mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216823 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2794 lines
		
	
	
		
			101 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2794 lines
		
	
	
		
			101 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- X86AsmParser.cpp - Parse X86 assembly to MCInst instructions ------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "MCTargetDesc/X86BaseInfo.h"
 | 
						|
#include "X86AsmInstrumentation.h"
 | 
						|
#include "X86AsmParserCommon.h"
 | 
						|
#include "X86Operand.h"
 | 
						|
#include "llvm/ADT/APFloat.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallString.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/StringSwitch.h"
 | 
						|
#include "llvm/ADT/Twine.h"
 | 
						|
#include "llvm/MC/MCContext.h"
 | 
						|
#include "llvm/MC/MCExpr.h"
 | 
						|
#include "llvm/MC/MCInst.h"
 | 
						|
#include "llvm/MC/MCInstrInfo.h"
 | 
						|
#include "llvm/MC/MCParser/MCAsmLexer.h"
 | 
						|
#include "llvm/MC/MCParser/MCAsmParser.h"
 | 
						|
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
 | 
						|
#include "llvm/MC/MCRegisterInfo.h"
 | 
						|
#include "llvm/MC/MCStreamer.h"
 | 
						|
#include "llvm/MC/MCSubtargetInfo.h"
 | 
						|
#include "llvm/MC/MCSymbol.h"
 | 
						|
#include "llvm/MC/MCTargetAsmParser.h"
 | 
						|
#include "llvm/Support/SourceMgr.h"
 | 
						|
#include "llvm/Support/TargetRegistry.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <memory>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
static const char OpPrecedence[] = {
 | 
						|
  0, // IC_OR
 | 
						|
  1, // IC_AND
 | 
						|
  2, // IC_LSHIFT
 | 
						|
  2, // IC_RSHIFT
 | 
						|
  3, // IC_PLUS
 | 
						|
  3, // IC_MINUS
 | 
						|
  4, // IC_MULTIPLY
 | 
						|
  4, // IC_DIVIDE
 | 
						|
  5, // IC_RPAREN
 | 
						|
  6, // IC_LPAREN
 | 
						|
  0, // IC_IMM
 | 
						|
  0  // IC_REGISTER
 | 
						|
};
 | 
						|
 | 
						|
class X86AsmParser : public MCTargetAsmParser {
 | 
						|
  MCSubtargetInfo &STI;
 | 
						|
  MCAsmParser &Parser;
 | 
						|
  const MCInstrInfo &MII;
 | 
						|
  ParseInstructionInfo *InstInfo;
 | 
						|
  std::unique_ptr<X86AsmInstrumentation> Instrumentation;
 | 
						|
private:
 | 
						|
  SMLoc consumeToken() {
 | 
						|
    SMLoc Result = Parser.getTok().getLoc();
 | 
						|
    Parser.Lex();
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  enum InfixCalculatorTok {
 | 
						|
    IC_OR = 0,
 | 
						|
    IC_AND,
 | 
						|
    IC_LSHIFT,
 | 
						|
    IC_RSHIFT,
 | 
						|
    IC_PLUS,
 | 
						|
    IC_MINUS,
 | 
						|
    IC_MULTIPLY,
 | 
						|
    IC_DIVIDE,
 | 
						|
    IC_RPAREN,
 | 
						|
    IC_LPAREN,
 | 
						|
    IC_IMM,
 | 
						|
    IC_REGISTER
 | 
						|
  };
 | 
						|
 | 
						|
  class InfixCalculator {
 | 
						|
    typedef std::pair< InfixCalculatorTok, int64_t > ICToken;
 | 
						|
    SmallVector<InfixCalculatorTok, 4> InfixOperatorStack;
 | 
						|
    SmallVector<ICToken, 4> PostfixStack;
 | 
						|
    
 | 
						|
  public:
 | 
						|
    int64_t popOperand() {
 | 
						|
      assert (!PostfixStack.empty() && "Poped an empty stack!");
 | 
						|
      ICToken Op = PostfixStack.pop_back_val();
 | 
						|
      assert ((Op.first == IC_IMM || Op.first == IC_REGISTER)
 | 
						|
              && "Expected and immediate or register!");
 | 
						|
      return Op.second;
 | 
						|
    }
 | 
						|
    void pushOperand(InfixCalculatorTok Op, int64_t Val = 0) {
 | 
						|
      assert ((Op == IC_IMM || Op == IC_REGISTER) &&
 | 
						|
              "Unexpected operand!");
 | 
						|
      PostfixStack.push_back(std::make_pair(Op, Val));
 | 
						|
    }
 | 
						|
    
 | 
						|
    void popOperator() { InfixOperatorStack.pop_back(); }
 | 
						|
    void pushOperator(InfixCalculatorTok Op) {
 | 
						|
      // Push the new operator if the stack is empty.
 | 
						|
      if (InfixOperatorStack.empty()) {
 | 
						|
        InfixOperatorStack.push_back(Op);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Push the new operator if it has a higher precedence than the operator
 | 
						|
      // on the top of the stack or the operator on the top of the stack is a
 | 
						|
      // left parentheses.
 | 
						|
      unsigned Idx = InfixOperatorStack.size() - 1;
 | 
						|
      InfixCalculatorTok StackOp = InfixOperatorStack[Idx];
 | 
						|
      if (OpPrecedence[Op] > OpPrecedence[StackOp] || StackOp == IC_LPAREN) {
 | 
						|
        InfixOperatorStack.push_back(Op);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // The operator on the top of the stack has higher precedence than the
 | 
						|
      // new operator.
 | 
						|
      unsigned ParenCount = 0;
 | 
						|
      while (1) {
 | 
						|
        // Nothing to process.
 | 
						|
        if (InfixOperatorStack.empty())
 | 
						|
          break;
 | 
						|
        
 | 
						|
        Idx = InfixOperatorStack.size() - 1;
 | 
						|
        StackOp = InfixOperatorStack[Idx];
 | 
						|
        if (!(OpPrecedence[StackOp] >= OpPrecedence[Op] || ParenCount))
 | 
						|
          break;
 | 
						|
        
 | 
						|
        // If we have an even parentheses count and we see a left parentheses,
 | 
						|
        // then stop processing.
 | 
						|
        if (!ParenCount && StackOp == IC_LPAREN)
 | 
						|
          break;
 | 
						|
        
 | 
						|
        if (StackOp == IC_RPAREN) {
 | 
						|
          ++ParenCount;
 | 
						|
          InfixOperatorStack.pop_back();
 | 
						|
        } else if (StackOp == IC_LPAREN) {
 | 
						|
          --ParenCount;
 | 
						|
          InfixOperatorStack.pop_back();
 | 
						|
        } else {
 | 
						|
          InfixOperatorStack.pop_back();
 | 
						|
          PostfixStack.push_back(std::make_pair(StackOp, 0));
 | 
						|
        }
 | 
						|
      }
 | 
						|
      // Push the new operator.
 | 
						|
      InfixOperatorStack.push_back(Op);
 | 
						|
    }
 | 
						|
    int64_t execute() {
 | 
						|
      // Push any remaining operators onto the postfix stack.
 | 
						|
      while (!InfixOperatorStack.empty()) {
 | 
						|
        InfixCalculatorTok StackOp = InfixOperatorStack.pop_back_val();
 | 
						|
        if (StackOp != IC_LPAREN && StackOp != IC_RPAREN)
 | 
						|
          PostfixStack.push_back(std::make_pair(StackOp, 0));
 | 
						|
      }
 | 
						|
      
 | 
						|
      if (PostfixStack.empty())
 | 
						|
        return 0;
 | 
						|
      
 | 
						|
      SmallVector<ICToken, 16> OperandStack;
 | 
						|
      for (unsigned i = 0, e = PostfixStack.size(); i != e; ++i) {
 | 
						|
        ICToken Op = PostfixStack[i];
 | 
						|
        if (Op.first == IC_IMM || Op.first == IC_REGISTER) {
 | 
						|
          OperandStack.push_back(Op);
 | 
						|
        } else {
 | 
						|
          assert (OperandStack.size() > 1 && "Too few operands.");
 | 
						|
          int64_t Val;
 | 
						|
          ICToken Op2 = OperandStack.pop_back_val();
 | 
						|
          ICToken Op1 = OperandStack.pop_back_val();
 | 
						|
          switch (Op.first) {
 | 
						|
          default:
 | 
						|
            report_fatal_error("Unexpected operator!");
 | 
						|
            break;
 | 
						|
          case IC_PLUS:
 | 
						|
            Val = Op1.second + Op2.second;
 | 
						|
            OperandStack.push_back(std::make_pair(IC_IMM, Val));
 | 
						|
            break;
 | 
						|
          case IC_MINUS:
 | 
						|
            Val = Op1.second - Op2.second;
 | 
						|
            OperandStack.push_back(std::make_pair(IC_IMM, Val));
 | 
						|
            break;
 | 
						|
          case IC_MULTIPLY:
 | 
						|
            assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
 | 
						|
                    "Multiply operation with an immediate and a register!");
 | 
						|
            Val = Op1.second * Op2.second;
 | 
						|
            OperandStack.push_back(std::make_pair(IC_IMM, Val));
 | 
						|
            break;
 | 
						|
          case IC_DIVIDE:
 | 
						|
            assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
 | 
						|
                    "Divide operation with an immediate and a register!");
 | 
						|
            assert (Op2.second != 0 && "Division by zero!");
 | 
						|
            Val = Op1.second / Op2.second;
 | 
						|
            OperandStack.push_back(std::make_pair(IC_IMM, Val));
 | 
						|
            break;
 | 
						|
          case IC_OR:
 | 
						|
            assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
 | 
						|
                    "Or operation with an immediate and a register!");
 | 
						|
            Val = Op1.second | Op2.second;
 | 
						|
            OperandStack.push_back(std::make_pair(IC_IMM, Val));
 | 
						|
            break;
 | 
						|
          case IC_AND:
 | 
						|
            assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
 | 
						|
                    "And operation with an immediate and a register!");
 | 
						|
            Val = Op1.second & Op2.second;
 | 
						|
            OperandStack.push_back(std::make_pair(IC_IMM, Val));
 | 
						|
            break;
 | 
						|
          case IC_LSHIFT:
 | 
						|
            assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
 | 
						|
                    "Left shift operation with an immediate and a register!");
 | 
						|
            Val = Op1.second << Op2.second;
 | 
						|
            OperandStack.push_back(std::make_pair(IC_IMM, Val));
 | 
						|
            break;
 | 
						|
          case IC_RSHIFT:
 | 
						|
            assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
 | 
						|
                    "Right shift operation with an immediate and a register!");
 | 
						|
            Val = Op1.second >> Op2.second;
 | 
						|
            OperandStack.push_back(std::make_pair(IC_IMM, Val));
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      assert (OperandStack.size() == 1 && "Expected a single result.");
 | 
						|
      return OperandStack.pop_back_val().second;
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  enum IntelExprState {
 | 
						|
    IES_OR,
 | 
						|
    IES_AND,
 | 
						|
    IES_LSHIFT,
 | 
						|
    IES_RSHIFT,
 | 
						|
    IES_PLUS,
 | 
						|
    IES_MINUS,
 | 
						|
    IES_NOT,
 | 
						|
    IES_MULTIPLY,
 | 
						|
    IES_DIVIDE,
 | 
						|
    IES_LBRAC,
 | 
						|
    IES_RBRAC,
 | 
						|
    IES_LPAREN,
 | 
						|
    IES_RPAREN,
 | 
						|
    IES_REGISTER,
 | 
						|
    IES_INTEGER,
 | 
						|
    IES_IDENTIFIER,
 | 
						|
    IES_ERROR
 | 
						|
  };
 | 
						|
 | 
						|
  class IntelExprStateMachine {
 | 
						|
    IntelExprState State, PrevState;
 | 
						|
    unsigned BaseReg, IndexReg, TmpReg, Scale;
 | 
						|
    int64_t Imm;
 | 
						|
    const MCExpr *Sym;
 | 
						|
    StringRef SymName;
 | 
						|
    bool StopOnLBrac, AddImmPrefix;
 | 
						|
    InfixCalculator IC;
 | 
						|
    InlineAsmIdentifierInfo Info;
 | 
						|
  public:
 | 
						|
    IntelExprStateMachine(int64_t imm, bool stoponlbrac, bool addimmprefix) :
 | 
						|
      State(IES_PLUS), PrevState(IES_ERROR), BaseReg(0), IndexReg(0), TmpReg(0),
 | 
						|
      Scale(1), Imm(imm), Sym(nullptr), StopOnLBrac(stoponlbrac),
 | 
						|
      AddImmPrefix(addimmprefix) { Info.clear(); }
 | 
						|
    
 | 
						|
    unsigned getBaseReg() { return BaseReg; }
 | 
						|
    unsigned getIndexReg() { return IndexReg; }
 | 
						|
    unsigned getScale() { return Scale; }
 | 
						|
    const MCExpr *getSym() { return Sym; }
 | 
						|
    StringRef getSymName() { return SymName; }
 | 
						|
    int64_t getImm() { return Imm + IC.execute(); }
 | 
						|
    bool isValidEndState() {
 | 
						|
      return State == IES_RBRAC || State == IES_INTEGER;
 | 
						|
    }
 | 
						|
    bool getStopOnLBrac() { return StopOnLBrac; }
 | 
						|
    bool getAddImmPrefix() { return AddImmPrefix; }
 | 
						|
    bool hadError() { return State == IES_ERROR; }
 | 
						|
 | 
						|
    InlineAsmIdentifierInfo &getIdentifierInfo() {
 | 
						|
      return Info;
 | 
						|
    }
 | 
						|
 | 
						|
    void onOr() {
 | 
						|
      IntelExprState CurrState = State;
 | 
						|
      switch (State) {
 | 
						|
      default:
 | 
						|
        State = IES_ERROR;
 | 
						|
        break;
 | 
						|
      case IES_INTEGER:
 | 
						|
      case IES_RPAREN:
 | 
						|
      case IES_REGISTER:
 | 
						|
        State = IES_OR;
 | 
						|
        IC.pushOperator(IC_OR);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      PrevState = CurrState;
 | 
						|
    }
 | 
						|
    void onAnd() {
 | 
						|
      IntelExprState CurrState = State;
 | 
						|
      switch (State) {
 | 
						|
      default:
 | 
						|
        State = IES_ERROR;
 | 
						|
        break;
 | 
						|
      case IES_INTEGER:
 | 
						|
      case IES_RPAREN:
 | 
						|
      case IES_REGISTER:
 | 
						|
        State = IES_AND;
 | 
						|
        IC.pushOperator(IC_AND);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      PrevState = CurrState;
 | 
						|
    }
 | 
						|
    void onLShift() {
 | 
						|
      IntelExprState CurrState = State;
 | 
						|
      switch (State) {
 | 
						|
      default:
 | 
						|
        State = IES_ERROR;
 | 
						|
        break;
 | 
						|
      case IES_INTEGER:
 | 
						|
      case IES_RPAREN:
 | 
						|
      case IES_REGISTER:
 | 
						|
        State = IES_LSHIFT;
 | 
						|
        IC.pushOperator(IC_LSHIFT);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      PrevState = CurrState;
 | 
						|
    }
 | 
						|
    void onRShift() {
 | 
						|
      IntelExprState CurrState = State;
 | 
						|
      switch (State) {
 | 
						|
      default:
 | 
						|
        State = IES_ERROR;
 | 
						|
        break;
 | 
						|
      case IES_INTEGER:
 | 
						|
      case IES_RPAREN:
 | 
						|
      case IES_REGISTER:
 | 
						|
        State = IES_RSHIFT;
 | 
						|
        IC.pushOperator(IC_RSHIFT);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      PrevState = CurrState;
 | 
						|
    }
 | 
						|
    void onPlus() {
 | 
						|
      IntelExprState CurrState = State;
 | 
						|
      switch (State) {
 | 
						|
      default:
 | 
						|
        State = IES_ERROR;
 | 
						|
        break;
 | 
						|
      case IES_INTEGER:
 | 
						|
      case IES_RPAREN:
 | 
						|
      case IES_REGISTER:
 | 
						|
        State = IES_PLUS;
 | 
						|
        IC.pushOperator(IC_PLUS);
 | 
						|
        if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
 | 
						|
          // If we already have a BaseReg, then assume this is the IndexReg with
 | 
						|
          // a scale of 1.
 | 
						|
          if (!BaseReg) {
 | 
						|
            BaseReg = TmpReg;
 | 
						|
          } else {
 | 
						|
            assert (!IndexReg && "BaseReg/IndexReg already set!");
 | 
						|
            IndexReg = TmpReg;
 | 
						|
            Scale = 1;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      PrevState = CurrState;
 | 
						|
    }
 | 
						|
    void onMinus() {
 | 
						|
      IntelExprState CurrState = State;
 | 
						|
      switch (State) {
 | 
						|
      default:
 | 
						|
        State = IES_ERROR;
 | 
						|
        break;
 | 
						|
      case IES_PLUS:
 | 
						|
      case IES_NOT:
 | 
						|
      case IES_MULTIPLY:
 | 
						|
      case IES_DIVIDE:
 | 
						|
      case IES_LPAREN:
 | 
						|
      case IES_RPAREN:
 | 
						|
      case IES_LBRAC:
 | 
						|
      case IES_RBRAC:
 | 
						|
      case IES_INTEGER:
 | 
						|
      case IES_REGISTER:
 | 
						|
        State = IES_MINUS;
 | 
						|
        // Only push the minus operator if it is not a unary operator.
 | 
						|
        if (!(CurrState == IES_PLUS || CurrState == IES_MINUS ||
 | 
						|
              CurrState == IES_MULTIPLY || CurrState == IES_DIVIDE ||
 | 
						|
              CurrState == IES_LPAREN || CurrState == IES_LBRAC))
 | 
						|
          IC.pushOperator(IC_MINUS);
 | 
						|
        if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
 | 
						|
          // If we already have a BaseReg, then assume this is the IndexReg with
 | 
						|
          // a scale of 1.
 | 
						|
          if (!BaseReg) {
 | 
						|
            BaseReg = TmpReg;
 | 
						|
          } else {
 | 
						|
            assert (!IndexReg && "BaseReg/IndexReg already set!");
 | 
						|
            IndexReg = TmpReg;
 | 
						|
            Scale = 1;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      PrevState = CurrState;
 | 
						|
    }
 | 
						|
    void onNot() {
 | 
						|
      IntelExprState CurrState = State;
 | 
						|
      switch (State) {
 | 
						|
      default:
 | 
						|
        State = IES_ERROR;
 | 
						|
        break;
 | 
						|
      case IES_PLUS:
 | 
						|
      case IES_NOT:
 | 
						|
        State = IES_NOT;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      PrevState = CurrState;
 | 
						|
    }
 | 
						|
    void onRegister(unsigned Reg) {
 | 
						|
      IntelExprState CurrState = State;
 | 
						|
      switch (State) {
 | 
						|
      default:
 | 
						|
        State = IES_ERROR;
 | 
						|
        break;
 | 
						|
      case IES_PLUS:
 | 
						|
      case IES_LPAREN:
 | 
						|
        State = IES_REGISTER;
 | 
						|
        TmpReg = Reg;
 | 
						|
        IC.pushOperand(IC_REGISTER);
 | 
						|
        break;
 | 
						|
      case IES_MULTIPLY:
 | 
						|
        // Index Register - Scale * Register
 | 
						|
        if (PrevState == IES_INTEGER) {
 | 
						|
          assert (!IndexReg && "IndexReg already set!");
 | 
						|
          State = IES_REGISTER;
 | 
						|
          IndexReg = Reg;
 | 
						|
          // Get the scale and replace the 'Scale * Register' with '0'.
 | 
						|
          Scale = IC.popOperand();
 | 
						|
          IC.pushOperand(IC_IMM);
 | 
						|
          IC.popOperator();
 | 
						|
        } else {
 | 
						|
          State = IES_ERROR;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      PrevState = CurrState;
 | 
						|
    }
 | 
						|
    void onIdentifierExpr(const MCExpr *SymRef, StringRef SymRefName) {
 | 
						|
      PrevState = State;
 | 
						|
      switch (State) {
 | 
						|
      default:
 | 
						|
        State = IES_ERROR;
 | 
						|
        break;
 | 
						|
      case IES_PLUS:
 | 
						|
      case IES_MINUS:
 | 
						|
      case IES_NOT:
 | 
						|
        State = IES_INTEGER;
 | 
						|
        Sym = SymRef;
 | 
						|
        SymName = SymRefName;
 | 
						|
        IC.pushOperand(IC_IMM);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    bool onInteger(int64_t TmpInt, StringRef &ErrMsg) {
 | 
						|
      IntelExprState CurrState = State;
 | 
						|
      switch (State) {
 | 
						|
      default:
 | 
						|
        State = IES_ERROR;
 | 
						|
        break;
 | 
						|
      case IES_PLUS:
 | 
						|
      case IES_MINUS:
 | 
						|
      case IES_NOT:
 | 
						|
      case IES_OR:
 | 
						|
      case IES_AND:
 | 
						|
      case IES_LSHIFT:
 | 
						|
      case IES_RSHIFT:
 | 
						|
      case IES_DIVIDE:
 | 
						|
      case IES_MULTIPLY:
 | 
						|
      case IES_LPAREN:
 | 
						|
        State = IES_INTEGER;
 | 
						|
        if (PrevState == IES_REGISTER && CurrState == IES_MULTIPLY) {
 | 
						|
          // Index Register - Register * Scale
 | 
						|
          assert (!IndexReg && "IndexReg already set!");
 | 
						|
          IndexReg = TmpReg;
 | 
						|
          Scale = TmpInt;
 | 
						|
          if(Scale != 1 && Scale != 2 && Scale != 4 && Scale != 8) {
 | 
						|
            ErrMsg = "scale factor in address must be 1, 2, 4 or 8";
 | 
						|
            return true;
 | 
						|
          }
 | 
						|
          // Get the scale and replace the 'Register * Scale' with '0'.
 | 
						|
          IC.popOperator();
 | 
						|
        } else if ((PrevState == IES_PLUS || PrevState == IES_MINUS ||
 | 
						|
                    PrevState == IES_OR || PrevState == IES_AND ||
 | 
						|
                    PrevState == IES_LSHIFT || PrevState == IES_RSHIFT ||
 | 
						|
                    PrevState == IES_MULTIPLY || PrevState == IES_DIVIDE ||
 | 
						|
                    PrevState == IES_LPAREN || PrevState == IES_LBRAC ||
 | 
						|
                    PrevState == IES_NOT) &&
 | 
						|
                   CurrState == IES_MINUS) {
 | 
						|
          // Unary minus.  No need to pop the minus operand because it was never
 | 
						|
          // pushed.
 | 
						|
          IC.pushOperand(IC_IMM, -TmpInt); // Push -Imm.
 | 
						|
        } else if ((PrevState == IES_PLUS || PrevState == IES_MINUS ||
 | 
						|
                    PrevState == IES_OR || PrevState == IES_AND ||
 | 
						|
                    PrevState == IES_LSHIFT || PrevState == IES_RSHIFT ||
 | 
						|
                    PrevState == IES_MULTIPLY || PrevState == IES_DIVIDE ||
 | 
						|
                    PrevState == IES_LPAREN || PrevState == IES_LBRAC ||
 | 
						|
                    PrevState == IES_NOT) &&
 | 
						|
                   CurrState == IES_NOT) {
 | 
						|
          // Unary not.  No need to pop the not operand because it was never
 | 
						|
          // pushed.
 | 
						|
          IC.pushOperand(IC_IMM, ~TmpInt); // Push ~Imm.
 | 
						|
        } else {
 | 
						|
          IC.pushOperand(IC_IMM, TmpInt);
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      PrevState = CurrState;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    void onStar() {
 | 
						|
      PrevState = State;
 | 
						|
      switch (State) {
 | 
						|
      default:
 | 
						|
        State = IES_ERROR;
 | 
						|
        break;
 | 
						|
      case IES_INTEGER:
 | 
						|
      case IES_REGISTER:
 | 
						|
      case IES_RPAREN:
 | 
						|
        State = IES_MULTIPLY;
 | 
						|
        IC.pushOperator(IC_MULTIPLY);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    void onDivide() {
 | 
						|
      PrevState = State;
 | 
						|
      switch (State) {
 | 
						|
      default:
 | 
						|
        State = IES_ERROR;
 | 
						|
        break;
 | 
						|
      case IES_INTEGER:
 | 
						|
      case IES_RPAREN:
 | 
						|
        State = IES_DIVIDE;
 | 
						|
        IC.pushOperator(IC_DIVIDE);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    void onLBrac() {
 | 
						|
      PrevState = State;
 | 
						|
      switch (State) {
 | 
						|
      default:
 | 
						|
        State = IES_ERROR;
 | 
						|
        break;
 | 
						|
      case IES_RBRAC:
 | 
						|
        State = IES_PLUS;
 | 
						|
        IC.pushOperator(IC_PLUS);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    void onRBrac() {
 | 
						|
      IntelExprState CurrState = State;
 | 
						|
      switch (State) {
 | 
						|
      default:
 | 
						|
        State = IES_ERROR;
 | 
						|
        break;
 | 
						|
      case IES_INTEGER:
 | 
						|
      case IES_REGISTER:
 | 
						|
      case IES_RPAREN:
 | 
						|
        State = IES_RBRAC;
 | 
						|
        if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
 | 
						|
          // If we already have a BaseReg, then assume this is the IndexReg with
 | 
						|
          // a scale of 1.
 | 
						|
          if (!BaseReg) {
 | 
						|
            BaseReg = TmpReg;
 | 
						|
          } else {
 | 
						|
            assert (!IndexReg && "BaseReg/IndexReg already set!");
 | 
						|
            IndexReg = TmpReg;
 | 
						|
            Scale = 1;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      PrevState = CurrState;
 | 
						|
    }
 | 
						|
    void onLParen() {
 | 
						|
      IntelExprState CurrState = State;
 | 
						|
      switch (State) {
 | 
						|
      default:
 | 
						|
        State = IES_ERROR;
 | 
						|
        break;
 | 
						|
      case IES_PLUS:
 | 
						|
      case IES_MINUS:
 | 
						|
      case IES_NOT:
 | 
						|
      case IES_OR:
 | 
						|
      case IES_AND:
 | 
						|
      case IES_LSHIFT:
 | 
						|
      case IES_RSHIFT:
 | 
						|
      case IES_MULTIPLY:
 | 
						|
      case IES_DIVIDE:
 | 
						|
      case IES_LPAREN:
 | 
						|
        // FIXME: We don't handle this type of unary minus or not, yet.
 | 
						|
        if ((PrevState == IES_PLUS || PrevState == IES_MINUS ||
 | 
						|
            PrevState == IES_OR || PrevState == IES_AND ||
 | 
						|
            PrevState == IES_LSHIFT || PrevState == IES_RSHIFT ||
 | 
						|
            PrevState == IES_MULTIPLY || PrevState == IES_DIVIDE ||
 | 
						|
            PrevState == IES_LPAREN || PrevState == IES_LBRAC ||
 | 
						|
            PrevState == IES_NOT) &&
 | 
						|
            (CurrState == IES_MINUS || CurrState == IES_NOT)) {
 | 
						|
          State = IES_ERROR;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        State = IES_LPAREN;
 | 
						|
        IC.pushOperator(IC_LPAREN);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      PrevState = CurrState;
 | 
						|
    }
 | 
						|
    void onRParen() {
 | 
						|
      PrevState = State;
 | 
						|
      switch (State) {
 | 
						|
      default:
 | 
						|
        State = IES_ERROR;
 | 
						|
        break;
 | 
						|
      case IES_INTEGER:
 | 
						|
      case IES_REGISTER:
 | 
						|
      case IES_RPAREN:
 | 
						|
        State = IES_RPAREN;
 | 
						|
        IC.pushOperator(IC_RPAREN);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  MCAsmParser &getParser() const { return Parser; }
 | 
						|
 | 
						|
  MCAsmLexer &getLexer() const { return Parser.getLexer(); }
 | 
						|
 | 
						|
  bool Error(SMLoc L, const Twine &Msg,
 | 
						|
             ArrayRef<SMRange> Ranges = None,
 | 
						|
             bool MatchingInlineAsm = false) {
 | 
						|
    if (MatchingInlineAsm) return true;
 | 
						|
    return Parser.Error(L, Msg, Ranges);
 | 
						|
  }
 | 
						|
 | 
						|
  bool ErrorAndEatStatement(SMLoc L, const Twine &Msg,
 | 
						|
          ArrayRef<SMRange> Ranges = None,
 | 
						|
          bool MatchingInlineAsm = false) {
 | 
						|
      Parser.eatToEndOfStatement();
 | 
						|
      return Error(L, Msg, Ranges, MatchingInlineAsm);
 | 
						|
  }
 | 
						|
 | 
						|
  std::nullptr_t ErrorOperand(SMLoc Loc, StringRef Msg) {
 | 
						|
    Error(Loc, Msg);
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  std::unique_ptr<X86Operand> DefaultMemSIOperand(SMLoc Loc);
 | 
						|
  std::unique_ptr<X86Operand> DefaultMemDIOperand(SMLoc Loc);
 | 
						|
  std::unique_ptr<X86Operand> ParseOperand();
 | 
						|
  std::unique_ptr<X86Operand> ParseATTOperand();
 | 
						|
  std::unique_ptr<X86Operand> ParseIntelOperand();
 | 
						|
  std::unique_ptr<X86Operand> ParseIntelOffsetOfOperator();
 | 
						|
  bool ParseIntelDotOperator(const MCExpr *Disp, const MCExpr *&NewDisp);
 | 
						|
  std::unique_ptr<X86Operand> ParseIntelOperator(unsigned OpKind);
 | 
						|
  std::unique_ptr<X86Operand>
 | 
						|
  ParseIntelSegmentOverride(unsigned SegReg, SMLoc Start, unsigned Size);
 | 
						|
  std::unique_ptr<X86Operand>
 | 
						|
  ParseIntelMemOperand(int64_t ImmDisp, SMLoc StartLoc, unsigned Size);
 | 
						|
  bool ParseIntelExpression(IntelExprStateMachine &SM, SMLoc &End);
 | 
						|
  std::unique_ptr<X86Operand> ParseIntelBracExpression(unsigned SegReg,
 | 
						|
                                                       SMLoc Start,
 | 
						|
                                                       int64_t ImmDisp,
 | 
						|
                                                       unsigned Size);
 | 
						|
  bool ParseIntelIdentifier(const MCExpr *&Val, StringRef &Identifier,
 | 
						|
                            InlineAsmIdentifierInfo &Info,
 | 
						|
                            bool IsUnevaluatedOperand, SMLoc &End);
 | 
						|
 | 
						|
  std::unique_ptr<X86Operand> ParseMemOperand(unsigned SegReg, SMLoc StartLoc);
 | 
						|
 | 
						|
  std::unique_ptr<X86Operand>
 | 
						|
  CreateMemForInlineAsm(unsigned SegReg, const MCExpr *Disp, unsigned BaseReg,
 | 
						|
                        unsigned IndexReg, unsigned Scale, SMLoc Start,
 | 
						|
                        SMLoc End, unsigned Size, StringRef Identifier,
 | 
						|
                        InlineAsmIdentifierInfo &Info);
 | 
						|
 | 
						|
  bool ParseDirectiveWord(unsigned Size, SMLoc L);
 | 
						|
  bool ParseDirectiveCode(StringRef IDVal, SMLoc L);
 | 
						|
 | 
						|
  bool processInstruction(MCInst &Inst, const OperandVector &Ops);
 | 
						|
 | 
						|
  /// Wrapper around MCStreamer::EmitInstruction(). Possibly adds
 | 
						|
  /// instrumentation around Inst.
 | 
						|
  void EmitInstruction(MCInst &Inst, OperandVector &Operands, MCStreamer &Out);
 | 
						|
 | 
						|
  bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
 | 
						|
                               OperandVector &Operands, MCStreamer &Out,
 | 
						|
                               uint64_t &ErrorInfo,
 | 
						|
                               bool MatchingInlineAsm) override;
 | 
						|
 | 
						|
  void MatchFPUWaitAlias(SMLoc IDLoc, X86Operand &Op, OperandVector &Operands,
 | 
						|
                         MCStreamer &Out, bool MatchingInlineAsm);
 | 
						|
 | 
						|
  bool ErrorMissingFeature(SMLoc IDLoc, uint64_t ErrorInfo,
 | 
						|
                           bool MatchingInlineAsm);
 | 
						|
 | 
						|
  bool MatchAndEmitATTInstruction(SMLoc IDLoc, unsigned &Opcode,
 | 
						|
                                  OperandVector &Operands, MCStreamer &Out,
 | 
						|
                                  uint64_t &ErrorInfo,
 | 
						|
                                  bool MatchingInlineAsm);
 | 
						|
 | 
						|
  bool MatchAndEmitIntelInstruction(SMLoc IDLoc, unsigned &Opcode,
 | 
						|
                                    OperandVector &Operands, MCStreamer &Out,
 | 
						|
                                    uint64_t &ErrorInfo,
 | 
						|
                                    bool MatchingInlineAsm);
 | 
						|
 | 
						|
  unsigned getPointerSize() {
 | 
						|
    if (is16BitMode()) return 16;
 | 
						|
    if (is32BitMode()) return 32;
 | 
						|
    if (is64BitMode()) return 64;
 | 
						|
    llvm_unreachable("invalid mode");
 | 
						|
  }
 | 
						|
 | 
						|
  bool OmitRegisterFromClobberLists(unsigned RegNo) override;
 | 
						|
 | 
						|
  /// doSrcDstMatch - Returns true if operands are matching in their
 | 
						|
  /// word size (%si and %di, %esi and %edi, etc.). Order depends on
 | 
						|
  /// the parsing mode (Intel vs. AT&T).
 | 
						|
  bool doSrcDstMatch(X86Operand &Op1, X86Operand &Op2);
 | 
						|
 | 
						|
  /// Parses AVX512 specific operand primitives: masked registers ({%k<NUM>}, {z})
 | 
						|
  /// and memory broadcasting ({1to<NUM>}) primitives, updating Operands vector if required.
 | 
						|
  /// \return \c true if no parsing errors occurred, \c false otherwise.
 | 
						|
  bool HandleAVX512Operand(OperandVector &Operands,
 | 
						|
                           const MCParsedAsmOperand &Op);
 | 
						|
 | 
						|
  bool is64BitMode() const {
 | 
						|
    // FIXME: Can tablegen auto-generate this?
 | 
						|
    return (STI.getFeatureBits() & X86::Mode64Bit) != 0;
 | 
						|
  }
 | 
						|
  bool is32BitMode() const {
 | 
						|
    // FIXME: Can tablegen auto-generate this?
 | 
						|
    return (STI.getFeatureBits() & X86::Mode32Bit) != 0;
 | 
						|
  }
 | 
						|
  bool is16BitMode() const {
 | 
						|
    // FIXME: Can tablegen auto-generate this?
 | 
						|
    return (STI.getFeatureBits() & X86::Mode16Bit) != 0;
 | 
						|
  }
 | 
						|
  void SwitchMode(uint64_t mode) {
 | 
						|
    uint64_t oldMode = STI.getFeatureBits() &
 | 
						|
        (X86::Mode64Bit | X86::Mode32Bit | X86::Mode16Bit);
 | 
						|
    unsigned FB = ComputeAvailableFeatures(STI.ToggleFeature(oldMode | mode));
 | 
						|
    setAvailableFeatures(FB);
 | 
						|
    assert(mode == (STI.getFeatureBits() &
 | 
						|
                    (X86::Mode64Bit | X86::Mode32Bit | X86::Mode16Bit)));
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned getPointerWidth() {
 | 
						|
    if (is16BitMode()) return 16;
 | 
						|
    if (is32BitMode()) return 32;
 | 
						|
    if (is64BitMode()) return 64;
 | 
						|
    llvm_unreachable("invalid mode");
 | 
						|
  }
 | 
						|
 | 
						|
  bool isParsingIntelSyntax() {
 | 
						|
    return getParser().getAssemblerDialect();
 | 
						|
  }
 | 
						|
 | 
						|
  /// @name Auto-generated Matcher Functions
 | 
						|
  /// {
 | 
						|
 | 
						|
#define GET_ASSEMBLER_HEADER
 | 
						|
#include "X86GenAsmMatcher.inc"
 | 
						|
 | 
						|
  /// }
 | 
						|
 | 
						|
public:
 | 
						|
  X86AsmParser(MCSubtargetInfo &sti, MCAsmParser &parser,
 | 
						|
               const MCInstrInfo &mii,
 | 
						|
               const MCTargetOptions &Options)
 | 
						|
      : MCTargetAsmParser(), STI(sti), Parser(parser), MII(mii),
 | 
						|
        InstInfo(nullptr) {
 | 
						|
 | 
						|
    // Initialize the set of available features.
 | 
						|
    setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
 | 
						|
    Instrumentation.reset(
 | 
						|
        CreateX86AsmInstrumentation(Options, Parser.getContext(), STI));
 | 
						|
  }
 | 
						|
 | 
						|
  bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
 | 
						|
 | 
						|
  bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
 | 
						|
                        SMLoc NameLoc, OperandVector &Operands) override;
 | 
						|
 | 
						|
  bool ParseDirective(AsmToken DirectiveID) override;
 | 
						|
};
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
/// @name Auto-generated Match Functions
 | 
						|
/// {
 | 
						|
 | 
						|
static unsigned MatchRegisterName(StringRef Name);
 | 
						|
 | 
						|
/// }
 | 
						|
 | 
						|
static bool CheckBaseRegAndIndexReg(unsigned BaseReg, unsigned IndexReg,
 | 
						|
                                    StringRef &ErrMsg) {
 | 
						|
  // If we have both a base register and an index register make sure they are
 | 
						|
  // both 64-bit or 32-bit registers.
 | 
						|
  // To support VSIB, IndexReg can be 128-bit or 256-bit registers.
 | 
						|
  if (BaseReg != 0 && IndexReg != 0) {
 | 
						|
    if (X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg) &&
 | 
						|
        (X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) ||
 | 
						|
         X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg)) &&
 | 
						|
        IndexReg != X86::RIZ) {
 | 
						|
      ErrMsg = "base register is 64-bit, but index register is not";
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    if (X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg) &&
 | 
						|
        (X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) ||
 | 
						|
         X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg)) &&
 | 
						|
        IndexReg != X86::EIZ){
 | 
						|
      ErrMsg = "base register is 32-bit, but index register is not";
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg)) {
 | 
						|
      if (X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg) ||
 | 
						|
          X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg)) {
 | 
						|
        ErrMsg = "base register is 16-bit, but index register is not";
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
      if (((BaseReg == X86::BX || BaseReg == X86::BP) &&
 | 
						|
           IndexReg != X86::SI && IndexReg != X86::DI) ||
 | 
						|
          ((BaseReg == X86::SI || BaseReg == X86::DI) &&
 | 
						|
           IndexReg != X86::BX && IndexReg != X86::BP)) {
 | 
						|
        ErrMsg = "invalid 16-bit base/index register combination";
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool X86AsmParser::doSrcDstMatch(X86Operand &Op1, X86Operand &Op2)
 | 
						|
{
 | 
						|
  // Return true and let a normal complaint about bogus operands happen.
 | 
						|
  if (!Op1.isMem() || !Op2.isMem())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Actually these might be the other way round if Intel syntax is
 | 
						|
  // being used. It doesn't matter.
 | 
						|
  unsigned diReg = Op1.Mem.BaseReg;
 | 
						|
  unsigned siReg = Op2.Mem.BaseReg;
 | 
						|
 | 
						|
  if (X86MCRegisterClasses[X86::GR16RegClassID].contains(siReg))
 | 
						|
    return X86MCRegisterClasses[X86::GR16RegClassID].contains(diReg);
 | 
						|
  if (X86MCRegisterClasses[X86::GR32RegClassID].contains(siReg))
 | 
						|
    return X86MCRegisterClasses[X86::GR32RegClassID].contains(diReg);
 | 
						|
  if (X86MCRegisterClasses[X86::GR64RegClassID].contains(siReg))
 | 
						|
    return X86MCRegisterClasses[X86::GR64RegClassID].contains(diReg);
 | 
						|
  // Again, return true and let another error happen.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool X86AsmParser::ParseRegister(unsigned &RegNo,
 | 
						|
                                 SMLoc &StartLoc, SMLoc &EndLoc) {
 | 
						|
  RegNo = 0;
 | 
						|
  const AsmToken &PercentTok = Parser.getTok();
 | 
						|
  StartLoc = PercentTok.getLoc();
 | 
						|
 | 
						|
  // If we encounter a %, ignore it. This code handles registers with and
 | 
						|
  // without the prefix, unprefixed registers can occur in cfi directives.
 | 
						|
  if (!isParsingIntelSyntax() && PercentTok.is(AsmToken::Percent))
 | 
						|
    Parser.Lex(); // Eat percent token.
 | 
						|
 | 
						|
  const AsmToken &Tok = Parser.getTok();
 | 
						|
  EndLoc = Tok.getEndLoc();
 | 
						|
 | 
						|
  if (Tok.isNot(AsmToken::Identifier)) {
 | 
						|
    if (isParsingIntelSyntax()) return true;
 | 
						|
    return Error(StartLoc, "invalid register name",
 | 
						|
                 SMRange(StartLoc, EndLoc));
 | 
						|
  }
 | 
						|
 | 
						|
  RegNo = MatchRegisterName(Tok.getString());
 | 
						|
 | 
						|
  // If the match failed, try the register name as lowercase.
 | 
						|
  if (RegNo == 0)
 | 
						|
    RegNo = MatchRegisterName(Tok.getString().lower());
 | 
						|
 | 
						|
  if (!is64BitMode()) {
 | 
						|
    // FIXME: This should be done using Requires<Not64BitMode> and
 | 
						|
    // Requires<In64BitMode> so "eiz" usage in 64-bit instructions can be also
 | 
						|
    // checked.
 | 
						|
    // FIXME: Check AH, CH, DH, BH cannot be used in an instruction requiring a
 | 
						|
    // REX prefix.
 | 
						|
    if (RegNo == X86::RIZ ||
 | 
						|
        X86MCRegisterClasses[X86::GR64RegClassID].contains(RegNo) ||
 | 
						|
        X86II::isX86_64NonExtLowByteReg(RegNo) ||
 | 
						|
        X86II::isX86_64ExtendedReg(RegNo))
 | 
						|
      return Error(StartLoc, "register %"
 | 
						|
                   + Tok.getString() + " is only available in 64-bit mode",
 | 
						|
                   SMRange(StartLoc, EndLoc));
 | 
						|
  }
 | 
						|
 | 
						|
  // Parse "%st" as "%st(0)" and "%st(1)", which is multiple tokens.
 | 
						|
  if (RegNo == 0 && (Tok.getString() == "st" || Tok.getString() == "ST")) {
 | 
						|
    RegNo = X86::ST0;
 | 
						|
    Parser.Lex(); // Eat 'st'
 | 
						|
 | 
						|
    // Check to see if we have '(4)' after %st.
 | 
						|
    if (getLexer().isNot(AsmToken::LParen))
 | 
						|
      return false;
 | 
						|
    // Lex the paren.
 | 
						|
    getParser().Lex();
 | 
						|
 | 
						|
    const AsmToken &IntTok = Parser.getTok();
 | 
						|
    if (IntTok.isNot(AsmToken::Integer))
 | 
						|
      return Error(IntTok.getLoc(), "expected stack index");
 | 
						|
    switch (IntTok.getIntVal()) {
 | 
						|
    case 0: RegNo = X86::ST0; break;
 | 
						|
    case 1: RegNo = X86::ST1; break;
 | 
						|
    case 2: RegNo = X86::ST2; break;
 | 
						|
    case 3: RegNo = X86::ST3; break;
 | 
						|
    case 4: RegNo = X86::ST4; break;
 | 
						|
    case 5: RegNo = X86::ST5; break;
 | 
						|
    case 6: RegNo = X86::ST6; break;
 | 
						|
    case 7: RegNo = X86::ST7; break;
 | 
						|
    default: return Error(IntTok.getLoc(), "invalid stack index");
 | 
						|
    }
 | 
						|
 | 
						|
    if (getParser().Lex().isNot(AsmToken::RParen))
 | 
						|
      return Error(Parser.getTok().getLoc(), "expected ')'");
 | 
						|
 | 
						|
    EndLoc = Parser.getTok().getEndLoc();
 | 
						|
    Parser.Lex(); // Eat ')'
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  EndLoc = Parser.getTok().getEndLoc();
 | 
						|
 | 
						|
  // If this is "db[0-7]", match it as an alias
 | 
						|
  // for dr[0-7].
 | 
						|
  if (RegNo == 0 && Tok.getString().size() == 3 &&
 | 
						|
      Tok.getString().startswith("db")) {
 | 
						|
    switch (Tok.getString()[2]) {
 | 
						|
    case '0': RegNo = X86::DR0; break;
 | 
						|
    case '1': RegNo = X86::DR1; break;
 | 
						|
    case '2': RegNo = X86::DR2; break;
 | 
						|
    case '3': RegNo = X86::DR3; break;
 | 
						|
    case '4': RegNo = X86::DR4; break;
 | 
						|
    case '5': RegNo = X86::DR5; break;
 | 
						|
    case '6': RegNo = X86::DR6; break;
 | 
						|
    case '7': RegNo = X86::DR7; break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (RegNo != 0) {
 | 
						|
      EndLoc = Parser.getTok().getEndLoc();
 | 
						|
      Parser.Lex(); // Eat it.
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (RegNo == 0) {
 | 
						|
    if (isParsingIntelSyntax()) return true;
 | 
						|
    return Error(StartLoc, "invalid register name",
 | 
						|
                 SMRange(StartLoc, EndLoc));
 | 
						|
  }
 | 
						|
 | 
						|
  Parser.Lex(); // Eat identifier token.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
std::unique_ptr<X86Operand> X86AsmParser::DefaultMemSIOperand(SMLoc Loc) {
 | 
						|
  unsigned basereg =
 | 
						|
    is64BitMode() ? X86::RSI : (is32BitMode() ? X86::ESI : X86::SI);
 | 
						|
  const MCExpr *Disp = MCConstantExpr::Create(0, getContext());
 | 
						|
  return X86Operand::CreateMem(/*SegReg=*/0, Disp, /*BaseReg=*/basereg,
 | 
						|
                               /*IndexReg=*/0, /*Scale=*/1, Loc, Loc, 0);
 | 
						|
}
 | 
						|
 | 
						|
std::unique_ptr<X86Operand> X86AsmParser::DefaultMemDIOperand(SMLoc Loc) {
 | 
						|
  unsigned basereg =
 | 
						|
    is64BitMode() ? X86::RDI : (is32BitMode() ? X86::EDI : X86::DI);
 | 
						|
  const MCExpr *Disp = MCConstantExpr::Create(0, getContext());
 | 
						|
  return X86Operand::CreateMem(/*SegReg=*/0, Disp, /*BaseReg=*/basereg,
 | 
						|
                               /*IndexReg=*/0, /*Scale=*/1, Loc, Loc, 0);
 | 
						|
}
 | 
						|
 | 
						|
std::unique_ptr<X86Operand> X86AsmParser::ParseOperand() {
 | 
						|
  if (isParsingIntelSyntax())
 | 
						|
    return ParseIntelOperand();
 | 
						|
  return ParseATTOperand();
 | 
						|
}
 | 
						|
 | 
						|
/// getIntelMemOperandSize - Return intel memory operand size.
 | 
						|
static unsigned getIntelMemOperandSize(StringRef OpStr) {
 | 
						|
  unsigned Size = StringSwitch<unsigned>(OpStr)
 | 
						|
    .Cases("BYTE", "byte", 8)
 | 
						|
    .Cases("WORD", "word", 16)
 | 
						|
    .Cases("DWORD", "dword", 32)
 | 
						|
    .Cases("QWORD", "qword", 64)
 | 
						|
    .Cases("XWORD", "xword", 80)
 | 
						|
    .Cases("XMMWORD", "xmmword", 128)
 | 
						|
    .Cases("YMMWORD", "ymmword", 256)
 | 
						|
    .Cases("ZMMWORD", "zmmword", 512)
 | 
						|
    .Cases("OPAQUE", "opaque", -1U) // needs to be non-zero, but doesn't matter
 | 
						|
    .Default(0);
 | 
						|
  return Size;
 | 
						|
}
 | 
						|
 | 
						|
std::unique_ptr<X86Operand> X86AsmParser::CreateMemForInlineAsm(
 | 
						|
    unsigned SegReg, const MCExpr *Disp, unsigned BaseReg, unsigned IndexReg,
 | 
						|
    unsigned Scale, SMLoc Start, SMLoc End, unsigned Size, StringRef Identifier,
 | 
						|
    InlineAsmIdentifierInfo &Info) {
 | 
						|
  // If we found a decl other than a VarDecl, then assume it is a FuncDecl or
 | 
						|
  // some other label reference.
 | 
						|
  if (isa<MCSymbolRefExpr>(Disp) && Info.OpDecl && !Info.IsVarDecl) {
 | 
						|
    // Insert an explicit size if the user didn't have one.
 | 
						|
    if (!Size) {
 | 
						|
      Size = getPointerWidth();
 | 
						|
      InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_SizeDirective, Start,
 | 
						|
                                                  /*Len=*/0, Size));
 | 
						|
    }
 | 
						|
 | 
						|
    // Create an absolute memory reference in order to match against
 | 
						|
    // instructions taking a PC relative operand.
 | 
						|
    return X86Operand::CreateMem(Disp, Start, End, Size, Identifier,
 | 
						|
                                 Info.OpDecl);
 | 
						|
  }
 | 
						|
 | 
						|
  // We either have a direct symbol reference, or an offset from a symbol.  The
 | 
						|
  // parser always puts the symbol on the LHS, so look there for size
 | 
						|
  // calculation purposes.
 | 
						|
  const MCBinaryExpr *BinOp = dyn_cast<MCBinaryExpr>(Disp);
 | 
						|
  bool IsSymRef =
 | 
						|
      isa<MCSymbolRefExpr>(BinOp ? BinOp->getLHS() : Disp);
 | 
						|
  if (IsSymRef) {
 | 
						|
    if (!Size) {
 | 
						|
      Size = Info.Type * 8; // Size is in terms of bits in this context.
 | 
						|
      if (Size)
 | 
						|
        InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_SizeDirective, Start,
 | 
						|
                                                    /*Len=*/0, Size));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // When parsing inline assembly we set the base register to a non-zero value
 | 
						|
  // if we don't know the actual value at this time.  This is necessary to
 | 
						|
  // get the matching correct in some cases.
 | 
						|
  BaseReg = BaseReg ? BaseReg : 1;
 | 
						|
  return X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale, Start,
 | 
						|
                               End, Size, Identifier, Info.OpDecl);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
RewriteIntelBracExpression(SmallVectorImpl<AsmRewrite> *AsmRewrites,
 | 
						|
                           StringRef SymName, int64_t ImmDisp,
 | 
						|
                           int64_t FinalImmDisp, SMLoc &BracLoc,
 | 
						|
                           SMLoc &StartInBrac, SMLoc &End) {
 | 
						|
  // Remove the '[' and ']' from the IR string.
 | 
						|
  AsmRewrites->push_back(AsmRewrite(AOK_Skip, BracLoc, 1));
 | 
						|
  AsmRewrites->push_back(AsmRewrite(AOK_Skip, End, 1));
 | 
						|
 | 
						|
  // If ImmDisp is non-zero, then we parsed a displacement before the
 | 
						|
  // bracketed expression (i.e., ImmDisp [ BaseReg + Scale*IndexReg + Disp])
 | 
						|
  // If ImmDisp doesn't match the displacement computed by the state machine
 | 
						|
  // then we have an additional displacement in the bracketed expression.
 | 
						|
  if (ImmDisp != FinalImmDisp) {
 | 
						|
    if (ImmDisp) {
 | 
						|
      // We have an immediate displacement before the bracketed expression.
 | 
						|
      // Adjust this to match the final immediate displacement.
 | 
						|
      bool Found = false;
 | 
						|
      for (SmallVectorImpl<AsmRewrite>::iterator I = AsmRewrites->begin(),
 | 
						|
             E = AsmRewrites->end(); I != E; ++I) {
 | 
						|
        if ((*I).Loc.getPointer() > BracLoc.getPointer())
 | 
						|
          continue;
 | 
						|
        if ((*I).Kind == AOK_ImmPrefix || (*I).Kind == AOK_Imm) {
 | 
						|
          assert (!Found && "ImmDisp already rewritten.");
 | 
						|
          (*I).Kind = AOK_Imm;
 | 
						|
          (*I).Len = BracLoc.getPointer() - (*I).Loc.getPointer();
 | 
						|
          (*I).Val = FinalImmDisp;
 | 
						|
          Found = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      assert (Found && "Unable to rewrite ImmDisp.");
 | 
						|
      (void)Found;
 | 
						|
    } else {
 | 
						|
      // We have a symbolic and an immediate displacement, but no displacement
 | 
						|
      // before the bracketed expression.  Put the immediate displacement
 | 
						|
      // before the bracketed expression.
 | 
						|
      AsmRewrites->push_back(AsmRewrite(AOK_Imm, BracLoc, 0, FinalImmDisp));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Remove all the ImmPrefix rewrites within the brackets.
 | 
						|
  for (SmallVectorImpl<AsmRewrite>::iterator I = AsmRewrites->begin(),
 | 
						|
         E = AsmRewrites->end(); I != E; ++I) {
 | 
						|
    if ((*I).Loc.getPointer() < StartInBrac.getPointer())
 | 
						|
      continue;
 | 
						|
    if ((*I).Kind == AOK_ImmPrefix)
 | 
						|
      (*I).Kind = AOK_Delete;
 | 
						|
  }
 | 
						|
  const char *SymLocPtr = SymName.data();
 | 
						|
  // Skip everything before the symbol.        
 | 
						|
  if (unsigned Len = SymLocPtr - StartInBrac.getPointer()) {
 | 
						|
    assert(Len > 0 && "Expected a non-negative length.");
 | 
						|
    AsmRewrites->push_back(AsmRewrite(AOK_Skip, StartInBrac, Len));
 | 
						|
  }
 | 
						|
  // Skip everything after the symbol.
 | 
						|
  if (unsigned Len = End.getPointer() - (SymLocPtr + SymName.size())) {
 | 
						|
    SMLoc Loc = SMLoc::getFromPointer(SymLocPtr + SymName.size());
 | 
						|
    assert(Len > 0 && "Expected a non-negative length.");
 | 
						|
    AsmRewrites->push_back(AsmRewrite(AOK_Skip, Loc, Len));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool X86AsmParser::ParseIntelExpression(IntelExprStateMachine &SM, SMLoc &End) {
 | 
						|
  const AsmToken &Tok = Parser.getTok();
 | 
						|
 | 
						|
  bool Done = false;
 | 
						|
  while (!Done) {
 | 
						|
    bool UpdateLocLex = true;
 | 
						|
 | 
						|
    // The period in the dot operator (e.g., [ebx].foo.bar) is parsed as an
 | 
						|
    // identifier.  Don't try an parse it as a register.
 | 
						|
    if (Tok.getString().startswith("."))
 | 
						|
      break;
 | 
						|
    
 | 
						|
    // If we're parsing an immediate expression, we don't expect a '['.
 | 
						|
    if (SM.getStopOnLBrac() && getLexer().getKind() == AsmToken::LBrac)
 | 
						|
      break;
 | 
						|
 | 
						|
    AsmToken::TokenKind TK = getLexer().getKind();
 | 
						|
    switch (TK) {
 | 
						|
    default: {
 | 
						|
      if (SM.isValidEndState()) {
 | 
						|
        Done = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      return Error(Tok.getLoc(), "unknown token in expression");
 | 
						|
    }
 | 
						|
    case AsmToken::EndOfStatement: {
 | 
						|
      Done = true;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case AsmToken::String:
 | 
						|
    case AsmToken::Identifier: {
 | 
						|
      // This could be a register or a symbolic displacement.
 | 
						|
      unsigned TmpReg;
 | 
						|
      const MCExpr *Val;
 | 
						|
      SMLoc IdentLoc = Tok.getLoc();
 | 
						|
      StringRef Identifier = Tok.getString();
 | 
						|
      if (TK != AsmToken::String && !ParseRegister(TmpReg, IdentLoc, End)) {
 | 
						|
        SM.onRegister(TmpReg);
 | 
						|
        UpdateLocLex = false;
 | 
						|
        break;
 | 
						|
      } else {
 | 
						|
        if (!isParsingInlineAsm()) {
 | 
						|
          if (getParser().parsePrimaryExpr(Val, End))
 | 
						|
            return Error(Tok.getLoc(), "Unexpected identifier!");
 | 
						|
        } else {
 | 
						|
          // This is a dot operator, not an adjacent identifier.
 | 
						|
          if (Identifier.find('.') != StringRef::npos) {
 | 
						|
            return false;
 | 
						|
          } else {
 | 
						|
            InlineAsmIdentifierInfo &Info = SM.getIdentifierInfo();
 | 
						|
            if (ParseIntelIdentifier(Val, Identifier, Info,
 | 
						|
                                     /*Unevaluated=*/false, End))
 | 
						|
              return true;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        SM.onIdentifierExpr(Val, Identifier);
 | 
						|
        UpdateLocLex = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      return Error(Tok.getLoc(), "Unexpected identifier!");
 | 
						|
    }
 | 
						|
    case AsmToken::Integer: {
 | 
						|
      StringRef ErrMsg;
 | 
						|
      if (isParsingInlineAsm() && SM.getAddImmPrefix())
 | 
						|
        InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_ImmPrefix,
 | 
						|
                                                    Tok.getLoc()));
 | 
						|
      // Look for 'b' or 'f' following an Integer as a directional label
 | 
						|
      SMLoc Loc = getTok().getLoc();
 | 
						|
      int64_t IntVal = getTok().getIntVal();
 | 
						|
      End = consumeToken();
 | 
						|
      UpdateLocLex = false;
 | 
						|
      if (getLexer().getKind() == AsmToken::Identifier) {
 | 
						|
        StringRef IDVal = getTok().getString();
 | 
						|
        if (IDVal == "f" || IDVal == "b") {
 | 
						|
          MCSymbol *Sym =
 | 
						|
              getContext().GetDirectionalLocalSymbol(IntVal, IDVal == "b");
 | 
						|
          MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
 | 
						|
          const MCExpr *Val = 
 | 
						|
	    MCSymbolRefExpr::Create(Sym, Variant, getContext());
 | 
						|
          if (IDVal == "b" && Sym->isUndefined())
 | 
						|
            return Error(Loc, "invalid reference to undefined symbol");
 | 
						|
          StringRef Identifier = Sym->getName();
 | 
						|
          SM.onIdentifierExpr(Val, Identifier);
 | 
						|
          End = consumeToken();
 | 
						|
        } else {
 | 
						|
          if (SM.onInteger(IntVal, ErrMsg))
 | 
						|
            return Error(Loc, ErrMsg);
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        if (SM.onInteger(IntVal, ErrMsg))
 | 
						|
          return Error(Loc, ErrMsg);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case AsmToken::Plus:    SM.onPlus(); break;
 | 
						|
    case AsmToken::Minus:   SM.onMinus(); break;
 | 
						|
    case AsmToken::Tilde:   SM.onNot(); break;
 | 
						|
    case AsmToken::Star:    SM.onStar(); break;
 | 
						|
    case AsmToken::Slash:   SM.onDivide(); break;
 | 
						|
    case AsmToken::Pipe:    SM.onOr(); break;
 | 
						|
    case AsmToken::Amp:     SM.onAnd(); break;
 | 
						|
    case AsmToken::LessLess:
 | 
						|
                            SM.onLShift(); break;
 | 
						|
    case AsmToken::GreaterGreater:
 | 
						|
                            SM.onRShift(); break;
 | 
						|
    case AsmToken::LBrac:   SM.onLBrac(); break;
 | 
						|
    case AsmToken::RBrac:   SM.onRBrac(); break;
 | 
						|
    case AsmToken::LParen:  SM.onLParen(); break;
 | 
						|
    case AsmToken::RParen:  SM.onRParen(); break;
 | 
						|
    }
 | 
						|
    if (SM.hadError())
 | 
						|
      return Error(Tok.getLoc(), "unknown token in expression");
 | 
						|
 | 
						|
    if (!Done && UpdateLocLex)
 | 
						|
      End = consumeToken();
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
std::unique_ptr<X86Operand>
 | 
						|
X86AsmParser::ParseIntelBracExpression(unsigned SegReg, SMLoc Start,
 | 
						|
                                       int64_t ImmDisp, unsigned Size) {
 | 
						|
  const AsmToken &Tok = Parser.getTok();
 | 
						|
  SMLoc BracLoc = Tok.getLoc(), End = Tok.getEndLoc();
 | 
						|
  if (getLexer().isNot(AsmToken::LBrac))
 | 
						|
    return ErrorOperand(BracLoc, "Expected '[' token!");
 | 
						|
  Parser.Lex(); // Eat '['
 | 
						|
 | 
						|
  SMLoc StartInBrac = Tok.getLoc();
 | 
						|
  // Parse [ Symbol + ImmDisp ] and [ BaseReg + Scale*IndexReg + ImmDisp ].  We
 | 
						|
  // may have already parsed an immediate displacement before the bracketed
 | 
						|
  // expression.
 | 
						|
  IntelExprStateMachine SM(ImmDisp, /*StopOnLBrac=*/false, /*AddImmPrefix=*/true);
 | 
						|
  if (ParseIntelExpression(SM, End))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  const MCExpr *Disp = nullptr;
 | 
						|
  if (const MCExpr *Sym = SM.getSym()) {
 | 
						|
    // A symbolic displacement.
 | 
						|
    Disp = Sym;
 | 
						|
    if (isParsingInlineAsm())
 | 
						|
      RewriteIntelBracExpression(InstInfo->AsmRewrites, SM.getSymName(),
 | 
						|
                                 ImmDisp, SM.getImm(), BracLoc, StartInBrac,
 | 
						|
                                 End);
 | 
						|
  }
 | 
						|
 | 
						|
  if (SM.getImm() || !Disp) {
 | 
						|
    const MCExpr *Imm = MCConstantExpr::Create(SM.getImm(), getContext());
 | 
						|
    if (Disp)
 | 
						|
      Disp = MCBinaryExpr::CreateAdd(Disp, Imm, getContext());
 | 
						|
    else
 | 
						|
      Disp = Imm;  // An immediate displacement only.
 | 
						|
  }
 | 
						|
 | 
						|
  // Parse struct field access.  Intel requires a dot, but MSVC doesn't.  MSVC
 | 
						|
  // will in fact do global lookup the field name inside all global typedefs,
 | 
						|
  // but we don't emulate that.
 | 
						|
  if (Tok.getString().find('.') != StringRef::npos) {
 | 
						|
    const MCExpr *NewDisp;
 | 
						|
    if (ParseIntelDotOperator(Disp, NewDisp))
 | 
						|
      return nullptr;
 | 
						|
    
 | 
						|
    End = Tok.getEndLoc();
 | 
						|
    Parser.Lex();  // Eat the field.
 | 
						|
    Disp = NewDisp;
 | 
						|
  }
 | 
						|
 | 
						|
  int BaseReg = SM.getBaseReg();
 | 
						|
  int IndexReg = SM.getIndexReg();
 | 
						|
  int Scale = SM.getScale();
 | 
						|
  if (!isParsingInlineAsm()) {
 | 
						|
    // handle [-42]
 | 
						|
    if (!BaseReg && !IndexReg) {
 | 
						|
      if (!SegReg)
 | 
						|
        return X86Operand::CreateMem(Disp, Start, End, Size);
 | 
						|
      else
 | 
						|
        return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, Start, End, Size);
 | 
						|
    }
 | 
						|
    StringRef ErrMsg;
 | 
						|
    if (CheckBaseRegAndIndexReg(BaseReg, IndexReg, ErrMsg)) {
 | 
						|
      Error(StartInBrac, ErrMsg);
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
    return X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale, Start,
 | 
						|
                                 End, Size);
 | 
						|
  }
 | 
						|
 | 
						|
  InlineAsmIdentifierInfo &Info = SM.getIdentifierInfo();
 | 
						|
  return CreateMemForInlineAsm(SegReg, Disp, BaseReg, IndexReg, Scale, Start,
 | 
						|
                               End, Size, SM.getSymName(), Info);
 | 
						|
}
 | 
						|
 | 
						|
// Inline assembly may use variable names with namespace alias qualifiers.
 | 
						|
bool X86AsmParser::ParseIntelIdentifier(const MCExpr *&Val,
 | 
						|
                                        StringRef &Identifier,
 | 
						|
                                        InlineAsmIdentifierInfo &Info,
 | 
						|
                                        bool IsUnevaluatedOperand, SMLoc &End) {
 | 
						|
  assert (isParsingInlineAsm() && "Expected to be parsing inline assembly.");
 | 
						|
  Val = nullptr;
 | 
						|
 | 
						|
  StringRef LineBuf(Identifier.data());
 | 
						|
  SemaCallback->LookupInlineAsmIdentifier(LineBuf, Info, IsUnevaluatedOperand);
 | 
						|
 | 
						|
  const AsmToken &Tok = Parser.getTok();
 | 
						|
 | 
						|
  // Advance the token stream until the end of the current token is
 | 
						|
  // after the end of what the frontend claimed.
 | 
						|
  const char *EndPtr = Tok.getLoc().getPointer() + LineBuf.size();
 | 
						|
  while (true) {
 | 
						|
    End = Tok.getEndLoc();
 | 
						|
    getLexer().Lex();
 | 
						|
 | 
						|
    assert(End.getPointer() <= EndPtr && "frontend claimed part of a token?");
 | 
						|
    if (End.getPointer() == EndPtr) break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Create the symbol reference.
 | 
						|
  Identifier = LineBuf;
 | 
						|
  MCSymbol *Sym = getContext().GetOrCreateSymbol(Identifier);
 | 
						|
  MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
 | 
						|
  Val = MCSymbolRefExpr::Create(Sym, Variant, getParser().getContext());
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Parse intel style segment override.
 | 
						|
std::unique_ptr<X86Operand>
 | 
						|
X86AsmParser::ParseIntelSegmentOverride(unsigned SegReg, SMLoc Start,
 | 
						|
                                        unsigned Size) {
 | 
						|
  assert(SegReg != 0 && "Tried to parse a segment override without a segment!");
 | 
						|
  const AsmToken &Tok = Parser.getTok(); // Eat colon.
 | 
						|
  if (Tok.isNot(AsmToken::Colon))
 | 
						|
    return ErrorOperand(Tok.getLoc(), "Expected ':' token!");
 | 
						|
  Parser.Lex(); // Eat ':'
 | 
						|
 | 
						|
  int64_t ImmDisp = 0;
 | 
						|
  if (getLexer().is(AsmToken::Integer)) {
 | 
						|
    ImmDisp = Tok.getIntVal();
 | 
						|
    AsmToken ImmDispToken = Parser.Lex(); // Eat the integer.
 | 
						|
 | 
						|
    if (isParsingInlineAsm())
 | 
						|
      InstInfo->AsmRewrites->push_back(
 | 
						|
          AsmRewrite(AOK_ImmPrefix, ImmDispToken.getLoc()));
 | 
						|
 | 
						|
    if (getLexer().isNot(AsmToken::LBrac)) {
 | 
						|
      // An immediate following a 'segment register', 'colon' token sequence can
 | 
						|
      // be followed by a bracketed expression.  If it isn't we know we have our
 | 
						|
      // final segment override.
 | 
						|
      const MCExpr *Disp = MCConstantExpr::Create(ImmDisp, getContext());
 | 
						|
      return X86Operand::CreateMem(SegReg, Disp, /*BaseReg=*/0, /*IndexReg=*/0,
 | 
						|
                                   /*Scale=*/1, Start, ImmDispToken.getEndLoc(),
 | 
						|
                                   Size);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (getLexer().is(AsmToken::LBrac))
 | 
						|
    return ParseIntelBracExpression(SegReg, Start, ImmDisp, Size);
 | 
						|
 | 
						|
  const MCExpr *Val;
 | 
						|
  SMLoc End;
 | 
						|
  if (!isParsingInlineAsm()) {
 | 
						|
    if (getParser().parsePrimaryExpr(Val, End))
 | 
						|
      return ErrorOperand(Tok.getLoc(), "unknown token in expression");
 | 
						|
 | 
						|
    return X86Operand::CreateMem(Val, Start, End, Size);
 | 
						|
  }
 | 
						|
 | 
						|
  InlineAsmIdentifierInfo Info;
 | 
						|
  StringRef Identifier = Tok.getString();
 | 
						|
  if (ParseIntelIdentifier(Val, Identifier, Info,
 | 
						|
                           /*Unevaluated=*/false, End))
 | 
						|
    return nullptr;
 | 
						|
  return CreateMemForInlineAsm(/*SegReg=*/0, Val, /*BaseReg=*/0,/*IndexReg=*/0,
 | 
						|
                               /*Scale=*/1, Start, End, Size, Identifier, Info);
 | 
						|
}
 | 
						|
 | 
						|
/// ParseIntelMemOperand - Parse intel style memory operand.
 | 
						|
std::unique_ptr<X86Operand> X86AsmParser::ParseIntelMemOperand(int64_t ImmDisp,
 | 
						|
                                                               SMLoc Start,
 | 
						|
                                                               unsigned Size) {
 | 
						|
  const AsmToken &Tok = Parser.getTok();
 | 
						|
  SMLoc End;
 | 
						|
 | 
						|
  // Parse ImmDisp [ BaseReg + Scale*IndexReg + Disp ].
 | 
						|
  if (getLexer().is(AsmToken::LBrac))
 | 
						|
    return ParseIntelBracExpression(/*SegReg=*/0, Start, ImmDisp, Size);
 | 
						|
  assert(ImmDisp == 0);
 | 
						|
 | 
						|
  const MCExpr *Val;
 | 
						|
  if (!isParsingInlineAsm()) {
 | 
						|
    if (getParser().parsePrimaryExpr(Val, End))
 | 
						|
      return ErrorOperand(Tok.getLoc(), "unknown token in expression");
 | 
						|
 | 
						|
    return X86Operand::CreateMem(Val, Start, End, Size);
 | 
						|
  }
 | 
						|
 | 
						|
  InlineAsmIdentifierInfo Info;
 | 
						|
  StringRef Identifier = Tok.getString();
 | 
						|
  if (ParseIntelIdentifier(Val, Identifier, Info,
 | 
						|
                           /*Unevaluated=*/false, End))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  if (!getLexer().is(AsmToken::LBrac))
 | 
						|
    return CreateMemForInlineAsm(/*SegReg=*/0, Val, /*BaseReg=*/0, /*IndexReg=*/0,
 | 
						|
                                 /*Scale=*/1, Start, End, Size, Identifier, Info);
 | 
						|
 | 
						|
  Parser.Lex(); // Eat '['
 | 
						|
 | 
						|
  // Parse Identifier [ ImmDisp ]
 | 
						|
  IntelExprStateMachine SM(/*ImmDisp=*/0, /*StopOnLBrac=*/true,
 | 
						|
                           /*AddImmPrefix=*/false);
 | 
						|
  if (ParseIntelExpression(SM, End))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  if (SM.getSym()) {
 | 
						|
    Error(Start, "cannot use more than one symbol in memory operand");
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
  if (SM.getBaseReg()) {
 | 
						|
    Error(Start, "cannot use base register with variable reference");
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
  if (SM.getIndexReg()) {
 | 
						|
    Error(Start, "cannot use index register with variable reference");
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  const MCExpr *Disp = MCConstantExpr::Create(SM.getImm(), getContext());
 | 
						|
  // BaseReg is non-zero to avoid assertions.  In the context of inline asm,
 | 
						|
  // we're pointing to a local variable in memory, so the base register is
 | 
						|
  // really the frame or stack pointer.
 | 
						|
  return X86Operand::CreateMem(/*SegReg=*/0, Disp, /*BaseReg=*/1, /*IndexReg=*/0,
 | 
						|
                               /*Scale=*/1, Start, End, Size, Identifier,
 | 
						|
                               Info.OpDecl);
 | 
						|
}
 | 
						|
 | 
						|
/// Parse the '.' operator.
 | 
						|
bool X86AsmParser::ParseIntelDotOperator(const MCExpr *Disp,
 | 
						|
                                                const MCExpr *&NewDisp) {
 | 
						|
  const AsmToken &Tok = Parser.getTok();
 | 
						|
  int64_t OrigDispVal, DotDispVal;
 | 
						|
 | 
						|
  // FIXME: Handle non-constant expressions.
 | 
						|
  if (const MCConstantExpr *OrigDisp = dyn_cast<MCConstantExpr>(Disp))
 | 
						|
    OrigDispVal = OrigDisp->getValue();
 | 
						|
  else
 | 
						|
    return Error(Tok.getLoc(), "Non-constant offsets are not supported!");
 | 
						|
 | 
						|
  // Drop the optional '.'.
 | 
						|
  StringRef DotDispStr = Tok.getString();
 | 
						|
  if (DotDispStr.startswith("."))
 | 
						|
    DotDispStr = DotDispStr.drop_front(1);
 | 
						|
 | 
						|
  // .Imm gets lexed as a real.
 | 
						|
  if (Tok.is(AsmToken::Real)) {
 | 
						|
    APInt DotDisp;
 | 
						|
    DotDispStr.getAsInteger(10, DotDisp);
 | 
						|
    DotDispVal = DotDisp.getZExtValue();
 | 
						|
  } else if (isParsingInlineAsm() && Tok.is(AsmToken::Identifier)) {
 | 
						|
    unsigned DotDisp;
 | 
						|
    std::pair<StringRef, StringRef> BaseMember = DotDispStr.split('.');
 | 
						|
    if (SemaCallback->LookupInlineAsmField(BaseMember.first, BaseMember.second,
 | 
						|
                                           DotDisp))
 | 
						|
      return Error(Tok.getLoc(), "Unable to lookup field reference!");
 | 
						|
    DotDispVal = DotDisp;
 | 
						|
  } else
 | 
						|
    return Error(Tok.getLoc(), "Unexpected token type!");
 | 
						|
 | 
						|
  if (isParsingInlineAsm() && Tok.is(AsmToken::Identifier)) {
 | 
						|
    SMLoc Loc = SMLoc::getFromPointer(DotDispStr.data());
 | 
						|
    unsigned Len = DotDispStr.size();
 | 
						|
    unsigned Val = OrigDispVal + DotDispVal;
 | 
						|
    InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_DotOperator, Loc, Len,
 | 
						|
                                                Val));
 | 
						|
  }
 | 
						|
 | 
						|
  NewDisp = MCConstantExpr::Create(OrigDispVal + DotDispVal, getContext());
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Parse the 'offset' operator.  This operator is used to specify the
 | 
						|
/// location rather then the content of a variable.
 | 
						|
std::unique_ptr<X86Operand> X86AsmParser::ParseIntelOffsetOfOperator() {
 | 
						|
  const AsmToken &Tok = Parser.getTok();
 | 
						|
  SMLoc OffsetOfLoc = Tok.getLoc();
 | 
						|
  Parser.Lex(); // Eat offset.
 | 
						|
 | 
						|
  const MCExpr *Val;
 | 
						|
  InlineAsmIdentifierInfo Info;
 | 
						|
  SMLoc Start = Tok.getLoc(), End;
 | 
						|
  StringRef Identifier = Tok.getString();
 | 
						|
  if (ParseIntelIdentifier(Val, Identifier, Info,
 | 
						|
                           /*Unevaluated=*/false, End))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Don't emit the offset operator.
 | 
						|
  InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_Skip, OffsetOfLoc, 7));
 | 
						|
 | 
						|
  // The offset operator will have an 'r' constraint, thus we need to create
 | 
						|
  // register operand to ensure proper matching.  Just pick a GPR based on
 | 
						|
  // the size of a pointer.
 | 
						|
  unsigned RegNo =
 | 
						|
      is64BitMode() ? X86::RBX : (is32BitMode() ? X86::EBX : X86::BX);
 | 
						|
  return X86Operand::CreateReg(RegNo, Start, End, /*GetAddress=*/true,
 | 
						|
                               OffsetOfLoc, Identifier, Info.OpDecl);
 | 
						|
}
 | 
						|
 | 
						|
enum IntelOperatorKind {
 | 
						|
  IOK_LENGTH,
 | 
						|
  IOK_SIZE,
 | 
						|
  IOK_TYPE
 | 
						|
};
 | 
						|
 | 
						|
/// Parse the 'LENGTH', 'TYPE' and 'SIZE' operators.  The LENGTH operator
 | 
						|
/// returns the number of elements in an array.  It returns the value 1 for
 | 
						|
/// non-array variables.  The SIZE operator returns the size of a C or C++
 | 
						|
/// variable.  A variable's size is the product of its LENGTH and TYPE.  The
 | 
						|
/// TYPE operator returns the size of a C or C++ type or variable. If the
 | 
						|
/// variable is an array, TYPE returns the size of a single element.
 | 
						|
std::unique_ptr<X86Operand> X86AsmParser::ParseIntelOperator(unsigned OpKind) {
 | 
						|
  const AsmToken &Tok = Parser.getTok();
 | 
						|
  SMLoc TypeLoc = Tok.getLoc();
 | 
						|
  Parser.Lex(); // Eat operator.
 | 
						|
 | 
						|
  const MCExpr *Val = nullptr;
 | 
						|
  InlineAsmIdentifierInfo Info;
 | 
						|
  SMLoc Start = Tok.getLoc(), End;
 | 
						|
  StringRef Identifier = Tok.getString();
 | 
						|
  if (ParseIntelIdentifier(Val, Identifier, Info,
 | 
						|
                           /*Unevaluated=*/true, End))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  if (!Info.OpDecl)
 | 
						|
    return ErrorOperand(Start, "unable to lookup expression");
 | 
						|
 | 
						|
  unsigned CVal = 0;
 | 
						|
  switch(OpKind) {
 | 
						|
  default: llvm_unreachable("Unexpected operand kind!");
 | 
						|
  case IOK_LENGTH: CVal = Info.Length; break;
 | 
						|
  case IOK_SIZE: CVal = Info.Size; break;
 | 
						|
  case IOK_TYPE: CVal = Info.Type; break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Rewrite the type operator and the C or C++ type or variable in terms of an
 | 
						|
  // immediate.  E.g. TYPE foo -> $$4
 | 
						|
  unsigned Len = End.getPointer() - TypeLoc.getPointer();
 | 
						|
  InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_Imm, TypeLoc, Len, CVal));
 | 
						|
 | 
						|
  const MCExpr *Imm = MCConstantExpr::Create(CVal, getContext());
 | 
						|
  return X86Operand::CreateImm(Imm, Start, End);
 | 
						|
}
 | 
						|
 | 
						|
std::unique_ptr<X86Operand> X86AsmParser::ParseIntelOperand() {
 | 
						|
  const AsmToken &Tok = Parser.getTok();
 | 
						|
  SMLoc Start, End;
 | 
						|
 | 
						|
  // Offset, length, type and size operators.
 | 
						|
  if (isParsingInlineAsm()) {
 | 
						|
    StringRef AsmTokStr = Tok.getString();
 | 
						|
    if (AsmTokStr == "offset" || AsmTokStr == "OFFSET")
 | 
						|
      return ParseIntelOffsetOfOperator();
 | 
						|
    if (AsmTokStr == "length" || AsmTokStr == "LENGTH")
 | 
						|
      return ParseIntelOperator(IOK_LENGTH);
 | 
						|
    if (AsmTokStr == "size" || AsmTokStr == "SIZE")
 | 
						|
      return ParseIntelOperator(IOK_SIZE);
 | 
						|
    if (AsmTokStr == "type" || AsmTokStr == "TYPE")
 | 
						|
      return ParseIntelOperator(IOK_TYPE);
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned Size = getIntelMemOperandSize(Tok.getString());
 | 
						|
  if (Size) {
 | 
						|
    Parser.Lex(); // Eat operand size (e.g., byte, word).
 | 
						|
    if (Tok.getString() != "PTR" && Tok.getString() != "ptr")
 | 
						|
      return ErrorOperand(Tok.getLoc(), "Expected 'PTR' or 'ptr' token!");
 | 
						|
    Parser.Lex(); // Eat ptr.
 | 
						|
  }
 | 
						|
  Start = Tok.getLoc();
 | 
						|
 | 
						|
  // Immediate.
 | 
						|
  if (getLexer().is(AsmToken::Integer) || getLexer().is(AsmToken::Minus) ||
 | 
						|
      getLexer().is(AsmToken::Tilde) || getLexer().is(AsmToken::LParen)) {
 | 
						|
    AsmToken StartTok = Tok;
 | 
						|
    IntelExprStateMachine SM(/*Imm=*/0, /*StopOnLBrac=*/true,
 | 
						|
                             /*AddImmPrefix=*/false);
 | 
						|
    if (ParseIntelExpression(SM, End))
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    int64_t Imm = SM.getImm();
 | 
						|
    if (isParsingInlineAsm()) {
 | 
						|
      unsigned Len = Tok.getLoc().getPointer() - Start.getPointer();
 | 
						|
      if (StartTok.getString().size() == Len)
 | 
						|
        // Just add a prefix if this wasn't a complex immediate expression.
 | 
						|
        InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_ImmPrefix, Start));
 | 
						|
      else
 | 
						|
        // Otherwise, rewrite the complex expression as a single immediate.
 | 
						|
        InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_Imm, Start, Len, Imm));
 | 
						|
    }
 | 
						|
 | 
						|
    if (getLexer().isNot(AsmToken::LBrac)) {
 | 
						|
      // If a directional label (ie. 1f or 2b) was parsed above from
 | 
						|
      // ParseIntelExpression() then SM.getSym() was set to a pointer to
 | 
						|
      // to the MCExpr with the directional local symbol and this is a
 | 
						|
      // memory operand not an immediate operand.
 | 
						|
      if (SM.getSym())
 | 
						|
        return X86Operand::CreateMem(SM.getSym(), Start, End, Size);
 | 
						|
 | 
						|
      const MCExpr *ImmExpr = MCConstantExpr::Create(Imm, getContext());
 | 
						|
      return X86Operand::CreateImm(ImmExpr, Start, End);
 | 
						|
    }
 | 
						|
 | 
						|
    // Only positive immediates are valid.
 | 
						|
    if (Imm < 0)
 | 
						|
      return ErrorOperand(Start, "expected a positive immediate displacement "
 | 
						|
                          "before bracketed expr.");
 | 
						|
 | 
						|
    // Parse ImmDisp [ BaseReg + Scale*IndexReg + Disp ].
 | 
						|
    return ParseIntelMemOperand(Imm, Start, Size);
 | 
						|
  }
 | 
						|
 | 
						|
  // Register.
 | 
						|
  unsigned RegNo = 0;
 | 
						|
  if (!ParseRegister(RegNo, Start, End)) {
 | 
						|
    // If this is a segment register followed by a ':', then this is the start
 | 
						|
    // of a segment override, otherwise this is a normal register reference.
 | 
						|
    if (getLexer().isNot(AsmToken::Colon))
 | 
						|
      return X86Operand::CreateReg(RegNo, Start, End);
 | 
						|
 | 
						|
    return ParseIntelSegmentOverride(/*SegReg=*/RegNo, Start, Size);
 | 
						|
  }
 | 
						|
 | 
						|
  // Memory operand.
 | 
						|
  return ParseIntelMemOperand(/*Disp=*/0, Start, Size);
 | 
						|
}
 | 
						|
 | 
						|
std::unique_ptr<X86Operand> X86AsmParser::ParseATTOperand() {
 | 
						|
  switch (getLexer().getKind()) {
 | 
						|
  default:
 | 
						|
    // Parse a memory operand with no segment register.
 | 
						|
    return ParseMemOperand(0, Parser.getTok().getLoc());
 | 
						|
  case AsmToken::Percent: {
 | 
						|
    // Read the register.
 | 
						|
    unsigned RegNo;
 | 
						|
    SMLoc Start, End;
 | 
						|
    if (ParseRegister(RegNo, Start, End)) return nullptr;
 | 
						|
    if (RegNo == X86::EIZ || RegNo == X86::RIZ) {
 | 
						|
      Error(Start, "%eiz and %riz can only be used as index registers",
 | 
						|
            SMRange(Start, End));
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is a segment register followed by a ':', then this is the start
 | 
						|
    // of a memory reference, otherwise this is a normal register reference.
 | 
						|
    if (getLexer().isNot(AsmToken::Colon))
 | 
						|
      return X86Operand::CreateReg(RegNo, Start, End);
 | 
						|
 | 
						|
    if (!X86MCRegisterClasses[X86::SEGMENT_REGRegClassID].contains(RegNo))
 | 
						|
      return ErrorOperand(Start, "invalid segment register");
 | 
						|
 | 
						|
    getParser().Lex(); // Eat the colon.
 | 
						|
    return ParseMemOperand(RegNo, Start);
 | 
						|
  }
 | 
						|
  case AsmToken::Dollar: {
 | 
						|
    // $42 -> immediate.
 | 
						|
    SMLoc Start = Parser.getTok().getLoc(), End;
 | 
						|
    Parser.Lex();
 | 
						|
    const MCExpr *Val;
 | 
						|
    if (getParser().parseExpression(Val, End))
 | 
						|
      return nullptr;
 | 
						|
    return X86Operand::CreateImm(Val, Start, End);
 | 
						|
  }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool X86AsmParser::HandleAVX512Operand(OperandVector &Operands,
 | 
						|
                                       const MCParsedAsmOperand &Op) {
 | 
						|
  if(STI.getFeatureBits() & X86::FeatureAVX512) {
 | 
						|
    if (getLexer().is(AsmToken::LCurly)) {
 | 
						|
      // Eat "{" and mark the current place.
 | 
						|
      const SMLoc consumedToken = consumeToken();
 | 
						|
      // Distinguish {1to<NUM>} from {%k<NUM>}.
 | 
						|
      if(getLexer().is(AsmToken::Integer)) {
 | 
						|
        // Parse memory broadcasting ({1to<NUM>}).
 | 
						|
        if (getLexer().getTok().getIntVal() != 1)
 | 
						|
          return !ErrorAndEatStatement(getLexer().getLoc(),
 | 
						|
                                       "Expected 1to<NUM> at this point");
 | 
						|
        Parser.Lex();  // Eat "1" of 1to8
 | 
						|
        if (!getLexer().is(AsmToken::Identifier) ||
 | 
						|
            !getLexer().getTok().getIdentifier().startswith("to"))
 | 
						|
          return !ErrorAndEatStatement(getLexer().getLoc(),
 | 
						|
                                       "Expected 1to<NUM> at this point");
 | 
						|
        // Recognize only reasonable suffixes.
 | 
						|
        const char *BroadcastPrimitive =
 | 
						|
          StringSwitch<const char*>(getLexer().getTok().getIdentifier())
 | 
						|
            .Case("to2",  "{1to2}")
 | 
						|
            .Case("to4",  "{1to4}")
 | 
						|
            .Case("to8",  "{1to8}")
 | 
						|
            .Case("to16", "{1to16}")
 | 
						|
            .Default(nullptr);
 | 
						|
        if (!BroadcastPrimitive)
 | 
						|
          return !ErrorAndEatStatement(getLexer().getLoc(),
 | 
						|
                                       "Invalid memory broadcast primitive.");
 | 
						|
        Parser.Lex();  // Eat "toN" of 1toN
 | 
						|
        if (!getLexer().is(AsmToken::RCurly))
 | 
						|
          return !ErrorAndEatStatement(getLexer().getLoc(),
 | 
						|
                                       "Expected } at this point");
 | 
						|
        Parser.Lex();  // Eat "}"
 | 
						|
        Operands.push_back(X86Operand::CreateToken(BroadcastPrimitive,
 | 
						|
                                                   consumedToken));
 | 
						|
        // No AVX512 specific primitives can pass
 | 
						|
        // after memory broadcasting, so return.
 | 
						|
        return true;
 | 
						|
      } else {
 | 
						|
        // Parse mask register {%k1}
 | 
						|
        Operands.push_back(X86Operand::CreateToken("{", consumedToken));
 | 
						|
        if (std::unique_ptr<X86Operand> Op = ParseOperand()) {
 | 
						|
          Operands.push_back(std::move(Op));
 | 
						|
          if (!getLexer().is(AsmToken::RCurly))
 | 
						|
            return !ErrorAndEatStatement(getLexer().getLoc(),
 | 
						|
                                         "Expected } at this point");
 | 
						|
          Operands.push_back(X86Operand::CreateToken("}", consumeToken()));
 | 
						|
 | 
						|
          // Parse "zeroing non-masked" semantic {z}
 | 
						|
          if (getLexer().is(AsmToken::LCurly)) {
 | 
						|
            Operands.push_back(X86Operand::CreateToken("{z}", consumeToken()));
 | 
						|
            if (!getLexer().is(AsmToken::Identifier) ||
 | 
						|
                getLexer().getTok().getIdentifier() != "z")
 | 
						|
              return !ErrorAndEatStatement(getLexer().getLoc(),
 | 
						|
                                           "Expected z at this point");
 | 
						|
            Parser.Lex();  // Eat the z
 | 
						|
            if (!getLexer().is(AsmToken::RCurly))
 | 
						|
              return !ErrorAndEatStatement(getLexer().getLoc(),
 | 
						|
                                           "Expected } at this point");
 | 
						|
            Parser.Lex();  // Eat the }
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// ParseMemOperand: segment: disp(basereg, indexreg, scale).  The '%ds:' prefix
 | 
						|
/// has already been parsed if present.
 | 
						|
std::unique_ptr<X86Operand> X86AsmParser::ParseMemOperand(unsigned SegReg,
 | 
						|
                                                          SMLoc MemStart) {
 | 
						|
 | 
						|
  // We have to disambiguate a parenthesized expression "(4+5)" from the start
 | 
						|
  // of a memory operand with a missing displacement "(%ebx)" or "(,%eax)".  The
 | 
						|
  // only way to do this without lookahead is to eat the '(' and see what is
 | 
						|
  // after it.
 | 
						|
  const MCExpr *Disp = MCConstantExpr::Create(0, getParser().getContext());
 | 
						|
  if (getLexer().isNot(AsmToken::LParen)) {
 | 
						|
    SMLoc ExprEnd;
 | 
						|
    if (getParser().parseExpression(Disp, ExprEnd)) return nullptr;
 | 
						|
 | 
						|
    // After parsing the base expression we could either have a parenthesized
 | 
						|
    // memory address or not.  If not, return now.  If so, eat the (.
 | 
						|
    if (getLexer().isNot(AsmToken::LParen)) {
 | 
						|
      // Unless we have a segment register, treat this as an immediate.
 | 
						|
      if (SegReg == 0)
 | 
						|
        return X86Operand::CreateMem(Disp, MemStart, ExprEnd);
 | 
						|
      return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, MemStart, ExprEnd);
 | 
						|
    }
 | 
						|
 | 
						|
    // Eat the '('.
 | 
						|
    Parser.Lex();
 | 
						|
  } else {
 | 
						|
    // Okay, we have a '('.  We don't know if this is an expression or not, but
 | 
						|
    // so we have to eat the ( to see beyond it.
 | 
						|
    SMLoc LParenLoc = Parser.getTok().getLoc();
 | 
						|
    Parser.Lex(); // Eat the '('.
 | 
						|
 | 
						|
    if (getLexer().is(AsmToken::Percent) || getLexer().is(AsmToken::Comma)) {
 | 
						|
      // Nothing to do here, fall into the code below with the '(' part of the
 | 
						|
      // memory operand consumed.
 | 
						|
    } else {
 | 
						|
      SMLoc ExprEnd;
 | 
						|
 | 
						|
      // It must be an parenthesized expression, parse it now.
 | 
						|
      if (getParser().parseParenExpression(Disp, ExprEnd))
 | 
						|
        return nullptr;
 | 
						|
 | 
						|
      // After parsing the base expression we could either have a parenthesized
 | 
						|
      // memory address or not.  If not, return now.  If so, eat the (.
 | 
						|
      if (getLexer().isNot(AsmToken::LParen)) {
 | 
						|
        // Unless we have a segment register, treat this as an immediate.
 | 
						|
        if (SegReg == 0)
 | 
						|
          return X86Operand::CreateMem(Disp, LParenLoc, ExprEnd);
 | 
						|
        return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, MemStart, ExprEnd);
 | 
						|
      }
 | 
						|
 | 
						|
      // Eat the '('.
 | 
						|
      Parser.Lex();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we reached here, then we just ate the ( of the memory operand.  Process
 | 
						|
  // the rest of the memory operand.
 | 
						|
  unsigned BaseReg = 0, IndexReg = 0, Scale = 1;
 | 
						|
  SMLoc IndexLoc, BaseLoc;
 | 
						|
 | 
						|
  if (getLexer().is(AsmToken::Percent)) {
 | 
						|
    SMLoc StartLoc, EndLoc;
 | 
						|
    BaseLoc = Parser.getTok().getLoc();
 | 
						|
    if (ParseRegister(BaseReg, StartLoc, EndLoc)) return nullptr;
 | 
						|
    if (BaseReg == X86::EIZ || BaseReg == X86::RIZ) {
 | 
						|
      Error(StartLoc, "eiz and riz can only be used as index registers",
 | 
						|
            SMRange(StartLoc, EndLoc));
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (getLexer().is(AsmToken::Comma)) {
 | 
						|
    Parser.Lex(); // Eat the comma.
 | 
						|
    IndexLoc = Parser.getTok().getLoc();
 | 
						|
 | 
						|
    // Following the comma we should have either an index register, or a scale
 | 
						|
    // value. We don't support the later form, but we want to parse it
 | 
						|
    // correctly.
 | 
						|
    //
 | 
						|
    // Not that even though it would be completely consistent to support syntax
 | 
						|
    // like "1(%eax,,1)", the assembler doesn't. Use "eiz" or "riz" for this.
 | 
						|
    if (getLexer().is(AsmToken::Percent)) {
 | 
						|
      SMLoc L;
 | 
						|
      if (ParseRegister(IndexReg, L, L)) return nullptr;
 | 
						|
 | 
						|
      if (getLexer().isNot(AsmToken::RParen)) {
 | 
						|
        // Parse the scale amount:
 | 
						|
        //  ::= ',' [scale-expression]
 | 
						|
        if (getLexer().isNot(AsmToken::Comma)) {
 | 
						|
          Error(Parser.getTok().getLoc(),
 | 
						|
                "expected comma in scale expression");
 | 
						|
          return nullptr;
 | 
						|
        }
 | 
						|
        Parser.Lex(); // Eat the comma.
 | 
						|
 | 
						|
        if (getLexer().isNot(AsmToken::RParen)) {
 | 
						|
          SMLoc Loc = Parser.getTok().getLoc();
 | 
						|
 | 
						|
          int64_t ScaleVal;
 | 
						|
          if (getParser().parseAbsoluteExpression(ScaleVal)){
 | 
						|
            Error(Loc, "expected scale expression");
 | 
						|
            return nullptr;
 | 
						|
          }
 | 
						|
 | 
						|
          // Validate the scale amount.
 | 
						|
	  if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg) &&
 | 
						|
              ScaleVal != 1) {
 | 
						|
            Error(Loc, "scale factor in 16-bit address must be 1");
 | 
						|
            return nullptr;
 | 
						|
	  }
 | 
						|
          if (ScaleVal != 1 && ScaleVal != 2 && ScaleVal != 4 && ScaleVal != 8){
 | 
						|
            Error(Loc, "scale factor in address must be 1, 2, 4 or 8");
 | 
						|
            return nullptr;
 | 
						|
          }
 | 
						|
          Scale = (unsigned)ScaleVal;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else if (getLexer().isNot(AsmToken::RParen)) {
 | 
						|
      // A scale amount without an index is ignored.
 | 
						|
      // index.
 | 
						|
      SMLoc Loc = Parser.getTok().getLoc();
 | 
						|
 | 
						|
      int64_t Value;
 | 
						|
      if (getParser().parseAbsoluteExpression(Value))
 | 
						|
        return nullptr;
 | 
						|
 | 
						|
      if (Value != 1)
 | 
						|
        Warning(Loc, "scale factor without index register is ignored");
 | 
						|
      Scale = 1;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Ok, we've eaten the memory operand, verify we have a ')' and eat it too.
 | 
						|
  if (getLexer().isNot(AsmToken::RParen)) {
 | 
						|
    Error(Parser.getTok().getLoc(), "unexpected token in memory operand");
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
  SMLoc MemEnd = Parser.getTok().getEndLoc();
 | 
						|
  Parser.Lex(); // Eat the ')'.
 | 
						|
 | 
						|
  // Check for use of invalid 16-bit registers. Only BX/BP/SI/DI are allowed,
 | 
						|
  // and then only in non-64-bit modes. Except for DX, which is a special case
 | 
						|
  // because an unofficial form of in/out instructions uses it.
 | 
						|
  if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg) &&
 | 
						|
      (is64BitMode() || (BaseReg != X86::BX && BaseReg != X86::BP &&
 | 
						|
                         BaseReg != X86::SI && BaseReg != X86::DI)) &&
 | 
						|
      BaseReg != X86::DX) {
 | 
						|
    Error(BaseLoc, "invalid 16-bit base register");
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
  if (BaseReg == 0 &&
 | 
						|
      X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg)) {
 | 
						|
    Error(IndexLoc, "16-bit memory operand may not include only index register");
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  StringRef ErrMsg;
 | 
						|
  if (CheckBaseRegAndIndexReg(BaseReg, IndexReg, ErrMsg)) {
 | 
						|
    Error(BaseLoc, ErrMsg);
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  if (SegReg || BaseReg || IndexReg)
 | 
						|
    return X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale,
 | 
						|
                                 MemStart, MemEnd);
 | 
						|
  return X86Operand::CreateMem(Disp, MemStart, MemEnd);
 | 
						|
}
 | 
						|
 | 
						|
bool X86AsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
 | 
						|
                                    SMLoc NameLoc, OperandVector &Operands) {
 | 
						|
  InstInfo = &Info;
 | 
						|
  StringRef PatchedName = Name;
 | 
						|
 | 
						|
  // FIXME: Hack to recognize setneb as setne.
 | 
						|
  if (PatchedName.startswith("set") && PatchedName.endswith("b") &&
 | 
						|
      PatchedName != "setb" && PatchedName != "setnb")
 | 
						|
    PatchedName = PatchedName.substr(0, Name.size()-1);
 | 
						|
 | 
						|
  // FIXME: Hack to recognize cmp<comparison code>{ss,sd,ps,pd}.
 | 
						|
  const MCExpr *ExtraImmOp = nullptr;
 | 
						|
  if ((PatchedName.startswith("cmp") || PatchedName.startswith("vcmp")) &&
 | 
						|
      (PatchedName.endswith("ss") || PatchedName.endswith("sd") ||
 | 
						|
       PatchedName.endswith("ps") || PatchedName.endswith("pd"))) {
 | 
						|
    bool IsVCMP = PatchedName[0] == 'v';
 | 
						|
    unsigned SSECCIdx = IsVCMP ? 4 : 3;
 | 
						|
    unsigned SSEComparisonCode = StringSwitch<unsigned>(
 | 
						|
      PatchedName.slice(SSECCIdx, PatchedName.size() - 2))
 | 
						|
      .Case("eq",       0x00)
 | 
						|
      .Case("lt",       0x01)
 | 
						|
      .Case("le",       0x02)
 | 
						|
      .Case("unord",    0x03)
 | 
						|
      .Case("neq",      0x04)
 | 
						|
      .Case("nlt",      0x05)
 | 
						|
      .Case("nle",      0x06)
 | 
						|
      .Case("ord",      0x07)
 | 
						|
      /* AVX only from here */
 | 
						|
      .Case("eq_uq",    0x08)
 | 
						|
      .Case("nge",      0x09)
 | 
						|
      .Case("ngt",      0x0A)
 | 
						|
      .Case("false",    0x0B)
 | 
						|
      .Case("neq_oq",   0x0C)
 | 
						|
      .Case("ge",       0x0D)
 | 
						|
      .Case("gt",       0x0E)
 | 
						|
      .Case("true",     0x0F)
 | 
						|
      .Case("eq_os",    0x10)
 | 
						|
      .Case("lt_oq",    0x11)
 | 
						|
      .Case("le_oq",    0x12)
 | 
						|
      .Case("unord_s",  0x13)
 | 
						|
      .Case("neq_us",   0x14)
 | 
						|
      .Case("nlt_uq",   0x15)
 | 
						|
      .Case("nle_uq",   0x16)
 | 
						|
      .Case("ord_s",    0x17)
 | 
						|
      .Case("eq_us",    0x18)
 | 
						|
      .Case("nge_uq",   0x19)
 | 
						|
      .Case("ngt_uq",   0x1A)
 | 
						|
      .Case("false_os", 0x1B)
 | 
						|
      .Case("neq_os",   0x1C)
 | 
						|
      .Case("ge_oq",    0x1D)
 | 
						|
      .Case("gt_oq",    0x1E)
 | 
						|
      .Case("true_us",  0x1F)
 | 
						|
      .Default(~0U);
 | 
						|
    if (SSEComparisonCode != ~0U && (IsVCMP || SSEComparisonCode < 8)) {
 | 
						|
      ExtraImmOp = MCConstantExpr::Create(SSEComparisonCode,
 | 
						|
                                          getParser().getContext());
 | 
						|
      if (PatchedName.endswith("ss")) {
 | 
						|
        PatchedName = IsVCMP ? "vcmpss" : "cmpss";
 | 
						|
      } else if (PatchedName.endswith("sd")) {
 | 
						|
        PatchedName = IsVCMP ? "vcmpsd" : "cmpsd";
 | 
						|
      } else if (PatchedName.endswith("ps")) {
 | 
						|
        PatchedName = IsVCMP ? "vcmpps" : "cmpps";
 | 
						|
      } else {
 | 
						|
        assert(PatchedName.endswith("pd") && "Unexpected mnemonic!");
 | 
						|
        PatchedName = IsVCMP ? "vcmppd" : "cmppd";
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Operands.push_back(X86Operand::CreateToken(PatchedName, NameLoc));
 | 
						|
 | 
						|
  if (ExtraImmOp && !isParsingIntelSyntax())
 | 
						|
    Operands.push_back(X86Operand::CreateImm(ExtraImmOp, NameLoc, NameLoc));
 | 
						|
 | 
						|
  // Determine whether this is an instruction prefix.
 | 
						|
  bool isPrefix =
 | 
						|
    Name == "lock" || Name == "rep" ||
 | 
						|
    Name == "repe" || Name == "repz" ||
 | 
						|
    Name == "repne" || Name == "repnz" ||
 | 
						|
    Name == "rex64" || Name == "data16";
 | 
						|
 | 
						|
 | 
						|
  // This does the actual operand parsing.  Don't parse any more if we have a
 | 
						|
  // prefix juxtaposed with an operation like "lock incl 4(%rax)", because we
 | 
						|
  // just want to parse the "lock" as the first instruction and the "incl" as
 | 
						|
  // the next one.
 | 
						|
  if (getLexer().isNot(AsmToken::EndOfStatement) && !isPrefix) {
 | 
						|
 | 
						|
    // Parse '*' modifier.
 | 
						|
    if (getLexer().is(AsmToken::Star))
 | 
						|
      Operands.push_back(X86Operand::CreateToken("*", consumeToken()));
 | 
						|
 | 
						|
    // Read the operands.
 | 
						|
    while(1) {
 | 
						|
      if (std::unique_ptr<X86Operand> Op = ParseOperand()) {
 | 
						|
        Operands.push_back(std::move(Op));
 | 
						|
        if (!HandleAVX512Operand(Operands, *Operands.back()))
 | 
						|
          return true;
 | 
						|
      } else {
 | 
						|
         Parser.eatToEndOfStatement();
 | 
						|
         return true;
 | 
						|
      }
 | 
						|
      // check for comma and eat it
 | 
						|
      if (getLexer().is(AsmToken::Comma))
 | 
						|
        Parser.Lex();
 | 
						|
      else
 | 
						|
        break;
 | 
						|
     }
 | 
						|
 | 
						|
    if (getLexer().isNot(AsmToken::EndOfStatement))
 | 
						|
      return ErrorAndEatStatement(getLexer().getLoc(),
 | 
						|
                                  "unexpected token in argument list");
 | 
						|
   }
 | 
						|
 | 
						|
  // Consume the EndOfStatement or the prefix separator Slash
 | 
						|
  if (getLexer().is(AsmToken::EndOfStatement) ||
 | 
						|
      (isPrefix && getLexer().is(AsmToken::Slash)))
 | 
						|
    Parser.Lex();
 | 
						|
 | 
						|
  if (ExtraImmOp && isParsingIntelSyntax())
 | 
						|
    Operands.push_back(X86Operand::CreateImm(ExtraImmOp, NameLoc, NameLoc));
 | 
						|
 | 
						|
  // This is a terrible hack to handle "out[bwl]? %al, (%dx)" ->
 | 
						|
  // "outb %al, %dx".  Out doesn't take a memory form, but this is a widely
 | 
						|
  // documented form in various unofficial manuals, so a lot of code uses it.
 | 
						|
  if ((Name == "outb" || Name == "outw" || Name == "outl" || Name == "out") &&
 | 
						|
      Operands.size() == 3) {
 | 
						|
    X86Operand &Op = (X86Operand &)*Operands.back();
 | 
						|
    if (Op.isMem() && Op.Mem.SegReg == 0 &&
 | 
						|
        isa<MCConstantExpr>(Op.Mem.Disp) &&
 | 
						|
        cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 &&
 | 
						|
        Op.Mem.BaseReg == MatchRegisterName("dx") && Op.Mem.IndexReg == 0) {
 | 
						|
      SMLoc Loc = Op.getEndLoc();
 | 
						|
      Operands.back() = X86Operand::CreateReg(Op.Mem.BaseReg, Loc, Loc);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Same hack for "in[bwl]? (%dx), %al" -> "inb %dx, %al".
 | 
						|
  if ((Name == "inb" || Name == "inw" || Name == "inl" || Name == "in") &&
 | 
						|
      Operands.size() == 3) {
 | 
						|
    X86Operand &Op = (X86Operand &)*Operands[1];
 | 
						|
    if (Op.isMem() && Op.Mem.SegReg == 0 &&
 | 
						|
        isa<MCConstantExpr>(Op.Mem.Disp) &&
 | 
						|
        cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 &&
 | 
						|
        Op.Mem.BaseReg == MatchRegisterName("dx") && Op.Mem.IndexReg == 0) {
 | 
						|
      SMLoc Loc = Op.getEndLoc();
 | 
						|
      Operands[1] = X86Operand::CreateReg(Op.Mem.BaseReg, Loc, Loc);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Append default arguments to "ins[bwld]"
 | 
						|
  if (Name.startswith("ins") && Operands.size() == 1 &&
 | 
						|
      (Name == "insb" || Name == "insw" || Name == "insl" ||
 | 
						|
       Name == "insd" )) {
 | 
						|
    if (isParsingIntelSyntax()) {
 | 
						|
      Operands.push_back(X86Operand::CreateReg(X86::DX, NameLoc, NameLoc));
 | 
						|
      Operands.push_back(DefaultMemDIOperand(NameLoc));
 | 
						|
    } else {
 | 
						|
      Operands.push_back(X86Operand::CreateReg(X86::DX, NameLoc, NameLoc));
 | 
						|
      Operands.push_back(DefaultMemDIOperand(NameLoc));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Append default arguments to "outs[bwld]"
 | 
						|
  if (Name.startswith("outs") && Operands.size() == 1 &&
 | 
						|
      (Name == "outsb" || Name == "outsw" || Name == "outsl" ||
 | 
						|
       Name == "outsd" )) {
 | 
						|
    if (isParsingIntelSyntax()) {
 | 
						|
      Operands.push_back(DefaultMemSIOperand(NameLoc));
 | 
						|
      Operands.push_back(X86Operand::CreateReg(X86::DX, NameLoc, NameLoc));
 | 
						|
    } else {
 | 
						|
      Operands.push_back(DefaultMemSIOperand(NameLoc));
 | 
						|
      Operands.push_back(X86Operand::CreateReg(X86::DX, NameLoc, NameLoc));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Transform "lods[bwlq]" into "lods[bwlq] ($SIREG)" for appropriate
 | 
						|
  // values of $SIREG according to the mode. It would be nice if this
 | 
						|
  // could be achieved with InstAlias in the tables.
 | 
						|
  if (Name.startswith("lods") && Operands.size() == 1 &&
 | 
						|
      (Name == "lods" || Name == "lodsb" || Name == "lodsw" ||
 | 
						|
       Name == "lodsl" || Name == "lodsd" || Name == "lodsq"))
 | 
						|
    Operands.push_back(DefaultMemSIOperand(NameLoc));
 | 
						|
 | 
						|
  // Transform "stos[bwlq]" into "stos[bwlq] ($DIREG)" for appropriate
 | 
						|
  // values of $DIREG according to the mode. It would be nice if this
 | 
						|
  // could be achieved with InstAlias in the tables.
 | 
						|
  if (Name.startswith("stos") && Operands.size() == 1 &&
 | 
						|
      (Name == "stos" || Name == "stosb" || Name == "stosw" ||
 | 
						|
       Name == "stosl" || Name == "stosd" || Name == "stosq"))
 | 
						|
    Operands.push_back(DefaultMemDIOperand(NameLoc));
 | 
						|
 | 
						|
  // Transform "scas[bwlq]" into "scas[bwlq] ($DIREG)" for appropriate
 | 
						|
  // values of $DIREG according to the mode. It would be nice if this
 | 
						|
  // could be achieved with InstAlias in the tables.
 | 
						|
  if (Name.startswith("scas") && Operands.size() == 1 &&
 | 
						|
      (Name == "scas" || Name == "scasb" || Name == "scasw" ||
 | 
						|
       Name == "scasl" || Name == "scasd" || Name == "scasq"))
 | 
						|
    Operands.push_back(DefaultMemDIOperand(NameLoc));
 | 
						|
 | 
						|
  // Add default SI and DI operands to "cmps[bwlq]".
 | 
						|
  if (Name.startswith("cmps") &&
 | 
						|
      (Name == "cmps" || Name == "cmpsb" || Name == "cmpsw" ||
 | 
						|
       Name == "cmpsl" || Name == "cmpsd" || Name == "cmpsq")) {
 | 
						|
    if (Operands.size() == 1) {
 | 
						|
      if (isParsingIntelSyntax()) {
 | 
						|
        Operands.push_back(DefaultMemSIOperand(NameLoc));
 | 
						|
        Operands.push_back(DefaultMemDIOperand(NameLoc));
 | 
						|
      } else {
 | 
						|
        Operands.push_back(DefaultMemDIOperand(NameLoc));
 | 
						|
        Operands.push_back(DefaultMemSIOperand(NameLoc));
 | 
						|
      }
 | 
						|
    } else if (Operands.size() == 3) {
 | 
						|
      X86Operand &Op = (X86Operand &)*Operands[1];
 | 
						|
      X86Operand &Op2 = (X86Operand &)*Operands[2];
 | 
						|
      if (!doSrcDstMatch(Op, Op2))
 | 
						|
        return Error(Op.getStartLoc(),
 | 
						|
                     "mismatching source and destination index registers");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Add default SI and DI operands to "movs[bwlq]".
 | 
						|
  if ((Name.startswith("movs") &&
 | 
						|
      (Name == "movs" || Name == "movsb" || Name == "movsw" ||
 | 
						|
       Name == "movsl" || Name == "movsd" || Name == "movsq")) ||
 | 
						|
      (Name.startswith("smov") &&
 | 
						|
      (Name == "smov" || Name == "smovb" || Name == "smovw" ||
 | 
						|
       Name == "smovl" || Name == "smovd" || Name == "smovq"))) {
 | 
						|
    if (Operands.size() == 1) {
 | 
						|
      if (Name == "movsd")
 | 
						|
        Operands.back() = X86Operand::CreateToken("movsl", NameLoc);
 | 
						|
      if (isParsingIntelSyntax()) {
 | 
						|
        Operands.push_back(DefaultMemDIOperand(NameLoc));
 | 
						|
        Operands.push_back(DefaultMemSIOperand(NameLoc));
 | 
						|
      } else {
 | 
						|
        Operands.push_back(DefaultMemSIOperand(NameLoc));
 | 
						|
        Operands.push_back(DefaultMemDIOperand(NameLoc));
 | 
						|
      }
 | 
						|
    } else if (Operands.size() == 3) {
 | 
						|
      X86Operand &Op = (X86Operand &)*Operands[1];
 | 
						|
      X86Operand &Op2 = (X86Operand &)*Operands[2];
 | 
						|
      if (!doSrcDstMatch(Op, Op2))
 | 
						|
        return Error(Op.getStartLoc(),
 | 
						|
                     "mismatching source and destination index registers");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: Hack to handle recognize s{hr,ar,hl} $1, <op>.  Canonicalize to
 | 
						|
  // "shift <op>".
 | 
						|
  if ((Name.startswith("shr") || Name.startswith("sar") ||
 | 
						|
       Name.startswith("shl") || Name.startswith("sal") ||
 | 
						|
       Name.startswith("rcl") || Name.startswith("rcr") ||
 | 
						|
       Name.startswith("rol") || Name.startswith("ror")) &&
 | 
						|
      Operands.size() == 3) {
 | 
						|
    if (isParsingIntelSyntax()) {
 | 
						|
      // Intel syntax
 | 
						|
      X86Operand &Op1 = static_cast<X86Operand &>(*Operands[2]);
 | 
						|
      if (Op1.isImm() && isa<MCConstantExpr>(Op1.getImm()) &&
 | 
						|
          cast<MCConstantExpr>(Op1.getImm())->getValue() == 1)
 | 
						|
        Operands.pop_back();
 | 
						|
    } else {
 | 
						|
      X86Operand &Op1 = static_cast<X86Operand &>(*Operands[1]);
 | 
						|
      if (Op1.isImm() && isa<MCConstantExpr>(Op1.getImm()) &&
 | 
						|
          cast<MCConstantExpr>(Op1.getImm())->getValue() == 1)
 | 
						|
        Operands.erase(Operands.begin() + 1);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Transforms "int $3" into "int3" as a size optimization.  We can't write an
 | 
						|
  // instalias with an immediate operand yet.
 | 
						|
  if (Name == "int" && Operands.size() == 2) {
 | 
						|
    X86Operand &Op1 = static_cast<X86Operand &>(*Operands[1]);
 | 
						|
    if (Op1.isImm() && isa<MCConstantExpr>(Op1.getImm()) &&
 | 
						|
        cast<MCConstantExpr>(Op1.getImm())->getValue() == 3) {
 | 
						|
      Operands.erase(Operands.begin() + 1);
 | 
						|
      static_cast<X86Operand &>(*Operands[0]).setTokenValue("int3");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool convertToSExti8(MCInst &Inst, unsigned Opcode, unsigned Reg,
 | 
						|
                            bool isCmp) {
 | 
						|
  MCInst TmpInst;
 | 
						|
  TmpInst.setOpcode(Opcode);
 | 
						|
  if (!isCmp)
 | 
						|
    TmpInst.addOperand(MCOperand::CreateReg(Reg));
 | 
						|
  TmpInst.addOperand(MCOperand::CreateReg(Reg));
 | 
						|
  TmpInst.addOperand(Inst.getOperand(0));
 | 
						|
  Inst = TmpInst;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool convert16i16to16ri8(MCInst &Inst, unsigned Opcode,
 | 
						|
                                bool isCmp = false) {
 | 
						|
  if (!Inst.getOperand(0).isImm() ||
 | 
						|
      !isImmSExti16i8Value(Inst.getOperand(0).getImm()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return convertToSExti8(Inst, Opcode, X86::AX, isCmp);
 | 
						|
}
 | 
						|
 | 
						|
static bool convert32i32to32ri8(MCInst &Inst, unsigned Opcode,
 | 
						|
                                bool isCmp = false) {
 | 
						|
  if (!Inst.getOperand(0).isImm() ||
 | 
						|
      !isImmSExti32i8Value(Inst.getOperand(0).getImm()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return convertToSExti8(Inst, Opcode, X86::EAX, isCmp);
 | 
						|
}
 | 
						|
 | 
						|
static bool convert64i32to64ri8(MCInst &Inst, unsigned Opcode,
 | 
						|
                                bool isCmp = false) {
 | 
						|
  if (!Inst.getOperand(0).isImm() ||
 | 
						|
      !isImmSExti64i8Value(Inst.getOperand(0).getImm()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return convertToSExti8(Inst, Opcode, X86::RAX, isCmp);
 | 
						|
}
 | 
						|
 | 
						|
bool X86AsmParser::processInstruction(MCInst &Inst, const OperandVector &Ops) {
 | 
						|
  switch (Inst.getOpcode()) {
 | 
						|
  default: return false;
 | 
						|
  case X86::AND16i16: return convert16i16to16ri8(Inst, X86::AND16ri8);
 | 
						|
  case X86::AND32i32: return convert32i32to32ri8(Inst, X86::AND32ri8);
 | 
						|
  case X86::AND64i32: return convert64i32to64ri8(Inst, X86::AND64ri8);
 | 
						|
  case X86::XOR16i16: return convert16i16to16ri8(Inst, X86::XOR16ri8);
 | 
						|
  case X86::XOR32i32: return convert32i32to32ri8(Inst, X86::XOR32ri8);
 | 
						|
  case X86::XOR64i32: return convert64i32to64ri8(Inst, X86::XOR64ri8);
 | 
						|
  case X86::OR16i16:  return convert16i16to16ri8(Inst, X86::OR16ri8);
 | 
						|
  case X86::OR32i32:  return convert32i32to32ri8(Inst, X86::OR32ri8);
 | 
						|
  case X86::OR64i32:  return convert64i32to64ri8(Inst, X86::OR64ri8);
 | 
						|
  case X86::CMP16i16: return convert16i16to16ri8(Inst, X86::CMP16ri8, true);
 | 
						|
  case X86::CMP32i32: return convert32i32to32ri8(Inst, X86::CMP32ri8, true);
 | 
						|
  case X86::CMP64i32: return convert64i32to64ri8(Inst, X86::CMP64ri8, true);
 | 
						|
  case X86::ADD16i16: return convert16i16to16ri8(Inst, X86::ADD16ri8);
 | 
						|
  case X86::ADD32i32: return convert32i32to32ri8(Inst, X86::ADD32ri8);
 | 
						|
  case X86::ADD64i32: return convert64i32to64ri8(Inst, X86::ADD64ri8);
 | 
						|
  case X86::SUB16i16: return convert16i16to16ri8(Inst, X86::SUB16ri8);
 | 
						|
  case X86::SUB32i32: return convert32i32to32ri8(Inst, X86::SUB32ri8);
 | 
						|
  case X86::SUB64i32: return convert64i32to64ri8(Inst, X86::SUB64ri8);
 | 
						|
  case X86::ADC16i16: return convert16i16to16ri8(Inst, X86::ADC16ri8);
 | 
						|
  case X86::ADC32i32: return convert32i32to32ri8(Inst, X86::ADC32ri8);
 | 
						|
  case X86::ADC64i32: return convert64i32to64ri8(Inst, X86::ADC64ri8);
 | 
						|
  case X86::SBB16i16: return convert16i16to16ri8(Inst, X86::SBB16ri8);
 | 
						|
  case X86::SBB32i32: return convert32i32to32ri8(Inst, X86::SBB32ri8);
 | 
						|
  case X86::SBB64i32: return convert64i32to64ri8(Inst, X86::SBB64ri8);
 | 
						|
  case X86::VMOVAPDrr:
 | 
						|
  case X86::VMOVAPDYrr:
 | 
						|
  case X86::VMOVAPSrr:
 | 
						|
  case X86::VMOVAPSYrr:
 | 
						|
  case X86::VMOVDQArr:
 | 
						|
  case X86::VMOVDQAYrr:
 | 
						|
  case X86::VMOVDQUrr:
 | 
						|
  case X86::VMOVDQUYrr:
 | 
						|
  case X86::VMOVUPDrr:
 | 
						|
  case X86::VMOVUPDYrr:
 | 
						|
  case X86::VMOVUPSrr:
 | 
						|
  case X86::VMOVUPSYrr: {
 | 
						|
    if (X86II::isX86_64ExtendedReg(Inst.getOperand(0).getReg()) ||
 | 
						|
        !X86II::isX86_64ExtendedReg(Inst.getOperand(1).getReg()))
 | 
						|
      return false;
 | 
						|
 | 
						|
    unsigned NewOpc;
 | 
						|
    switch (Inst.getOpcode()) {
 | 
						|
    default: llvm_unreachable("Invalid opcode");
 | 
						|
    case X86::VMOVAPDrr:  NewOpc = X86::VMOVAPDrr_REV;  break;
 | 
						|
    case X86::VMOVAPDYrr: NewOpc = X86::VMOVAPDYrr_REV; break;
 | 
						|
    case X86::VMOVAPSrr:  NewOpc = X86::VMOVAPSrr_REV;  break;
 | 
						|
    case X86::VMOVAPSYrr: NewOpc = X86::VMOVAPSYrr_REV; break;
 | 
						|
    case X86::VMOVDQArr:  NewOpc = X86::VMOVDQArr_REV;  break;
 | 
						|
    case X86::VMOVDQAYrr: NewOpc = X86::VMOVDQAYrr_REV; break;
 | 
						|
    case X86::VMOVDQUrr:  NewOpc = X86::VMOVDQUrr_REV;  break;
 | 
						|
    case X86::VMOVDQUYrr: NewOpc = X86::VMOVDQUYrr_REV; break;
 | 
						|
    case X86::VMOVUPDrr:  NewOpc = X86::VMOVUPDrr_REV;  break;
 | 
						|
    case X86::VMOVUPDYrr: NewOpc = X86::VMOVUPDYrr_REV; break;
 | 
						|
    case X86::VMOVUPSrr:  NewOpc = X86::VMOVUPSrr_REV;  break;
 | 
						|
    case X86::VMOVUPSYrr: NewOpc = X86::VMOVUPSYrr_REV; break;
 | 
						|
    }
 | 
						|
    Inst.setOpcode(NewOpc);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  case X86::VMOVSDrr:
 | 
						|
  case X86::VMOVSSrr: {
 | 
						|
    if (X86II::isX86_64ExtendedReg(Inst.getOperand(0).getReg()) ||
 | 
						|
        !X86II::isX86_64ExtendedReg(Inst.getOperand(2).getReg()))
 | 
						|
      return false;
 | 
						|
    unsigned NewOpc;
 | 
						|
    switch (Inst.getOpcode()) {
 | 
						|
    default: llvm_unreachable("Invalid opcode");
 | 
						|
    case X86::VMOVSDrr: NewOpc = X86::VMOVSDrr_REV;   break;
 | 
						|
    case X86::VMOVSSrr: NewOpc = X86::VMOVSSrr_REV;   break;
 | 
						|
    }
 | 
						|
    Inst.setOpcode(NewOpc);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static const char *getSubtargetFeatureName(uint64_t Val);
 | 
						|
 | 
						|
void X86AsmParser::EmitInstruction(MCInst &Inst, OperandVector &Operands,
 | 
						|
                                   MCStreamer &Out) {
 | 
						|
  Instrumentation->InstrumentAndEmitInstruction(Inst, Operands, getContext(),
 | 
						|
                                                MII, Out);
 | 
						|
}
 | 
						|
 | 
						|
bool X86AsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
 | 
						|
                                           OperandVector &Operands,
 | 
						|
                                           MCStreamer &Out, uint64_t &ErrorInfo,
 | 
						|
                                           bool MatchingInlineAsm) {
 | 
						|
  if (isParsingIntelSyntax())
 | 
						|
    return MatchAndEmitIntelInstruction(IDLoc, Opcode, Operands, Out, ErrorInfo,
 | 
						|
                                        MatchingInlineAsm);
 | 
						|
  return MatchAndEmitATTInstruction(IDLoc, Opcode, Operands, Out, ErrorInfo,
 | 
						|
                                    MatchingInlineAsm);
 | 
						|
}
 | 
						|
 | 
						|
void X86AsmParser::MatchFPUWaitAlias(SMLoc IDLoc, X86Operand &Op,
 | 
						|
                                     OperandVector &Operands, MCStreamer &Out,
 | 
						|
                                     bool MatchingInlineAsm) {
 | 
						|
  // FIXME: This should be replaced with a real .td file alias mechanism.
 | 
						|
  // Also, MatchInstructionImpl should actually *do* the EmitInstruction
 | 
						|
  // call.
 | 
						|
  const char *Repl = StringSwitch<const char *>(Op.getToken())
 | 
						|
                         .Case("finit", "fninit")
 | 
						|
                         .Case("fsave", "fnsave")
 | 
						|
                         .Case("fstcw", "fnstcw")
 | 
						|
                         .Case("fstcww", "fnstcw")
 | 
						|
                         .Case("fstenv", "fnstenv")
 | 
						|
                         .Case("fstsw", "fnstsw")
 | 
						|
                         .Case("fstsww", "fnstsw")
 | 
						|
                         .Case("fclex", "fnclex")
 | 
						|
                         .Default(nullptr);
 | 
						|
  if (Repl) {
 | 
						|
    MCInst Inst;
 | 
						|
    Inst.setOpcode(X86::WAIT);
 | 
						|
    Inst.setLoc(IDLoc);
 | 
						|
    if (!MatchingInlineAsm)
 | 
						|
      EmitInstruction(Inst, Operands, Out);
 | 
						|
    Operands[0] = X86Operand::CreateToken(Repl, IDLoc);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool X86AsmParser::ErrorMissingFeature(SMLoc IDLoc, uint64_t ErrorInfo,
 | 
						|
                                       bool MatchingInlineAsm) {
 | 
						|
  assert(ErrorInfo && "Unknown missing feature!");
 | 
						|
  ArrayRef<SMRange> EmptyRanges = None;
 | 
						|
  SmallString<126> Msg;
 | 
						|
  raw_svector_ostream OS(Msg);
 | 
						|
  OS << "instruction requires:";
 | 
						|
  uint64_t Mask = 1;
 | 
						|
  for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) {
 | 
						|
    if (ErrorInfo & Mask)
 | 
						|
      OS << ' ' << getSubtargetFeatureName(ErrorInfo & Mask);
 | 
						|
    Mask <<= 1;
 | 
						|
  }
 | 
						|
  return Error(IDLoc, OS.str(), EmptyRanges, MatchingInlineAsm);
 | 
						|
}
 | 
						|
 | 
						|
bool X86AsmParser::MatchAndEmitATTInstruction(SMLoc IDLoc, unsigned &Opcode,
 | 
						|
                                              OperandVector &Operands,
 | 
						|
                                              MCStreamer &Out,
 | 
						|
                                              uint64_t &ErrorInfo,
 | 
						|
                                              bool MatchingInlineAsm) {
 | 
						|
  assert(!Operands.empty() && "Unexpect empty operand list!");
 | 
						|
  X86Operand &Op = static_cast<X86Operand &>(*Operands[0]);
 | 
						|
  assert(Op.isToken() && "Leading operand should always be a mnemonic!");
 | 
						|
  ArrayRef<SMRange> EmptyRanges = None;
 | 
						|
 | 
						|
  // First, handle aliases that expand to multiple instructions.
 | 
						|
  MatchFPUWaitAlias(IDLoc, Op, Operands, Out, MatchingInlineAsm);
 | 
						|
 | 
						|
  bool WasOriginallyInvalidOperand = false;
 | 
						|
  MCInst Inst;
 | 
						|
 | 
						|
  // First, try a direct match.
 | 
						|
  switch (MatchInstructionImpl(Operands, Inst,
 | 
						|
                               ErrorInfo, MatchingInlineAsm,
 | 
						|
                               isParsingIntelSyntax())) {
 | 
						|
  default: break;
 | 
						|
  case Match_Success:
 | 
						|
    // Some instructions need post-processing to, for example, tweak which
 | 
						|
    // encoding is selected. Loop on it while changes happen so the
 | 
						|
    // individual transformations can chain off each other.
 | 
						|
    if (!MatchingInlineAsm)
 | 
						|
      while (processInstruction(Inst, Operands))
 | 
						|
        ;
 | 
						|
 | 
						|
    Inst.setLoc(IDLoc);
 | 
						|
    if (!MatchingInlineAsm)
 | 
						|
      EmitInstruction(Inst, Operands, Out);
 | 
						|
    Opcode = Inst.getOpcode();
 | 
						|
    return false;
 | 
						|
  case Match_MissingFeature:
 | 
						|
    return ErrorMissingFeature(IDLoc, ErrorInfo, MatchingInlineAsm);
 | 
						|
  case Match_InvalidOperand:
 | 
						|
    WasOriginallyInvalidOperand = true;
 | 
						|
    break;
 | 
						|
  case Match_MnemonicFail:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: Ideally, we would only attempt suffix matches for things which are
 | 
						|
  // valid prefixes, and we could just infer the right unambiguous
 | 
						|
  // type. However, that requires substantially more matcher support than the
 | 
						|
  // following hack.
 | 
						|
 | 
						|
  // Change the operand to point to a temporary token.
 | 
						|
  StringRef Base = Op.getToken();
 | 
						|
  SmallString<16> Tmp;
 | 
						|
  Tmp += Base;
 | 
						|
  Tmp += ' ';
 | 
						|
  Op.setTokenValue(Tmp.str());
 | 
						|
 | 
						|
  // If this instruction starts with an 'f', then it is a floating point stack
 | 
						|
  // instruction.  These come in up to three forms for 32-bit, 64-bit, and
 | 
						|
  // 80-bit floating point, which use the suffixes s,l,t respectively.
 | 
						|
  //
 | 
						|
  // Otherwise, we assume that this may be an integer instruction, which comes
 | 
						|
  // in 8/16/32/64-bit forms using the b,w,l,q suffixes respectively.
 | 
						|
  const char *Suffixes = Base[0] != 'f' ? "bwlq" : "slt\0";
 | 
						|
 | 
						|
  // Check for the various suffix matches.
 | 
						|
  uint64_t ErrorInfoIgnore;
 | 
						|
  uint64_t ErrorInfoMissingFeature = 0; // Init suppresses compiler warnings.
 | 
						|
  unsigned Match[4];
 | 
						|
 | 
						|
  for (unsigned I = 0, E = array_lengthof(Match); I != E; ++I) {
 | 
						|
    Tmp.back() = Suffixes[I];
 | 
						|
    Match[I] = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore,
 | 
						|
                                  MatchingInlineAsm, isParsingIntelSyntax());
 | 
						|
    // If this returned as a missing feature failure, remember that.
 | 
						|
    if (Match[I] == Match_MissingFeature)
 | 
						|
      ErrorInfoMissingFeature = ErrorInfoIgnore;
 | 
						|
  }
 | 
						|
 | 
						|
  // Restore the old token.
 | 
						|
  Op.setTokenValue(Base);
 | 
						|
 | 
						|
  // If exactly one matched, then we treat that as a successful match (and the
 | 
						|
  // instruction will already have been filled in correctly, since the failing
 | 
						|
  // matches won't have modified it).
 | 
						|
  unsigned NumSuccessfulMatches =
 | 
						|
      std::count(std::begin(Match), std::end(Match), Match_Success);
 | 
						|
  if (NumSuccessfulMatches == 1) {
 | 
						|
    Inst.setLoc(IDLoc);
 | 
						|
    if (!MatchingInlineAsm)
 | 
						|
      EmitInstruction(Inst, Operands, Out);
 | 
						|
    Opcode = Inst.getOpcode();
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, the match failed, try to produce a decent error message.
 | 
						|
 | 
						|
  // If we had multiple suffix matches, then identify this as an ambiguous
 | 
						|
  // match.
 | 
						|
  if (NumSuccessfulMatches > 1) {
 | 
						|
    char MatchChars[4];
 | 
						|
    unsigned NumMatches = 0;
 | 
						|
    for (unsigned I = 0, E = array_lengthof(Match); I != E; ++I)
 | 
						|
      if (Match[I] == Match_Success)
 | 
						|
        MatchChars[NumMatches++] = Suffixes[I];
 | 
						|
 | 
						|
    SmallString<126> Msg;
 | 
						|
    raw_svector_ostream OS(Msg);
 | 
						|
    OS << "ambiguous instructions require an explicit suffix (could be ";
 | 
						|
    for (unsigned i = 0; i != NumMatches; ++i) {
 | 
						|
      if (i != 0)
 | 
						|
        OS << ", ";
 | 
						|
      if (i + 1 == NumMatches)
 | 
						|
        OS << "or ";
 | 
						|
      OS << "'" << Base << MatchChars[i] << "'";
 | 
						|
    }
 | 
						|
    OS << ")";
 | 
						|
    Error(IDLoc, OS.str(), EmptyRanges, MatchingInlineAsm);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, we know that none of the variants matched successfully.
 | 
						|
 | 
						|
  // If all of the instructions reported an invalid mnemonic, then the original
 | 
						|
  // mnemonic was invalid.
 | 
						|
  if (std::count(std::begin(Match), std::end(Match), Match_MnemonicFail) == 4) {
 | 
						|
    if (!WasOriginallyInvalidOperand) {
 | 
						|
      ArrayRef<SMRange> Ranges =
 | 
						|
          MatchingInlineAsm ? EmptyRanges : Op.getLocRange();
 | 
						|
      return Error(IDLoc, "invalid instruction mnemonic '" + Base + "'",
 | 
						|
                   Ranges, MatchingInlineAsm);
 | 
						|
    }
 | 
						|
 | 
						|
    // Recover location info for the operand if we know which was the problem.
 | 
						|
    if (ErrorInfo != ~0ULL) {
 | 
						|
      if (ErrorInfo >= Operands.size())
 | 
						|
        return Error(IDLoc, "too few operands for instruction",
 | 
						|
                     EmptyRanges, MatchingInlineAsm);
 | 
						|
 | 
						|
      X86Operand &Operand = (X86Operand &)*Operands[ErrorInfo];
 | 
						|
      if (Operand.getStartLoc().isValid()) {
 | 
						|
        SMRange OperandRange = Operand.getLocRange();
 | 
						|
        return Error(Operand.getStartLoc(), "invalid operand for instruction",
 | 
						|
                     OperandRange, MatchingInlineAsm);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return Error(IDLoc, "invalid operand for instruction", EmptyRanges,
 | 
						|
                 MatchingInlineAsm);
 | 
						|
  }
 | 
						|
 | 
						|
  // If one instruction matched with a missing feature, report this as a
 | 
						|
  // missing feature.
 | 
						|
  if (std::count(std::begin(Match), std::end(Match),
 | 
						|
                 Match_MissingFeature) == 1) {
 | 
						|
    ErrorInfo = ErrorInfoMissingFeature;
 | 
						|
    return ErrorMissingFeature(IDLoc, ErrorInfoMissingFeature,
 | 
						|
                               MatchingInlineAsm);
 | 
						|
  }
 | 
						|
 | 
						|
  // If one instruction matched with an invalid operand, report this as an
 | 
						|
  // operand failure.
 | 
						|
  if (std::count(std::begin(Match), std::end(Match),
 | 
						|
                 Match_InvalidOperand) == 1) {
 | 
						|
    return Error(IDLoc, "invalid operand for instruction", EmptyRanges,
 | 
						|
                 MatchingInlineAsm);
 | 
						|
  }
 | 
						|
 | 
						|
  // If all of these were an outright failure, report it in a useless way.
 | 
						|
  Error(IDLoc, "unknown use of instruction mnemonic without a size suffix",
 | 
						|
        EmptyRanges, MatchingInlineAsm);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool X86AsmParser::MatchAndEmitIntelInstruction(SMLoc IDLoc, unsigned &Opcode,
 | 
						|
                                                OperandVector &Operands,
 | 
						|
                                                MCStreamer &Out,
 | 
						|
                                                uint64_t &ErrorInfo,
 | 
						|
                                                bool MatchingInlineAsm) {
 | 
						|
  assert(!Operands.empty() && "Unexpect empty operand list!");
 | 
						|
  X86Operand &Op = static_cast<X86Operand &>(*Operands[0]);
 | 
						|
  assert(Op.isToken() && "Leading operand should always be a mnemonic!");
 | 
						|
  StringRef Mnemonic = Op.getToken();
 | 
						|
  ArrayRef<SMRange> EmptyRanges = None;
 | 
						|
 | 
						|
  // First, handle aliases that expand to multiple instructions.
 | 
						|
  MatchFPUWaitAlias(IDLoc, Op, Operands, Out, MatchingInlineAsm);
 | 
						|
 | 
						|
  MCInst Inst;
 | 
						|
 | 
						|
  // Find one unsized memory operand, if present.
 | 
						|
  X86Operand *UnsizedMemOp = nullptr;
 | 
						|
  for (const auto &Op : Operands) {
 | 
						|
    X86Operand *X86Op = static_cast<X86Operand *>(Op.get());
 | 
						|
    if (X86Op->isMemUnsized())
 | 
						|
      UnsizedMemOp = X86Op;
 | 
						|
  }
 | 
						|
 | 
						|
  // Allow some instructions to have implicitly pointer-sized operands.  This is
 | 
						|
  // compatible with gas.
 | 
						|
  if (UnsizedMemOp) {
 | 
						|
    static const char *const PtrSizedInstrs[] = {"call", "jmp", "push"};
 | 
						|
    for (const char *Instr : PtrSizedInstrs) {
 | 
						|
      if (Mnemonic == Instr) {
 | 
						|
        UnsizedMemOp->Mem.Size = getPointerSize();
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If an unsized memory operand is present, try to match with each memory
 | 
						|
  // operand size.  In Intel assembly, the size is not part of the instruction
 | 
						|
  // mnemonic.
 | 
						|
  SmallVector<unsigned, 8> Match;
 | 
						|
  uint64_t ErrorInfoMissingFeature = 0;
 | 
						|
  if (UnsizedMemOp && UnsizedMemOp->isMemUnsized()) {
 | 
						|
    static const unsigned MopSizes[] = {8, 16, 32, 64, 80};
 | 
						|
    for (unsigned Size : MopSizes) {
 | 
						|
      UnsizedMemOp->Mem.Size = Size;
 | 
						|
      uint64_t ErrorInfoIgnore;
 | 
						|
      unsigned LastOpcode = Inst.getOpcode();
 | 
						|
      unsigned M =
 | 
						|
          MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore,
 | 
						|
                               MatchingInlineAsm, isParsingIntelSyntax());
 | 
						|
      if (Match.empty() || LastOpcode != Inst.getOpcode())
 | 
						|
        Match.push_back(M);
 | 
						|
 | 
						|
      // If this returned as a missing feature failure, remember that.
 | 
						|
      if (Match.back() == Match_MissingFeature)
 | 
						|
        ErrorInfoMissingFeature = ErrorInfoIgnore;
 | 
						|
    }
 | 
						|
 | 
						|
    // Restore the size of the unsized memory operand if we modified it.
 | 
						|
    if (UnsizedMemOp)
 | 
						|
      UnsizedMemOp->Mem.Size = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we haven't matched anything yet, this is not a basic integer or FPU
 | 
						|
  // operation.  There shouldn't be any ambiguity in our mneumonic table, so try
 | 
						|
  // matching with the unsized operand.
 | 
						|
  if (Match.empty()) {
 | 
						|
    Match.push_back(MatchInstructionImpl(Operands, Inst, ErrorInfo,
 | 
						|
                                         MatchingInlineAsm,
 | 
						|
                                         isParsingIntelSyntax()));
 | 
						|
    // If this returned as a missing feature failure, remember that.
 | 
						|
    if (Match.back() == Match_MissingFeature)
 | 
						|
      ErrorInfoMissingFeature = ErrorInfo;
 | 
						|
  }
 | 
						|
 | 
						|
  // Restore the size of the unsized memory operand if we modified it.
 | 
						|
  if (UnsizedMemOp)
 | 
						|
    UnsizedMemOp->Mem.Size = 0;
 | 
						|
 | 
						|
  // If it's a bad mnemonic, all results will be the same.
 | 
						|
  if (Match.back() == Match_MnemonicFail) {
 | 
						|
    ArrayRef<SMRange> Ranges =
 | 
						|
        MatchingInlineAsm ? EmptyRanges : Op.getLocRange();
 | 
						|
    return Error(IDLoc, "invalid instruction mnemonic '" + Mnemonic + "'",
 | 
						|
                 Ranges, MatchingInlineAsm);
 | 
						|
  }
 | 
						|
 | 
						|
  // If exactly one matched, then we treat that as a successful match (and the
 | 
						|
  // instruction will already have been filled in correctly, since the failing
 | 
						|
  // matches won't have modified it).
 | 
						|
  unsigned NumSuccessfulMatches =
 | 
						|
      std::count(std::begin(Match), std::end(Match), Match_Success);
 | 
						|
  if (NumSuccessfulMatches == 1) {
 | 
						|
    // Some instructions need post-processing to, for example, tweak which
 | 
						|
    // encoding is selected. Loop on it while changes happen so the individual
 | 
						|
    // transformations can chain off each other.
 | 
						|
    if (!MatchingInlineAsm)
 | 
						|
      while (processInstruction(Inst, Operands))
 | 
						|
        ;
 | 
						|
    Inst.setLoc(IDLoc);
 | 
						|
    if (!MatchingInlineAsm)
 | 
						|
      EmitInstruction(Inst, Operands, Out);
 | 
						|
    Opcode = Inst.getOpcode();
 | 
						|
    return false;
 | 
						|
  } else if (NumSuccessfulMatches > 1) {
 | 
						|
    assert(UnsizedMemOp &&
 | 
						|
           "multiple matches only possible with unsized memory operands");
 | 
						|
    ArrayRef<SMRange> Ranges =
 | 
						|
        MatchingInlineAsm ? EmptyRanges : UnsizedMemOp->getLocRange();
 | 
						|
    return Error(UnsizedMemOp->getStartLoc(),
 | 
						|
                 "ambiguous operand size for instruction '" + Mnemonic + "\'",
 | 
						|
                 Ranges, MatchingInlineAsm);
 | 
						|
  }
 | 
						|
 | 
						|
  // If one instruction matched with a missing feature, report this as a
 | 
						|
  // missing feature.
 | 
						|
  if (std::count(std::begin(Match), std::end(Match),
 | 
						|
                 Match_MissingFeature) == 1) {
 | 
						|
    ErrorInfo = ErrorInfoMissingFeature;
 | 
						|
    return ErrorMissingFeature(IDLoc, ErrorInfoMissingFeature,
 | 
						|
                               MatchingInlineAsm);
 | 
						|
  }
 | 
						|
 | 
						|
  // If one instruction matched with an invalid operand, report this as an
 | 
						|
  // operand failure.
 | 
						|
  if (std::count(std::begin(Match), std::end(Match),
 | 
						|
                 Match_InvalidOperand) == 1) {
 | 
						|
    return Error(IDLoc, "invalid operand for instruction", EmptyRanges,
 | 
						|
                 MatchingInlineAsm);
 | 
						|
  }
 | 
						|
 | 
						|
  // If all of these were an outright failure, report it in a useless way.
 | 
						|
  return Error(IDLoc, "unknown instruction mnemonic", EmptyRanges,
 | 
						|
               MatchingInlineAsm);
 | 
						|
}
 | 
						|
 | 
						|
bool X86AsmParser::OmitRegisterFromClobberLists(unsigned RegNo) {
 | 
						|
  return X86MCRegisterClasses[X86::SEGMENT_REGRegClassID].contains(RegNo);
 | 
						|
}
 | 
						|
 | 
						|
bool X86AsmParser::ParseDirective(AsmToken DirectiveID) {
 | 
						|
  StringRef IDVal = DirectiveID.getIdentifier();
 | 
						|
  if (IDVal == ".word")
 | 
						|
    return ParseDirectiveWord(2, DirectiveID.getLoc());
 | 
						|
  else if (IDVal.startswith(".code"))
 | 
						|
    return ParseDirectiveCode(IDVal, DirectiveID.getLoc());
 | 
						|
  else if (IDVal.startswith(".att_syntax")) {
 | 
						|
    if (getLexer().isNot(AsmToken::EndOfStatement)) {
 | 
						|
      if (Parser.getTok().getString() == "prefix")
 | 
						|
        Parser.Lex();
 | 
						|
      else if (Parser.getTok().getString() == "noprefix")
 | 
						|
        return Error(DirectiveID.getLoc(), "'.att_syntax noprefix' is not "
 | 
						|
                                           "supported: registers must have a "
 | 
						|
                                           "'%' prefix in .att_syntax");
 | 
						|
    }
 | 
						|
    getParser().setAssemblerDialect(0);
 | 
						|
    return false;
 | 
						|
  } else if (IDVal.startswith(".intel_syntax")) {
 | 
						|
    getParser().setAssemblerDialect(1);
 | 
						|
    if (getLexer().isNot(AsmToken::EndOfStatement)) {
 | 
						|
      if (Parser.getTok().getString() == "noprefix")
 | 
						|
        Parser.Lex();
 | 
						|
      else if (Parser.getTok().getString() == "prefix")
 | 
						|
        return Error(DirectiveID.getLoc(), "'.intel_syntax prefix' is not "
 | 
						|
                                           "supported: registers must not have "
 | 
						|
                                           "a '%' prefix in .intel_syntax");
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// ParseDirectiveWord
 | 
						|
///  ::= .word [ expression (, expression)* ]
 | 
						|
bool X86AsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) {
 | 
						|
  if (getLexer().isNot(AsmToken::EndOfStatement)) {
 | 
						|
    for (;;) {
 | 
						|
      const MCExpr *Value;
 | 
						|
      if (getParser().parseExpression(Value))
 | 
						|
        return false;
 | 
						|
 | 
						|
      getParser().getStreamer().EmitValue(Value, Size);
 | 
						|
 | 
						|
      if (getLexer().is(AsmToken::EndOfStatement))
 | 
						|
        break;
 | 
						|
 | 
						|
      // FIXME: Improve diagnostic.
 | 
						|
      if (getLexer().isNot(AsmToken::Comma)) {
 | 
						|
        Error(L, "unexpected token in directive");
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      Parser.Lex();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Parser.Lex();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// ParseDirectiveCode
 | 
						|
///  ::= .code16 | .code32 | .code64
 | 
						|
bool X86AsmParser::ParseDirectiveCode(StringRef IDVal, SMLoc L) {
 | 
						|
  if (IDVal == ".code16") {
 | 
						|
    Parser.Lex();
 | 
						|
    if (!is16BitMode()) {
 | 
						|
      SwitchMode(X86::Mode16Bit);
 | 
						|
      getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
 | 
						|
    }
 | 
						|
  } else if (IDVal == ".code32") {
 | 
						|
    Parser.Lex();
 | 
						|
    if (!is32BitMode()) {
 | 
						|
      SwitchMode(X86::Mode32Bit);
 | 
						|
      getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
 | 
						|
    }
 | 
						|
  } else if (IDVal == ".code64") {
 | 
						|
    Parser.Lex();
 | 
						|
    if (!is64BitMode()) {
 | 
						|
      SwitchMode(X86::Mode64Bit);
 | 
						|
      getParser().getStreamer().EmitAssemblerFlag(MCAF_Code64);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    Error(L, "unknown directive " + IDVal);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Force static initialization.
 | 
						|
extern "C" void LLVMInitializeX86AsmParser() {
 | 
						|
  RegisterMCAsmParser<X86AsmParser> X(TheX86_32Target);
 | 
						|
  RegisterMCAsmParser<X86AsmParser> Y(TheX86_64Target);
 | 
						|
}
 | 
						|
 | 
						|
#define GET_REGISTER_MATCHER
 | 
						|
#define GET_MATCHER_IMPLEMENTATION
 | 
						|
#define GET_SUBTARGET_FEATURE_NAME
 | 
						|
#include "X86GenAsmMatcher.inc"
 |