB
 | |
|   BB = loopMBB;
 | |
|   MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
 | |
|   if (ldrOpc == ARM::t2LDREX)
 | |
|     MIB.addImm(0);
 | |
|   AddDefaultPred(MIB);
 | |
| 
 | |
|   // Sign extend the value, if necessary.
 | |
|   if (signExtend && extendOpc) {
 | |
|     oldval = MRI.createVirtualRegister(&ARM::GPRRegClass);
 | |
|     AddDefaultPred(BuildMI(BB, dl, TII->get(extendOpc), oldval)
 | |
|                      .addReg(dest)
 | |
|                      .addImm(0));
 | |
|   }
 | |
| 
 | |
|   // Build compare and cmov instructions.
 | |
|   AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
 | |
|                  .addReg(oldval).addReg(incr));
 | |
|   BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr), scratch2)
 | |
|          .addReg(incr).addReg(oldval).addImm(Cond).addReg(ARM::CPSR);
 | |
| 
 | |
|   MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
 | |
|   if (strOpc == ARM::t2STREX)
 | |
|     MIB.addImm(0);
 | |
|   AddDefaultPred(MIB);
 | |
|   AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
 | |
|                  .addReg(scratch).addImm(0));
 | |
|   BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
 | |
|     .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
 | |
| 
 | |
|   BB->addSuccessor(loopMBB);
 | |
|   BB->addSuccessor(exitMBB);
 | |
| 
 | |
|   //  exitMBB:
 | |
|   //   ...
 | |
|   BB = exitMBB;
 | |
| 
 | |
|   MI->eraseFromParent();   // The instruction is gone now.
 | |
| 
 | |
|   return BB;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *
 | |
| ARMTargetLowering::EmitAtomicBinary64(MachineInstr *MI, MachineBasicBlock *BB,
 | |
|                                       unsigned Op1, unsigned Op2,
 | |
|                                       bool NeedsCarry, bool IsCmpxchg) const {
 | |
|   // This also handles ATOMIC_SWAP, indicated by Op1==0.
 | |
|   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
 | |
| 
 | |
|   const BasicBlock *LLVM_BB = BB->getBasicBlock();
 | |
|   MachineFunction *MF = BB->getParent();
 | |
|   MachineFunction::iterator It = BB;
 | |
|   ++It;
 | |
| 
 | |
|   unsigned destlo = MI->getOperand(0).getReg();
 | |
|   unsigned desthi = MI->getOperand(1).getReg();
 | |
|   unsigned ptr = MI->getOperand(2).getReg();
 | |
|   unsigned vallo = MI->getOperand(3).getReg();
 | |
|   unsigned valhi = MI->getOperand(4).getReg();
 | |
|   DebugLoc dl = MI->getDebugLoc();
 | |
|   bool isThumb2 = Subtarget->isThumb2();
 | |
| 
 | |
|   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
 | |
|   if (isThumb2) {
 | |
|     MRI.constrainRegClass(destlo, &ARM::rGPRRegClass);
 | |
|     MRI.constrainRegClass(desthi, &ARM::rGPRRegClass);
 | |
|     MRI.constrainRegClass(ptr, &ARM::rGPRRegClass);
 | |
|   }
 | |
| 
 | |
|   unsigned ldrOpc = isThumb2 ? ARM::t2LDREXD : ARM::LDREXD;
 | |
|   unsigned strOpc = isThumb2 ? ARM::t2STREXD : ARM::STREXD;
 | |
| 
 | |
|   MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
 | |
|   MachineBasicBlock *contBB = 0, *cont2BB = 0;
 | |
|   if (IsCmpxchg) {
 | |
|     contBB = MF->CreateMachineBasicBlock(LLVM_BB);
 | |
|     cont2BB = MF->CreateMachineBasicBlock(LLVM_BB);
 | |
|   }
 | |
|   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
 | |
|   MF->insert(It, loopMBB);
 | |
|   if (IsCmpxchg) {
 | |
|     MF->insert(It, contBB);
 | |
|     MF->insert(It, cont2BB);
 | |
|   }
 | |
|   MF->insert(It, exitMBB);
 | |
| 
 | |
|   // Transfer the remainder of BB and its successor edges to exitMBB.
 | |
|   exitMBB->splice(exitMBB->begin(), BB,
 | |
|                   llvm::next(MachineBasicBlock::iterator(MI)),
 | |
|                   BB->end());
 | |
|   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
 | |
| 
 | |
|   const TargetRegisterClass *TRC = isThumb2 ?
 | |
|     (const TargetRegisterClass*)&ARM::tGPRRegClass :
 | |
|     (const TargetRegisterClass*)&ARM::GPRRegClass;
 | |
|   unsigned storesuccess = MRI.createVirtualRegister(TRC);
 | |
| 
 | |
|   //  thisMBB:
 | |
|   //   ...
 | |
|   //   fallthrough --> loopMBB
 | |
|   BB->addSuccessor(loopMBB);
 | |
| 
 | |
|   //  loopMBB:
 | |
|   //   ldrexd r2, r3, ptr
 | |
|   //   <binopa> r0, r2, incr
 | |
|   //   <binopb> r1, r3, incr
 | |
|   //   strexd storesuccess, r0, r1, ptr
 | |
|   //   cmp storesuccess, #0
 | |
|   //   bne- loopMBB
 | |
|   //   fallthrough --> exitMBB
 | |
|   //
 | |
|   // Note that the registers are explicitly specified because there is not any
 | |
|   // way to force the register allocator to allocate a register pair.
 | |
|   //
 | |
|   // FIXME: The hardcoded registers are not necessary for Thumb2, but we
 | |
|   // need to properly enforce the restriction that the two output registers
 | |
|   // for ldrexd must be different.
 | |
|   BB = loopMBB;
 | |
|   // Load
 | |
|   AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc))
 | |
|                  .addReg(ARM::R2, RegState::Define)
 | |
|                  .addReg(ARM::R3, RegState::Define).addReg(ptr));
 | |
|   // Copy r2/r3 into dest.  (This copy will normally be coalesced.)
 | |
|   BuildMI(BB, dl, TII->get(TargetOpcode::COPY), destlo).addReg(ARM::R2);
 | |
|   BuildMI(BB, dl, TII->get(TargetOpcode::COPY), desthi).addReg(ARM::R3);
 | |
| 
 | |
|   if (IsCmpxchg) {
 | |
|     // Add early exit
 | |
|     for (unsigned i = 0; i < 2; i++) {
 | |
|       AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr :
 | |
|                                                          ARM::CMPrr))
 | |
|                      .addReg(i == 0 ? destlo : desthi)
 | |
|                      .addReg(i == 0 ? vallo : valhi));
 | |
|       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
 | |
|         .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
 | |
|       BB->addSuccessor(exitMBB);
 | |
|       BB->addSuccessor(i == 0 ? contBB : cont2BB);
 | |
|       BB = (i == 0 ? contBB : cont2BB);
 | |
|     }
 | |
| 
 | |
|     // Copy to physregs for strexd
 | |
|     unsigned setlo = MI->getOperand(5).getReg();
 | |
|     unsigned sethi = MI->getOperand(6).getReg();
 | |
|     BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R0).addReg(setlo);
 | |
|     BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R1).addReg(sethi);
 | |
|   } else if (Op1) {
 | |
|     // Perform binary operation
 | |
|     AddDefaultPred(BuildMI(BB, dl, TII->get(Op1), ARM::R0)
 | |
|                    .addReg(destlo).addReg(vallo))
 | |
|         .addReg(NeedsCarry ? ARM::CPSR : 0, getDefRegState(NeedsCarry));
 | |
|     AddDefaultPred(BuildMI(BB, dl, TII->get(Op2), ARM::R1)
 | |
|                    .addReg(desthi).addReg(valhi)).addReg(0);
 | |
|   } else {
 | |
|     // Copy to physregs for strexd
 | |
|     BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R0).addReg(vallo);
 | |
|     BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R1).addReg(valhi);
 | |
|   }
 | |
| 
 | |
|   // Store
 | |
|   AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), storesuccess)
 | |
|                  .addReg(ARM::R0).addReg(ARM::R1).addReg(ptr));
 | |
|   // Cmp+jump
 | |
|   AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
 | |
|                  .addReg(storesuccess).addImm(0));
 | |
|   BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
 | |
|     .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
 | |
| 
 | |
|   BB->addSuccessor(loopMBB);
 | |
|   BB->addSuccessor(exitMBB);
 | |
| 
 | |
|   //  exitMBB:
 | |
|   //   ...
 | |
|   BB = exitMBB;
 | |
| 
 | |
|   MI->eraseFromParent();   // The instruction is gone now.
 | |
| 
 | |
|   return BB;
 | |
| }
 | |
| 
 | |
| /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
 | |
| /// registers the function context.
 | |
| void ARMTargetLowering::
 | |
| SetupEntryBlockForSjLj(MachineInstr *MI, MachineBasicBlock *MBB,
 | |
|                        MachineBasicBlock *DispatchBB, int FI) const {
 | |
|   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
 | |
|   DebugLoc dl = MI->getDebugLoc();
 | |
|   MachineFunction *MF = MBB->getParent();
 | |
|   MachineRegisterInfo *MRI = &MF->getRegInfo();
 | |
|   MachineConstantPool *MCP = MF->getConstantPool();
 | |
|   ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
 | |
|   const Function *F = MF->getFunction();
 | |
| 
 | |
|   bool isThumb = Subtarget->isThumb();
 | |
|   bool isThumb2 = Subtarget->isThumb2();
 | |
| 
 | |
|   unsigned PCLabelId = AFI->createPICLabelUId();
 | |
|   unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
 | |
|   ARMConstantPoolValue *CPV =
 | |
|     ARMConstantPoolMBB::Create(F->getContext(), DispatchBB, PCLabelId, PCAdj);
 | |
|   unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
 | |
| 
 | |
|   const TargetRegisterClass *TRC = isThumb ?
 | |
|     (const TargetRegisterClass*)&ARM::tGPRRegClass :
 | |
|     (const TargetRegisterClass*)&ARM::GPRRegClass;
 | |
| 
 | |
|   // Grab constant pool and fixed stack memory operands.
 | |
|   MachineMemOperand *CPMMO =
 | |
|     MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(),
 | |
|                              MachineMemOperand::MOLoad, 4, 4);
 | |
| 
 | |
|   MachineMemOperand *FIMMOSt =
 | |
|     MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
 | |
|                              MachineMemOperand::MOStore, 4, 4);
 | |
| 
 | |
|   // Load the address of the dispatch MBB into the jump buffer.
 | |
|   if (isThumb2) {
 | |
|     // Incoming value: jbuf
 | |
|     //   ldr.n  r5, LCPI1_1
 | |
|     //   orr    r5, r5, #1
 | |
|     //   add    r5, pc
 | |
|     //   str    r5, [$jbuf, #+4] ; &jbuf[1]
 | |
|     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
 | |
|     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
 | |
|                    .addConstantPoolIndex(CPI)
 | |
|                    .addMemOperand(CPMMO));
 | |
|     // Set the low bit because of thumb mode.
 | |
|     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
 | |
|     AddDefaultCC(
 | |
|       AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
 | |
|                      .addReg(NewVReg1, RegState::Kill)
 | |
|                      .addImm(0x01)));
 | |
|     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
 | |
|     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
 | |
|       .addReg(NewVReg2, RegState::Kill)
 | |
|       .addImm(PCLabelId);
 | |
|     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
 | |
|                    .addReg(NewVReg3, RegState::Kill)
 | |
|                    .addFrameIndex(FI)
 | |
|                    .addImm(36)  // &jbuf[1] :: pc
 | |
|                    .addMemOperand(FIMMOSt));
 | |
|   } else if (isThumb) {
 | |
|     // Incoming value: jbuf
 | |
|     //   ldr.n  r1, LCPI1_4
 | |
|     //   add    r1, pc
 | |
|     //   mov    r2, #1
 | |
|     //   orrs   r1, r2
 | |
|     //   add    r2, $jbuf, #+4 ; &jbuf[1]
 | |
|     //   str    r1, [r2]
 | |
|     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
 | |
|     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
 | |
|                    .addConstantPoolIndex(CPI)
 | |
|                    .addMemOperand(CPMMO));
 | |
|     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
 | |
|     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
 | |
|       .addReg(NewVReg1, RegState::Kill)
 | |
|       .addImm(PCLabelId);
 | |
|     // Set the low bit because of thumb mode.
 | |
|     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
 | |
|     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
 | |
|                    .addReg(ARM::CPSR, RegState::Define)
 | |
|                    .addImm(1));
 | |
|     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
 | |
|     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
 | |
|                    .addReg(ARM::CPSR, RegState::Define)
 | |
|                    .addReg(NewVReg2, RegState::Kill)
 | |
|                    .addReg(NewVReg3, RegState::Kill));
 | |
|     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
 | |
|     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tADDrSPi), NewVReg5)
 | |
|                    .addFrameIndex(FI)
 | |
|                    .addImm(36)); // &jbuf[1] :: pc
 | |
|     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
 | |
|                    .addReg(NewVReg4, RegState::Kill)
 | |
|                    .addReg(NewVReg5, RegState::Kill)
 | |
|                    .addImm(0)
 | |
|                    .addMemOperand(FIMMOSt));
 | |
|   } else {
 | |
|     // Incoming value: jbuf
 | |
|     //   ldr  r1, LCPI1_1
 | |
|     //   add  r1, pc, r1
 | |
|     //   str  r1, [$jbuf, #+4] ; &jbuf[1]
 | |
|     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
 | |
|     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12),  NewVReg1)
 | |
|                    .addConstantPoolIndex(CPI)
 | |
|                    .addImm(0)
 | |
|                    .addMemOperand(CPMMO));
 | |
|     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
 | |
|     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
 | |
|                    .addReg(NewVReg1, RegState::Kill)
 | |
|                    .addImm(PCLabelId));
 | |
|     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
 | |
|                    .addReg(NewVReg2, RegState::Kill)
 | |
|                    .addFrameIndex(FI)
 | |
|                    .addImm(36)  // &jbuf[1] :: pc
 | |
|                    .addMemOperand(FIMMOSt));
 | |
|   }
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *ARMTargetLowering::
 | |
| EmitSjLjDispatchBlock(MachineInstr *MI, MachineBasicBlock *MBB) const {
 | |
|   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
 | |
|   DebugLoc dl = MI->getDebugLoc();
 | |
|   MachineFunction *MF = MBB->getParent();
 | |
|   MachineRegisterInfo *MRI = &MF->getRegInfo();
 | |
|   ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
 | |
|   MachineFrameInfo *MFI = MF->getFrameInfo();
 | |
|   int FI = MFI->getFunctionContextIndex();
 | |
| 
 | |
|   const TargetRegisterClass *TRC = Subtarget->isThumb() ?
 | |
|     (const TargetRegisterClass*)&ARM::tGPRRegClass :
 | |
|     (const TargetRegisterClass*)&ARM::GPRnopcRegClass;
 | |
| 
 | |
|   // Get a mapping of the call site numbers to all of the landing pads they're
 | |
|   // associated with.
 | |
|   DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2> > CallSiteNumToLPad;
 | |
|   unsigned MaxCSNum = 0;
 | |
|   MachineModuleInfo &MMI = MF->getMMI();
 | |
|   for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E;
 | |
|        ++BB) {
 | |
|     if (!BB->isLandingPad()) continue;
 | |
| 
 | |
|     // FIXME: We should assert that the EH_LABEL is the first MI in the landing
 | |
|     // pad.
 | |
|     for (MachineBasicBlock::iterator
 | |
|            II = BB->begin(), IE = BB->end(); II != IE; ++II) {
 | |
|       if (!II->isEHLabel()) continue;
 | |
| 
 | |
|       MCSymbol *Sym = II->getOperand(0).getMCSymbol();
 | |
|       if (!MMI.hasCallSiteLandingPad(Sym)) continue;
 | |
| 
 | |
|       SmallVectorImpl<unsigned> &CallSiteIdxs = MMI.getCallSiteLandingPad(Sym);
 | |
|       for (SmallVectorImpl<unsigned>::iterator
 | |
|              CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
 | |
|            CSI != CSE; ++CSI) {
 | |
|         CallSiteNumToLPad[*CSI].push_back(BB);
 | |
|         MaxCSNum = std::max(MaxCSNum, *CSI);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Get an ordered list of the machine basic blocks for the jump table.
 | |
|   std::vector<MachineBasicBlock*> LPadList;
 | |
|   SmallPtrSet<MachineBasicBlock*, 64> InvokeBBs;
 | |
|   LPadList.reserve(CallSiteNumToLPad.size());
 | |
|   for (unsigned I = 1; I <= MaxCSNum; ++I) {
 | |
|     SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
 | |
|     for (SmallVectorImpl<MachineBasicBlock*>::iterator
 | |
|            II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
 | |
|       LPadList.push_back(*II);
 | |
|       InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   assert(!LPadList.empty() &&
 | |
|          "No landing pad destinations for the dispatch jump table!");
 | |
| 
 | |
|   // Create the jump table and associated information.
 | |
|   MachineJumpTableInfo *JTI =
 | |
|     MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
 | |
|   unsigned MJTI = JTI->createJumpTableIndex(LPadList);
 | |
|   unsigned UId = AFI->createJumpTableUId();
 | |
| 
 | |
|   // Create the MBBs for the dispatch code.
 | |
| 
 | |
|   // Shove the dispatch's address into the return slot in the function context.
 | |
|   MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
 | |
|   DispatchBB->setIsLandingPad();
 | |
| 
 | |
|   MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
 | |
|   BuildMI(TrapBB, dl, TII->get(Subtarget->isThumb() ? ARM::tTRAP : ARM::TRAP));
 | |
|   DispatchBB->addSuccessor(TrapBB);
 | |
| 
 | |
|   MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
 | |
|   DispatchBB->addSuccessor(DispContBB);
 | |
| 
 | |
|   // Insert and MBBs.
 | |
|   MF->insert(MF->end(), DispatchBB);
 | |
|   MF->insert(MF->end(), DispContBB);
 | |
|   MF->insert(MF->end(), TrapBB);
 | |
| 
 | |
|   // Insert code into the entry block that creates and registers the function
 | |
|   // context.
 | |
|   SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
 | |
| 
 | |
|   MachineMemOperand *FIMMOLd =
 | |
|     MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
 | |
|                              MachineMemOperand::MOLoad |
 | |
|                              MachineMemOperand::MOVolatile, 4, 4);
 | |
| 
 | |
|   MachineInstrBuilder MIB;
 | |
|   MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
 | |
| 
 | |
|   const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
 | |
|   const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
 | |
| 
 | |
|   // Add a register mask with no preserved registers.  This results in all
 | |
|   // registers being marked as clobbered.
 | |
|   MIB.addRegMask(RI.getNoPreservedMask());
 | |
| 
 | |
|   unsigned NumLPads = LPadList.size();
 | |
|   if (Subtarget->isThumb2()) {
 | |
|     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
 | |
|     AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
 | |
|                    .addFrameIndex(FI)
 | |
|                    .addImm(4)
 | |
|                    .addMemOperand(FIMMOLd));
 | |
| 
 | |
|     if (NumLPads < 256) {
 | |
|       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
 | |
|                      .addReg(NewVReg1)
 | |
|                      .addImm(LPadList.size()));
 | |
|     } else {
 | |
|       unsigned VReg1 = MRI->createVirtualRegister(TRC);
 | |
|       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
 | |
|                      .addImm(NumLPads & 0xFFFF));
 | |
| 
 | |
|       unsigned VReg2 = VReg1;
 | |
|       if ((NumLPads & 0xFFFF0000) != 0) {
 | |
|         VReg2 = MRI->createVirtualRegister(TRC);
 | |
|         AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
 | |
|                        .addReg(VReg1)
 | |
|                        .addImm(NumLPads >> 16));
 | |
|       }
 | |
| 
 | |
|       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
 | |
|                      .addReg(NewVReg1)
 | |
|                      .addReg(VReg2));
 | |
|     }
 | |
| 
 | |
|     BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
 | |
|       .addMBB(TrapBB)
 | |
|       .addImm(ARMCC::HI)
 | |
|       .addReg(ARM::CPSR);
 | |
| 
 | |
|     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
 | |
|     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT),NewVReg3)
 | |
|                    .addJumpTableIndex(MJTI)
 | |
|                    .addImm(UId));
 | |
| 
 | |
|     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
 | |
|     AddDefaultCC(
 | |
|       AddDefaultPred(
 | |
|         BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
 | |
|         .addReg(NewVReg3, RegState::Kill)
 | |
|         .addReg(NewVReg1)
 | |
|         .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
 | |
| 
 | |
|     BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
 | |
|       .addReg(NewVReg4, RegState::Kill)
 | |
|       .addReg(NewVReg1)
 | |
|       .addJumpTableIndex(MJTI)
 | |
|       .addImm(UId);
 | |
|   } else if (Subtarget->isThumb()) {
 | |
|     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
 | |
|     AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
 | |
|                    .addFrameIndex(FI)
 | |
|                    .addImm(1)
 | |
|                    .addMemOperand(FIMMOLd));
 | |
| 
 | |
|     if (NumLPads < 256) {
 | |
|       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
 | |
|                      .addReg(NewVReg1)
 | |
|                      .addImm(NumLPads));
 | |
|     } else {
 | |
|       MachineConstantPool *ConstantPool = MF->getConstantPool();
 | |
|       Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
 | |
|       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
 | |
| 
 | |
|       // MachineConstantPool wants an explicit alignment.
 | |
|       unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty);
 | |
|       if (Align == 0)
 | |
|         Align = getDataLayout()->getTypeAllocSize(C->getType());
 | |
|       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
 | |
| 
 | |
|       unsigned VReg1 = MRI->createVirtualRegister(TRC);
 | |
|       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
 | |
|                      .addReg(VReg1, RegState::Define)
 | |
|                      .addConstantPoolIndex(Idx));
 | |
|       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
 | |
|                      .addReg(NewVReg1)
 | |
|                      .addReg(VReg1));
 | |
|     }
 | |
| 
 | |
|     BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
 | |
|       .addMBB(TrapBB)
 | |
|       .addImm(ARMCC::HI)
 | |
|       .addReg(ARM::CPSR);
 | |
| 
 | |
|     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
 | |
|     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
 | |
|                    .addReg(ARM::CPSR, RegState::Define)
 | |
|                    .addReg(NewVReg1)
 | |
|                    .addImm(2));
 | |
| 
 | |
|     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
 | |
|     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
 | |
|                    .addJumpTableIndex(MJTI)
 | |
|                    .addImm(UId));
 | |
| 
 | |
|     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
 | |
|     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
 | |
|                    .addReg(ARM::CPSR, RegState::Define)
 | |
|                    .addReg(NewVReg2, RegState::Kill)
 | |
|                    .addReg(NewVReg3));
 | |
| 
 | |
|     MachineMemOperand *JTMMOLd =
 | |
|       MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
 | |
|                                MachineMemOperand::MOLoad, 4, 4);
 | |
| 
 | |
|     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
 | |
|     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
 | |
|                    .addReg(NewVReg4, RegState::Kill)
 | |
|                    .addImm(0)
 | |
|                    .addMemOperand(JTMMOLd));
 | |
| 
 | |
|     unsigned NewVReg6 = MRI->createVirtualRegister(TRC);
 | |
|     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
 | |
|                    .addReg(ARM::CPSR, RegState::Define)
 | |
|                    .addReg(NewVReg5, RegState::Kill)
 | |
|                    .addReg(NewVReg3));
 | |
| 
 | |
|     BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
 | |
|       .addReg(NewVReg6, RegState::Kill)
 | |
|       .addJumpTableIndex(MJTI)
 | |
|       .addImm(UId);
 | |
|   } else {
 | |
|     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
 | |
|     AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
 | |
|                    .addFrameIndex(FI)
 | |
|                    .addImm(4)
 | |
|                    .addMemOperand(FIMMOLd));
 | |
| 
 | |
|     if (NumLPads < 256) {
 | |
|       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
 | |
|                      .addReg(NewVReg1)
 | |
|                      .addImm(NumLPads));
 | |
|     } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
 | |
|       unsigned VReg1 = MRI->createVirtualRegister(TRC);
 | |
|       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
 | |
|                      .addImm(NumLPads & 0xFFFF));
 | |
| 
 | |
|       unsigned VReg2 = VReg1;
 | |
|       if ((NumLPads & 0xFFFF0000) != 0) {
 | |
|         VReg2 = MRI->createVirtualRegister(TRC);
 | |
|         AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
 | |
|                        .addReg(VReg1)
 | |
|                        .addImm(NumLPads >> 16));
 | |
|       }
 | |
| 
 | |
|       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
 | |
|                      .addReg(NewVReg1)
 | |
|                      .addReg(VReg2));
 | |
|     } else {
 | |
|       MachineConstantPool *ConstantPool = MF->getConstantPool();
 | |
|       Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
 | |
|       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
 | |
| 
 | |
|       // MachineConstantPool wants an explicit alignment.
 | |
|       unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty);
 | |
|       if (Align == 0)
 | |
|         Align = getDataLayout()->getTypeAllocSize(C->getType());
 | |
|       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
 | |
| 
 | |
|       unsigned VReg1 = MRI->createVirtualRegister(TRC);
 | |
|       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
 | |
|                      .addReg(VReg1, RegState::Define)
 | |
|                      .addConstantPoolIndex(Idx)
 | |
|                      .addImm(0));
 | |
|       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
 | |
|                      .addReg(NewVReg1)
 | |
|                      .addReg(VReg1, RegState::Kill));
 | |
|     }
 | |
| 
 | |
|     BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
 | |
|       .addMBB(TrapBB)
 | |
|       .addImm(ARMCC::HI)
 | |
|       .addReg(ARM::CPSR);
 | |
| 
 | |
|     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
 | |
|     AddDefaultCC(
 | |
|       AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
 | |
|                      .addReg(NewVReg1)
 | |
|                      .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
 | |
|     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
 | |
|     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
 | |
|                    .addJumpTableIndex(MJTI)
 | |
|                    .addImm(UId));
 | |
| 
 | |
|     MachineMemOperand *JTMMOLd =
 | |
|       MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
 | |
|                                MachineMemOperand::MOLoad, 4, 4);
 | |
|     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
 | |
|     AddDefaultPred(
 | |
|       BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
 | |
|       .addReg(NewVReg3, RegState::Kill)
 | |
|       .addReg(NewVReg4)
 | |
|       .addImm(0)
 | |
|       .addMemOperand(JTMMOLd));
 | |
| 
 | |
|     BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
 | |
|       .addReg(NewVReg5, RegState::Kill)
 | |
|       .addReg(NewVReg4)
 | |
|       .addJumpTableIndex(MJTI)
 | |
|       .addImm(UId);
 | |
|   }
 | |
| 
 | |
|   // Add the jump table entries as successors to the MBB.
 | |
|   SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs;
 | |
|   for (std::vector<MachineBasicBlock*>::iterator
 | |
|          I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
 | |
|     MachineBasicBlock *CurMBB = *I;
 | |
|     if (SeenMBBs.insert(CurMBB))
 | |
|       DispContBB->addSuccessor(CurMBB);
 | |
|   }
 | |
| 
 | |
|   // N.B. the order the invoke BBs are processed in doesn't matter here.
 | |
|   const uint16_t *SavedRegs = RI.getCalleeSavedRegs(MF);
 | |
|   SmallVector<MachineBasicBlock*, 64> MBBLPads;
 | |
|   for (SmallPtrSet<MachineBasicBlock*, 64>::iterator
 | |
|          I = InvokeBBs.begin(), E = InvokeBBs.end(); I != E; ++I) {
 | |
|     MachineBasicBlock *BB = *I;
 | |
| 
 | |
|     // Remove the landing pad successor from the invoke block and replace it
 | |
|     // with the new dispatch block.
 | |
|     SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
 | |
|                                                   BB->succ_end());
 | |
|     while (!Successors.empty()) {
 | |
|       MachineBasicBlock *SMBB = Successors.pop_back_val();
 | |
|       if (SMBB->isLandingPad()) {
 | |
|         BB->removeSuccessor(SMBB);
 | |
|         MBBLPads.push_back(SMBB);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     BB->addSuccessor(DispatchBB);
 | |
| 
 | |
|     // Find the invoke call and mark all of the callee-saved registers as
 | |
|     // 'implicit defined' so that they're spilled. This prevents code from
 | |
|     // moving instructions to before the EH block, where they will never be
 | |
|     // executed.
 | |
|     for (MachineBasicBlock::reverse_iterator
 | |
|            II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
 | |
|       if (!II->isCall()) continue;
 | |
| 
 | |
|       DenseMap<unsigned, bool> DefRegs;
 | |
|       for (MachineInstr::mop_iterator
 | |
|              OI = II->operands_begin(), OE = II->operands_end();
 | |
|            OI != OE; ++OI) {
 | |
|         if (!OI->isReg()) continue;
 | |
|         DefRegs[OI->getReg()] = true;
 | |
|       }
 | |
| 
 | |
|       MachineInstrBuilder MIB(&*II);
 | |
| 
 | |
|       for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
 | |
|         unsigned Reg = SavedRegs[i];
 | |
|         if (Subtarget->isThumb2() &&
 | |
|             !ARM::tGPRRegClass.contains(Reg) &&
 | |
|             !ARM::hGPRRegClass.contains(Reg))
 | |
|           continue;
 | |
|         if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
 | |
|           continue;
 | |
|         if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
 | |
|           continue;
 | |
|         if (!DefRegs[Reg])
 | |
|           MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
 | |
|       }
 | |
| 
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Mark all former landing pads as non-landing pads. The dispatch is the only
 | |
|   // landing pad now.
 | |
|   for (SmallVectorImpl<MachineBasicBlock*>::iterator
 | |
|          I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
 | |
|     (*I)->setIsLandingPad(false);
 | |
| 
 | |
|   // The instruction is gone now.
 | |
|   MI->eraseFromParent();
 | |
| 
 | |
|   return MBB;
 | |
| }
 | |
| 
 | |
| static
 | |
| MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
 | |
|   for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
 | |
|        E = MBB->succ_end(); I != E; ++I)
 | |
|     if (*I != Succ)
 | |
|       return *I;
 | |
|   llvm_unreachable("Expecting a BB with two successors!");
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *ARMTargetLowering::
 | |
| EmitStructByval(MachineInstr *MI, MachineBasicBlock *BB) const {
 | |
|   // This pseudo instruction has 3 operands: dst, src, size
 | |
|   // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
 | |
|   // Otherwise, we will generate unrolled scalar copies.
 | |
|   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
 | |
|   const BasicBlock *LLVM_BB = BB->getBasicBlock();
 | |
|   MachineFunction::iterator It = BB;
 | |
|   ++It;
 | |
| 
 | |
|   unsigned dest = MI->getOperand(0).getReg();
 | |
|   unsigned src = MI->getOperand(1).getReg();
 | |
|   unsigned SizeVal = MI->getOperand(2).getImm();
 | |
|   unsigned Align = MI->getOperand(3).getImm();
 | |
|   DebugLoc dl = MI->getDebugLoc();
 | |
| 
 | |
|   bool isThumb2 = Subtarget->isThumb2();
 | |
|   MachineFunction *MF = BB->getParent();
 | |
|   MachineRegisterInfo &MRI = MF->getRegInfo();
 | |
|   unsigned ldrOpc, strOpc, UnitSize = 0;
 | |
| 
 | |
|   const TargetRegisterClass *TRC = isThumb2 ?
 | |
|     (const TargetRegisterClass*)&ARM::tGPRRegClass :
 | |
|     (const TargetRegisterClass*)&ARM::GPRRegClass;
 | |
|   const TargetRegisterClass *TRC_Vec = 0;
 | |
| 
 | |
|   if (Align & 1) {
 | |
|     ldrOpc = isThumb2 ? ARM::t2LDRB_POST : ARM::LDRB_POST_IMM;
 | |
|     strOpc = isThumb2 ? ARM::t2STRB_POST : ARM::STRB_POST_IMM;
 | |
|     UnitSize = 1;
 | |
|   } else if (Align & 2) {
 | |
|     ldrOpc = isThumb2 ? ARM::t2LDRH_POST : ARM::LDRH_POST;
 | |
|     strOpc = isThumb2 ? ARM::t2STRH_POST : ARM::STRH_POST;
 | |
|     UnitSize = 2;
 | |
|   } else {
 | |
|     // Check whether we can use NEON instructions.
 | |
|     if (!MF->getFunction()->getFnAttributes().
 | |
|           hasAttribute(Attributes::NoImplicitFloat) &&
 | |
|         Subtarget->hasNEON()) {
 | |
|       if ((Align % 16 == 0) && SizeVal >= 16) {
 | |
|         ldrOpc = ARM::VLD1q32wb_fixed;
 | |
|         strOpc = ARM::VST1q32wb_fixed;
 | |
|         UnitSize = 16;
 | |
|         TRC_Vec = (const TargetRegisterClass*)&ARM::DPairRegClass;
 | |
|       }
 | |
|       else if ((Align % 8 == 0) && SizeVal >= 8) {
 | |
|         ldrOpc = ARM::VLD1d32wb_fixed;
 | |
|         strOpc = ARM::VST1d32wb_fixed;
 | |
|         UnitSize = 8;
 | |
|         TRC_Vec = (const TargetRegisterClass*)&ARM::DPRRegClass;
 | |
|       }
 | |
|     }
 | |
|     // Can't use NEON instructions.
 | |
|     if (UnitSize == 0) {
 | |
|       ldrOpc = isThumb2 ? ARM::t2LDR_POST : ARM::LDR_POST_IMM;
 | |
|       strOpc = isThumb2 ? ARM::t2STR_POST : ARM::STR_POST_IMM;
 | |
|       UnitSize = 4;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned BytesLeft = SizeVal % UnitSize;
 | |
|   unsigned LoopSize = SizeVal - BytesLeft;
 | |
| 
 | |
|   if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
 | |
|     // Use LDR and STR to copy.
 | |
|     // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
 | |
|     // [destOut] = STR_POST(scratch, destIn, UnitSize)
 | |
|     unsigned srcIn = src;
 | |
|     unsigned destIn = dest;
 | |
|     for (unsigned i = 0; i < LoopSize; i+=UnitSize) {
 | |
|       unsigned scratch = MRI.createVirtualRegister(UnitSize >= 8 ? TRC_Vec:TRC);
 | |
|       unsigned srcOut = MRI.createVirtualRegister(TRC);
 | |
|       unsigned destOut = MRI.createVirtualRegister(TRC);
 | |
|       if (UnitSize >= 8) {
 | |
|         AddDefaultPred(BuildMI(*BB, MI, dl,
 | |
|           TII->get(ldrOpc), scratch)
 | |
|           .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(0));
 | |
| 
 | |
|         AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
 | |
|           .addReg(destIn).addImm(0).addReg(scratch));
 | |
|       } else if (isThumb2) {
 | |
|         AddDefaultPred(BuildMI(*BB, MI, dl,
 | |
|           TII->get(ldrOpc), scratch)
 | |
|           .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(UnitSize));
 | |
| 
 | |
|         AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
 | |
|           .addReg(scratch).addReg(destIn)
 | |
|           .addImm(UnitSize));
 | |
|       } else {
 | |
|         AddDefaultPred(BuildMI(*BB, MI, dl,
 | |
|           TII->get(ldrOpc), scratch)
 | |
|           .addReg(srcOut, RegState::Define).addReg(srcIn).addReg(0)
 | |
|           .addImm(UnitSize));
 | |
| 
 | |
|         AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
 | |
|           .addReg(scratch).addReg(destIn)
 | |
|           .addReg(0).addImm(UnitSize));
 | |
|       }
 | |
|       srcIn = srcOut;
 | |
|       destIn = destOut;
 | |
|     }
 | |
| 
 | |
|     // Handle the leftover bytes with LDRB and STRB.
 | |
|     // [scratch, srcOut] = LDRB_POST(srcIn, 1)
 | |
|     // [destOut] = STRB_POST(scratch, destIn, 1)
 | |
|     ldrOpc = isThumb2 ? ARM::t2LDRB_POST : ARM::LDRB_POST_IMM;
 | |
|     strOpc = isThumb2 ? ARM::t2STRB_POST : ARM::STRB_POST_IMM;
 | |
|     for (unsigned i = 0; i < BytesLeft; i++) {
 | |
|       unsigned scratch = MRI.createVirtualRegister(TRC);
 | |
|       unsigned srcOut = MRI.createVirtualRegister(TRC);
 | |
|       unsigned destOut = MRI.createVirtualRegister(TRC);
 | |
|       if (isThumb2) {
 | |
|         AddDefaultPred(BuildMI(*BB, MI, dl,
 | |
|           TII->get(ldrOpc),scratch)
 | |
|           .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(1));
 | |
| 
 | |
|         AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
 | |
|           .addReg(scratch).addReg(destIn)
 | |
|           .addReg(0).addImm(1));
 | |
|       } else {
 | |
|         AddDefaultPred(BuildMI(*BB, MI, dl,
 | |
|           TII->get(ldrOpc),scratch)
 | |
|           .addReg(srcOut, RegState::Define).addReg(srcIn)
 | |
|           .addReg(0).addImm(1));
 | |
| 
 | |
|         AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
 | |
|           .addReg(scratch).addReg(destIn)
 | |
|           .addReg(0).addImm(1));
 | |
|       }
 | |
|       srcIn = srcOut;
 | |
|       destIn = destOut;
 | |
|     }
 | |
|     MI->eraseFromParent();   // The instruction is gone now.
 | |
|     return BB;
 | |
|   }
 | |
| 
 | |
|   // Expand the pseudo op to a loop.
 | |
|   // thisMBB:
 | |
|   //   ...
 | |
|   //   movw varEnd, # --> with thumb2
 | |
|   //   movt varEnd, #
 | |
|   //   ldrcp varEnd, idx --> without thumb2
 | |
|   //   fallthrough --> loopMBB
 | |
|   // loopMBB:
 | |
|   //   PHI varPhi, varEnd, varLoop
 | |
|   //   PHI srcPhi, src, srcLoop
 | |
|   //   PHI destPhi, dst, destLoop
 | |
|   //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
 | |
|   //   [destLoop] = STR_POST(scratch, destPhi, UnitSize)
 | |
|   //   subs varLoop, varPhi, #UnitSize
 | |
|   //   bne loopMBB
 | |
|   //   fallthrough --> exitMBB
 | |
|   // exitMBB:
 | |
|   //   epilogue to handle left-over bytes
 | |
|   //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
 | |
|   //   [destOut] = STRB_POST(scratch, destLoop, 1)
 | |
|   MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
 | |
|   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
 | |
|   MF->insert(It, loopMBB);
 | |
|   MF->insert(It, exitMBB);
 | |
| 
 | |
|   // Transfer the remainder of BB and its successor edges to exitMBB.
 | |
|   exitMBB->splice(exitMBB->begin(), BB,
 | |
|                   llvm::next(MachineBasicBlock::iterator(MI)),
 | |
|                   BB->end());
 | |
|   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
 | |
| 
 | |
|   // Load an immediate to varEnd.
 | |
|   unsigned varEnd = MRI.createVirtualRegister(TRC);
 | |
|   if (isThumb2) {
 | |
|     unsigned VReg1 = varEnd;
 | |
|     if ((LoopSize & 0xFFFF0000) != 0)
 | |
|       VReg1 = MRI.createVirtualRegister(TRC);
 | |
|     AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2MOVi16), VReg1)
 | |
|                    .addImm(LoopSize & 0xFFFF));
 | |
| 
 | |
|     if ((LoopSize & 0xFFFF0000) != 0)
 | |
|       AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2MOVTi16), varEnd)
 | |
|                      .addReg(VReg1)
 | |
|                      .addImm(LoopSize >> 16));
 | |
|   } else {
 | |
|     MachineConstantPool *ConstantPool = MF->getConstantPool();
 | |
|     Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
 | |
|     const Constant *C = ConstantInt::get(Int32Ty, LoopSize);
 | |
| 
 | |
|     // MachineConstantPool wants an explicit alignment.
 | |
|     unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty);
 | |
|     if (Align == 0)
 | |
|       Align = getDataLayout()->getTypeAllocSize(C->getType());
 | |
|     unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
 | |
| 
 | |
|     AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::LDRcp))
 | |
|                    .addReg(varEnd, RegState::Define)
 | |
|                    .addConstantPoolIndex(Idx)
 | |
|                    .addImm(0));
 | |
|   }
 | |
|   BB->addSuccessor(loopMBB);
 | |
| 
 | |
|   // Generate the loop body:
 | |
|   //   varPhi = PHI(varLoop, varEnd)
 | |
|   //   srcPhi = PHI(srcLoop, src)
 | |
|   //   destPhi = PHI(destLoop, dst)
 | |
|   MachineBasicBlock *entryBB = BB;
 | |
|   BB = loopMBB;
 | |
|   unsigned varLoop = MRI.createVirtualRegister(TRC);
 | |
|   unsigned varPhi = MRI.createVirtualRegister(TRC);
 | |
|   unsigned srcLoop = MRI.createVirtualRegister(TRC);
 | |
|   unsigned srcPhi = MRI.createVirtualRegister(TRC);
 | |
|   unsigned destLoop = MRI.createVirtualRegister(TRC);
 | |
|   unsigned destPhi = MRI.createVirtualRegister(TRC);
 | |
| 
 | |
|   BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi)
 | |
|     .addReg(varLoop).addMBB(loopMBB)
 | |
|     .addReg(varEnd).addMBB(entryBB);
 | |
|   BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi)
 | |
|     .addReg(srcLoop).addMBB(loopMBB)
 | |
|     .addReg(src).addMBB(entryBB);
 | |
|   BuildMI(BB, dl, TII->get(ARM::PHI), destPhi)
 | |
|     .addReg(destLoop).addMBB(loopMBB)
 | |
|     .addReg(dest).addMBB(entryBB);
 | |
| 
 | |
|   //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
 | |
|   //   [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
 | |
|   unsigned scratch = MRI.createVirtualRegister(UnitSize >= 8 ? TRC_Vec:TRC);
 | |
|   if (UnitSize >= 8) {
 | |
|     AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), scratch)
 | |
|       .addReg(srcLoop, RegState::Define).addReg(srcPhi).addImm(0));
 | |
| 
 | |
|     AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), destLoop)
 | |
|       .addReg(destPhi).addImm(0).addReg(scratch));
 | |
|   } else if (isThumb2) {
 | |
|     AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), scratch)
 | |
|       .addReg(srcLoop, RegState::Define).addReg(srcPhi).addImm(UnitSize));
 | |
| 
 | |
|     AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), destLoop)
 | |
|       .addReg(scratch).addReg(destPhi)
 | |
|       .addImm(UnitSize));
 | |
|   } else {
 | |
|     AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), scratch)
 | |
|       .addReg(srcLoop, RegState::Define).addReg(srcPhi).addReg(0)
 | |
|       .addImm(UnitSize));
 | |
| 
 | |
|     AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), destLoop)
 | |
|       .addReg(scratch).addReg(destPhi)
 | |
|       .addReg(0).addImm(UnitSize));
 | |
|   }
 | |
| 
 | |
|   // Decrement loop variable by UnitSize.
 | |
|   MachineInstrBuilder MIB = BuildMI(BB, dl,
 | |
|     TII->get(isThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
 | |
|   AddDefaultCC(AddDefaultPred(MIB.addReg(varPhi).addImm(UnitSize)));
 | |
|   MIB->getOperand(5).setReg(ARM::CPSR);
 | |
|   MIB->getOperand(5).setIsDef(true);
 | |
| 
 | |
|   BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
 | |
|     .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
 | |
| 
 | |
|   // loopMBB can loop back to loopMBB or fall through to exitMBB.
 | |
|   BB->addSuccessor(loopMBB);
 | |
|   BB->addSuccessor(exitMBB);
 | |
| 
 | |
|   // Add epilogue to handle BytesLeft.
 | |
|   BB = exitMBB;
 | |
|   MachineInstr *StartOfExit = exitMBB->begin();
 | |
|   ldrOpc = isThumb2 ? ARM::t2LDRB_POST : ARM::LDRB_POST_IMM;
 | |
|   strOpc = isThumb2 ? ARM::t2STRB_POST : ARM::STRB_POST_IMM;
 | |
| 
 | |
|   //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
 | |
|   //   [destOut] = STRB_POST(scratch, destLoop, 1)
 | |
|   unsigned srcIn = srcLoop;
 | |
|   unsigned destIn = destLoop;
 | |
|   for (unsigned i = 0; i < BytesLeft; i++) {
 | |
|     unsigned scratch = MRI.createVirtualRegister(TRC);
 | |
|     unsigned srcOut = MRI.createVirtualRegister(TRC);
 | |
|     unsigned destOut = MRI.createVirtualRegister(TRC);
 | |
|     if (isThumb2) {
 | |
|       AddDefaultPred(BuildMI(*BB, StartOfExit, dl,
 | |
|         TII->get(ldrOpc),scratch)
 | |
|         .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(1));
 | |
| 
 | |
|       AddDefaultPred(BuildMI(*BB, StartOfExit, dl, TII->get(strOpc), destOut)
 | |
|         .addReg(scratch).addReg(destIn)
 | |
|         .addImm(1));
 | |
|     } else {
 | |
|       AddDefaultPred(BuildMI(*BB, StartOfExit, dl,
 | |
|         TII->get(ldrOpc),scratch)
 | |
|         .addReg(srcOut, RegState::Define).addReg(srcIn).addReg(0).addImm(1));
 | |
| 
 | |
|       AddDefaultPred(BuildMI(*BB, StartOfExit, dl, TII->get(strOpc), destOut)
 | |
|         .addReg(scratch).addReg(destIn)
 | |
|         .addReg(0).addImm(1));
 | |
|     }
 | |
|     srcIn = srcOut;
 | |
|     destIn = destOut;
 | |
|   }
 | |
| 
 | |
|   MI->eraseFromParent();   // The instruction is gone now.
 | |
|   return BB;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *
 | |
| ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
 | |
|                                                MachineBasicBlock *BB) const {
 | |
|   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
 | |
|   DebugLoc dl = MI->getDebugLoc();
 | |
|   bool isThumb2 = Subtarget->isThumb2();
 | |
|   switch (MI->getOpcode()) {
 | |
|   default: {
 | |
|     MI->dump();
 | |
|     llvm_unreachable("Unexpected instr type to insert");
 | |
|   }
 | |
|   // The Thumb2 pre-indexed stores have the same MI operands, they just
 | |
|   // define them differently in the .td files from the isel patterns, so
 | |
|   // they need pseudos.
 | |
|   case ARM::t2STR_preidx:
 | |
|     MI->setDesc(TII->get(ARM::t2STR_PRE));
 | |
|     return BB;
 | |
|   case ARM::t2STRB_preidx:
 | |
|     MI->setDesc(TII->get(ARM::t2STRB_PRE));
 | |
|     return BB;
 | |
|   case ARM::t2STRH_preidx:
 | |
|     MI->setDesc(TII->get(ARM::t2STRH_PRE));
 | |
|     return BB;
 | |
| 
 | |
|   case ARM::STRi_preidx:
 | |
|   case ARM::STRBi_preidx: {
 | |
|     unsigned NewOpc = MI->getOpcode() == ARM::STRi_preidx ?
 | |
|       ARM::STR_PRE_IMM : ARM::STRB_PRE_IMM;
 | |
|     // Decode the offset.
 | |
|     unsigned Offset = MI->getOperand(4).getImm();
 | |
|     bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
 | |
|     Offset = ARM_AM::getAM2Offset(Offset);
 | |
|     if (isSub)
 | |
|       Offset = -Offset;
 | |
| 
 | |
|     MachineMemOperand *MMO = *MI->memoperands_begin();
 | |
|     BuildMI(*BB, MI, dl, TII->get(NewOpc))
 | |
|       .addOperand(MI->getOperand(0))  // Rn_wb
 | |
|       .addOperand(MI->getOperand(1))  // Rt
 | |
|       .addOperand(MI->getOperand(2))  // Rn
 | |
|       .addImm(Offset)                 // offset (skip GPR==zero_reg)
 | |
|       .addOperand(MI->getOperand(5))  // pred
 | |
|       .addOperand(MI->getOperand(6))
 | |
|       .addMemOperand(MMO);
 | |
|     MI->eraseFromParent();
 | |
|     return BB;
 | |
|   }
 | |
|   case ARM::STRr_preidx:
 | |
|   case ARM::STRBr_preidx:
 | |
|   case ARM::STRH_preidx: {
 | |
|     unsigned NewOpc;
 | |
|     switch (MI->getOpcode()) {
 | |
|     default: llvm_unreachable("unexpected opcode!");
 | |
|     case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
 | |
|     case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
 | |
|     case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
 | |
|     }
 | |
|     MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
 | |
|     for (unsigned i = 0; i < MI->getNumOperands(); ++i)
 | |
|       MIB.addOperand(MI->getOperand(i));
 | |
|     MI->eraseFromParent();
 | |
|     return BB;
 | |
|   }
 | |
|   case ARM::ATOMIC_LOAD_ADD_I8:
 | |
|      return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
 | |
|   case ARM::ATOMIC_LOAD_ADD_I16:
 | |
|      return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
 | |
|   case ARM::ATOMIC_LOAD_ADD_I32:
 | |
|      return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
 | |
| 
 | |
|   case ARM::ATOMIC_LOAD_AND_I8:
 | |
|      return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
 | |
|   case ARM::ATOMIC_LOAD_AND_I16:
 | |
|      return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
 | |
|   case ARM::ATOMIC_LOAD_AND_I32:
 | |
|      return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
 | |
| 
 | |
|   case ARM::ATOMIC_LOAD_OR_I8:
 | |
|      return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
 | |
|   case ARM::ATOMIC_LOAD_OR_I16:
 | |
|      return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
 | |
|   case ARM::ATOMIC_LOAD_OR_I32:
 | |
|      return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
 | |
| 
 | |
|   case ARM::ATOMIC_LOAD_XOR_I8:
 | |
|      return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
 | |
|   case ARM::ATOMIC_LOAD_XOR_I16:
 | |
|      return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
 | |
|   case ARM::ATOMIC_LOAD_XOR_I32:
 | |
|      return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
 | |
| 
 | |
|   case ARM::ATOMIC_LOAD_NAND_I8:
 | |
|      return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
 | |
|   case ARM::ATOMIC_LOAD_NAND_I16:
 | |
|      return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
 | |
|   case ARM::ATOMIC_LOAD_NAND_I32:
 | |
|      return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
 | |
| 
 | |
|   case ARM::ATOMIC_LOAD_SUB_I8:
 | |
|      return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
 | |
|   case ARM::ATOMIC_LOAD_SUB_I16:
 | |
|      return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
 | |
|   case ARM::ATOMIC_LOAD_SUB_I32:
 | |
|      return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
 | |
| 
 | |
|   case ARM::ATOMIC_LOAD_MIN_I8:
 | |
|      return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::LT);
 | |
|   case ARM::ATOMIC_LOAD_MIN_I16:
 | |
|      return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::LT);
 | |
|   case ARM::ATOMIC_LOAD_MIN_I32:
 | |
|      return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::LT);
 | |
| 
 | |
|   case ARM::ATOMIC_LOAD_MAX_I8:
 | |
|      return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::GT);
 | |
|   case ARM::ATOMIC_LOAD_MAX_I16:
 | |
|      return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::GT);
 | |
|   case ARM::ATOMIC_LOAD_MAX_I32:
 | |
|      return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::GT);
 | |
| 
 | |
|   case ARM::ATOMIC_LOAD_UMIN_I8:
 | |
|      return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::LO);
 | |
|   case ARM::ATOMIC_LOAD_UMIN_I16:
 | |
|      return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::LO);
 | |
|   case ARM::ATOMIC_LOAD_UMIN_I32:
 | |
|      return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::LO);
 | |
| 
 | |
|   case ARM::ATOMIC_LOAD_UMAX_I8:
 | |
|      return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::HI);
 | |
|   case ARM::ATOMIC_LOAD_UMAX_I16:
 | |
|      return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::HI);
 | |
|   case ARM::ATOMIC_LOAD_UMAX_I32:
 | |
|      return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::HI);
 | |
| 
 | |
|   case ARM::ATOMIC_SWAP_I8:  return EmitAtomicBinary(MI, BB, 1, 0);
 | |
|   case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
 | |
|   case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
 | |
| 
 | |
|   case ARM::ATOMIC_CMP_SWAP_I8:  return EmitAtomicCmpSwap(MI, BB, 1);
 | |
|   case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
 | |
|   case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
 | |
| 
 | |
| 
 | |
|   case ARM::ATOMADD6432:
 | |
|     return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr,
 | |
|                               isThumb2 ? ARM::t2ADCrr : ARM::ADCrr,
 | |
|                               /*NeedsCarry*/ true);
 | |
|   case ARM::ATOMSUB6432:
 | |
|     return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
 | |
|                               isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
 | |
|                               /*NeedsCarry*/ true);
 | |
|   case ARM::ATOMOR6432:
 | |
|     return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr,
 | |
|                               isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
 | |
|   case ARM::ATOMXOR6432:
 | |
|     return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2EORrr : ARM::EORrr,
 | |
|                               isThumb2 ? ARM::t2EORrr : ARM::EORrr);
 | |
|   case ARM::ATOMAND6432:
 | |
|     return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr,
 | |
|                               isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
 | |
|   case ARM::ATOMSWAP6432:
 | |
|     return EmitAtomicBinary64(MI, BB, 0, 0, false);
 | |
|   case ARM::ATOMCMPXCHG6432:
 | |
|     return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
 | |
|                               isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
 | |
|                               /*NeedsCarry*/ false, /*IsCmpxchg*/true);
 | |
| 
 | |
|   case ARM::tMOVCCr_pseudo: {
 | |
|     // To "insert" a SELECT_CC instruction, we actually have to insert the
 | |
|     // diamond control-flow pattern.  The incoming instruction knows the
 | |
|     // destination vreg to set, the condition code register to branch on, the
 | |
|     // true/false values to select between, and a branch opcode to use.
 | |
|     const BasicBlock *LLVM_BB = BB->getBasicBlock();
 | |
|     MachineFunction::iterator It = BB;
 | |
|     ++It;
 | |
| 
 | |
|     //  thisMBB:
 | |
|     //  ...
 | |
|     //   TrueVal = ...
 | |
|     //   cmpTY ccX, r1, r2
 | |
|     //   bCC copy1MBB
 | |
|     //   fallthrough --> copy0MBB
 | |
|     MachineBasicBlock *thisMBB  = BB;
 | |
|     MachineFunction *F = BB->getParent();
 | |
|     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|     MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|     F->insert(It, copy0MBB);
 | |
|     F->insert(It, sinkMBB);
 | |
| 
 | |
|     // Transfer the remainder of BB and its successor edges to sinkMBB.
 | |
|     sinkMBB->splice(sinkMBB->begin(), BB,
 | |
|                     llvm::next(MachineBasicBlock::iterator(MI)),
 | |
|                     BB->end());
 | |
|     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
 | |
| 
 | |
|     BB->addSuccessor(copy0MBB);
 | |
|     BB->addSuccessor(sinkMBB);
 | |
| 
 | |
|     BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
 | |
|       .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
 | |
| 
 | |
|     //  copy0MBB:
 | |
|     //   %FalseValue = ...
 | |
|     //   # fallthrough to sinkMBB
 | |
|     BB = copy0MBB;
 | |
| 
 | |
|     // Update machine-CFG edges
 | |
|     BB->addSuccessor(sinkMBB);
 | |
| 
 | |
|     //  sinkMBB:
 | |
|     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
 | |
|     //  ...
 | |
|     BB = sinkMBB;
 | |
|     BuildMI(*BB, BB->begin(), dl,
 | |
|             TII->get(ARM::PHI), MI->getOperand(0).getReg())
 | |
|       .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
 | |
|       .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
 | |
| 
 | |
|     MI->eraseFromParent();   // The pseudo instruction is gone now.
 | |
|     return BB;
 | |
|   }
 | |
| 
 | |
|   case ARM::BCCi64:
 | |
|   case ARM::BCCZi64: {
 | |
|     // If there is an unconditional branch to the other successor, remove it.
 | |
|     BB->erase(llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
 | |
| 
 | |
|     // Compare both parts that make up the double comparison separately for
 | |
|     // equality.
 | |
|     bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
 | |
| 
 | |
|     unsigned LHS1 = MI->getOperand(1).getReg();
 | |
|     unsigned LHS2 = MI->getOperand(2).getReg();
 | |
|     if (RHSisZero) {
 | |
|       AddDefaultPred(BuildMI(BB, dl,
 | |
|                              TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
 | |
|                      .addReg(LHS1).addImm(0));
 | |
|       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
 | |
|         .addReg(LHS2).addImm(0)
 | |
|         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
 | |
|     } else {
 | |
|       unsigned RHS1 = MI->getOperand(3).getReg();
 | |
|       unsigned RHS2 = MI->getOperand(4).getReg();
 | |
|       AddDefaultPred(BuildMI(BB, dl,
 | |
|                              TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
 | |
|                      .addReg(LHS1).addReg(RHS1));
 | |
|       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
 | |
|         .addReg(LHS2).addReg(RHS2)
 | |
|         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
 | |
|     }
 | |
| 
 | |
|     MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
 | |
|     MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
 | |
|     if (MI->getOperand(0).getImm() == ARMCC::NE)
 | |
|       std::swap(destMBB, exitMBB);
 | |
| 
 | |
|     BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
 | |
|       .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
 | |
|     if (isThumb2)
 | |
|       AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2B)).addMBB(exitMBB));
 | |
|     else
 | |
|       BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
 | |
| 
 | |
|     MI->eraseFromParent();   // The pseudo instruction is gone now.
 | |
|     return BB;
 | |
|   }
 | |
| 
 | |
|   case ARM::Int_eh_sjlj_setjmp:
 | |
|   case ARM::Int_eh_sjlj_setjmp_nofp:
 | |
|   case ARM::tInt_eh_sjlj_setjmp:
 | |
|   case ARM::t2Int_eh_sjlj_setjmp:
 | |
|   case ARM::t2Int_eh_sjlj_setjmp_nofp:
 | |
|     EmitSjLjDispatchBlock(MI, BB);
 | |
|     return BB;
 | |
| 
 | |
|   case ARM::ABS:
 | |
|   case ARM::t2ABS: {
 | |
|     // To insert an ABS instruction, we have to insert the
 | |
|     // diamond control-flow pattern.  The incoming instruction knows the
 | |
|     // source vreg to test against 0, the destination vreg to set,
 | |
|     // the condition code register to branch on, the
 | |
|     // true/false values to select between, and a branch opcode to use.
 | |
|     // It transforms
 | |
|     //     V1 = ABS V0
 | |
|     // into
 | |
|     //     V2 = MOVS V0
 | |
|     //     BCC                      (branch to SinkBB if V0 >= 0)
 | |
|     //     RSBBB: V3 = RSBri V2, 0  (compute ABS if V2 < 0)
 | |
|     //     SinkBB: V1 = PHI(V2, V3)
 | |
|     const BasicBlock *LLVM_BB = BB->getBasicBlock();
 | |
|     MachineFunction::iterator BBI = BB;
 | |
|     ++BBI;
 | |
|     MachineFunction *Fn = BB->getParent();
 | |
|     MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
 | |
|     MachineBasicBlock *SinkBB  = Fn->CreateMachineBasicBlock(LLVM_BB);
 | |
|     Fn->insert(BBI, RSBBB);
 | |
|     Fn->insert(BBI, SinkBB);
 | |
| 
 | |
|     unsigned int ABSSrcReg = MI->getOperand(1).getReg();
 | |
|     unsigned int ABSDstReg = MI->getOperand(0).getReg();
 | |
|     bool isThumb2 = Subtarget->isThumb2();
 | |
|     MachineRegisterInfo &MRI = Fn->getRegInfo();
 | |
|     // In Thumb mode S must not be specified if source register is the SP or
 | |
|     // PC and if destination register is the SP, so restrict register class
 | |
|     unsigned NewRsbDstReg = MRI.createVirtualRegister(isThumb2 ?
 | |
|       (const TargetRegisterClass*)&ARM::rGPRRegClass :
 | |
|       (const TargetRegisterClass*)&ARM::GPRRegClass);
 | |
| 
 | |
|     // Transfer the remainder of BB and its successor edges to sinkMBB.
 | |
|     SinkBB->splice(SinkBB->begin(), BB,
 | |
|       llvm::next(MachineBasicBlock::iterator(MI)),
 | |
|       BB->end());
 | |
|     SinkBB->transferSuccessorsAndUpdatePHIs(BB);
 | |
| 
 | |
|     BB->addSuccessor(RSBBB);
 | |
|     BB->addSuccessor(SinkBB);
 | |
| 
 | |
|     // fall through to SinkMBB
 | |
|     RSBBB->addSuccessor(SinkBB);
 | |
| 
 | |
|     // insert a cmp at the end of BB
 | |
|     AddDefaultPred(BuildMI(BB, dl,
 | |
|                            TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
 | |
|                    .addReg(ABSSrcReg).addImm(0));
 | |
| 
 | |
|     // insert a bcc with opposite CC to ARMCC::MI at the end of BB
 | |
|     BuildMI(BB, dl,
 | |
|       TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
 | |
|       .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
 | |
| 
 | |
|     // insert rsbri in RSBBB
 | |
|     // Note: BCC and rsbri will be converted into predicated rsbmi
 | |
|     // by if-conversion pass
 | |
|     BuildMI(*RSBBB, RSBBB->begin(), dl,
 | |
|       TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
 | |
|       .addReg(ABSSrcReg, RegState::Kill)
 | |
|       .addImm(0).addImm((unsigned)ARMCC::AL).addReg(0).addReg(0);
 | |
| 
 | |
|     // insert PHI in SinkBB,
 | |
|     // reuse ABSDstReg to not change uses of ABS instruction
 | |
|     BuildMI(*SinkBB, SinkBB->begin(), dl,
 | |
|       TII->get(ARM::PHI), ABSDstReg)
 | |
|       .addReg(NewRsbDstReg).addMBB(RSBBB)
 | |
|       .addReg(ABSSrcReg).addMBB(BB);
 | |
| 
 | |
|     // remove ABS instruction
 | |
|     MI->eraseFromParent();
 | |
| 
 | |
|     // return last added BB
 | |
|     return SinkBB;
 | |
|   }
 | |
|   case ARM::COPY_STRUCT_BYVAL_I32:
 | |
|     ++NumLoopByVals;
 | |
|     return EmitStructByval(MI, BB);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
 | |
|                                                       SDNode *Node) const {
 | |
|   if (!MI->hasPostISelHook()) {
 | |
|     assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
 | |
|            "Pseudo flag-setting opcodes must be marked with 'hasPostISelHook'");
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   const MCInstrDesc *MCID = &MI->getDesc();
 | |
|   // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
 | |
|   // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
 | |
|   // operand is still set to noreg. If needed, set the optional operand's
 | |
|   // register to CPSR, and remove the redundant implicit def.
 | |
|   //
 | |
|   // e.g. ADCS (..., CPSR<imp-def>) -> ADC (... opt:CPSR<def>).
 | |
| 
 | |
|   // Rename pseudo opcodes.
 | |
|   unsigned NewOpc = convertAddSubFlagsOpcode(MI->getOpcode());
 | |
|   if (NewOpc) {
 | |
|     const ARMBaseInstrInfo *TII =
 | |
|       static_cast<const ARMBaseInstrInfo*>(getTargetMachine().getInstrInfo());
 | |
|     MCID = &TII->get(NewOpc);
 | |
| 
 | |
|     assert(MCID->getNumOperands() == MI->getDesc().getNumOperands() + 1 &&
 | |
|            "converted opcode should be the same except for cc_out");
 | |
| 
 | |
|     MI->setDesc(*MCID);
 | |
| 
 | |
|     // Add the optional cc_out operand
 | |
|     MI->addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
 | |
|   }
 | |
|   unsigned ccOutIdx = MCID->getNumOperands() - 1;
 | |
| 
 | |
|   // Any ARM instruction that sets the 's' bit should specify an optional
 | |
|   // "cc_out" operand in the last operand position.
 | |
|   if (!MI->hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
 | |
|     assert(!NewOpc && "Optional cc_out operand required");
 | |
|     return;
 | |
|   }
 | |
|   // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
 | |
|   // since we already have an optional CPSR def.
 | |
|   bool definesCPSR = false;
 | |
|   bool deadCPSR = false;
 | |
|   for (unsigned i = MCID->getNumOperands(), e = MI->getNumOperands();
 | |
|        i != e; ++i) {
 | |
|     const MachineOperand &MO = MI->getOperand(i);
 | |
|     if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
 | |
|       definesCPSR = true;
 | |
|       if (MO.isDead())
 | |
|         deadCPSR = true;
 | |
|       MI->RemoveOperand(i);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   if (!definesCPSR) {
 | |
|     assert(!NewOpc && "Optional cc_out operand required");
 | |
|     return;
 | |
|   }
 | |
|   assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
 | |
|   if (deadCPSR) {
 | |
|     assert(!MI->getOperand(ccOutIdx).getReg() &&
 | |
|            "expect uninitialized optional cc_out operand");
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If this instruction was defined with an optional CPSR def and its dag node
 | |
|   // had a live implicit CPSR def, then activate the optional CPSR def.
 | |
|   MachineOperand &MO = MI->getOperand(ccOutIdx);
 | |
|   MO.setReg(ARM::CPSR);
 | |
|   MO.setIsDef(true);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                           ARM Optimization Hooks
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Helper function that checks if N is a null or all ones constant.
 | |
| static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
 | |
|   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
 | |
|   if (!C)
 | |
|     return false;
 | |
|   return AllOnes ? C->isAllOnesValue() : C->isNullValue();
 | |
| }
 | |
| 
 | |
| // Return true if N is conditionally 0 or all ones.
 | |
| // Detects these expressions where cc is an i1 value:
 | |
| //
 | |
| //   (select cc 0, y)   [AllOnes=0]
 | |
| //   (select cc y, 0)   [AllOnes=0]
 | |
| //   (zext cc)          [AllOnes=0]
 | |
| //   (sext cc)          [AllOnes=0/1]
 | |
| //   (select cc -1, y)  [AllOnes=1]
 | |
| //   (select cc y, -1)  [AllOnes=1]
 | |
| //
 | |
| // Invert is set when N is the null/all ones constant when CC is false.
 | |
| // OtherOp is set to the alternative value of N.
 | |
| static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes,
 | |
|                                        SDValue &CC, bool &Invert,
 | |
|                                        SDValue &OtherOp,
 | |
|                                        SelectionDAG &DAG) {
 | |
|   switch (N->getOpcode()) {
 | |
|   default: return false;
 | |
|   case ISD::SELECT: {
 | |
|     CC = N->getOperand(0);
 | |
|     SDValue N1 = N->getOperand(1);
 | |
|     SDValue N2 = N->getOperand(2);
 | |
|     if (isZeroOrAllOnes(N1, AllOnes)) {
 | |
|       Invert = false;
 | |
|       OtherOp = N2;
 | |
|       return true;
 | |
|     }
 | |
|     if (isZeroOrAllOnes(N2, AllOnes)) {
 | |
|       Invert = true;
 | |
|       OtherOp = N1;
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
|   case ISD::ZERO_EXTEND:
 | |
|     // (zext cc) can never be the all ones value.
 | |
|     if (AllOnes)
 | |
|       return false;
 | |
|     // Fall through.
 | |
|   case ISD::SIGN_EXTEND: {
 | |
|     EVT VT = N->getValueType(0);
 | |
|     CC = N->getOperand(0);
 | |
|     if (CC.getValueType() != MVT::i1)
 | |
|       return false;
 | |
|     Invert = !AllOnes;
 | |
|     if (AllOnes)
 | |
|       // When looking for an AllOnes constant, N is an sext, and the 'other'
 | |
|       // value is 0.
 | |
|       OtherOp = DAG.getConstant(0, VT);
 | |
|     else if (N->getOpcode() == ISD::ZERO_EXTEND)
 | |
|       // When looking for a 0 constant, N can be zext or sext.
 | |
|       OtherOp = DAG.getConstant(1, VT);
 | |
|     else
 | |
|       OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
 | |
|     return true;
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Combine a constant select operand into its use:
 | |
| //
 | |
| //   (add (select cc, 0, c), x)  -> (select cc, x, (add, x, c))
 | |
| //   (sub x, (select cc, 0, c))  -> (select cc, x, (sub, x, c))
 | |
| //   (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))  [AllOnes=1]
 | |
| //   (or  (select cc, 0, c), x)  -> (select cc, x, (or, x, c))
 | |
| //   (xor (select cc, 0, c), x)  -> (select cc, x, (xor, x, c))
 | |
| //
 | |
| // The transform is rejected if the select doesn't have a constant operand that
 | |
| // is null, or all ones when AllOnes is set.
 | |
| //
 | |
| // Also recognize sext/zext from i1:
 | |
| //
 | |
| //   (add (zext cc), x) -> (select cc (add x, 1), x)
 | |
| //   (add (sext cc), x) -> (select cc (add x, -1), x)
 | |
| //
 | |
| // These transformations eventually create predicated instructions.
 | |
| //
 | |
| // @param N       The node to transform.
 | |
| // @param Slct    The N operand that is a select.
 | |
| // @param OtherOp The other N operand (x above).
 | |
| // @param DCI     Context.
 | |
| // @param AllOnes Require the select constant to be all ones instead of null.
 | |
| // @returns The new node, or SDValue() on failure.
 | |
| static
 | |
| SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
 | |
|                             TargetLowering::DAGCombinerInfo &DCI,
 | |
|                             bool AllOnes = false) {
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   EVT VT = N->getValueType(0);
 | |
|   SDValue NonConstantVal;
 | |
|   SDValue CCOp;
 | |
|   bool SwapSelectOps;
 | |
|   if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
 | |
|                                   NonConstantVal, DAG))
 | |
|     return SDValue();
 | |
| 
 | |
|   // Slct is now know to be the desired identity constant when CC is true.
 | |
|   SDValue TrueVal = OtherOp;
 | |
|   SDValue FalseVal = DAG.getNode(N->getOpcode(), N->getDebugLoc(), VT,
 | |
|                                  OtherOp, NonConstantVal);
 | |
|   // Unless SwapSelectOps says CC should be false.
 | |
|   if (SwapSelectOps)
 | |
|     std::swap(TrueVal, FalseVal);
 | |
| 
 | |
|   return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
 | |
|                      CCOp, TrueVal, FalseVal);
 | |
| }
 | |
| 
 | |
| // Attempt combineSelectAndUse on each operand of a commutative operator N.
 | |
| static
 | |
| SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes,
 | |
|                                        TargetLowering::DAGCombinerInfo &DCI) {
 | |
|   SDValue N0 = N->getOperand(0);
 | |
|   SDValue N1 = N->getOperand(1);
 | |
|   if (N0.getNode()->hasOneUse()) {
 | |
|     SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes);
 | |
|     if (Result.getNode())
 | |
|       return Result;
 | |
|   }
 | |
|   if (N1.getNode()->hasOneUse()) {
 | |
|     SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes);
 | |
|     if (Result.getNode())
 | |
|       return Result;
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| // AddCombineToVPADDL- For pair-wise add on neon, use the vpaddl instruction
 | |
| // (only after legalization).
 | |
| static SDValue AddCombineToVPADDL(SDNode *N, SDValue N0, SDValue N1,
 | |
|                                  TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                  const ARMSubtarget *Subtarget) {
 | |
| 
 | |
|   // Only perform optimization if after legalize, and if NEON is available. We
 | |
|   // also expected both operands to be BUILD_VECTORs.
 | |
|   if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
 | |
|       || N0.getOpcode() != ISD::BUILD_VECTOR
 | |
|       || N1.getOpcode() != ISD::BUILD_VECTOR)
 | |
|     return SDValue();
 | |
| 
 | |
|   // Check output type since VPADDL operand elements can only be 8, 16, or 32.
 | |
|   EVT VT = N->getValueType(0);
 | |
|   if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
 | |
|     return SDValue();
 | |
| 
 | |
|   // Check that the vector operands are of the right form.
 | |
|   // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
 | |
|   // operands, where N is the size of the formed vector.
 | |
|   // Each EXTRACT_VECTOR should have the same input vector and odd or even
 | |
|   // index such that we have a pair wise add pattern.
 | |
| 
 | |
|   // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
 | |
|   if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
 | |
|     return SDValue();
 | |
|   SDValue Vec = N0->getOperand(0)->getOperand(0);
 | |
|   SDNode *V = Vec.getNode();
 | |
|   unsigned nextIndex = 0;
 | |
| 
 | |
|   // For each operands to the ADD which are BUILD_VECTORs,
 | |
|   // check to see if each of their operands are an EXTRACT_VECTOR with
 | |
|   // the same vector and appropriate index.
 | |
|   for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
 | |
|     if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
 | |
|         && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
 | |
| 
 | |
|       SDValue ExtVec0 = N0->getOperand(i);
 | |
|       SDValue ExtVec1 = N1->getOperand(i);
 | |
| 
 | |
|       // First operand is the vector, verify its the same.
 | |
|       if (V != ExtVec0->getOperand(0).getNode() ||
 | |
|           V != ExtVec1->getOperand(0).getNode())
 | |
|         return SDValue();
 | |
| 
 | |
|       // Second is the constant, verify its correct.
 | |
|       ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
 | |
|       ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
 | |
| 
 | |
|       // For the constant, we want to see all the even or all the odd.
 | |
|       if (!C0 || !C1 || C0->getZExtValue() != nextIndex
 | |
|           || C1->getZExtValue() != nextIndex+1)
 | |
|         return SDValue();
 | |
| 
 | |
|       // Increment index.
 | |
|       nextIndex+=2;
 | |
|     } else
 | |
|       return SDValue();
 | |
|   }
 | |
| 
 | |
|   // Create VPADDL node.
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
| 
 | |
|   // Build operand list.
 | |
|   SmallVector<SDValue, 8> Ops;
 | |
|   Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls,
 | |
|                                 TLI.getPointerTy()));
 | |
| 
 | |
|   // Input is the vector.
 | |
|   Ops.push_back(Vec);
 | |
| 
 | |
|   // Get widened type and narrowed type.
 | |
|   MVT widenType;
 | |
|   unsigned numElem = VT.getVectorNumElements();
 | |
|   switch (VT.getVectorElementType().getSimpleVT().SimpleTy) {
 | |
|     case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
 | |
|     case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
 | |
|     case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
 | |
|     default:
 | |
|       llvm_unreachable("Invalid vector element type for padd optimization.");
 | |
|   }
 | |
| 
 | |
|   SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
 | |
|                             widenType, &Ops[0], Ops.size());
 | |
|   return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, tmp);
 | |
| }
 | |
| 
 | |
| static SDValue findMUL_LOHI(SDValue V) {
 | |
|   if (V->getOpcode() == ISD::UMUL_LOHI ||
 | |
|       V->getOpcode() == ISD::SMUL_LOHI)
 | |
|     return V;
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| static SDValue AddCombineTo64bitMLAL(SDNode *AddcNode,
 | |
|                                      TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                      const ARMSubtarget *Subtarget) {
 | |
| 
 | |
|   if (Subtarget->isThumb1Only()) return SDValue();
 | |
| 
 | |
|   // Only perform the checks after legalize when the pattern is available.
 | |
|   if (DCI.isBeforeLegalize()) return SDValue();
 | |
| 
 | |
|   // Look for multiply add opportunities.
 | |
|   // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
 | |
|   // each add nodes consumes a value from ISD::UMUL_LOHI and there is
 | |
|   // a glue link from the first add to the second add.
 | |
|   // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
 | |
|   // a S/UMLAL instruction.
 | |
|   //          loAdd   UMUL_LOHI
 | |
|   //            \    / :lo    \ :hi
 | |
|   //             \  /          \          [no multiline comment]
 | |
|   //              ADDC         |  hiAdd
 | |
|   //                 \ :glue  /  /
 | |
|   //                  \      /  /
 | |
|   //                    ADDE
 | |
|   //
 | |
|   assert(AddcNode->getOpcode() == ISD::ADDC && "Expect an ADDC");
 | |
|   SDValue AddcOp0 = AddcNode->getOperand(0);
 | |
|   SDValue AddcOp1 = AddcNode->getOperand(1);
 | |
| 
 | |
|   // Check if the two operands are from the same mul_lohi node.
 | |
|   if (AddcOp0.getNode() == AddcOp1.getNode())
 | |
|     return SDValue();
 | |
| 
 | |
|   assert(AddcNode->getNumValues() == 2 &&
 | |
|          AddcNode->getValueType(0) == MVT::i32 &&
 | |
|          AddcNode->getValueType(1) == MVT::Glue &&
 | |
|          "Expect ADDC with two result values: i32, glue");
 | |
| 
 | |
|   // Check that the ADDC adds the low result of the S/UMUL_LOHI.
 | |
|   if (AddcOp0->getOpcode() != ISD::UMUL_LOHI &&
 | |
|       AddcOp0->getOpcode() != ISD::SMUL_LOHI &&
 | |
|       AddcOp1->getOpcode() != ISD::UMUL_LOHI &&
 | |
|       AddcOp1->getOpcode() != ISD::SMUL_LOHI)
 | |
|     return SDValue();
 | |
| 
 | |
|   // Look for the glued ADDE.
 | |
|   SDNode* AddeNode = AddcNode->getGluedUser();
 | |
|   if (AddeNode == NULL)
 | |
|     return SDValue();
 | |
| 
 | |
|   // Make sure it is really an ADDE.
 | |
|   if (AddeNode->getOpcode() != ISD::ADDE)
 | |
|     return SDValue();
 | |
| 
 | |
|   assert(AddeNode->getNumOperands() == 3 &&
 | |
|          AddeNode->getOperand(2).getValueType() == MVT::Glue &&
 | |
|          "ADDE node has the wrong inputs");
 | |
| 
 | |
|   // Check for the triangle shape.
 | |
|   SDValue AddeOp0 = AddeNode->getOperand(0);
 | |
|   SDValue AddeOp1 = AddeNode->getOperand(1);
 | |
| 
 | |
|   // Make sure that the ADDE operands are not coming from the same node.
 | |
|   if (AddeOp0.getNode() == AddeOp1.getNode())
 | |
|     return SDValue();
 | |
| 
 | |
|   // Find the MUL_LOHI node walking up ADDE's operands.
 | |
|   bool IsLeftOperandMUL = false;
 | |
|   SDValue MULOp = findMUL_LOHI(AddeOp0);
 | |
|   if (MULOp == SDValue())
 | |
|    MULOp = findMUL_LOHI(AddeOp1);
 | |
|   else
 | |
|     IsLeftOperandMUL = true;
 | |
|   if (MULOp == SDValue())
 | |
|      return SDValue();
 | |
| 
 | |
|   // Figure out the right opcode.
 | |
|   unsigned Opc = MULOp->getOpcode();
 | |
|   unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL;
 | |
| 
 | |
|   // Figure out the high and low input values to the MLAL node.
 | |
|   SDValue* HiMul = &MULOp;
 | |
|   SDValue* HiAdd = NULL;
 | |
|   SDValue* LoMul = NULL;
 | |
|   SDValue* LowAdd = NULL;
 | |
| 
 | |
|   if (IsLeftOperandMUL)
 | |
|     HiAdd = &AddeOp1;
 | |
|   else
 | |
|     HiAdd = &AddeOp0;
 | |
| 
 | |
| 
 | |
|   if (AddcOp0->getOpcode() == Opc) {
 | |
|     LoMul = &AddcOp0;
 | |
|     LowAdd = &AddcOp1;
 | |
|   }
 | |
|   if (AddcOp1->getOpcode() == Opc) {
 | |
|     LoMul = &AddcOp1;
 | |
|     LowAdd = &AddcOp0;
 | |
|   }
 | |
| 
 | |
|   if (LoMul == NULL)
 | |
|     return SDValue();
 | |
| 
 | |
|   if (LoMul->getNode() != HiMul->getNode())
 | |
|     return SDValue();
 | |
| 
 | |
|   // Create the merged node.
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
| 
 | |
|   // Build operand list.
 | |
|   SmallVector<SDValue, 8> Ops;
 | |
|   Ops.push_back(LoMul->getOperand(0));
 | |
|   Ops.push_back(LoMul->getOperand(1));
 | |
|   Ops.push_back(*LowAdd);
 | |
|   Ops.push_back(*HiAdd);
 | |
| 
 | |
|   SDValue MLALNode =  DAG.getNode(FinalOpc, AddcNode->getDebugLoc(),
 | |
|                                  DAG.getVTList(MVT::i32, MVT::i32),
 | |
|                                  &Ops[0], Ops.size());
 | |
| 
 | |
|   // Replace the ADDs' nodes uses by the MLA node's values.
 | |
|   SDValue HiMLALResult(MLALNode.getNode(), 1);
 | |
|   DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult);
 | |
| 
 | |
|   SDValue LoMLALResult(MLALNode.getNode(), 0);
 | |
|   DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult);
 | |
| 
 | |
|   // Return original node to notify the driver to stop replacing.
 | |
|   SDValue resNode(AddcNode, 0);
 | |
|   return resNode;
 | |
| }
 | |
| 
 | |
| /// PerformADDCCombine - Target-specific dag combine transform from
 | |
| /// ISD::ADDC, ISD::ADDE, and ISD::MUL_LOHI to MLAL.
 | |
| static SDValue PerformADDCCombine(SDNode *N,
 | |
|                                  TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                  const ARMSubtarget *Subtarget) {
 | |
| 
 | |
|   return AddCombineTo64bitMLAL(N, DCI, Subtarget);
 | |
| 
 | |
| }
 | |
| 
 | |
| /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
 | |
| /// operands N0 and N1.  This is a helper for PerformADDCombine that is
 | |
| /// called with the default operands, and if that fails, with commuted
 | |
| /// operands.
 | |
| static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
 | |
|                                           TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                           const ARMSubtarget *Subtarget){
 | |
| 
 | |
|   // Attempt to create vpaddl for this add.
 | |
|   SDValue Result = AddCombineToVPADDL(N, N0, N1, DCI, Subtarget);
 | |
|   if (Result.getNode())
 | |
|     return Result;
 | |
| 
 | |
|   // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
 | |
|   if (N0.getNode()->hasOneUse()) {
 | |
|     SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
 | |
|     if (Result.getNode()) return Result;
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
 | |
| ///
 | |
| static SDValue PerformADDCombine(SDNode *N,
 | |
|                                  TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                  const ARMSubtarget *Subtarget) {
 | |
|   SDValue N0 = N->getOperand(0);
 | |
|   SDValue N1 = N->getOperand(1);
 | |
| 
 | |
|   // First try with the default operand order.
 | |
|   SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget);
 | |
|   if (Result.getNode())
 | |
|     return Result;
 | |
| 
 | |
|   // If that didn't work, try again with the operands commuted.
 | |
|   return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
 | |
| }
 | |
| 
 | |
| /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
 | |
| ///
 | |
| static SDValue PerformSUBCombine(SDNode *N,
 | |
|                                  TargetLowering::DAGCombinerInfo &DCI) {
 | |
|   SDValue N0 = N->getOperand(0);
 | |
|   SDValue N1 = N->getOperand(1);
 | |
| 
 | |
|   // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
 | |
|   if (N1.getNode()->hasOneUse()) {
 | |
|     SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
 | |
|     if (Result.getNode()) return Result;
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// PerformVMULCombine
 | |
| /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
 | |
| /// special multiplier accumulator forwarding.
 | |
| ///   vmul d3, d0, d2
 | |
| ///   vmla d3, d1, d2
 | |
| /// is faster than
 | |
| ///   vadd d3, d0, d1
 | |
| ///   vmul d3, d3, d2
 | |
| static SDValue PerformVMULCombine(SDNode *N,
 | |
|                                   TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                   const ARMSubtarget *Subtarget) {
 | |
|   if (!Subtarget->hasVMLxForwarding())
 | |
|     return SDValue();
 | |
| 
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   SDValue N0 = N->getOperand(0);
 | |
|   SDValue N1 = N->getOperand(1);
 | |
|   unsigned Opcode = N0.getOpcode();
 | |
|   if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
 | |
|       Opcode != ISD::FADD && Opcode != ISD::FSUB) {
 | |
|     Opcode = N1.getOpcode();
 | |
|     if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
 | |
|         Opcode != ISD::FADD && Opcode != ISD::FSUB)
 | |
|       return SDValue();
 | |
|     std::swap(N0, N1);
 | |
|   }
 | |
| 
 | |
|   EVT VT = N->getValueType(0);
 | |
|   DebugLoc DL = N->getDebugLoc();
 | |
|   SDValue N00 = N0->getOperand(0);
 | |
|   SDValue N01 = N0->getOperand(1);
 | |
|   return DAG.getNode(Opcode, DL, VT,
 | |
|                      DAG.getNode(ISD::MUL, DL, VT, N00, N1),
 | |
|                      DAG.getNode(ISD::MUL, DL, VT, N01, N1));
 | |
| }
 | |
| 
 | |
| static SDValue PerformMULCombine(SDNode *N,
 | |
|                                  TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                  const ARMSubtarget *Subtarget) {
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
| 
 | |
|   if (Subtarget->isThumb1Only())
 | |
|     return SDValue();
 | |
| 
 | |
|   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
 | |
|     return SDValue();
 | |
| 
 | |
|   EVT VT = N->getValueType(0);
 | |
|   if (VT.is64BitVector() || VT.is128BitVector())
 | |
|     return PerformVMULCombine(N, DCI, Subtarget);
 | |
|   if (VT != MVT::i32)
 | |
|     return SDValue();
 | |
| 
 | |
|   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
 | |
|   if (!C)
 | |
|     return SDValue();
 | |
| 
 | |
|   int64_t MulAmt = C->getSExtValue();
 | |
|   unsigned ShiftAmt = CountTrailingZeros_64(MulAmt);
 | |
| 
 | |
|   ShiftAmt = ShiftAmt & (32 - 1);
 | |
|   SDValue V = N->getOperand(0);
 | |
|   DebugLoc DL = N->getDebugLoc();
 | |
| 
 | |
|   SDValue Res;
 | |
|   MulAmt >>= ShiftAmt;
 | |
| 
 | |
|   if (MulAmt >= 0) {
 | |
|     if (isPowerOf2_32(MulAmt - 1)) {
 | |
|       // (mul x, 2^N + 1) => (add (shl x, N), x)
 | |
|       Res = DAG.getNode(ISD::ADD, DL, VT,
 | |
|                         V,
 | |
|                         DAG.getNode(ISD::SHL, DL, VT,
 | |
|                                     V,
 | |
|                                     DAG.getConstant(Log2_32(MulAmt - 1),
 | |
|                                                     MVT::i32)));
 | |
|     } else if (isPowerOf2_32(MulAmt + 1)) {
 | |
|       // (mul x, 2^N - 1) => (sub (shl x, N), x)
 | |
|       Res = DAG.getNode(ISD::SUB, DL, VT,
 | |
|                         DAG.getNode(ISD::SHL, DL, VT,
 | |
|                                     V,
 | |
|                                     DAG.getConstant(Log2_32(MulAmt + 1),
 | |
|                                                     MVT::i32)),
 | |
|                         V);
 | |
|     } else
 | |
|       return SDValue();
 | |
|   } else {
 | |
|     uint64_t MulAmtAbs = -MulAmt;
 | |
|     if (isPowerOf2_32(MulAmtAbs + 1)) {
 | |
|       // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
 | |
|       Res = DAG.getNode(ISD::SUB, DL, VT,
 | |
|                         V,
 | |
|                         DAG.getNode(ISD::SHL, DL, VT,
 | |
|                                     V,
 | |
|                                     DAG.getConstant(Log2_32(MulAmtAbs + 1),
 | |
|                                                     MVT::i32)));
 | |
|     } else if (isPowerOf2_32(MulAmtAbs - 1)) {
 | |
|       // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
 | |
|       Res = DAG.getNode(ISD::ADD, DL, VT,
 | |
|                         V,
 | |
|                         DAG.getNode(ISD::SHL, DL, VT,
 | |
|                                     V,
 | |
|                                     DAG.getConstant(Log2_32(MulAmtAbs-1),
 | |
|                                                     MVT::i32)));
 | |
|       Res = DAG.getNode(ISD::SUB, DL, VT,
 | |
|                         DAG.getConstant(0, MVT::i32),Res);
 | |
| 
 | |
|     } else
 | |
|       return SDValue();
 | |
|   }
 | |
| 
 | |
|   if (ShiftAmt != 0)
 | |
|     Res = DAG.getNode(ISD::SHL, DL, VT,
 | |
|                       Res, DAG.getConstant(ShiftAmt, MVT::i32));
 | |
| 
 | |
|   // Do not add new nodes to DAG combiner worklist.
 | |
|   DCI.CombineTo(N, Res, false);
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| static SDValue PerformANDCombine(SDNode *N,
 | |
|                                  TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                  const ARMSubtarget *Subtarget) {
 | |
| 
 | |
|   // Attempt to use immediate-form VBIC
 | |
|   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
 | |
|   DebugLoc dl = N->getDebugLoc();
 | |
|   EVT VT = N->getValueType(0);
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
| 
 | |
|   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
 | |
|     return SDValue();
 | |
| 
 | |
|   APInt SplatBits, SplatUndef;
 | |
|   unsigned SplatBitSize;
 | |
|   bool HasAnyUndefs;
 | |
|   if (BVN &&
 | |
|       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
 | |
|     if (SplatBitSize <= 64) {
 | |
|       EVT VbicVT;
 | |
|       SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
 | |
|                                       SplatUndef.getZExtValue(), SplatBitSize,
 | |
|                                       DAG, VbicVT, VT.is128BitVector(),
 | |
|                                       OtherModImm);
 | |
|       if (Val.getNode()) {
 | |
|         SDValue Input =
 | |
|           DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
 | |
|         SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
 | |
|         return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!Subtarget->isThumb1Only()) {
 | |
|     // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
 | |
|     SDValue Result = combineSelectAndUseCommutative(N, true, DCI);
 | |
|     if (Result.getNode())
 | |
|       return Result;
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// PerformORCombine - Target-specific dag combine xforms for ISD::OR
 | |
| static SDValue PerformORCombine(SDNode *N,
 | |
|                                 TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                 const ARMSubtarget *Subtarget) {
 | |
|   // Attempt to use immediate-form VORR
 | |
|   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
 | |
|   DebugLoc dl = N->getDebugLoc();
 | |
|   EVT VT = N->getValueType(0);
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
| 
 | |
|   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
 | |
|     return SDValue();
 | |
| 
 | |
|   APInt SplatBits, SplatUndef;
 | |
|   unsigned SplatBitSize;
 | |
|   bool HasAnyUndefs;
 | |
|   if (BVN && Subtarget->hasNEON() &&
 | |
|       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
 | |
|     if (SplatBitSize <= 64) {
 | |
|       EVT VorrVT;
 | |
|       SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
 | |
|                                       SplatUndef.getZExtValue(), SplatBitSize,
 | |
|                                       DAG, VorrVT, VT.is128BitVector(),
 | |
|                                       OtherModImm);
 | |
|       if (Val.getNode()) {
 | |
|         SDValue Input =
 | |
|           DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
 | |
|         SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
 | |
|         return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!Subtarget->isThumb1Only()) {
 | |
|     // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
 | |
|     SDValue Result = combineSelectAndUseCommutative(N, false, DCI);
 | |
|     if (Result.getNode())
 | |
|       return Result;
 | |
|   }
 | |
| 
 | |
|   // The code below optimizes (or (and X, Y), Z).
 | |
|   // The AND operand needs to have a single user to make these optimizations
 | |
|   // profitable.
 | |
|   SDValue N0 = N->getOperand(0);
 | |
|   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
 | |
|     return SDValue();
 | |
|   SDValue N1 = N->getOperand(1);
 | |
| 
 | |
|   // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
 | |
|   if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
 | |
|       DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
 | |
|     APInt SplatUndef;
 | |
|     unsigned SplatBitSize;
 | |
|     bool HasAnyUndefs;
 | |
| 
 | |
|     BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
 | |
|     APInt SplatBits0;
 | |
|     if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
 | |
|                                   HasAnyUndefs) && !HasAnyUndefs) {
 | |
|       BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
 | |
|       APInt SplatBits1;
 | |
|       if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
 | |
|                                     HasAnyUndefs) && !HasAnyUndefs &&
 | |
|           SplatBits0 == ~SplatBits1) {
 | |
|         // Canonicalize the vector type to make instruction selection simpler.
 | |
|         EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
 | |
|         SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
 | |
|                                      N0->getOperand(1), N0->getOperand(0),
 | |
|                                      N1->getOperand(0));
 | |
|         return DAG.getNode(ISD::BITCAST, dl, VT, Result);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
 | |
|   // reasonable.
 | |
| 
 | |
|   // BFI is only available on V6T2+
 | |
|   if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
 | |
|     return SDValue();
 | |
| 
 | |
|   DebugLoc DL = N->getDebugLoc();
 | |
|   // 1) or (and A, mask), val => ARMbfi A, val, mask
 | |
|   //      iff (val & mask) == val
 | |
|   //
 | |
|   // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
 | |
|   //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
 | |
|   //          && mask == ~mask2
 | |
|   //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
 | |
|   //          && ~mask == mask2
 | |
|   //  (i.e., copy a bitfield value into another bitfield of the same width)
 | |
| 
 | |
|   if (VT != MVT::i32)
 | |
|     return SDValue();
 | |
| 
 | |
|   SDValue N00 = N0.getOperand(0);
 | |
| 
 | |
|   // The value and the mask need to be constants so we can verify this is
 | |
|   // actually a bitfield set. If the mask is 0xffff, we can do better
 | |
|   // via a movt instruction, so don't use BFI in that case.
 | |
|   SDValue MaskOp = N0.getOperand(1);
 | |
|   ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
 | |
|   if (!MaskC)
 | |
|     return SDValue();
 | |
|   unsigned Mask = MaskC->getZExtValue();
 | |
|   if (Mask == 0xffff)
 | |
|     return SDValue();
 | |
|   SDValue Res;
 | |
|   // Case (1): or (and A, mask), val => ARMbfi A, val, mask
 | |
|   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
 | |
|   if (N1C) {
 | |
|     unsigned Val = N1C->getZExtValue();
 | |
|     if ((Val & ~Mask) != Val)
 | |
|       return SDValue();
 | |
| 
 | |
|     if (ARM::isBitFieldInvertedMask(Mask)) {
 | |
|       Val >>= CountTrailingZeros_32(~Mask);
 | |
| 
 | |
|       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
 | |
|                         DAG.getConstant(Val, MVT::i32),
 | |
|                         DAG.getConstant(Mask, MVT::i32));
 | |
| 
 | |
|       // Do not add new nodes to DAG combiner worklist.
 | |
|       DCI.CombineTo(N, Res, false);
 | |
|       return SDValue();
 | |
|     }
 | |
|   } else if (N1.getOpcode() == ISD::AND) {
 | |
|     // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
 | |
|     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
 | |
|     if (!N11C)
 | |
|       return SDValue();
 | |
|     unsigned Mask2 = N11C->getZExtValue();
 | |
| 
 | |
|     // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
 | |
|     // as is to match.
 | |
|     if (ARM::isBitFieldInvertedMask(Mask) &&
 | |
|         (Mask == ~Mask2)) {
 | |
|       // The pack halfword instruction works better for masks that fit it,
 | |
|       // so use that when it's available.
 | |
|       if (Subtarget->hasT2ExtractPack() &&
 | |
|           (Mask == 0xffff || Mask == 0xffff0000))
 | |
|         return SDValue();
 | |
|       // 2a
 | |
|       unsigned amt = CountTrailingZeros_32(Mask2);
 | |
|       Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
 | |
|                         DAG.getConstant(amt, MVT::i32));
 | |
|       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
 | |
|                         DAG.getConstant(Mask, MVT::i32));
 | |
|       // Do not add new nodes to DAG combiner worklist.
 | |
|       DCI.CombineTo(N, Res, false);
 | |
|       return SDValue();
 | |
|     } else if (ARM::isBitFieldInvertedMask(~Mask) &&
 | |
|                (~Mask == Mask2)) {
 | |
|       // The pack halfword instruction works better for masks that fit it,
 | |
|       // so use that when it's available.
 | |
|       if (Subtarget->hasT2ExtractPack() &&
 | |
|           (Mask2 == 0xffff || Mask2 == 0xffff0000))
 | |
|         return SDValue();
 | |
|       // 2b
 | |
|       unsigned lsb = CountTrailingZeros_32(Mask);
 | |
|       Res = DAG.getNode(ISD::SRL, DL, VT, N00,
 | |
|                         DAG.getConstant(lsb, MVT::i32));
 | |
|       Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
 | |
|                         DAG.getConstant(Mask2, MVT::i32));
 | |
|       // Do not add new nodes to DAG combiner worklist.
 | |
|       DCI.CombineTo(N, Res, false);
 | |
|       return SDValue();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
 | |
|       N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
 | |
|       ARM::isBitFieldInvertedMask(~Mask)) {
 | |
|     // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
 | |
|     // where lsb(mask) == #shamt and masked bits of B are known zero.
 | |
|     SDValue ShAmt = N00.getOperand(1);
 | |
|     unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
 | |
|     unsigned LSB = CountTrailingZeros_32(Mask);
 | |
|     if (ShAmtC != LSB)
 | |
|       return SDValue();
 | |
| 
 | |
|     Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
 | |
|                       DAG.getConstant(~Mask, MVT::i32));
 | |
| 
 | |
|     // Do not add new nodes to DAG combiner worklist.
 | |
|     DCI.CombineTo(N, Res, false);
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| static SDValue PerformXORCombine(SDNode *N,
 | |
|                                  TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                  const ARMSubtarget *Subtarget) {
 | |
|   EVT VT = N->getValueType(0);
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
| 
 | |
|   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
 | |
|     return SDValue();
 | |
| 
 | |
|   if (!Subtarget->isThumb1Only()) {
 | |
|     // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
 | |
|     SDValue Result = combineSelectAndUseCommutative(N, false, DCI);
 | |
|     if (Result.getNode())
 | |
|       return Result;
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// PerformBFICombine - (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
 | |
| /// the bits being cleared by the AND are not demanded by the BFI.
 | |
| static SDValue PerformBFICombine(SDNode *N,
 | |
|                                  TargetLowering::DAGCombinerInfo &DCI) {
 | |
|   SDValue N1 = N->getOperand(1);
 | |
|   if (N1.getOpcode() == ISD::AND) {
 | |
|     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
 | |
|     if (!N11C)
 | |
|       return SDValue();
 | |
|     unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
 | |
|     unsigned LSB = CountTrailingZeros_32(~InvMask);
 | |
|     unsigned Width = (32 - CountLeadingZeros_32(~InvMask)) - LSB;
 | |
|     unsigned Mask = (1 << Width)-1;
 | |
|     unsigned Mask2 = N11C->getZExtValue();
 | |
|     if ((Mask & (~Mask2)) == 0)
 | |
|       return DCI.DAG.getNode(ARMISD::BFI, N->getDebugLoc(), N->getValueType(0),
 | |
|                              N->getOperand(0), N1.getOperand(0),
 | |
|                              N->getOperand(2));
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// PerformVMOVRRDCombine - Target-specific dag combine xforms for
 | |
| /// ARMISD::VMOVRRD.
 | |
| static SDValue PerformVMOVRRDCombine(SDNode *N,
 | |
|                                      TargetLowering::DAGCombinerInfo &DCI) {
 | |
|   // vmovrrd(vmovdrr x, y) -> x,y
 | |
|   SDValue InDouble = N->getOperand(0);
 | |
|   if (InDouble.getOpcode() == ARMISD::VMOVDRR)
 | |
|     return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
 | |
| 
 | |
|   // vmovrrd(load f64) -> (load i32), (load i32)
 | |
|   SDNode *InNode = InDouble.getNode();
 | |
|   if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
 | |
|       InNode->getValueType(0) == MVT::f64 &&
 | |
|       InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
 | |
|       !cast<LoadSDNode>(InNode)->isVolatile()) {
 | |
|     // TODO: Should this be done for non-FrameIndex operands?
 | |
|     LoadSDNode *LD = cast<LoadSDNode>(InNode);
 | |
| 
 | |
|     SelectionDAG &DAG = DCI.DAG;
 | |
|     DebugLoc DL = LD->getDebugLoc();
 | |
|     SDValue BasePtr = LD->getBasePtr();
 | |
|     SDValue NewLD1 = DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr,
 | |
|                                  LD->getPointerInfo(), LD->isVolatile(),
 | |
|                                  LD->isNonTemporal(), LD->isInvariant(),
 | |
|                                  LD->getAlignment());
 | |
| 
 | |
|     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
 | |
|                                     DAG.getConstant(4, MVT::i32));
 | |
|     SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, NewLD1.getValue(1), OffsetPtr,
 | |
|                                  LD->getPointerInfo(), LD->isVolatile(),
 | |
|                                  LD->isNonTemporal(), LD->isInvariant(),
 | |
|                                  std::min(4U, LD->getAlignment() / 2));
 | |
| 
 | |
|     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
 | |
|     SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
 | |
|     DCI.RemoveFromWorklist(LD);
 | |
|     DAG.DeleteNode(LD);
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// PerformVMOVDRRCombine - Target-specific dag combine xforms for
 | |
| /// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
 | |
| static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
 | |
|   // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
 | |
|   SDValue Op0 = N->getOperand(0);
 | |
|   SDValue Op1 = N->getOperand(1);
 | |
|   if (Op0.getOpcode() == ISD::BITCAST)
 | |
|     Op0 = Op0.getOperand(0);
 | |
|   if (Op1.getOpcode() == ISD::BITCAST)
 | |
|     Op1 = Op1.getOperand(0);
 | |
|   if (Op0.getOpcode() == ARMISD::VMOVRRD &&
 | |
|       Op0.getNode() == Op1.getNode() &&
 | |
|       Op0.getResNo() == 0 && Op1.getResNo() == 1)
 | |
|     return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
 | |
|                        N->getValueType(0), Op0.getOperand(0));
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// PerformSTORECombine - Target-specific dag combine xforms for
 | |
| /// ISD::STORE.
 | |
| static SDValue PerformSTORECombine(SDNode *N,
 | |
|                                    TargetLowering::DAGCombinerInfo &DCI) {
 | |
|   StoreSDNode *St = cast<StoreSDNode>(N);
 | |
|   if (St->isVolatile())
 | |
|     return SDValue();
 | |
| 
 | |
|   // Optimize trunc store (of multiple scalars) to shuffle and store.  First,
 | |
|   // pack all of the elements in one place.  Next, store to memory in fewer
 | |
|   // chunks.
 | |
|   SDValue StVal = St->getValue();
 | |
|   EVT VT = StVal.getValueType();
 | |
|   if (St->isTruncatingStore() && VT.isVector()) {
 | |
|     SelectionDAG &DAG = DCI.DAG;
 | |
|     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|     EVT StVT = St->getMemoryVT();
 | |
|     unsigned NumElems = VT.getVectorNumElements();
 | |
|     assert(StVT != VT && "Cannot truncate to the same type");
 | |
|     unsigned FromEltSz = VT.getVectorElementType().getSizeInBits();
 | |
|     unsigned ToEltSz = StVT.getVectorElementType().getSizeInBits();
 | |
| 
 | |
|     // From, To sizes and ElemCount must be pow of two
 | |
|     if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue();
 | |
| 
 | |
|     // We are going to use the original vector elt for storing.
 | |
|     // Accumulated smaller vector elements must be a multiple of the store size.
 | |
|     if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue();
 | |
| 
 | |
|     unsigned SizeRatio  = FromEltSz / ToEltSz;
 | |
|     assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
 | |
| 
 | |
|     // Create a type on which we perform the shuffle.
 | |
|     EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
 | |
|                                      NumElems*SizeRatio);
 | |
|     assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
 | |
| 
 | |
|     DebugLoc DL = St->getDebugLoc();
 | |
|     SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
 | |
|     SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
 | |
|     for (unsigned i = 0; i < NumElems; ++i) ShuffleVec[i] = i * SizeRatio;
 | |
| 
 | |
|     // Can't shuffle using an illegal type.
 | |
|     if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
 | |
| 
 | |
|     SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec,
 | |
|                                 DAG.getUNDEF(WideVec.getValueType()),
 | |
|                                 ShuffleVec.data());
 | |
|     // At this point all of the data is stored at the bottom of the
 | |
|     // register. We now need to save it to mem.
 | |
| 
 | |
|     // Find the largest store unit
 | |
|     MVT StoreType = MVT::i8;
 | |
|     for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
 | |
|          tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
 | |
|       MVT Tp = (MVT::SimpleValueType)tp;
 | |
|       if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
 | |
|         StoreType = Tp;
 | |
|     }
 | |
|     // Didn't find a legal store type.
 | |
|     if (!TLI.isTypeLegal(StoreType))
 | |
|       return SDValue();
 | |
| 
 | |
|     // Bitcast the original vector into a vector of store-size units
 | |
|     EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
 | |
|             StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
 | |
|     assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
 | |
|     SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
 | |
|     SmallVector<SDValue, 8> Chains;
 | |
|     SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
 | |
|                                         TLI.getPointerTy());
 | |
|     SDValue BasePtr = St->getBasePtr();
 | |
| 
 | |
|     // Perform one or more big stores into memory.
 | |
|     unsigned E = (ToEltSz*NumElems)/StoreType.getSizeInBits();
 | |
|     for (unsigned I = 0; I < E; I++) {
 | |
|       SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
 | |
|                                    StoreType, ShuffWide,
 | |
|                                    DAG.getIntPtrConstant(I));
 | |
|       SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr,
 | |
|                                 St->getPointerInfo(), St->isVolatile(),
 | |
|                                 St->isNonTemporal(), St->getAlignment());
 | |
|       BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
 | |
|                             Increment);
 | |
|       Chains.push_back(Ch);
 | |
|     }
 | |
|     return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &Chains[0],
 | |
|                        Chains.size());
 | |
|   }
 | |
| 
 | |
|   if (!ISD::isNormalStore(St))
 | |
|     return SDValue();
 | |
| 
 | |
|   // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
 | |
|   // ARM stores of arguments in the same cache line.
 | |
|   if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
 | |
|       StVal.getNode()->hasOneUse()) {
 | |
|     SelectionDAG  &DAG = DCI.DAG;
 | |
|     DebugLoc DL = St->getDebugLoc();
 | |
|     SDValue BasePtr = St->getBasePtr();
 | |
|     SDValue NewST1 = DAG.getStore(St->getChain(), DL,
 | |
|                                   StVal.getNode()->getOperand(0), BasePtr,
 | |
|                                   St->getPointerInfo(), St->isVolatile(),
 | |
|                                   St->isNonTemporal(), St->getAlignment());
 | |
| 
 | |
|     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
 | |
|                                     DAG.getConstant(4, MVT::i32));
 | |
|     return DAG.getStore(NewST1.getValue(0), DL, StVal.getNode()->getOperand(1),
 | |
|                         OffsetPtr, St->getPointerInfo(), St->isVolatile(),
 | |
|                         St->isNonTemporal(),
 | |
|                         std::min(4U, St->getAlignment() / 2));
 | |
|   }
 | |
| 
 | |
|   if (StVal.getValueType() != MVT::i64 ||
 | |
|       StVal.getNode()->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
 | |
|     return SDValue();
 | |
| 
 | |
|   // Bitcast an i64 store extracted from a vector to f64.
 | |
|   // Otherwise, the i64 value will be legalized to a pair of i32 values.
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   DebugLoc dl = StVal.getDebugLoc();
 | |
|   SDValue IntVec = StVal.getOperand(0);
 | |
|   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
 | |
|                                  IntVec.getValueType().getVectorNumElements());
 | |
|   SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
 | |
|   SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
 | |
|                                Vec, StVal.getOperand(1));
 | |
|   dl = N->getDebugLoc();
 | |
|   SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
 | |
|   // Make the DAGCombiner fold the bitcasts.
 | |
|   DCI.AddToWorklist(Vec.getNode());
 | |
|   DCI.AddToWorklist(ExtElt.getNode());
 | |
|   DCI.AddToWorklist(V.getNode());
 | |
|   return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
 | |
|                       St->getPointerInfo(), St->isVolatile(),
 | |
|                       St->isNonTemporal(), St->getAlignment(),
 | |
|                       St->getTBAAInfo());
 | |
| }
 | |
| 
 | |
| /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
 | |
| /// are normal, non-volatile loads.  If so, it is profitable to bitcast an
 | |
| /// i64 vector to have f64 elements, since the value can then be loaded
 | |
| /// directly into a VFP register.
 | |
| static bool hasNormalLoadOperand(SDNode *N) {
 | |
|   unsigned NumElts = N->getValueType(0).getVectorNumElements();
 | |
|   for (unsigned i = 0; i < NumElts; ++i) {
 | |
|     SDNode *Elt = N->getOperand(i).getNode();
 | |
|     if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
 | |
| /// ISD::BUILD_VECTOR.
 | |
| static SDValue PerformBUILD_VECTORCombine(SDNode *N,
 | |
|                                           TargetLowering::DAGCombinerInfo &DCI){
 | |
|   // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
 | |
|   // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
 | |
|   // into a pair of GPRs, which is fine when the value is used as a scalar,
 | |
|   // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   if (N->getNumOperands() == 2) {
 | |
|     SDValue RV = PerformVMOVDRRCombine(N, DAG);
 | |
|     if (RV.getNode())
 | |
|       return RV;
 | |
|   }
 | |
| 
 | |
|   // Load i64 elements as f64 values so that type legalization does not split
 | |
|   // them up into i32 values.
 | |
|   EVT VT = N->getValueType(0);
 | |
|   if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
 | |
|     return SDValue();
 | |
|   DebugLoc dl = N->getDebugLoc();
 | |
|   SmallVector<SDValue, 8> Ops;
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   for (unsigned i = 0; i < NumElts; ++i) {
 | |
|     SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
 | |
|     Ops.push_back(V);
 | |
|     // Make the DAGCombiner fold the bitcast.
 | |
|     DCI.AddToWorklist(V.getNode());
 | |
|   }
 | |
|   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
 | |
|   SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, FloatVT, Ops.data(), NumElts);
 | |
|   return DAG.getNode(ISD::BITCAST, dl, VT, BV);
 | |
| }
 | |
| 
 | |
| /// PerformInsertEltCombine - Target-specific dag combine xforms for
 | |
| /// ISD::INSERT_VECTOR_ELT.
 | |
| static SDValue PerformInsertEltCombine(SDNode *N,
 | |
|                                        TargetLowering::DAGCombinerInfo &DCI) {
 | |
|   // Bitcast an i64 load inserted into a vector to f64.
 | |
|   // Otherwise, the i64 value will be legalized to a pair of i32 values.
 | |
|   EVT VT = N->getValueType(0);
 | |
|   SDNode *Elt = N->getOperand(1).getNode();
 | |
|   if (VT.getVectorElementType() != MVT::i64 ||
 | |
|       !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
 | |
|     return SDValue();
 | |
| 
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   DebugLoc dl = N->getDebugLoc();
 | |
|   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
 | |
|                                  VT.getVectorNumElements());
 | |
|   SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
 | |
|   SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
 | |
|   // Make the DAGCombiner fold the bitcasts.
 | |
|   DCI.AddToWorklist(Vec.getNode());
 | |
|   DCI.AddToWorklist(V.getNode());
 | |
|   SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
 | |
|                                Vec, V, N->getOperand(2));
 | |
|   return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
 | |
| }
 | |
| 
 | |
| /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
 | |
| /// ISD::VECTOR_SHUFFLE.
 | |
| static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
 | |
|   // The LLVM shufflevector instruction does not require the shuffle mask
 | |
|   // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
 | |
|   // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
 | |
|   // operands do not match the mask length, they are extended by concatenating
 | |
|   // them with undef vectors.  That is probably the right thing for other
 | |
|   // targets, but for NEON it is better to concatenate two double-register
 | |
|   // size vector operands into a single quad-register size vector.  Do that
 | |
|   // transformation here:
 | |
|   //   shuffle(concat(v1, undef), concat(v2, undef)) ->
 | |
|   //   shuffle(concat(v1, v2), undef)
 | |
|   SDValue Op0 = N->getOperand(0);
 | |
|   SDValue Op1 = N->getOperand(1);
 | |
|   if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
 | |
|       Op1.getOpcode() != ISD::CONCAT_VECTORS ||
 | |
|       Op0.getNumOperands() != 2 ||
 | |
|       Op1.getNumOperands() != 2)
 | |
|     return SDValue();
 | |
|   SDValue Concat0Op1 = Op0.getOperand(1);
 | |
|   SDValue Concat1Op1 = Op1.getOperand(1);
 | |
|   if (Concat0Op1.getOpcode() != ISD::UNDEF ||
 | |
|       Concat1Op1.getOpcode() != ISD::UNDEF)
 | |
|     return SDValue();
 | |
|   // Skip the transformation if any of the types are illegal.
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   EVT VT = N->getValueType(0);
 | |
|   if (!TLI.isTypeLegal(VT) ||
 | |
|       !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
 | |
|       !TLI.isTypeLegal(Concat1Op1.getValueType()))
 | |
|     return SDValue();
 | |
| 
 | |
|   SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, N->getDebugLoc(), VT,
 | |
|                                   Op0.getOperand(0), Op1.getOperand(0));
 | |
|   // Translate the shuffle mask.
 | |
|   SmallVector<int, 16> NewMask;
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   unsigned HalfElts = NumElts/2;
 | |
|   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
 | |
|   for (unsigned n = 0; n < NumElts; ++n) {
 | |
|     int MaskElt = SVN->getMaskElt(n);
 | |
|     int NewElt = -1;
 | |
|     if (MaskElt < (int)HalfElts)
 | |
|       NewElt = MaskElt;
 | |
|     else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
 | |
|       NewElt = HalfElts + MaskElt - NumElts;
 | |
|     NewMask.push_back(NewElt);
 | |
|   }
 | |
|   return DAG.getVectorShuffle(VT, N->getDebugLoc(), NewConcat,
 | |
|                               DAG.getUNDEF(VT), NewMask.data());
 | |
| }
 | |
| 
 | |
| /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP and
 | |
| /// NEON load/store intrinsics to merge base address updates.
 | |
| static SDValue CombineBaseUpdate(SDNode *N,
 | |
|                                  TargetLowering::DAGCombinerInfo &DCI) {
 | |
|   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
 | |
|     return SDValue();
 | |
| 
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
 | |
|                       N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
 | |
|   unsigned AddrOpIdx = (isIntrinsic ? 2 : 1);
 | |
|   SDValue Addr = N->getOperand(AddrOpIdx);
 | |
| 
 | |
|   // Search for a use of the address operand that is an increment.
 | |
|   for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
 | |
|          UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
 | |
|     SDNode *User = *UI;
 | |
|     if (User->getOpcode() != ISD::ADD ||
 | |
|         UI.getUse().getResNo() != Addr.getResNo())
 | |
|       continue;
 | |
| 
 | |
|     // Check that the add is independent of the load/store.  Otherwise, folding
 | |
|     // it would create a cycle.
 | |
|     if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
 | |
|       continue;
 | |
| 
 | |
|     // Find the new opcode for the updating load/store.
 | |
|     bool isLoad = true;
 | |
|     bool isLaneOp = false;
 | |
|     unsigned NewOpc = 0;
 | |
|     unsigned NumVecs = 0;
 | |
|     if (isIntrinsic) {
 | |
|       unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
 | |
|       switch (IntNo) {
 | |
|       default: llvm_unreachable("unexpected intrinsic for Neon base update");
 | |
|       case Intrinsic::arm_neon_vld1:     NewOpc = ARMISD::VLD1_UPD;
 | |
|         NumVecs = 1; break;
 | |
|       case Intrinsic::arm_neon_vld2:     NewOpc = ARMISD::VLD2_UPD;
 | |
|         NumVecs = 2; break;
 | |
|       case Intrinsic::arm_neon_vld3:     NewOpc = ARMISD::VLD3_UPD;
 | |
|         NumVecs = 3; break;
 | |
|       case Intrinsic::arm_neon_vld4:     NewOpc = ARMISD::VLD4_UPD;
 | |
|         NumVecs = 4; break;
 | |
|       case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
 | |
|         NumVecs = 2; isLaneOp = true; break;
 | |
|       case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
 | |
|         NumVecs = 3; isLaneOp = true; break;
 | |
|       case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
 | |
|         NumVecs = 4; isLaneOp = true; break;
 | |
|       case Intrinsic::arm_neon_vst1:     NewOpc = ARMISD::VST1_UPD;
 | |
|         NumVecs = 1; isLoad = false; break;
 | |
|       case Intrinsic::arm_neon_vst2:     NewOpc = ARMISD::VST2_UPD;
 | |
|         NumVecs = 2; isLoad = false; break;
 | |
|       case Intrinsic::arm_neon_vst3:     NewOpc = ARMISD::VST3_UPD;
 | |
|         NumVecs = 3; isLoad = false; break;
 | |
|       case Intrinsic::arm_neon_vst4:     NewOpc = ARMISD::VST4_UPD;
 | |
|         NumVecs = 4; isLoad = false; break;
 | |
|       case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
 | |
|         NumVecs = 2; isLoad = false; isLaneOp = true; break;
 | |
|       case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
 | |
|         NumVecs = 3; isLoad = false; isLaneOp = true; break;
 | |
|       case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
 | |
|         NumVecs = 4; isLoad = false; isLaneOp = true; break;
 | |
|       }
 | |
|     } else {
 | |
|       isLaneOp = true;
 | |
|       switch (N->getOpcode()) {
 | |
|       default: llvm_unreachable("unexpected opcode for Neon base update");
 | |
|       case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
 | |
|       case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
 | |
|       case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Find the size of memory referenced by the load/store.
 | |
|     EVT VecTy;
 | |
|     if (isLoad)
 | |
|       VecTy = N->getValueType(0);
 | |
|     else
 | |
|       VecTy = N->getOperand(AddrOpIdx+1).getValueType();
 | |
|     unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
 | |
|     if (isLaneOp)
 | |
|       NumBytes /= VecTy.getVectorNumElements();
 | |
| 
 | |
|     // If the increment is a constant, it must match the memory ref size.
 | |
|     SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
 | |
|     if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
 | |
|       uint64_t IncVal = CInc->getZExtValue();
 | |
|       if (IncVal != NumBytes)
 | |
|         continue;
 | |
|     } else if (NumBytes >= 3 * 16) {
 | |
|       // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
 | |
|       // separate instructions that make it harder to use a non-constant update.
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Create the new updating load/store node.
 | |
|     EVT Tys[6];
 | |
|     unsigned NumResultVecs = (isLoad ? NumVecs : 0);
 | |
|     unsigned n;
 | |
|     for (n = 0; n < NumResultVecs; ++n)
 | |
|       Tys[n] = VecTy;
 | |
|     Tys[n++] = MVT::i32;
 | |
|     Tys[n] = MVT::Other;
 | |
|     SDVTList SDTys = DAG.getVTList(Tys, NumResultVecs+2);
 | |
|     SmallVector<SDValue, 8> Ops;
 | |
|     Ops.push_back(N->getOperand(0)); // incoming chain
 | |
|     Ops.push_back(N->getOperand(AddrOpIdx));
 | |
|     Ops.push_back(Inc);
 | |
|     for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) {
 | |
|       Ops.push_back(N->getOperand(i));
 | |
|     }
 | |
|     MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
 | |
|     SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, N->getDebugLoc(), SDTys,
 | |
|                                            Ops.data(), Ops.size(),
 | |
|                                            MemInt->getMemoryVT(),
 | |
|                                            MemInt->getMemOperand());
 | |
| 
 | |
|     // Update the uses.
 | |
|     std::vector<SDValue> NewResults;
 | |
|     for (unsigned i = 0; i < NumResultVecs; ++i) {
 | |
|       NewResults.push_back(SDValue(UpdN.getNode(), i));
 | |
|     }
 | |
|     NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
 | |
|     DCI.CombineTo(N, NewResults);
 | |
|     DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
 | |
| 
 | |
|     break;
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
 | |
| /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
 | |
| /// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
 | |
| /// return true.
 | |
| static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   EVT VT = N->getValueType(0);
 | |
|   // vldN-dup instructions only support 64-bit vectors for N > 1.
 | |
|   if (!VT.is64BitVector())
 | |
|     return false;
 | |
| 
 | |
|   // Check if the VDUPLANE operand is a vldN-dup intrinsic.
 | |
|   SDNode *VLD = N->getOperand(0).getNode();
 | |
|   if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
 | |
|     return false;
 | |
|   unsigned NumVecs = 0;
 | |
|   unsigned NewOpc = 0;
 | |
|   unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
 | |
|   if (IntNo == Intrinsic::arm_neon_vld2lane) {
 | |
|     NumVecs = 2;
 | |
|     NewOpc = ARMISD::VLD2DUP;
 | |
|   } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
 | |
|     NumVecs = 3;
 | |
|     NewOpc = ARMISD::VLD3DUP;
 | |
|   } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
 | |
|     NumVecs = 4;
 | |
|     NewOpc = ARMISD::VLD4DUP;
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // First check that all the vldN-lane uses are VDUPLANEs and that the lane
 | |
|   // numbers match the load.
 | |
|   unsigned VLDLaneNo =
 | |
|     cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
 | |
|   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
 | |
|        UI != UE; ++UI) {
 | |
|     // Ignore uses of the chain result.
 | |
|     if (UI.getUse().getResNo() == NumVecs)
 | |
|       continue;
 | |
|     SDNode *User = *UI;
 | |
|     if (User->getOpcode() != ARMISD::VDUPLANE ||
 | |
|         VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Create the vldN-dup node.
 | |
|   EVT Tys[5];
 | |
|   unsigned n;
 | |
|   for (n = 0; n < NumVecs; ++n)
 | |
|     Tys[n] = VT;
 | |
|   Tys[n] = MVT::Other;
 | |
|   SDVTList SDTys = DAG.getVTList(Tys, NumVecs+1);
 | |
|   SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
 | |
|   MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
 | |
|   SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, VLD->getDebugLoc(), SDTys,
 | |
|                                            Ops, 2, VLDMemInt->getMemoryVT(),
 | |
|                                            VLDMemInt->getMemOperand());
 | |
| 
 | |
|   // Update the uses.
 | |
|   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
 | |
|        UI != UE; ++UI) {
 | |
|     unsigned ResNo = UI.getUse().getResNo();
 | |
|     // Ignore uses of the chain result.
 | |
|     if (ResNo == NumVecs)
 | |
|       continue;
 | |
|     SDNode *User = *UI;
 | |
|     DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
 | |
|   }
 | |
| 
 | |
|   // Now the vldN-lane intrinsic is dead except for its chain result.
 | |
|   // Update uses of the chain.
 | |
|   std::vector<SDValue> VLDDupResults;
 | |
|   for (unsigned n = 0; n < NumVecs; ++n)
 | |
|     VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
 | |
|   VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
 | |
|   DCI.CombineTo(VLD, VLDDupResults);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// PerformVDUPLANECombine - Target-specific dag combine xforms for
 | |
| /// ARMISD::VDUPLANE.
 | |
| static SDValue PerformVDUPLANECombine(SDNode *N,
 | |
|                                       TargetLowering::DAGCombinerInfo &DCI) {
 | |
|   SDValue Op = N->getOperand(0);
 | |
| 
 | |
|   // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
 | |
|   // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
 | |
|   if (CombineVLDDUP(N, DCI))
 | |
|     return SDValue(N, 0);
 | |
| 
 | |
|   // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
 | |
|   // redundant.  Ignore bit_converts for now; element sizes are checked below.
 | |
|   while (Op.getOpcode() == ISD::BITCAST)
 | |
|     Op = Op.getOperand(0);
 | |
|   if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
 | |
|     return SDValue();
 | |
| 
 | |
|   // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
 | |
|   unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
 | |
|   // The canonical VMOV for a zero vector uses a 32-bit element size.
 | |
|   unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | |
|   unsigned EltBits;
 | |
|   if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
 | |
|     EltSize = 8;
 | |
|   EVT VT = N->getValueType(0);
 | |
|   if (EltSize > VT.getVectorElementType().getSizeInBits())
 | |
|     return SDValue();
 | |
| 
 | |
|   return DCI.DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
 | |
| }
 | |
| 
 | |
| // isConstVecPow2 - Return true if each vector element is a power of 2, all
 | |
| // elements are the same constant, C, and Log2(C) ranges from 1 to 32.
 | |
| static bool isConstVecPow2(SDValue ConstVec, bool isSigned, uint64_t &C)
 | |
| {
 | |
|   integerPart cN;
 | |
|   integerPart c0 = 0;
 | |
|   for (unsigned I = 0, E = ConstVec.getValueType().getVectorNumElements();
 | |
|        I != E; I++) {
 | |
|     ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(ConstVec.getOperand(I));
 | |
|     if (!C)
 | |
|       return false;
 | |
| 
 | |
|     bool isExact;
 | |
|     APFloat APF = C->getValueAPF();
 | |
|     if (APF.convertToInteger(&cN, 64, isSigned, APFloat::rmTowardZero, &isExact)
 | |
|         != APFloat::opOK || !isExact)
 | |
|       return false;
 | |
| 
 | |
|     c0 = (I == 0) ? cN : c0;
 | |
|     if (!isPowerOf2_64(cN) || c0 != cN || Log2_64(c0) < 1 || Log2_64(c0) > 32)
 | |
|       return false;
 | |
|   }
 | |
|   C = c0;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
 | |
| /// can replace combinations of VMUL and VCVT (floating-point to integer)
 | |
| /// when the VMUL has a constant operand that is a power of 2.
 | |
| ///
 | |
| /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
 | |
| ///  vmul.f32        d16, d17, d16
 | |
| ///  vcvt.s32.f32    d16, d16
 | |
| /// becomes:
 | |
| ///  vcvt.s32.f32    d16, d16, #3
 | |
| static SDValue PerformVCVTCombine(SDNode *N,
 | |
|                                   TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                   const ARMSubtarget *Subtarget) {
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   SDValue Op = N->getOperand(0);
 | |
| 
 | |
|   if (!Subtarget->hasNEON() || !Op.getValueType().isVector() ||
 | |
|       Op.getOpcode() != ISD::FMUL)
 | |
|     return SDValue();
 | |
| 
 | |
|   uint64_t C;
 | |
|   SDValue N0 = Op->getOperand(0);
 | |
|   SDValue ConstVec = Op->getOperand(1);
 | |
|   bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
 | |
| 
 | |
|   if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
 | |
|       !isConstVecPow2(ConstVec, isSigned, C))
 | |
|     return SDValue();
 | |
| 
 | |
|   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
 | |
|     Intrinsic::arm_neon_vcvtfp2fxu;
 | |
|   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
 | |
|                      N->getValueType(0),
 | |
|                      DAG.getConstant(IntrinsicOpcode, MVT::i32), N0,
 | |
|                      DAG.getConstant(Log2_64(C), MVT::i32));
 | |
| }
 | |
| 
 | |
| /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
 | |
| /// can replace combinations of VCVT (integer to floating-point) and VDIV
 | |
| /// when the VDIV has a constant operand that is a power of 2.
 | |
| ///
 | |
| /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
 | |
| ///  vcvt.f32.s32    d16, d16
 | |
| ///  vdiv.f32        d16, d17, d16
 | |
| /// becomes:
 | |
| ///  vcvt.f32.s32    d16, d16, #3
 | |
| static SDValue PerformVDIVCombine(SDNode *N,
 | |
|                                   TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                   const ARMSubtarget *Subtarget) {
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   SDValue Op = N->getOperand(0);
 | |
|   unsigned OpOpcode = Op.getNode()->getOpcode();
 | |
| 
 | |
|   if (!Subtarget->hasNEON() || !N->getValueType(0).isVector() ||
 | |
|       (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
 | |
|     return SDValue();
 | |
| 
 | |
|   uint64_t C;
 | |
|   SDValue ConstVec = N->getOperand(1);
 | |
|   bool isSigned = OpOpcode == ISD::SINT_TO_FP;
 | |
| 
 | |
|   if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
 | |
|       !isConstVecPow2(ConstVec, isSigned, C))
 | |
|     return SDValue();
 | |
| 
 | |
|   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
 | |
|     Intrinsic::arm_neon_vcvtfxu2fp;
 | |
|   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
 | |
|                      Op.getValueType(),
 | |
|                      DAG.getConstant(IntrinsicOpcode, MVT::i32),
 | |
|                      Op.getOperand(0), DAG.getConstant(Log2_64(C), MVT::i32));
 | |
| }
 | |
| 
 | |
| /// Getvshiftimm - Check if this is a valid build_vector for the immediate
 | |
| /// operand of a vector shift operation, where all the elements of the
 | |
| /// build_vector must have the same constant integer value.
 | |
| static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
 | |
|   // Ignore bit_converts.
 | |
|   while (Op.getOpcode() == ISD::BITCAST)
 | |
|     Op = Op.getOperand(0);
 | |
|   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
 | |
|   APInt SplatBits, SplatUndef;
 | |
|   unsigned SplatBitSize;
 | |
|   bool HasAnyUndefs;
 | |
|   if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
 | |
|                                       HasAnyUndefs, ElementBits) ||
 | |
|       SplatBitSize > ElementBits)
 | |
|     return false;
 | |
|   Cnt = SplatBits.getSExtValue();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isVShiftLImm - Check if this is a valid build_vector for the immediate
 | |
| /// operand of a vector shift left operation.  That value must be in the range:
 | |
| ///   0 <= Value < ElementBits for a left shift; or
 | |
| ///   0 <= Value <= ElementBits for a long left shift.
 | |
| static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
 | |
|   assert(VT.isVector() && "vector shift count is not a vector type");
 | |
|   unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
 | |
|   if (! getVShiftImm(Op, ElementBits, Cnt))
 | |
|     return false;
 | |
|   return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
 | |
| }
 | |
| 
 | |
| /// isVShiftRImm - Check if this is a valid build_vector for the immediate
 | |
| /// operand of a vector shift right operation.  For a shift opcode, the value
 | |
| /// is positive, but for an intrinsic the value count must be negative. The
 | |
| /// absolute value must be in the range:
 | |
| ///   1 <= |Value| <= ElementBits for a right shift; or
 | |
| ///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
 | |
| static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
 | |
|                          int64_t &Cnt) {
 | |
|   assert(VT.isVector() && "vector shift count is not a vector type");
 | |
|   unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
 | |
|   if (! getVShiftImm(Op, ElementBits, Cnt))
 | |
|     return false;
 | |
|   if (isIntrinsic)
 | |
|     Cnt = -Cnt;
 | |
|   return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
 | |
| }
 | |
| 
 | |
| /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
 | |
| static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
 | |
|   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
 | |
|   switch (IntNo) {
 | |
|   default:
 | |
|     // Don't do anything for most intrinsics.
 | |
|     break;
 | |
| 
 | |
|   // Vector shifts: check for immediate versions and lower them.
 | |
|   // Note: This is done during DAG combining instead of DAG legalizing because
 | |
|   // the build_vectors for 64-bit vector element shift counts are generally
 | |
|   // not legal, and it is hard to see their values after they get legalized to
 | |
|   // loads from a constant pool.
 | |
|   case Intrinsic::arm_neon_vshifts:
 | |
|   case Intrinsic::arm_neon_vshiftu:
 | |
|   case Intrinsic::arm_neon_vshiftls:
 | |
|   case Intrinsic::arm_neon_vshiftlu:
 | |
|   case Intrinsic::arm_neon_vshiftn:
 | |
|   case Intrinsic::arm_neon_vrshifts:
 | |
|   case Intrinsic::arm_neon_vrshiftu:
 | |
|   case Intrinsic::arm_neon_vrshiftn:
 | |
|   case Intrinsic::arm_neon_vqshifts:
 | |
|   case Intrinsic::arm_neon_vqshiftu:
 | |
|   case Intrinsic::arm_neon_vqshiftsu:
 | |
|   case Intrinsic::arm_neon_vqshiftns:
 | |
|   case Intrinsic::arm_neon_vqshiftnu:
 | |
|   case Intrinsic::arm_neon_vqshiftnsu:
 | |
|   case Intrinsic::arm_neon_vqrshiftns:
 | |
|   case Intrinsic::arm_neon_vqrshiftnu:
 | |
|   case Intrinsic::arm_neon_vqrshiftnsu: {
 | |
|     EVT VT = N->getOperand(1).getValueType();
 | |
|     int64_t Cnt;
 | |
|     unsigned VShiftOpc = 0;
 | |
| 
 | |
|     switch (IntNo) {
 | |
|     case Intrinsic::arm_neon_vshifts:
 | |
|     case Intrinsic::arm_neon_vshiftu:
 | |
|       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
 | |
|         VShiftOpc = ARMISD::VSHL;
 | |
|         break;
 | |
|       }
 | |
|       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
 | |
|         VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
 | |
|                      ARMISD::VSHRs : ARMISD::VSHRu);
 | |
|         break;
 | |
|       }
 | |
|       return SDValue();
 | |
| 
 | |
|     case Intrinsic::arm_neon_vshiftls:
 | |
|     case Intrinsic::arm_neon_vshiftlu:
 | |
|       if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
 | |
|         break;
 | |
|       llvm_unreachable("invalid shift count for vshll intrinsic");
 | |
| 
 | |
|     case Intrinsic::arm_neon_vrshifts:
 | |
|     case Intrinsic::arm_neon_vrshiftu:
 | |
|       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
 | |
|         break;
 | |
|       return SDValue();
 | |
| 
 | |
|     case Intrinsic::arm_neon_vqshifts:
 | |
|     case Intrinsic::arm_neon_vqshiftu:
 | |
|       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
 | |
|         break;
 | |
|       return SDValue();
 | |
| 
 | |
|     case Intrinsic::arm_neon_vqshiftsu:
 | |
|       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
 | |
|         break;
 | |
|       llvm_unreachable("invalid shift count for vqshlu intrinsic");
 | |
| 
 | |
|     case Intrinsic::arm_neon_vshiftn:
 | |
|     case Intrinsic::arm_neon_vrshiftn:
 | |
|     case Intrinsic::arm_neon_vqshiftns:
 | |
|     case Intrinsic::arm_neon_vqshiftnu:
 | |
|     case Intrinsic::arm_neon_vqshiftnsu:
 | |
|     case Intrinsic::arm_neon_vqrshiftns:
 | |
|     case Intrinsic::arm_neon_vqrshiftnu:
 | |
|     case Intrinsic::arm_neon_vqrshiftnsu:
 | |
|       // Narrowing shifts require an immediate right shift.
 | |
|       if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
 | |
|         break;
 | |
|       llvm_unreachable("invalid shift count for narrowing vector shift "
 | |
|                        "intrinsic");
 | |
| 
 | |
|     default:
 | |
|       llvm_unreachable("unhandled vector shift");
 | |
|     }
 | |
| 
 | |
|     switch (IntNo) {
 | |
|     case Intrinsic::arm_neon_vshifts:
 | |
|     case Intrinsic::arm_neon_vshiftu:
 | |
|       // Opcode already set above.
 | |
|       break;
 | |
|     case Intrinsic::arm_neon_vshiftls:
 | |
|     case Intrinsic::arm_neon_vshiftlu:
 | |
|       if (Cnt == VT.getVectorElementType().getSizeInBits())
 | |
|         VShiftOpc = ARMISD::VSHLLi;
 | |
|       else
 | |
|         VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
 | |
|                      ARMISD::VSHLLs : ARMISD::VSHLLu);
 | |
|       break;
 | |
|     case Intrinsic::arm_neon_vshiftn:
 | |
|       VShiftOpc = ARMISD::VSHRN; break;
 | |
|     case Intrinsic::arm_neon_vrshifts:
 | |
|       VShiftOpc = ARMISD::VRSHRs; break;
 | |
|     case Intrinsic::arm_neon_vrshiftu:
 | |
|       VShiftOpc = ARMISD::VRSHRu; break;
 | |
|     case Intrinsic::arm_neon_vrshiftn:
 | |
|       VShiftOpc = ARMISD::VRSHRN; break;
 | |
|     case Intrinsic::arm_neon_vqshifts:
 | |
|       VShiftOpc = ARMISD::VQSHLs; break;
 | |
|     case Intrinsic::arm_neon_vqshiftu:
 | |
|       VShiftOpc = ARMISD::VQSHLu; break;
 | |
|     case Intrinsic::arm_neon_vqshiftsu:
 | |
|       VShiftOpc = ARMISD::VQSHLsu; break;
 | |
|     case Intrinsic::arm_neon_vqshiftns:
 | |
|       VShiftOpc = ARMISD::VQSHRNs; break;
 | |
|     case Intrinsic::arm_neon_vqshiftnu:
 | |
|       VShiftOpc = ARMISD::VQSHRNu; break;
 | |
|     case Intrinsic::arm_neon_vqshiftnsu:
 | |
|       VShiftOpc = ARMISD::VQSHRNsu; break;
 | |
|     case Intrinsic::arm_neon_vqrshiftns:
 | |
|       VShiftOpc = ARMISD::VQRSHRNs; break;
 | |
|     case Intrinsic::arm_neon_vqrshiftnu:
 | |
|       VShiftOpc = ARMISD::VQRSHRNu; break;
 | |
|     case Intrinsic::arm_neon_vqrshiftnsu:
 | |
|       VShiftOpc = ARMISD::VQRSHRNsu; break;
 | |
|     }
 | |
| 
 | |
|     return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
 | |
|                        N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::arm_neon_vshiftins: {
 | |
|     EVT VT = N->getOperand(1).getValueType();
 | |
|     int64_t Cnt;
 | |
|     unsigned VShiftOpc = 0;
 | |
| 
 | |
|     if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
 | |
|       VShiftOpc = ARMISD::VSLI;
 | |
|     else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
 | |
|       VShiftOpc = ARMISD::VSRI;
 | |
|     else {
 | |
|       llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
 | |
|     }
 | |
| 
 | |
|     return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
 | |
|                        N->getOperand(1), N->getOperand(2),
 | |
|                        DAG.getConstant(Cnt, MVT::i32));
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::arm_neon_vqrshifts:
 | |
|   case Intrinsic::arm_neon_vqrshiftu:
 | |
|     // No immediate versions of these to check for.
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// PerformShiftCombine - Checks for immediate versions of vector shifts and
 | |
| /// lowers them.  As with the vector shift intrinsics, this is done during DAG
 | |
| /// combining instead of DAG legalizing because the build_vectors for 64-bit
 | |
| /// vector element shift counts are generally not legal, and it is hard to see
 | |
| /// their values after they get legalized to loads from a constant pool.
 | |
| static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
 | |
|                                    const ARMSubtarget *ST) {
 | |
|   EVT VT = N->getValueType(0);
 | |
|   if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) {
 | |
|     // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
 | |
|     // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
 | |
|     SDValue N1 = N->getOperand(1);
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
 | |
|       SDValue N0 = N->getOperand(0);
 | |
|       if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP &&
 | |
|           DAG.MaskedValueIsZero(N0.getOperand(0),
 | |
|                                 APInt::getHighBitsSet(32, 16)))
 | |
|         return DAG.getNode(ISD::ROTR, N->getDebugLoc(), VT, N0, N1);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Nothing to be done for scalar shifts.
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   if (!VT.isVector() || !TLI.isTypeLegal(VT))
 | |
|     return SDValue();
 | |
| 
 | |
|   assert(ST->hasNEON() && "unexpected vector shift");
 | |
|   int64_t Cnt;
 | |
| 
 | |
|   switch (N->getOpcode()) {
 | |
|   default: llvm_unreachable("unexpected shift opcode");
 | |
| 
 | |
|   case ISD::SHL:
 | |
|     if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
 | |
|       return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
 | |
|                          DAG.getConstant(Cnt, MVT::i32));
 | |
|     break;
 | |
| 
 | |
|   case ISD::SRA:
 | |
|   case ISD::SRL:
 | |
|     if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
 | |
|       unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
 | |
|                             ARMISD::VSHRs : ARMISD::VSHRu);
 | |
|       return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
 | |
|                          DAG.getConstant(Cnt, MVT::i32));
 | |
|     }
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
 | |
| /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
 | |
| static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
 | |
|                                     const ARMSubtarget *ST) {
 | |
|   SDValue N0 = N->getOperand(0);
 | |
| 
 | |
|   // Check for sign- and zero-extensions of vector extract operations of 8-
 | |
|   // and 16-bit vector elements.  NEON supports these directly.  They are
 | |
|   // handled during DAG combining because type legalization will promote them
 | |
|   // to 32-bit types and it is messy to recognize the operations after that.
 | |
|   if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
 | |
|     SDValue Vec = N0.getOperand(0);
 | |
|     SDValue Lane = N0.getOperand(1);
 | |
|     EVT VT = N->getValueType(0);
 | |
|     EVT EltVT = N0.getValueType();
 | |
|     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
| 
 | |
|     if (VT == MVT::i32 &&
 | |
|         (EltVT == MVT::i8 || EltVT == MVT::i16) &&
 | |
|         TLI.isTypeLegal(Vec.getValueType()) &&
 | |
|         isa<ConstantSDNode>(Lane)) {
 | |
| 
 | |
|       unsigned Opc = 0;
 | |
|       switch (N->getOpcode()) {
 | |
|       default: llvm_unreachable("unexpected opcode");
 | |
|       case ISD::SIGN_EXTEND:
 | |
|         Opc = ARMISD::VGETLANEs;
 | |
|         break;
 | |
|       case ISD::ZERO_EXTEND:
 | |
|       case ISD::ANY_EXTEND:
 | |
|         Opc = ARMISD::VGETLANEu;
 | |
|         break;
 | |
|       }
 | |
|       return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
 | |
| /// to match f32 max/min patterns to use NEON vmax/vmin instructions.
 | |
| static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
 | |
|                                        const ARMSubtarget *ST) {
 | |
|   // If the target supports NEON, try to use vmax/vmin instructions for f32
 | |
|   // selects like "x < y ? x : y".  Unless the NoNaNsFPMath option is set,
 | |
|   // be careful about NaNs:  NEON's vmax/vmin return NaN if either operand is
 | |
|   // a NaN; only do the transformation when it matches that behavior.
 | |
| 
 | |
|   // For now only do this when using NEON for FP operations; if using VFP, it
 | |
|   // is not obvious that the benefit outweighs the cost of switching to the
 | |
|   // NEON pipeline.
 | |
|   if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
 | |
|       N->getValueType(0) != MVT::f32)
 | |
|     return SDValue();
 | |
| 
 | |
|   SDValue CondLHS = N->getOperand(0);
 | |
|   SDValue CondRHS = N->getOperand(1);
 | |
|   SDValue LHS = N->getOperand(2);
 | |
|   SDValue RHS = N->getOperand(3);
 | |
|   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
 | |
| 
 | |
|   unsigned Opcode = 0;
 | |
|   bool IsReversed;
 | |
|   if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
 | |
|     IsReversed = false; // x CC y ? x : y
 | |
|   } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
 | |
|     IsReversed = true ; // x CC y ? y : x
 | |
|   } else {
 | |
|     return SDValue();
 | |
|   }
 | |
| 
 | |
|   bool IsUnordered;
 | |
|   switch (CC) {
 | |
|   default: break;
 | |
|   case ISD::SETOLT:
 | |
|   case ISD::SETOLE:
 | |
|   case ISD::SETLT:
 | |
|   case ISD::SETLE:
 | |
|   case ISD::SETULT:
 | |
|   case ISD::SETULE:
 | |
|     // If LHS is NaN, an ordered comparison will be false and the result will
 | |
|     // be the RHS, but vmin(NaN, RHS) = NaN.  Avoid this by checking that LHS
 | |
|     // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
 | |
|     IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
 | |
|     if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
 | |
|       break;
 | |
|     // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
 | |
|     // will return -0, so vmin can only be used for unsafe math or if one of
 | |
|     // the operands is known to be nonzero.
 | |
|     if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
 | |
|         !DAG.getTarget().Options.UnsafeFPMath &&
 | |
|         !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
 | |
|       break;
 | |
|     Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
 | |
|     break;
 | |
| 
 | |
|   case ISD::SETOGT:
 | |
|   case ISD::SETOGE:
 | |
|   case ISD::SETGT:
 | |
|   case ISD::SETGE:
 | |
|   case ISD::SETUGT:
 | |
|   case ISD::SETUGE:
 | |
|     // If LHS is NaN, an ordered comparison will be false and the result will
 | |
|     // be the RHS, but vmax(NaN, RHS) = NaN.  Avoid this by checking that LHS
 | |
|     // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
 | |
|     IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
 | |
|     if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
 | |
|       break;
 | |
|     // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
 | |
|     // will return +0, so vmax can only be used for unsafe math or if one of
 | |
|     // the operands is known to be nonzero.
 | |
|     if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
 | |
|         !DAG.getTarget().Options.UnsafeFPMath &&
 | |
|         !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
 | |
|       break;
 | |
|     Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (!Opcode)
 | |
|     return SDValue();
 | |
|   return DAG.getNode(Opcode, N->getDebugLoc(), N->getValueType(0), LHS, RHS);
 | |
| }
 | |
| 
 | |
| /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
 | |
| SDValue
 | |
| ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
 | |
|   SDValue Cmp = N->getOperand(4);
 | |
|   if (Cmp.getOpcode() != ARMISD::CMPZ)
 | |
|     // Only looking at EQ and NE cases.
 | |
|     return SDValue();
 | |
| 
 | |
|   EVT VT = N->getValueType(0);
 | |
|   DebugLoc dl = N->getDebugLoc();
 | |
|   SDValue LHS = Cmp.getOperand(0);
 | |
|   SDValue RHS = Cmp.getOperand(1);
 | |
|   SDValue FalseVal = N->getOperand(0);
 | |
|   SDValue TrueVal = N->getOperand(1);
 | |
|   SDValue ARMcc = N->getOperand(2);
 | |
|   ARMCC::CondCodes CC =
 | |
|     (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
 | |
| 
 | |
|   // Simplify
 | |
|   //   mov     r1, r0
 | |
|   //   cmp     r1, x
 | |
|   //   mov     r0, y
 | |
|   //   moveq   r0, x
 | |
|   // to
 | |
|   //   cmp     r0, x
 | |
|   //   movne   r0, y
 | |
|   //
 | |
|   //   mov     r1, r0
 | |
|   //   cmp     r1, x
 | |
|   //   mov     r0, x
 | |
|   //   movne   r0, y
 | |
|   // to
 | |
|   //   cmp     r0, x
 | |
|   //   movne   r0, y
 | |
|   /// FIXME: Turn this into a target neutral optimization?
 | |
|   SDValue Res;
 | |
|   if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
 | |
|     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
 | |
|                       N->getOperand(3), Cmp);
 | |
|   } else if (CC == ARMCC::EQ && TrueVal == RHS) {
 | |
|     SDValue ARMcc;
 | |
|     SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
 | |
|     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
 | |
|                       N->getOperand(3), NewCmp);
 | |
|   }
 | |
| 
 | |
|   if (Res.getNode()) {
 | |
|     APInt KnownZero, KnownOne;
 | |
|     DAG.ComputeMaskedBits(SDValue(N,0), KnownZero, KnownOne);
 | |
|     // Capture demanded bits information that would be otherwise lost.
 | |
|     if (KnownZero == 0xfffffffe)
 | |
|       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
 | |
|                         DAG.getValueType(MVT::i1));
 | |
|     else if (KnownZero == 0xffffff00)
 | |
|       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
 | |
|                         DAG.getValueType(MVT::i8));
 | |
|     else if (KnownZero == 0xffff0000)
 | |
|       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
 | |
|                         DAG.getValueType(MVT::i16));
 | |
|   }
 | |
| 
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
 | |
|                                              DAGCombinerInfo &DCI) const {
 | |
|   switch (N->getOpcode()) {
 | |
|   default: break;
 | |
|   case ISD::ADDC:       return PerformADDCCombine(N, DCI, Subtarget);
 | |
|   case ISD::ADD:        return PerformADDCombine(N, DCI, Subtarget);
 | |
|   case ISD::SUB:        return PerformSUBCombine(N, DCI);
 | |
|   case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
 | |
|   case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
 | |
|   case ISD::XOR:        return PerformXORCombine(N, DCI, Subtarget);
 | |
|   case ISD::AND:        return PerformANDCombine(N, DCI, Subtarget);
 | |
|   case ARMISD::BFI:     return PerformBFICombine(N, DCI);
 | |
|   case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
 | |
|   case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
 | |
|   case ISD::STORE:      return PerformSTORECombine(N, DCI);
 | |
|   case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI);
 | |
|   case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
 | |
|   case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
 | |
|   case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
 | |
|   case ISD::FP_TO_SINT:
 | |
|   case ISD::FP_TO_UINT: return PerformVCVTCombine(N, DCI, Subtarget);
 | |
|   case ISD::FDIV:       return PerformVDIVCombine(N, DCI, Subtarget);
 | |
|   case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
 | |
|   case ISD::SHL:
 | |
|   case ISD::SRA:
 | |
|   case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
 | |
|   case ISD::SIGN_EXTEND:
 | |
|   case ISD::ZERO_EXTEND:
 | |
|   case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
 | |
|   case ISD::SELECT_CC:  return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
 | |
|   case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
 | |
|   case ARMISD::VLD2DUP:
 | |
|   case ARMISD::VLD3DUP:
 | |
|   case ARMISD::VLD4DUP:
 | |
|     return CombineBaseUpdate(N, DCI);
 | |
|   case ISD::INTRINSIC_VOID:
 | |
|   case ISD::INTRINSIC_W_CHAIN:
 | |
|     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
 | |
|     case Intrinsic::arm_neon_vld1:
 | |
|     case Intrinsic::arm_neon_vld2:
 | |
|     case Intrinsic::arm_neon_vld3:
 | |
|     case Intrinsic::arm_neon_vld4:
 | |
|     case Intrinsic::arm_neon_vld2lane:
 | |
|     case Intrinsic::arm_neon_vld3lane:
 | |
|     case Intrinsic::arm_neon_vld4lane:
 | |
|     case Intrinsic::arm_neon_vst1:
 | |
|     case Intrinsic::arm_neon_vst2:
 | |
|     case Intrinsic::arm_neon_vst3:
 | |
|     case Intrinsic::arm_neon_vst4:
 | |
|     case Intrinsic::arm_neon_vst2lane:
 | |
|     case Intrinsic::arm_neon_vst3lane:
 | |
|     case Intrinsic::arm_neon_vst4lane:
 | |
|       return CombineBaseUpdate(N, DCI);
 | |
|     default: break;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
 | |
|                                                           EVT VT) const {
 | |
|   return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
 | |
| }
 | |
| 
 | |
| bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
 | |
|   // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
 | |
|   bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
 | |
| 
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   default:
 | |
|     return false;
 | |
|   case MVT::i8:
 | |
|   case MVT::i16:
 | |
|   case MVT::i32:
 | |
|     // Unaligned access can use (for example) LRDB, LRDH, LDR
 | |
|     return AllowsUnaligned;
 | |
|   case MVT::f64:
 | |
|   case MVT::v2f64:
 | |
|     // For any little-endian targets with neon, we can support unaligned ld/st
 | |
|     // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
 | |
|     // A big-endian target may also explictly support unaligned accesses
 | |
|     return Subtarget->hasNEON() && (AllowsUnaligned || isLittleEndian());
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
 | |
|                        unsigned AlignCheck) {
 | |
|   return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
 | |
|           (DstAlign == 0 || DstAlign % AlignCheck == 0));
 | |
| }
 | |
| 
 | |
| EVT ARMTargetLowering::getOptimalMemOpType(uint64_t Size,
 | |
|                                            unsigned DstAlign, unsigned SrcAlign,
 | |
|                                            bool IsZeroVal,
 | |
|                                            bool MemcpyStrSrc,
 | |
|                                            MachineFunction &MF) const {
 | |
|   const Function *F = MF.getFunction();
 | |
| 
 | |
|   // See if we can use NEON instructions for this...
 | |
|   if (IsZeroVal &&
 | |
|       !F->getFnAttributes().hasAttribute(Attributes::NoImplicitFloat) &&
 | |
|       Subtarget->hasNEON()) {
 | |
|     if (memOpAlign(SrcAlign, DstAlign, 16) && Size >= 16) {
 | |
|       return MVT::v4i32;
 | |
|     } else if (memOpAlign(SrcAlign, DstAlign, 8) && Size >= 8) {
 | |
|       return MVT::v2i32;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Lowering to i32/i16 if the size permits.
 | |
|   if (Size >= 4) {
 | |
|     return MVT::i32;
 | |
|   } else if (Size >= 2) {
 | |
|     return MVT::i16;
 | |
|   }
 | |
| 
 | |
|   // Let the target-independent logic figure it out.
 | |
|   return MVT::Other;
 | |
| }
 | |
| 
 | |
| static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
 | |
|   if (V < 0)
 | |
|     return false;
 | |
| 
 | |
|   unsigned Scale = 1;
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   default: return false;
 | |
|   case MVT::i1:
 | |
|   case MVT::i8:
 | |
|     // Scale == 1;
 | |
|     break;
 | |
|   case MVT::i16:
 | |
|     // Scale == 2;
 | |
|     Scale = 2;
 | |
|     break;
 | |
|   case MVT::i32:
 | |
|     // Scale == 4;
 | |
|     Scale = 4;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if ((V & (Scale - 1)) != 0)
 | |
|     return false;
 | |
|   V /= Scale;
 | |
|   return V == (V & ((1LL << 5) - 1));
 | |
| }
 | |
| 
 | |
| static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
 | |
|                                       const ARMSubtarget *Subtarget) {
 | |
|   bool isNeg = false;
 | |
|   if (V < 0) {
 | |
|     isNeg = true;
 | |
|     V = - V;
 | |
|   }
 | |
| 
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   default: return false;
 | |
|   case MVT::i1:
 | |
|   case MVT::i8:
 | |
|   case MVT::i16:
 | |
|   case MVT::i32:
 | |
|     // + imm12 or - imm8
 | |
|     if (isNeg)
 | |
|       return V == (V & ((1LL << 8) - 1));
 | |
|     return V == (V & ((1LL << 12) - 1));
 | |
|   case MVT::f32:
 | |
|   case MVT::f64:
 | |
|     // Same as ARM mode. FIXME: NEON?
 | |
|     if (!Subtarget->hasVFP2())
 | |
|       return false;
 | |
|     if ((V & 3) != 0)
 | |
|       return false;
 | |
|     V >>= 2;
 | |
|     return V == (V & ((1LL << 8) - 1));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// isLegalAddressImmediate - Return true if the integer value can be used
 | |
| /// as the offset of the target addressing mode for load / store of the
 | |
| /// given type.
 | |
| static bool isLegalAddressImmediate(int64_t V, EVT VT,
 | |
|                                     const ARMSubtarget *Subtarget) {
 | |
|   if (V == 0)
 | |
|     return true;
 | |
| 
 | |
|   if (!VT.isSimple())
 | |
|     return false;
 | |
| 
 | |
|   if (Subtarget->isThumb1Only())
 | |
|     return isLegalT1AddressImmediate(V, VT);
 | |
|   else if (Subtarget->isThumb2())
 | |
|     return isLegalT2AddressImmediate(V, VT, Subtarget);
 | |
| 
 | |
|   // ARM mode.
 | |
|   if (V < 0)
 | |
|     V = - V;
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   default: return false;
 | |
|   case MVT::i1:
 | |
|   case MVT::i8:
 | |
|   case MVT::i32:
 | |
|     // +- imm12
 | |
|     return V == (V & ((1LL << 12) - 1));
 | |
|   case MVT::i16:
 | |
|     // +- imm8
 | |
|     return V == (V & ((1LL << 8) - 1));
 | |
|   case MVT::f32:
 | |
|   case MVT::f64:
 | |
|     if (!Subtarget->hasVFP2()) // FIXME: NEON?
 | |
|       return false;
 | |
|     if ((V & 3) != 0)
 | |
|       return false;
 | |
|     V >>= 2;
 | |
|     return V == (V & ((1LL << 8) - 1));
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
 | |
|                                                       EVT VT) const {
 | |
|   int Scale = AM.Scale;
 | |
|   if (Scale < 0)
 | |
|     return false;
 | |
| 
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   default: return false;
 | |
|   case MVT::i1:
 | |
|   case MVT::i8:
 | |
|   case MVT::i16:
 | |
|   case MVT::i32:
 | |
|     if (Scale == 1)
 | |
|       return true;
 | |
|     // r + r << imm
 | |
|     Scale = Scale & ~1;
 | |
|     return Scale == 2 || Scale == 4 || Scale == 8;
 | |
|   case MVT::i64:
 | |
|     // r + r
 | |
|     if (((unsigned)AM.HasBaseReg + Scale) <= 2)
 | |
|       return true;
 | |
|     return false;
 | |
|   case MVT::isVoid:
 | |
|     // Note, we allow "void" uses (basically, uses that aren't loads or
 | |
|     // stores), because arm allows folding a scale into many arithmetic
 | |
|     // operations.  This should be made more precise and revisited later.
 | |
| 
 | |
|     // Allow r << imm, but the imm has to be a multiple of two.
 | |
|     if (Scale & 1) return false;
 | |
|     return isPowerOf2_32(Scale);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// isLegalAddressingMode - Return true if the addressing mode represented
 | |
| /// by AM is legal for this target, for a load/store of the specified type.
 | |
| bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
 | |
|                                               Type *Ty) const {
 | |
|   EVT VT = getValueType(Ty, true);
 | |
|   if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
 | |
|     return false;
 | |
| 
 | |
|   // Can never fold addr of global into load/store.
 | |
|   if (AM.BaseGV)
 | |
|     return false;
 | |
| 
 | |
|   switch (AM.Scale) {
 | |
|   case 0:  // no scale reg, must be "r+i" or "r", or "i".
 | |
|     break;
 | |
|   case 1:
 | |
|     if (Subtarget->isThumb1Only())
 | |
|       return false;
 | |
|     // FALL THROUGH.
 | |
|   default:
 | |
|     // ARM doesn't support any R+R*scale+imm addr modes.
 | |
|     if (AM.BaseOffs)
 | |
|       return false;
 | |
| 
 | |
|     if (!VT.isSimple())
 | |
|       return false;
 | |
| 
 | |
|     if (Subtarget->isThumb2())
 | |
|       return isLegalT2ScaledAddressingMode(AM, VT);
 | |
| 
 | |
|     int Scale = AM.Scale;
 | |
|     switch (VT.getSimpleVT().SimpleTy) {
 | |
|     default: return false;
 | |
|     case MVT::i1:
 | |
|     case MVT::i8:
 | |
|     case MVT::i32:
 | |
|       if (Scale < 0) Scale = -Scale;
 | |
|       if (Scale == 1)
 | |
|         return true;
 | |
|       // r + r << imm
 | |
|       return isPowerOf2_32(Scale & ~1);
 | |
|     case MVT::i16:
 | |
|     case MVT::i64:
 | |
|       // r + r
 | |
|       if (((unsigned)AM.HasBaseReg + Scale) <= 2)
 | |
|         return true;
 | |
|       return false;
 | |
| 
 | |
|     case MVT::isVoid:
 | |
|       // Note, we allow "void" uses (basically, uses that aren't loads or
 | |
|       // stores), because arm allows folding a scale into many arithmetic
 | |
|       // operations.  This should be made more precise and revisited later.
 | |
| 
 | |
|       // Allow r << imm, but the imm has to be a multiple of two.
 | |
|       if (Scale & 1) return false;
 | |
|       return isPowerOf2_32(Scale);
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isLegalICmpImmediate - Return true if the specified immediate is legal
 | |
| /// icmp immediate, that is the target has icmp instructions which can compare
 | |
| /// a register against the immediate without having to materialize the
 | |
| /// immediate into a register.
 | |
| bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
 | |
|   // Thumb2 and ARM modes can use cmn for negative immediates.
 | |
|   if (!Subtarget->isThumb())
 | |
|     return ARM_AM::getSOImmVal(llvm::abs64(Imm)) != -1;
 | |
|   if (Subtarget->isThumb2())
 | |
|     return ARM_AM::getT2SOImmVal(llvm::abs64(Imm)) != -1;
 | |
|   // Thumb1 doesn't have cmn, and only 8-bit immediates.
 | |
|   return Imm >= 0 && Imm <= 255;
 | |
| }
 | |
| 
 | |
| /// isLegalAddImmediate - Return true if the specified immediate is a legal add
 | |
| /// *or sub* immediate, that is the target has add or sub instructions which can
 | |
| /// add a register with the immediate without having to materialize the
 | |
| /// immediate into a register.
 | |
| bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
 | |
|   // Same encoding for add/sub, just flip the sign.
 | |
|   int64_t AbsImm = llvm::abs64(Imm);
 | |
|   if (!Subtarget->isThumb())
 | |
|     return ARM_AM::getSOImmVal(AbsImm) != -1;
 | |
|   if (Subtarget->isThumb2())
 | |
|     return ARM_AM::getT2SOImmVal(AbsImm) != -1;
 | |
|   // Thumb1 only has 8-bit unsigned immediate.
 | |
|   return AbsImm >= 0 && AbsImm <= 255;
 | |
| }
 | |
| 
 | |
| static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
 | |
|                                       bool isSEXTLoad, SDValue &Base,
 | |
|                                       SDValue &Offset, bool &isInc,
 | |
|                                       SelectionDAG &DAG) {
 | |
|   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
 | |
|     return false;
 | |
| 
 | |
|   if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
 | |
|     // AddressingMode 3
 | |
|     Base = Ptr->getOperand(0);
 | |
|     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
 | |
|       int RHSC = (int)RHS->getZExtValue();
 | |
|       if (RHSC < 0 && RHSC > -256) {
 | |
|         assert(Ptr->getOpcode() == ISD::ADD);
 | |
|         isInc = false;
 | |
|         Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|     isInc = (Ptr->getOpcode() == ISD::ADD);
 | |
|     Offset = Ptr->getOperand(1);
 | |
|     return true;
 | |
|   } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
 | |
|     // AddressingMode 2
 | |
|     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
 | |
|       int RHSC = (int)RHS->getZExtValue();
 | |
|       if (RHSC < 0 && RHSC > -0x1000) {
 | |
|         assert(Ptr->getOpcode() == ISD::ADD);
 | |
|         isInc = false;
 | |
|         Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
 | |
|         Base = Ptr->getOperand(0);
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (Ptr->getOpcode() == ISD::ADD) {
 | |
|       isInc = true;
 | |
|       ARM_AM::ShiftOpc ShOpcVal=
 | |
|         ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
 | |
|       if (ShOpcVal != ARM_AM::no_shift) {
 | |
|         Base = Ptr->getOperand(1);
 | |
|         Offset = Ptr->getOperand(0);
 | |
|       } else {
 | |
|         Base = Ptr->getOperand(0);
 | |
|         Offset = Ptr->getOperand(1);
 | |
|       }
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     isInc = (Ptr->getOpcode() == ISD::ADD);
 | |
|     Base = Ptr->getOperand(0);
 | |
|     Offset = Ptr->getOperand(1);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
 | |
|                                      bool isSEXTLoad, SDValue &Base,
 | |
|                                      SDValue &Offset, bool &isInc,
 | |
|                                      SelectionDAG &DAG) {
 | |
|   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
 | |
|     return false;
 | |
| 
 | |
|   Base = Ptr->getOperand(0);
 | |
|   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
 | |
|     int RHSC = (int)RHS->getZExtValue();
 | |
|     if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
 | |
|       assert(Ptr->getOpcode() == ISD::ADD);
 | |
|       isInc = false;
 | |
|       Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
 | |
|       return true;
 | |
|     } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
 | |
|       isInc = Ptr->getOpcode() == ISD::ADD;
 | |
|       Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// getPreIndexedAddressParts - returns true by value, base pointer and
 | |
| /// offset pointer and addressing mode by reference if the node's address
 | |
| /// can be legally represented as pre-indexed load / store address.
 | |
| bool
 | |
| ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
 | |
|                                              SDValue &Offset,
 | |
|                                              ISD::MemIndexedMode &AM,
 | |
|                                              SelectionDAG &DAG) const {
 | |
|   if (Subtarget->isThumb1Only())
 | |
|     return false;
 | |
| 
 | |
|   EVT VT;
 | |
|   SDValue Ptr;
 | |
|   bool isSEXTLoad = false;
 | |
|   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
 | |
|     Ptr = LD->getBasePtr();
 | |
|     VT  = LD->getMemoryVT();
 | |
|     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
 | |
|   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
 | |
|     Ptr = ST->getBasePtr();
 | |
|     VT  = ST->getMemoryVT();
 | |
|   } else
 | |
|     return false;
 | |
| 
 | |
|   bool isInc;
 | |
|   bool isLegal = false;
 | |
|   if (Subtarget->isThumb2())
 | |
|     isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
 | |
|                                        Offset, isInc, DAG);
 | |
|   else
 | |
|     isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
 | |
|                                         Offset, isInc, DAG);
 | |
|   if (!isLegal)
 | |
|     return false;
 | |
| 
 | |
|   AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// getPostIndexedAddressParts - returns true by value, base pointer and
 | |
| /// offset pointer and addressing mode by reference if this node can be
 | |
| /// combined with a load / store to form a post-indexed load / store.
 | |
| bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
 | |
|                                                    SDValue &Base,
 | |
|                                                    SDValue &Offset,
 | |
|                                                    ISD::MemIndexedMode &AM,
 | |
|                                                    SelectionDAG &DAG) const {
 | |
|   if (Subtarget->isThumb1Only())
 | |
|     return false;
 | |
| 
 | |
|   EVT VT;
 | |
|   SDValue Ptr;
 | |
|   bool isSEXTLoad = false;
 | |
|   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
 | |
|     VT  = LD->getMemoryVT();
 | |
|     Ptr = LD->getBasePtr();
 | |
|     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
 | |
|   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
 | |
|     VT  = ST->getMemoryVT();
 | |
|     Ptr = ST->getBasePtr();
 | |
|   } else
 | |
|     return false;
 | |
| 
 | |
|   bool isInc;
 | |
|   bool isLegal = false;
 | |
|   if (Subtarget->isThumb2())
 | |
|     isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
 | |
|                                        isInc, DAG);
 | |
|   else
 | |
|     isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
 | |
|                                         isInc, DAG);
 | |
|   if (!isLegal)
 | |
|     return false;
 | |
| 
 | |
|   if (Ptr != Base) {
 | |
|     // Swap base ptr and offset to catch more post-index load / store when
 | |
|     // it's legal. In Thumb2 mode, offset must be an immediate.
 | |
|     if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
 | |
|         !Subtarget->isThumb2())
 | |
|       std::swap(Base, Offset);
 | |
| 
 | |
|     // Post-indexed load / store update the base pointer.
 | |
|     if (Ptr != Base)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
 | |
|                                                        APInt &KnownZero,
 | |
|                                                        APInt &KnownOne,
 | |
|                                                        const SelectionDAG &DAG,
 | |
|                                                        unsigned Depth) const {
 | |
|   KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0);
 | |
|   switch (Op.getOpcode()) {
 | |
|   default: break;
 | |
|   case ARMISD::CMOV: {
 | |
|     // Bits are known zero/one if known on the LHS and RHS.
 | |
|     DAG.ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
 | |
|     if (KnownZero == 0 && KnownOne == 0) return;
 | |
| 
 | |
|     APInt KnownZeroRHS, KnownOneRHS;
 | |
|     DAG.ComputeMaskedBits(Op.getOperand(1), KnownZeroRHS, KnownOneRHS, Depth+1);
 | |
|     KnownZero &= KnownZeroRHS;
 | |
|     KnownOne  &= KnownOneRHS;
 | |
|     return;
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                           ARM Inline Assembly Support
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
 | |
|   // Looking for "rev" which is V6+.
 | |
|   if (!Subtarget->hasV6Ops())
 | |
|     return false;
 | |
| 
 | |
|   InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
 | |
|   std::string AsmStr = IA->getAsmString();
 | |
|   SmallVector<StringRef, 4> AsmPieces;
 | |
|   SplitString(AsmStr, AsmPieces, ";\n");
 | |
| 
 | |
|   switch (AsmPieces.size()) {
 | |
|   default: return false;
 | |
|   case 1:
 | |
|     AsmStr = AsmPieces[0];
 | |
|     AsmPieces.clear();
 | |
|     SplitString(AsmStr, AsmPieces, " \t,");
 | |
| 
 | |
|     // rev $0, $1
 | |
|     if (AsmPieces.size() == 3 &&
 | |
|         AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
 | |
|         IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
 | |
|       IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
 | |
|       if (Ty && Ty->getBitWidth() == 32)
 | |
|         return IntrinsicLowering::LowerToByteSwap(CI);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// getConstraintType - Given a constraint letter, return the type of
 | |
| /// constraint it is for this target.
 | |
| ARMTargetLowering::ConstraintType
 | |
| ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
 | |
|   if (Constraint.size() == 1) {
 | |
|     switch (Constraint[0]) {
 | |
|     default:  break;
 | |
|     case 'l': return C_RegisterClass;
 | |
|     case 'w': return C_RegisterClass;
 | |
|     case 'h': return C_RegisterClass;
 | |
|     case 'x': return C_RegisterClass;
 | |
|     case 't': return C_RegisterClass;
 | |
|     case 'j': return C_Other; // Constant for movw.
 | |
|       // An address with a single base register. Due to the way we
 | |
|       // currently handle addresses it is the same as an 'r' memory constraint.
 | |
|     case 'Q': return C_Memory;
 | |
|     }
 | |
|   } else if (Constraint.size() == 2) {
 | |
|     switch (Constraint[0]) {
 | |
|     default: break;
 | |
|     // All 'U+' constraints are addresses.
 | |
|     case 'U': return C_Memory;
 | |
|     }
 | |
|   }
 | |
|   return TargetLowering::getConstraintType(Constraint);
 | |
| }
 | |
| 
 | |
| /// Examine constraint type and operand type and determine a weight value.
 | |
| /// This object must already have been set up with the operand type
 | |
| /// and the current alternative constraint selected.
 | |
| TargetLowering::ConstraintWeight
 | |
| ARMTargetLowering::getSingleConstraintMatchWeight(
 | |
|     AsmOperandInfo &info, const char *constraint) const {
 | |
|   ConstraintWeight weight = CW_Invalid;
 | |
|   Value *CallOperandVal = info.CallOperandVal;
 | |
|     // If we don't have a value, we can't do a match,
 | |
|     // but allow it at the lowest weight.
 | |
|   if (CallOperandVal == NULL)
 | |
|     return CW_Default;
 | |
|   Type *type = CallOperandVal->getType();
 | |
|   // Look at the constraint type.
 | |
|   switch (*constraint) {
 | |
|   default:
 | |
|     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
 | |
|     break;
 | |
|   case 'l':
 | |
|     if (type->isIntegerTy()) {
 | |
|       if (Subtarget->isThumb())
 | |
|         weight = CW_SpecificReg;
 | |
|       else
 | |
|         weight = CW_Register;
 | |
|     }
 | |
|     break;
 | |
|   case 'w':
 | |
|     if (type->isFloatingPointTy())
 | |
|       weight = CW_Register;
 | |
|     break;
 | |
|   }
 | |
|   return weight;
 | |
| }
 | |
| 
 | |
| typedef std::pair<unsigned, const TargetRegisterClass*> RCPair;
 | |
| RCPair
 | |
| ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
 | |
|                                                 EVT VT) const {
 | |
|   if (Constraint.size() == 1) {
 | |
|     // GCC ARM Constraint Letters
 | |
|     switch (Constraint[0]) {
 | |
|     case 'l': // Low regs or general regs.
 | |
|       if (Subtarget->isThumb())
 | |
|         return RCPair(0U, &ARM::tGPRRegClass);
 | |
|       return RCPair(0U, &ARM::GPRRegClass);
 | |
|     case 'h': // High regs or no regs.
 | |
|       if (Subtarget->isThumb())
 | |
|         return RCPair(0U, &ARM::hGPRRegClass);
 | |
|       break;
 | |
|     case 'r':
 | |
|       return RCPair(0U, &ARM::GPRRegClass);
 | |
|     case 'w':
 | |
|       if (VT == MVT::f32)
 | |
|         return RCPair(0U, &ARM::SPRRegClass);
 | |
|       if (VT.getSizeInBits() == 64)
 | |
|         return RCPair(0U, &ARM::DPRRegClass);
 | |
|       if (VT.getSizeInBits() == 128)
 | |
|         return RCPair(0U, &ARM::QPRRegClass);
 | |
|       break;
 | |
|     case 'x':
 | |
|       if (VT == MVT::f32)
 | |
|         return RCPair(0U, &ARM::SPR_8RegClass);
 | |
|       if (VT.getSizeInBits() == 64)
 | |
|         return RCPair(0U, &ARM::DPR_8RegClass);
 | |
|       if (VT.getSizeInBits() == 128)
 | |
|         return RCPair(0U, &ARM::QPR_8RegClass);
 | |
|       break;
 | |
|     case 't':
 | |
|       if (VT == MVT::f32)
 | |
|         return RCPair(0U, &ARM::SPRRegClass);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   if (StringRef("{cc}").equals_lower(Constraint))
 | |
|     return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);
 | |
| 
 | |
|   return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
 | |
| }
 | |
| 
 | |
| /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
 | |
| /// vector.  If it is invalid, don't add anything to Ops.
 | |
| void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
 | |
|                                                      std::string &Constraint,
 | |
|                                                      std::vector<SDValue>&Ops,
 | |
|                                                      SelectionDAG &DAG) const {
 | |
|   SDValue Result(0, 0);
 | |
| 
 | |
|   // Currently only support length 1 constraints.
 | |
|   if (Constraint.length() != 1) return;
 | |
| 
 | |
|   char ConstraintLetter = Constraint[0];
 | |
|   switch (ConstraintLetter) {
 | |
|   default: break;
 | |
|   case 'j':
 | |
|   case 'I': case 'J': case 'K': case 'L':
 | |
|   case 'M': case 'N': case 'O':
 | |
|     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
 | |
|     if (!C)
 | |
|       return;
 | |
| 
 | |
|     int64_t CVal64 = C->getSExtValue();
 | |
|     int CVal = (int) CVal64;
 | |
|     // None of these constraints allow values larger than 32 bits.  Check
 | |
|     // that the value fits in an int.
 | |
|     if (CVal != CVal64)
 | |
|       return;
 | |
| 
 | |
|     switch (ConstraintLetter) {
 | |
|       case 'j':
 | |
|         // Constant suitable for movw, must be between 0 and
 | |
|         // 65535.
 | |
|         if (Subtarget->hasV6T2Ops())
 | |
|           if (CVal >= 0 && CVal <= 65535)
 | |
|             break;
 | |
|         return;
 | |
|       case 'I':
 | |
|         if (Subtarget->isThumb1Only()) {
 | |
|           // This must be a constant between 0 and 255, for ADD
 | |
|           // immediates.
 | |
|           if (CVal >= 0 && CVal <= 255)
 | |
|             break;
 | |
|         } else if (Subtarget->isThumb2()) {
 | |
|           // A constant that can be used as an immediate value in a
 | |
|           // data-processing instruction.
 | |
|           if (ARM_AM::getT2SOImmVal(CVal) != -1)
 | |
|             break;
 | |
|         } else {
 | |
|           // A constant that can be used as an immediate value in a
 | |
|           // data-processing instruction.
 | |
|           if (ARM_AM::getSOImmVal(CVal) != -1)
 | |
|             break;
 | |
|         }
 | |
|         return;
 | |
| 
 | |
|       case 'J':
 | |
|         if (Subtarget->isThumb()) {  // FIXME thumb2
 | |
|           // This must be a constant between -255 and -1, for negated ADD
 | |
|           // immediates. This can be used in GCC with an "n" modifier that
 | |
|           // prints the negated value, for use with SUB instructions. It is
 | |
|           // not useful otherwise but is implemented for compatibility.
 | |
|           if (CVal >= -255 && CVal <= -1)
 | |
|             break;
 | |
|         } else {
 | |
|           // This must be a constant between -4095 and 4095. It is not clear
 | |
|           // what this constraint is intended for. Implemented for
 | |
|           // compatibility with GCC.
 | |
|           if (CVal >= -4095 && CVal <= 4095)
 | |
|             break;
 | |
|         }
 | |
|         return;
 | |
| 
 | |
|       case 'K':
 | |
|         if (Subtarget->isThumb1Only()) {
 | |
|           // A 32-bit value where only one byte has a nonzero value. Exclude
 | |
|           // zero to match GCC. This constraint is used by GCC internally for
 | |
|           // constants that can be loaded with a move/shift combination.
 | |
|           // It is not useful otherwise but is implemented for compatibility.
 | |
|           if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
 | |
|             break;
 | |
|         } else if (Subtarget->isThumb2()) {
 | |
|           // A constant whose bitwise inverse can be used as an immediate
 | |
|           // value in a data-processing instruction. This can be used in GCC
 | |
|           // with a "B" modifier that prints the inverted value, for use with
 | |
|           // BIC and MVN instructions. It is not useful otherwise but is
 | |
|           // implemented for compatibility.
 | |
|           if (ARM_AM::getT2SOImmVal(~CVal) != -1)
 | |
|             break;
 | |
|         } else {
 | |
|           // A constant whose bitwise inverse can be used as an immediate
 | |
|           // value in a data-processing instruction. This can be used in GCC
 | |
|           // with a "B" modifier that prints the inverted value, for use with
 | |
|           // BIC and MVN instructions. It is not useful otherwise but is
 | |
|           // implemented for compatibility.
 | |
|           if (ARM_AM::getSOImmVal(~CVal) != -1)
 | |
|             break;
 | |
|         }
 | |
|         return;
 | |
| 
 | |
|       case 'L':
 | |
|         if (Subtarget->isThumb1Only()) {
 | |
|           // This must be a constant between -7 and 7,
 | |
|           // for 3-operand ADD/SUB immediate instructions.
 | |
|           if (CVal >= -7 && CVal < 7)
 | |
|             break;
 | |
|         } else if (Subtarget->isThumb2()) {
 | |
|           // A constant whose negation can be used as an immediate value in a
 | |
|           // data-processing instruction. This can be used in GCC with an "n"
 | |
|           // modifier that prints the negated value, for use with SUB
 | |
|           // instructions. It is not useful otherwise but is implemented for
 | |
|           // compatibility.
 | |
|           if (ARM_AM::getT2SOImmVal(-CVal) != -1)
 | |
|             break;
 | |
|         } else {
 | |
|           // A constant whose negation can be used as an immediate value in a
 | |
|           // data-processing instruction. This can be used in GCC with an "n"
 | |
|           // modifier that prints the negated value, for use with SUB
 | |
|           // instructions. It is not useful otherwise but is implemented for
 | |
|           // compatibility.
 | |
|           if (ARM_AM::getSOImmVal(-CVal) != -1)
 | |
|             break;
 | |
|         }
 | |
|         return;
 | |
| 
 | |
|       case 'M':
 | |
|         if (Subtarget->isThumb()) { // FIXME thumb2
 | |
|           // This must be a multiple of 4 between 0 and 1020, for
 | |
|           // ADD sp + immediate.
 | |
|           if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
 | |
|             break;
 | |
|         } else {
 | |
|           // A power of two or a constant between 0 and 32.  This is used in
 | |
|           // GCC for the shift amount on shifted register operands, but it is
 | |
|           // useful in general for any shift amounts.
 | |
|           if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
 | |
|             break;
 | |
|         }
 | |
|         return;
 | |
| 
 | |
|       case 'N':
 | |
|         if (Subtarget->isThumb()) {  // FIXME thumb2
 | |
|           // This must be a constant between 0 and 31, for shift amounts.
 | |
|           if (CVal >= 0 && CVal <= 31)
 | |
|             break;
 | |
|         }
 | |
|         return;
 | |
| 
 | |
|       case 'O':
 | |
|         if (Subtarget->isThumb()) {  // FIXME thumb2
 | |
|           // This must be a multiple of 4 between -508 and 508, for
 | |
|           // ADD/SUB sp = sp + immediate.
 | |
|           if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
 | |
|             break;
 | |
|         }
 | |
|         return;
 | |
|     }
 | |
|     Result = DAG.getTargetConstant(CVal, Op.getValueType());
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (Result.getNode()) {
 | |
|     Ops.push_back(Result);
 | |
|     return;
 | |
|   }
 | |
|   return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
 | |
| }
 | |
| 
 | |
| bool
 | |
| ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
 | |
|   // The ARM target isn't yet aware of offsets.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ARM::isBitFieldInvertedMask(unsigned v) {
 | |
|   if (v == 0xffffffff)
 | |
|     return 0;
 | |
|   // there can be 1's on either or both "outsides", all the "inside"
 | |
|   // bits must be 0's
 | |
|   unsigned int lsb = 0, msb = 31;
 | |
|   while (v & (1 << msb)) --msb;
 | |
|   while (v & (1 << lsb)) ++lsb;
 | |
|   for (unsigned int i = lsb; i <= msb; ++i) {
 | |
|     if (v & (1 << i))
 | |
|       return 0;
 | |
|   }
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| /// isFPImmLegal - Returns true if the target can instruction select the
 | |
| /// specified FP immediate natively. If false, the legalizer will
 | |
| /// materialize the FP immediate as a load from a constant pool.
 | |
| bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
 | |
|   if (!Subtarget->hasVFP3())
 | |
|     return false;
 | |
|   if (VT == MVT::f32)
 | |
|     return ARM_AM::getFP32Imm(Imm) != -1;
 | |
|   if (VT == MVT::f64)
 | |
|     return ARM_AM::getFP64Imm(Imm) != -1;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
 | |
| /// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
 | |
| /// specified in the intrinsic calls.
 | |
| bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
 | |
|                                            const CallInst &I,
 | |
|                                            unsigned Intrinsic) const {
 | |
|   switch (Intrinsic) {
 | |
|   case Intrinsic::arm_neon_vld1:
 | |
|   case Intrinsic::arm_neon_vld2:
 | |
|   case Intrinsic::arm_neon_vld3:
 | |
|   case Intrinsic::arm_neon_vld4:
 | |
|   case Intrinsic::arm_neon_vld2lane:
 | |
|   case Intrinsic::arm_neon_vld3lane:
 | |
|   case Intrinsic::arm_neon_vld4lane: {
 | |
|     Info.opc = ISD::INTRINSIC_W_CHAIN;
 | |
|     // Conservatively set memVT to the entire set of vectors loaded.
 | |
|     uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8;
 | |
|     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
 | |
|     Info.ptrVal = I.getArgOperand(0);
 | |
|     Info.offset = 0;
 | |
|     Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
 | |
|     Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
 | |
|     Info.vol = false; // volatile loads with NEON intrinsics not supported
 | |
|     Info.readMem = true;
 | |
|     Info.writeMem = false;
 | |
|     return true;
 | |
|   }
 | |
|   case Intrinsic::arm_neon_vst1:
 | |
|   case Intrinsic::arm_neon_vst2:
 | |
|   case Intrinsic::arm_neon_vst3:
 | |
|   case Intrinsic::arm_neon_vst4:
 | |
|   case Intrinsic::arm_neon_vst2lane:
 | |
|   case Intrinsic::arm_neon_vst3lane:
 | |
|   case Intrinsic::arm_neon_vst4lane: {
 | |
|     Info.opc = ISD::INTRINSIC_VOID;
 | |
|     // Conservatively set memVT to the entire set of vectors stored.
 | |
|     unsigned NumElts = 0;
 | |
|     for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
 | |
|       Type *ArgTy = I.getArgOperand(ArgI)->getType();
 | |
|       if (!ArgTy->isVectorTy())
 | |
|         break;
 | |
|       NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8;
 | |
|     }
 | |
|     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
 | |
|     Info.ptrVal = I.getArgOperand(0);
 | |
|     Info.offset = 0;
 | |
|     Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
 | |
|     Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
 | |
|     Info.vol = false; // volatile stores with NEON intrinsics not supported
 | |
|     Info.readMem = false;
 | |
|     Info.writeMem = true;
 | |
|     return true;
 | |
|   }
 | |
|   case Intrinsic::arm_strexd: {
 | |
|     Info.opc = ISD::INTRINSIC_W_CHAIN;
 | |
|     Info.memVT = MVT::i64;
 | |
|     Info.ptrVal = I.getArgOperand(2);
 | |
|     Info.offset = 0;
 | |
|     Info.align = 8;
 | |
|     Info.vol = true;
 | |
|     Info.readMem = false;
 | |
|     Info.writeMem = true;
 | |
|     return true;
 | |
|   }
 | |
|   case Intrinsic::arm_ldrexd: {
 | |
|     Info.opc = ISD::INTRINSIC_W_CHAIN;
 | |
|     Info.memVT = MVT::i64;
 | |
|     Info.ptrVal = I.getArgOperand(0);
 | |
|     Info.offset = 0;
 | |
|     Info.align = 8;
 | |
|     Info.vol = true;
 | |
|     Info.readMem = true;
 | |
|     Info.writeMem = false;
 | |
|     return true;
 | |
|   }
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 |