mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-01 00:33:09 +00:00
e9bb2df410
Rename ConstPool* -> Constant* Rename ConstPoolVals.h -> ConstantVals.h git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@1407 91177308-0d34-0410-b5e6-96231b3b80d8
215 lines
7.9 KiB
C++
215 lines
7.9 KiB
C++
//===-- TransformInternals.cpp - Implement shared functions for transforms --=//
|
|
//
|
|
// This file defines shared functions used by the different components of the
|
|
// Transforms library.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "TransformInternals.h"
|
|
#include "llvm/Method.h"
|
|
#include "llvm/Type.h"
|
|
#include "llvm/ConstantVals.h"
|
|
#include "llvm/Analysis/Expressions.h"
|
|
#include "llvm/iOther.h"
|
|
|
|
// TargetData Hack: Eventually we will have annotations given to us by the
|
|
// backend so that we know stuff about type size and alignments. For now
|
|
// though, just use this, because it happens to match the model that GCC uses.
|
|
//
|
|
const TargetData TD("LevelRaise: Should be GCC though!");
|
|
|
|
// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI)
|
|
// with a value, then remove and delete the original instruction.
|
|
//
|
|
void ReplaceInstWithValue(BasicBlock::InstListType &BIL,
|
|
BasicBlock::iterator &BI, Value *V) {
|
|
Instruction *I = *BI;
|
|
// Replaces all of the uses of the instruction with uses of the value
|
|
I->replaceAllUsesWith(V);
|
|
|
|
// Remove the unneccesary instruction now...
|
|
BIL.remove(BI);
|
|
|
|
// Make sure to propogate a name if there is one already...
|
|
if (I->hasName() && !V->hasName())
|
|
V->setName(I->getName(), BIL.getParent()->getSymbolTable());
|
|
|
|
// Remove the dead instruction now...
|
|
delete I;
|
|
}
|
|
|
|
|
|
// ReplaceInstWithInst - Replace the instruction specified by BI with the
|
|
// instruction specified by I. The original instruction is deleted and BI is
|
|
// updated to point to the new instruction.
|
|
//
|
|
void ReplaceInstWithInst(BasicBlock::InstListType &BIL,
|
|
BasicBlock::iterator &BI, Instruction *I) {
|
|
assert(I->getParent() == 0 &&
|
|
"ReplaceInstWithInst: Instruction already inserted into basic block!");
|
|
|
|
// Insert the new instruction into the basic block...
|
|
BI = BIL.insert(BI, I)+1;
|
|
|
|
// Replace all uses of the old instruction, and delete it.
|
|
ReplaceInstWithValue(BIL, BI, I);
|
|
|
|
// Reexamine the instruction just inserted next time around the cleanup pass
|
|
// loop.
|
|
--BI;
|
|
}
|
|
|
|
|
|
// getStructOffsetType - Return a vector of offsets that are to be used to index
|
|
// into the specified struct type to get as close as possible to index as we
|
|
// can. Note that it is possible that we cannot get exactly to Offset, in which
|
|
// case we update offset to be the offset we actually obtained. The resultant
|
|
// leaf type is returned.
|
|
//
|
|
// If StopEarly is set to true (the default), the first object with the
|
|
// specified type is returned, even if it is a struct type itself. In this
|
|
// case, this routine will not drill down to the leaf type. Set StopEarly to
|
|
// false if you want a leaf
|
|
//
|
|
const Type *getStructOffsetType(const Type *Ty, unsigned &Offset,
|
|
vector<Value*> &Offsets,
|
|
bool StopEarly = true) {
|
|
if (!isa<CompositeType>(Ty) ||
|
|
(Offset == 0 && StopEarly && !Offsets.empty())) {
|
|
Offset = 0; // Return the offset that we were able to acheive
|
|
return Ty; // Return the leaf type
|
|
}
|
|
|
|
unsigned ThisOffset;
|
|
const Type *NextType;
|
|
if (const StructType *STy = dyn_cast<StructType>(Ty)) {
|
|
assert(Offset < TD.getTypeSize(Ty) && "Offset not in composite!");
|
|
const StructLayout *SL = TD.getStructLayout(STy);
|
|
|
|
// This loop terminates always on a 0 <= i < MemberOffsets.size()
|
|
unsigned i;
|
|
for (i = 0; i < SL->MemberOffsets.size()-1; ++i)
|
|
if (Offset >= SL->MemberOffsets[i] && Offset < SL->MemberOffsets[i+1])
|
|
break;
|
|
|
|
assert(Offset >= SL->MemberOffsets[i] &&
|
|
(i == SL->MemberOffsets.size()-1 || Offset <SL->MemberOffsets[i+1]));
|
|
|
|
// Make sure to save the current index...
|
|
Offsets.push_back(ConstantUInt::get(Type::UByteTy, i));
|
|
ThisOffset = SL->MemberOffsets[i];
|
|
NextType = STy->getElementTypes()[i];
|
|
} else {
|
|
const ArrayType *ATy = cast<ArrayType>(Ty);
|
|
assert(ATy->isUnsized() || Offset < TD.getTypeSize(Ty) &&
|
|
"Offset not in composite!");
|
|
|
|
NextType = ATy->getElementType();
|
|
unsigned ChildSize = TD.getTypeSize(NextType);
|
|
Offsets.push_back(ConstantUInt::get(Type::UIntTy, Offset/ChildSize));
|
|
ThisOffset = (Offset/ChildSize)*ChildSize;
|
|
}
|
|
|
|
unsigned SubOffs = Offset - ThisOffset;
|
|
const Type *LeafTy = getStructOffsetType(NextType, SubOffs, Offsets);
|
|
Offset = ThisOffset + SubOffs;
|
|
return LeafTy;
|
|
}
|
|
|
|
// ConvertableToGEP - This function returns true if the specified value V is
|
|
// a valid index into a pointer of type Ty. If it is valid, Idx is filled in
|
|
// with the values that would be appropriate to make this a getelementptr
|
|
// instruction. The type returned is the root type that the GEP would point to
|
|
//
|
|
const Type *ConvertableToGEP(const Type *Ty, Value *OffsetVal,
|
|
vector<Value*> &Indices,
|
|
BasicBlock::iterator *BI = 0) {
|
|
const CompositeType *CompTy = getPointedToComposite(Ty);
|
|
if (CompTy == 0) return 0;
|
|
|
|
// See if the cast is of an integer expression that is either a constant,
|
|
// or a value scaled by some amount with a possible offset.
|
|
//
|
|
analysis::ExprType Expr = analysis::ClassifyExpression(OffsetVal);
|
|
|
|
// The expression must either be a constant, or a scaled index to be useful
|
|
if (!Expr.Offset && !Expr.Scale)
|
|
return 0;
|
|
|
|
// Get the offset and scale now...
|
|
unsigned Offset = 0, Scale = Expr.Var != 0;
|
|
|
|
// Get the offset value if it exists...
|
|
if (Expr.Offset) {
|
|
int Val = getConstantValue(Expr.Offset);
|
|
if (Val < 0) return false; // Don't mess with negative offsets
|
|
Offset = (unsigned)Val;
|
|
}
|
|
|
|
// Get the scale value if it exists...
|
|
if (Expr.Scale) {
|
|
int Val = getConstantValue(Expr.Scale);
|
|
if (Val < 0) return false; // Don't mess with negative scales
|
|
Scale = (unsigned)Val;
|
|
}
|
|
|
|
// Check to make sure the offset is not negative or really large, outside the
|
|
// scope of this structure...
|
|
//
|
|
if (!isa<ArrayType>(CompTy) || cast<ArrayType>(CompTy)->isSized())
|
|
if (Offset >= TD.getTypeSize(CompTy))
|
|
return 0;
|
|
|
|
// Loop over the Scale and Offset values, filling in the Indices vector for
|
|
// our final getelementptr instruction.
|
|
//
|
|
const Type *NextTy = CompTy;
|
|
do {
|
|
if (!isa<CompositeType>(NextTy))
|
|
return 0; // Type must not be ready for processing...
|
|
CompTy = cast<CompositeType>(NextTy);
|
|
|
|
if (const StructType *StructTy = dyn_cast<StructType>(CompTy)) {
|
|
const StructLayout *SL = TD.getStructLayout(StructTy);
|
|
unsigned ActualOffset = Offset;
|
|
NextTy = getStructOffsetType(StructTy, ActualOffset, Indices);
|
|
Offset -= ActualOffset;
|
|
} else {
|
|
const ArrayType *AT = cast<ArrayType>(CompTy);
|
|
const Type *ElTy = AT->getElementType();
|
|
unsigned ElSize = TD.getTypeSize(ElTy);
|
|
|
|
// See if the user is indexing into a different cell of this array...
|
|
if (Offset >= ElSize) {
|
|
// Calculate the index that we are entering into the array cell with
|
|
unsigned Index = Offset/ElSize;
|
|
Indices.push_back(ConstantUInt::get(Type::UIntTy, Index));
|
|
Offset -= Index*ElSize; // Consume part of the offset
|
|
|
|
} else if (Scale && Scale != 1) {
|
|
// Must be indexing into this element with a variable...
|
|
if (Scale != ElSize)
|
|
return 0; // Type must not be finished yet...
|
|
|
|
if (Expr.Var->getType() != Type::UIntTy && BI) {
|
|
BasicBlock *BB = (**BI)->getParent();
|
|
CastInst *IdxCast = new CastInst(Expr.Var, Type::UIntTy);
|
|
*BI = BB->getInstList().insert(*BI, IdxCast)+1;
|
|
Expr.Var = IdxCast;
|
|
}
|
|
|
|
Indices.push_back(Expr.Var);
|
|
Scale = 0; // Consume scale factor!
|
|
} else {
|
|
// Must be indexing a small amount into the first cell of the array
|
|
// Just index into element zero of the array here.
|
|
//
|
|
Indices.push_back(ConstantUInt::get(Type::UIntTy, 0));
|
|
}
|
|
NextTy = ElTy;
|
|
}
|
|
} while (Offset || Scale); // Go until we're done!
|
|
|
|
return NextTy;
|
|
}
|