mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 00:16:48 +00:00 
			
		
		
		
	Simply treat bundles as instructions. Spill code is inserted between bundles, never inside a bundle. Rewrite all operands in a bundle at once. Don't attempt and memory operand folding inside bundles. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151787 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1294 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1294 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-------- InlineSpiller.cpp - Insert spills and restores inline -------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // The inline spiller modifies the machine function directly instead of
 | |
| // inserting spills and restores in VirtRegMap.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "regalloc"
 | |
| #include "Spiller.h"
 | |
| #include "LiveRangeEdit.h"
 | |
| #include "VirtRegMap.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/TinyPtrVector.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | |
| #include "llvm/CodeGen/LiveStackAnalysis.h"
 | |
| #include "llvm/CodeGen/MachineDominators.h"
 | |
| #include "llvm/CodeGen/MachineInstrBundle.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineLoopInfo.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumSpilledRanges,   "Number of spilled live ranges");
 | |
| STATISTIC(NumSnippets,        "Number of spilled snippets");
 | |
| STATISTIC(NumSpills,          "Number of spills inserted");
 | |
| STATISTIC(NumSpillsRemoved,   "Number of spills removed");
 | |
| STATISTIC(NumReloads,         "Number of reloads inserted");
 | |
| STATISTIC(NumReloadsRemoved,  "Number of reloads removed");
 | |
| STATISTIC(NumFolded,          "Number of folded stack accesses");
 | |
| STATISTIC(NumFoldedLoads,     "Number of folded loads");
 | |
| STATISTIC(NumRemats,          "Number of rematerialized defs for spilling");
 | |
| STATISTIC(NumOmitReloadSpill, "Number of omitted spills of reloads");
 | |
| STATISTIC(NumHoists,          "Number of hoisted spills");
 | |
| 
 | |
| static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden,
 | |
|                                      cl::desc("Disable inline spill hoisting"));
 | |
| 
 | |
| namespace {
 | |
| class InlineSpiller : public Spiller {
 | |
|   MachineFunctionPass &Pass;
 | |
|   MachineFunction &MF;
 | |
|   LiveIntervals &LIS;
 | |
|   LiveStacks &LSS;
 | |
|   AliasAnalysis *AA;
 | |
|   MachineDominatorTree &MDT;
 | |
|   MachineLoopInfo &Loops;
 | |
|   VirtRegMap &VRM;
 | |
|   MachineFrameInfo &MFI;
 | |
|   MachineRegisterInfo &MRI;
 | |
|   const TargetInstrInfo &TII;
 | |
|   const TargetRegisterInfo &TRI;
 | |
| 
 | |
|   // Variables that are valid during spill(), but used by multiple methods.
 | |
|   LiveRangeEdit *Edit;
 | |
|   LiveInterval *StackInt;
 | |
|   int StackSlot;
 | |
|   unsigned Original;
 | |
| 
 | |
|   // All registers to spill to StackSlot, including the main register.
 | |
|   SmallVector<unsigned, 8> RegsToSpill;
 | |
| 
 | |
|   // All COPY instructions to/from snippets.
 | |
|   // They are ignored since both operands refer to the same stack slot.
 | |
|   SmallPtrSet<MachineInstr*, 8> SnippetCopies;
 | |
| 
 | |
|   // Values that failed to remat at some point.
 | |
|   SmallPtrSet<VNInfo*, 8> UsedValues;
 | |
| 
 | |
| public:
 | |
|   // Information about a value that was defined by a copy from a sibling
 | |
|   // register.
 | |
|   struct SibValueInfo {
 | |
|     // True when all reaching defs were reloads: No spill is necessary.
 | |
|     bool AllDefsAreReloads;
 | |
| 
 | |
|     // True when value is defined by an original PHI not from splitting.
 | |
|     bool DefByOrigPHI;
 | |
| 
 | |
|     // True when the COPY defining this value killed its source.
 | |
|     bool KillsSource;
 | |
| 
 | |
|     // The preferred register to spill.
 | |
|     unsigned SpillReg;
 | |
| 
 | |
|     // The value of SpillReg that should be spilled.
 | |
|     VNInfo *SpillVNI;
 | |
| 
 | |
|     // The block where SpillVNI should be spilled. Currently, this must be the
 | |
|     // block containing SpillVNI->def.
 | |
|     MachineBasicBlock *SpillMBB;
 | |
| 
 | |
|     // A defining instruction that is not a sibling copy or a reload, or NULL.
 | |
|     // This can be used as a template for rematerialization.
 | |
|     MachineInstr *DefMI;
 | |
| 
 | |
|     // List of values that depend on this one.  These values are actually the
 | |
|     // same, but live range splitting has placed them in different registers,
 | |
|     // or SSA update needed to insert PHI-defs to preserve SSA form.  This is
 | |
|     // copies of the current value and phi-kills.  Usually only phi-kills cause
 | |
|     // more than one dependent value.
 | |
|     TinyPtrVector<VNInfo*> Deps;
 | |
| 
 | |
|     SibValueInfo(unsigned Reg, VNInfo *VNI)
 | |
|       : AllDefsAreReloads(true), DefByOrigPHI(false), KillsSource(false),
 | |
|         SpillReg(Reg), SpillVNI(VNI), SpillMBB(0), DefMI(0) {}
 | |
| 
 | |
|     // Returns true when a def has been found.
 | |
|     bool hasDef() const { return DefByOrigPHI || DefMI; }
 | |
|   };
 | |
| 
 | |
| private:
 | |
|   // Values in RegsToSpill defined by sibling copies.
 | |
|   typedef DenseMap<VNInfo*, SibValueInfo> SibValueMap;
 | |
|   SibValueMap SibValues;
 | |
| 
 | |
|   // Dead defs generated during spilling.
 | |
|   SmallVector<MachineInstr*, 8> DeadDefs;
 | |
| 
 | |
|   ~InlineSpiller() {}
 | |
| 
 | |
| public:
 | |
|   InlineSpiller(MachineFunctionPass &pass,
 | |
|                 MachineFunction &mf,
 | |
|                 VirtRegMap &vrm)
 | |
|     : Pass(pass),
 | |
|       MF(mf),
 | |
|       LIS(pass.getAnalysis<LiveIntervals>()),
 | |
|       LSS(pass.getAnalysis<LiveStacks>()),
 | |
|       AA(&pass.getAnalysis<AliasAnalysis>()),
 | |
|       MDT(pass.getAnalysis<MachineDominatorTree>()),
 | |
|       Loops(pass.getAnalysis<MachineLoopInfo>()),
 | |
|       VRM(vrm),
 | |
|       MFI(*mf.getFrameInfo()),
 | |
|       MRI(mf.getRegInfo()),
 | |
|       TII(*mf.getTarget().getInstrInfo()),
 | |
|       TRI(*mf.getTarget().getRegisterInfo()) {}
 | |
| 
 | |
|   void spill(LiveRangeEdit &);
 | |
| 
 | |
| private:
 | |
|   bool isSnippet(const LiveInterval &SnipLI);
 | |
|   void collectRegsToSpill();
 | |
| 
 | |
|   bool isRegToSpill(unsigned Reg) {
 | |
|     return std::find(RegsToSpill.begin(),
 | |
|                      RegsToSpill.end(), Reg) != RegsToSpill.end();
 | |
|   }
 | |
| 
 | |
|   bool isSibling(unsigned Reg);
 | |
|   MachineInstr *traceSiblingValue(unsigned, VNInfo*, VNInfo*);
 | |
|   void propagateSiblingValue(SibValueMap::iterator, VNInfo *VNI = 0);
 | |
|   void analyzeSiblingValues();
 | |
| 
 | |
|   bool hoistSpill(LiveInterval &SpillLI, MachineInstr *CopyMI);
 | |
|   void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI);
 | |
| 
 | |
|   void markValueUsed(LiveInterval*, VNInfo*);
 | |
|   bool reMaterializeFor(LiveInterval&, MachineBasicBlock::iterator MI);
 | |
|   void reMaterializeAll();
 | |
| 
 | |
|   bool coalesceStackAccess(MachineInstr *MI, unsigned Reg);
 | |
|   bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> >,
 | |
|                          MachineInstr *LoadMI = 0);
 | |
|   void insertReload(LiveInterval &NewLI, SlotIndex,
 | |
|                     MachineBasicBlock::iterator MI);
 | |
|   void insertSpill(LiveInterval &NewLI, const LiveInterval &OldLI,
 | |
|                    SlotIndex, MachineBasicBlock::iterator MI);
 | |
| 
 | |
|   void spillAroundUses(unsigned Reg);
 | |
|   void spillAll();
 | |
| };
 | |
| }
 | |
| 
 | |
| namespace llvm {
 | |
| Spiller *createInlineSpiller(MachineFunctionPass &pass,
 | |
|                              MachineFunction &mf,
 | |
|                              VirtRegMap &vrm) {
 | |
|   return new InlineSpiller(pass, mf, vrm);
 | |
| }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                                Snippets
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // When spilling a virtual register, we also spill any snippets it is connected
 | |
| // to. The snippets are small live ranges that only have a single real use,
 | |
| // leftovers from live range splitting. Spilling them enables memory operand
 | |
| // folding or tightens the live range around the single use.
 | |
| //
 | |
| // This minimizes register pressure and maximizes the store-to-load distance for
 | |
| // spill slots which can be important in tight loops.
 | |
| 
 | |
| /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register,
 | |
| /// otherwise return 0.
 | |
| static unsigned isFullCopyOf(const MachineInstr *MI, unsigned Reg) {
 | |
|   if (!MI->isFullCopy())
 | |
|     return 0;
 | |
|   if (MI->getOperand(0).getReg() == Reg)
 | |
|       return MI->getOperand(1).getReg();
 | |
|   if (MI->getOperand(1).getReg() == Reg)
 | |
|       return MI->getOperand(0).getReg();
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// isSnippet - Identify if a live interval is a snippet that should be spilled.
 | |
| /// It is assumed that SnipLI is a virtual register with the same original as
 | |
| /// Edit->getReg().
 | |
| bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) {
 | |
|   unsigned Reg = Edit->getReg();
 | |
| 
 | |
|   // A snippet is a tiny live range with only a single instruction using it
 | |
|   // besides copies to/from Reg or spills/fills. We accept:
 | |
|   //
 | |
|   //   %snip = COPY %Reg / FILL fi#
 | |
|   //   %snip = USE %snip
 | |
|   //   %Reg = COPY %snip / SPILL %snip, fi#
 | |
|   //
 | |
|   if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI))
 | |
|     return false;
 | |
| 
 | |
|   MachineInstr *UseMI = 0;
 | |
| 
 | |
|   // Check that all uses satisfy our criteria.
 | |
|   for (MachineRegisterInfo::reg_nodbg_iterator
 | |
|          RI = MRI.reg_nodbg_begin(SnipLI.reg);
 | |
|        MachineInstr *MI = RI.skipInstruction();) {
 | |
| 
 | |
|     // Allow copies to/from Reg.
 | |
|     if (isFullCopyOf(MI, Reg))
 | |
|       continue;
 | |
| 
 | |
|     // Allow stack slot loads.
 | |
|     int FI;
 | |
|     if (SnipLI.reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot)
 | |
|       continue;
 | |
| 
 | |
|     // Allow stack slot stores.
 | |
|     if (SnipLI.reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot)
 | |
|       continue;
 | |
| 
 | |
|     // Allow a single additional instruction.
 | |
|     if (UseMI && MI != UseMI)
 | |
|       return false;
 | |
|     UseMI = MI;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// collectRegsToSpill - Collect live range snippets that only have a single
 | |
| /// real use.
 | |
| void InlineSpiller::collectRegsToSpill() {
 | |
|   unsigned Reg = Edit->getReg();
 | |
| 
 | |
|   // Main register always spills.
 | |
|   RegsToSpill.assign(1, Reg);
 | |
|   SnippetCopies.clear();
 | |
| 
 | |
|   // Snippets all have the same original, so there can't be any for an original
 | |
|   // register.
 | |
|   if (Original == Reg)
 | |
|     return;
 | |
| 
 | |
|   for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Reg);
 | |
|        MachineInstr *MI = RI.skipInstruction();) {
 | |
|     unsigned SnipReg = isFullCopyOf(MI, Reg);
 | |
|     if (!isSibling(SnipReg))
 | |
|       continue;
 | |
|     LiveInterval &SnipLI = LIS.getInterval(SnipReg);
 | |
|     if (!isSnippet(SnipLI))
 | |
|       continue;
 | |
|     SnippetCopies.insert(MI);
 | |
|     if (isRegToSpill(SnipReg))
 | |
|       continue;
 | |
|     RegsToSpill.push_back(SnipReg);
 | |
|     DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n');
 | |
|     ++NumSnippets;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                            Sibling Values
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // After live range splitting, some values to be spilled may be defined by
 | |
| // copies from sibling registers. We trace the sibling copies back to the
 | |
| // original value if it still exists. We need it for rematerialization.
 | |
| //
 | |
| // Even when the value can't be rematerialized, we still want to determine if
 | |
| // the value has already been spilled, or we may want to hoist the spill from a
 | |
| // loop.
 | |
| 
 | |
| bool InlineSpiller::isSibling(unsigned Reg) {
 | |
|   return TargetRegisterInfo::isVirtualRegister(Reg) &&
 | |
|            VRM.getOriginal(Reg) == Original;
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| static raw_ostream &operator<<(raw_ostream &OS,
 | |
|                                const InlineSpiller::SibValueInfo &SVI) {
 | |
|   OS << "spill " << PrintReg(SVI.SpillReg) << ':'
 | |
|      << SVI.SpillVNI->id << '@' << SVI.SpillVNI->def;
 | |
|   if (SVI.SpillMBB)
 | |
|     OS << " in BB#" << SVI.SpillMBB->getNumber();
 | |
|   if (SVI.AllDefsAreReloads)
 | |
|     OS << " all-reloads";
 | |
|   if (SVI.DefByOrigPHI)
 | |
|     OS << " orig-phi";
 | |
|   if (SVI.KillsSource)
 | |
|     OS << " kill";
 | |
|   OS << " deps[";
 | |
|   for (unsigned i = 0, e = SVI.Deps.size(); i != e; ++i)
 | |
|     OS << ' ' << SVI.Deps[i]->id << '@' << SVI.Deps[i]->def;
 | |
|   OS << " ]";
 | |
|   if (SVI.DefMI)
 | |
|     OS << " def: " << *SVI.DefMI;
 | |
|   else
 | |
|     OS << '\n';
 | |
|   return OS;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /// propagateSiblingValue - Propagate the value in SVI to dependents if it is
 | |
| /// known.  Otherwise remember the dependency for later.
 | |
| ///
 | |
| /// @param SVI SibValues entry to propagate.
 | |
| /// @param VNI Dependent value, or NULL to propagate to all saved dependents.
 | |
| void InlineSpiller::propagateSiblingValue(SibValueMap::iterator SVI,
 | |
|                                           VNInfo *VNI) {
 | |
|   // When VNI is non-NULL, add it to SVI's deps, and only propagate to that.
 | |
|   TinyPtrVector<VNInfo*> FirstDeps;
 | |
|   if (VNI) {
 | |
|     FirstDeps.push_back(VNI);
 | |
|     SVI->second.Deps.push_back(VNI);
 | |
|   }
 | |
| 
 | |
|   // Has the value been completely determined yet?  If not, defer propagation.
 | |
|   if (!SVI->second.hasDef())
 | |
|     return;
 | |
| 
 | |
|   // Work list of values to propagate.  It would be nice to use a SetVector
 | |
|   // here, but then we would be forced to use a SmallSet.
 | |
|   SmallVector<SibValueMap::iterator, 8> WorkList(1, SVI);
 | |
|   SmallPtrSet<VNInfo*, 8> WorkSet;
 | |
| 
 | |
|   do {
 | |
|     SVI = WorkList.pop_back_val();
 | |
|     WorkSet.erase(SVI->first);
 | |
|     TinyPtrVector<VNInfo*> *Deps = VNI ? &FirstDeps : &SVI->second.Deps;
 | |
|     VNI = 0;
 | |
| 
 | |
|     SibValueInfo &SV = SVI->second;
 | |
|     if (!SV.SpillMBB)
 | |
|       SV.SpillMBB = LIS.getMBBFromIndex(SV.SpillVNI->def);
 | |
| 
 | |
|     DEBUG(dbgs() << "  prop to " << Deps->size() << ": "
 | |
|                  << SVI->first->id << '@' << SVI->first->def << ":\t" << SV);
 | |
| 
 | |
|     assert(SV.hasDef() && "Propagating undefined value");
 | |
| 
 | |
|     // Should this value be propagated as a preferred spill candidate?  We don't
 | |
|     // propagate values of registers that are about to spill.
 | |
|     bool PropSpill = !DisableHoisting && !isRegToSpill(SV.SpillReg);
 | |
|     unsigned SpillDepth = ~0u;
 | |
| 
 | |
|     for (TinyPtrVector<VNInfo*>::iterator DepI = Deps->begin(),
 | |
|          DepE = Deps->end(); DepI != DepE; ++DepI) {
 | |
|       SibValueMap::iterator DepSVI = SibValues.find(*DepI);
 | |
|       assert(DepSVI != SibValues.end() && "Dependent value not in SibValues");
 | |
|       SibValueInfo &DepSV = DepSVI->second;
 | |
|       if (!DepSV.SpillMBB)
 | |
|         DepSV.SpillMBB = LIS.getMBBFromIndex(DepSV.SpillVNI->def);
 | |
| 
 | |
|       bool Changed = false;
 | |
| 
 | |
|       // Propagate defining instruction.
 | |
|       if (!DepSV.hasDef()) {
 | |
|         Changed = true;
 | |
|         DepSV.DefMI = SV.DefMI;
 | |
|         DepSV.DefByOrigPHI = SV.DefByOrigPHI;
 | |
|       }
 | |
| 
 | |
|       // Propagate AllDefsAreReloads.  For PHI values, this computes an AND of
 | |
|       // all predecessors.
 | |
|       if (!SV.AllDefsAreReloads && DepSV.AllDefsAreReloads) {
 | |
|         Changed = true;
 | |
|         DepSV.AllDefsAreReloads = false;
 | |
|       }
 | |
| 
 | |
|       // Propagate best spill value.
 | |
|       if (PropSpill && SV.SpillVNI != DepSV.SpillVNI) {
 | |
|         if (SV.SpillMBB == DepSV.SpillMBB) {
 | |
|           // DepSV is in the same block.  Hoist when dominated.
 | |
|           if (DepSV.KillsSource && SV.SpillVNI->def < DepSV.SpillVNI->def) {
 | |
|             // This is an alternative def earlier in the same MBB.
 | |
|             // Hoist the spill as far as possible in SpillMBB. This can ease
 | |
|             // register pressure:
 | |
|             //
 | |
|             //   x = def
 | |
|             //   y = use x
 | |
|             //   s = copy x
 | |
|             //
 | |
|             // Hoisting the spill of s to immediately after the def removes the
 | |
|             // interference between x and y:
 | |
|             //
 | |
|             //   x = def
 | |
|             //   spill x
 | |
|             //   y = use x<kill>
 | |
|             //
 | |
|             // This hoist only helps when the DepSV copy kills its source.
 | |
|             Changed = true;
 | |
|             DepSV.SpillReg = SV.SpillReg;
 | |
|             DepSV.SpillVNI = SV.SpillVNI;
 | |
|             DepSV.SpillMBB = SV.SpillMBB;
 | |
|           }
 | |
|         } else {
 | |
|           // DepSV is in a different block.
 | |
|           if (SpillDepth == ~0u)
 | |
|             SpillDepth = Loops.getLoopDepth(SV.SpillMBB);
 | |
| 
 | |
|           // Also hoist spills to blocks with smaller loop depth, but make sure
 | |
|           // that the new value dominates.  Non-phi dependents are always
 | |
|           // dominated, phis need checking.
 | |
|           if ((Loops.getLoopDepth(DepSV.SpillMBB) > SpillDepth) &&
 | |
|               (!DepSVI->first->isPHIDef() ||
 | |
|                MDT.dominates(SV.SpillMBB, DepSV.SpillMBB))) {
 | |
|             Changed = true;
 | |
|             DepSV.SpillReg = SV.SpillReg;
 | |
|             DepSV.SpillVNI = SV.SpillVNI;
 | |
|             DepSV.SpillMBB = SV.SpillMBB;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (!Changed)
 | |
|         continue;
 | |
| 
 | |
|       // Something changed in DepSVI. Propagate to dependents.
 | |
|       if (WorkSet.insert(DepSVI->first))
 | |
|         WorkList.push_back(DepSVI);
 | |
| 
 | |
|       DEBUG(dbgs() << "  update " << DepSVI->first->id << '@'
 | |
|             << DepSVI->first->def << " to:\t" << DepSV);
 | |
|     }
 | |
|   } while (!WorkList.empty());
 | |
| }
 | |
| 
 | |
| /// traceSiblingValue - Trace a value that is about to be spilled back to the
 | |
| /// real defining instructions by looking through sibling copies. Always stay
 | |
| /// within the range of OrigVNI so the registers are known to carry the same
 | |
| /// value.
 | |
| ///
 | |
| /// Determine if the value is defined by all reloads, so spilling isn't
 | |
| /// necessary - the value is already in the stack slot.
 | |
| ///
 | |
| /// Return a defining instruction that may be a candidate for rematerialization.
 | |
| ///
 | |
| MachineInstr *InlineSpiller::traceSiblingValue(unsigned UseReg, VNInfo *UseVNI,
 | |
|                                                VNInfo *OrigVNI) {
 | |
|   // Check if a cached value already exists.
 | |
|   SibValueMap::iterator SVI;
 | |
|   bool Inserted;
 | |
|   tie(SVI, Inserted) =
 | |
|     SibValues.insert(std::make_pair(UseVNI, SibValueInfo(UseReg, UseVNI)));
 | |
|   if (!Inserted) {
 | |
|     DEBUG(dbgs() << "Cached value " << PrintReg(UseReg) << ':'
 | |
|                  << UseVNI->id << '@' << UseVNI->def << ' ' << SVI->second);
 | |
|     return SVI->second.DefMI;
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "Tracing value " << PrintReg(UseReg) << ':'
 | |
|                << UseVNI->id << '@' << UseVNI->def << '\n');
 | |
| 
 | |
|   // List of (Reg, VNI) that have been inserted into SibValues, but need to be
 | |
|   // processed.
 | |
|   SmallVector<std::pair<unsigned, VNInfo*>, 8> WorkList;
 | |
|   WorkList.push_back(std::make_pair(UseReg, UseVNI));
 | |
| 
 | |
|   do {
 | |
|     unsigned Reg;
 | |
|     VNInfo *VNI;
 | |
|     tie(Reg, VNI) = WorkList.pop_back_val();
 | |
|     DEBUG(dbgs() << "  " << PrintReg(Reg) << ':' << VNI->id << '@' << VNI->def
 | |
|                  << ":\t");
 | |
| 
 | |
|     // First check if this value has already been computed.
 | |
|     SVI = SibValues.find(VNI);
 | |
|     assert(SVI != SibValues.end() && "Missing SibValues entry");
 | |
| 
 | |
|     // Trace through PHI-defs created by live range splitting.
 | |
|     if (VNI->isPHIDef()) {
 | |
|       // Stop at original PHIs.  We don't know the value at the predecessors.
 | |
|       if (VNI->def == OrigVNI->def) {
 | |
|         DEBUG(dbgs() << "orig phi value\n");
 | |
|         SVI->second.DefByOrigPHI = true;
 | |
|         SVI->second.AllDefsAreReloads = false;
 | |
|         propagateSiblingValue(SVI);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // This is a PHI inserted by live range splitting.  We could trace the
 | |
|       // live-out value from predecessor blocks, but that search can be very
 | |
|       // expensive if there are many predecessors and many more PHIs as
 | |
|       // generated by tail-dup when it sees an indirectbr.  Instead, look at
 | |
|       // all the non-PHI defs that have the same value as OrigVNI.  They must
 | |
|       // jointly dominate VNI->def.  This is not optimal since VNI may actually
 | |
|       // be jointly dominated by a smaller subset of defs, so there is a change
 | |
|       // we will miss a AllDefsAreReloads optimization.
 | |
| 
 | |
|       // Separate all values dominated by OrigVNI into PHIs and non-PHIs.
 | |
|       SmallVector<VNInfo*, 8> PHIs, NonPHIs;
 | |
|       LiveInterval &LI = LIS.getInterval(Reg);
 | |
|       LiveInterval &OrigLI = LIS.getInterval(Original);
 | |
| 
 | |
|       for (LiveInterval::vni_iterator VI = LI.vni_begin(), VE = LI.vni_end();
 | |
|            VI != VE; ++VI) {
 | |
|         VNInfo *VNI2 = *VI;
 | |
|         if (VNI2->isUnused())
 | |
|           continue;
 | |
|         if (!OrigLI.containsOneValue() &&
 | |
|             OrigLI.getVNInfoAt(VNI2->def) != OrigVNI)
 | |
|           continue;
 | |
|         if (VNI2->isPHIDef() && VNI2->def != OrigVNI->def)
 | |
|           PHIs.push_back(VNI2);
 | |
|         else
 | |
|           NonPHIs.push_back(VNI2);
 | |
|       }
 | |
|       DEBUG(dbgs() << "split phi value, checking " << PHIs.size()
 | |
|                    << " phi-defs, and " << NonPHIs.size()
 | |
|                    << " non-phi/orig defs\n");
 | |
| 
 | |
|       // Create entries for all the PHIs.  Don't add them to the worklist, we
 | |
|       // are processing all of them in one go here.
 | |
|       for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
 | |
|         SibValues.insert(std::make_pair(PHIs[i], SibValueInfo(Reg, PHIs[i])));
 | |
| 
 | |
|       // Add every PHI as a dependent of all the non-PHIs.
 | |
|       for (unsigned i = 0, e = NonPHIs.size(); i != e; ++i) {
 | |
|         VNInfo *NonPHI = NonPHIs[i];
 | |
|         // Known value? Try an insertion.
 | |
|         tie(SVI, Inserted) =
 | |
|           SibValues.insert(std::make_pair(NonPHI, SibValueInfo(Reg, NonPHI)));
 | |
|         // Add all the PHIs as dependents of NonPHI.
 | |
|         for (unsigned pi = 0, pe = PHIs.size(); pi != pe; ++pi)
 | |
|           SVI->second.Deps.push_back(PHIs[pi]);
 | |
|         // This is the first time we see NonPHI, add it to the worklist.
 | |
|         if (Inserted)
 | |
|           WorkList.push_back(std::make_pair(Reg, NonPHI));
 | |
|         else
 | |
|           // Propagate to all inserted PHIs, not just VNI.
 | |
|           propagateSiblingValue(SVI);
 | |
|       }
 | |
| 
 | |
|       // Next work list item.
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
 | |
|     assert(MI && "Missing def");
 | |
| 
 | |
|     // Trace through sibling copies.
 | |
|     if (unsigned SrcReg = isFullCopyOf(MI, Reg)) {
 | |
|       if (isSibling(SrcReg)) {
 | |
|         LiveInterval &SrcLI = LIS.getInterval(SrcReg);
 | |
|         LiveRange *SrcLR = SrcLI.getLiveRangeContaining(VNI->def.getRegSlot(true));
 | |
|         assert(SrcLR && "Copy from non-existing value");
 | |
|         // Check if this COPY kills its source.
 | |
|         SVI->second.KillsSource = (SrcLR->end == VNI->def);
 | |
|         VNInfo *SrcVNI = SrcLR->valno;
 | |
|         DEBUG(dbgs() << "copy of " << PrintReg(SrcReg) << ':'
 | |
|                      << SrcVNI->id << '@' << SrcVNI->def
 | |
|                      << " kill=" << unsigned(SVI->second.KillsSource) << '\n');
 | |
|         // Known sibling source value? Try an insertion.
 | |
|         tie(SVI, Inserted) = SibValues.insert(std::make_pair(SrcVNI,
 | |
|                                                  SibValueInfo(SrcReg, SrcVNI)));
 | |
|         // This is the first time we see Src, add it to the worklist.
 | |
|         if (Inserted)
 | |
|           WorkList.push_back(std::make_pair(SrcReg, SrcVNI));
 | |
|         propagateSiblingValue(SVI, VNI);
 | |
|         // Next work list item.
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Track reachable reloads.
 | |
|     SVI->second.DefMI = MI;
 | |
|     SVI->second.SpillMBB = MI->getParent();
 | |
|     int FI;
 | |
|     if (Reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) {
 | |
|       DEBUG(dbgs() << "reload\n");
 | |
|       propagateSiblingValue(SVI);
 | |
|       // Next work list item.
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Potential remat candidate.
 | |
|     DEBUG(dbgs() << "def " << *MI);
 | |
|     SVI->second.AllDefsAreReloads = false;
 | |
|     propagateSiblingValue(SVI);
 | |
|   } while (!WorkList.empty());
 | |
| 
 | |
|   // Look up the value we were looking for.  We already did this lokup at the
 | |
|   // top of the function, but SibValues may have been invalidated.
 | |
|   SVI = SibValues.find(UseVNI);
 | |
|   assert(SVI != SibValues.end() && "Didn't compute requested info");
 | |
|   DEBUG(dbgs() << "  traced to:\t" << SVI->second);
 | |
|   return SVI->second.DefMI;
 | |
| }
 | |
| 
 | |
| /// analyzeSiblingValues - Trace values defined by sibling copies back to
 | |
| /// something that isn't a sibling copy.
 | |
| ///
 | |
| /// Keep track of values that may be rematerializable.
 | |
| void InlineSpiller::analyzeSiblingValues() {
 | |
|   SibValues.clear();
 | |
| 
 | |
|   // No siblings at all?
 | |
|   if (Edit->getReg() == Original)
 | |
|     return;
 | |
| 
 | |
|   LiveInterval &OrigLI = LIS.getInterval(Original);
 | |
|   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
 | |
|     unsigned Reg = RegsToSpill[i];
 | |
|     LiveInterval &LI = LIS.getInterval(Reg);
 | |
|     for (LiveInterval::const_vni_iterator VI = LI.vni_begin(),
 | |
|          VE = LI.vni_end(); VI != VE; ++VI) {
 | |
|       VNInfo *VNI = *VI;
 | |
|       if (VNI->isUnused())
 | |
|         continue;
 | |
|       MachineInstr *DefMI = 0;
 | |
|       if (!VNI->isPHIDef()) {
 | |
|        DefMI = LIS.getInstructionFromIndex(VNI->def);
 | |
|        assert(DefMI && "No defining instruction");
 | |
|       }
 | |
|       // Check possible sibling copies.
 | |
|       if (VNI->isPHIDef() || DefMI->isCopy()) {
 | |
|         VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def);
 | |
|         assert(OrigVNI && "Def outside original live range");
 | |
|         if (OrigVNI->def != VNI->def)
 | |
|           DefMI = traceSiblingValue(Reg, VNI, OrigVNI);
 | |
|       }
 | |
|       if (DefMI && Edit->checkRematerializable(VNI, DefMI, TII, AA)) {
 | |
|         DEBUG(dbgs() << "Value " << PrintReg(Reg) << ':' << VNI->id << '@'
 | |
|                      << VNI->def << " may remat from " << *DefMI);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// hoistSpill - Given a sibling copy that defines a value to be spilled, insert
 | |
| /// a spill at a better location.
 | |
| bool InlineSpiller::hoistSpill(LiveInterval &SpillLI, MachineInstr *CopyMI) {
 | |
|   SlotIndex Idx = LIS.getInstructionIndex(CopyMI);
 | |
|   VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot());
 | |
|   assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy");
 | |
|   SibValueMap::iterator I = SibValues.find(VNI);
 | |
|   if (I == SibValues.end())
 | |
|     return false;
 | |
| 
 | |
|   const SibValueInfo &SVI = I->second;
 | |
| 
 | |
|   // Let the normal folding code deal with the boring case.
 | |
|   if (!SVI.AllDefsAreReloads && SVI.SpillVNI == VNI)
 | |
|     return false;
 | |
| 
 | |
|   // SpillReg may have been deleted by remat and DCE.
 | |
|   if (!LIS.hasInterval(SVI.SpillReg)) {
 | |
|     DEBUG(dbgs() << "Stale interval: " << PrintReg(SVI.SpillReg) << '\n');
 | |
|     SibValues.erase(I);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   LiveInterval &SibLI = LIS.getInterval(SVI.SpillReg);
 | |
|   if (!SibLI.containsValue(SVI.SpillVNI)) {
 | |
|     DEBUG(dbgs() << "Stale value: " << PrintReg(SVI.SpillReg) << '\n');
 | |
|     SibValues.erase(I);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Conservatively extend the stack slot range to the range of the original
 | |
|   // value. We may be able to do better with stack slot coloring by being more
 | |
|   // careful here.
 | |
|   assert(StackInt && "No stack slot assigned yet.");
 | |
|   LiveInterval &OrigLI = LIS.getInterval(Original);
 | |
|   VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
 | |
|   StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0));
 | |
|   DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": "
 | |
|                << *StackInt << '\n');
 | |
| 
 | |
|   // Already spilled everywhere.
 | |
|   if (SVI.AllDefsAreReloads) {
 | |
|     DEBUG(dbgs() << "\tno spill needed: " << SVI);
 | |
|     ++NumOmitReloadSpill;
 | |
|     return true;
 | |
|   }
 | |
|   // We are going to spill SVI.SpillVNI immediately after its def, so clear out
 | |
|   // any later spills of the same value.
 | |
|   eliminateRedundantSpills(SibLI, SVI.SpillVNI);
 | |
| 
 | |
|   MachineBasicBlock *MBB = LIS.getMBBFromIndex(SVI.SpillVNI->def);
 | |
|   MachineBasicBlock::iterator MII;
 | |
|   if (SVI.SpillVNI->isPHIDef())
 | |
|     MII = MBB->SkipPHIsAndLabels(MBB->begin());
 | |
|   else {
 | |
|     MachineInstr *DefMI = LIS.getInstructionFromIndex(SVI.SpillVNI->def);
 | |
|     assert(DefMI && "Defining instruction disappeared");
 | |
|     MII = DefMI;
 | |
|     ++MII;
 | |
|   }
 | |
|   // Insert spill without kill flag immediately after def.
 | |
|   TII.storeRegToStackSlot(*MBB, MII, SVI.SpillReg, false, StackSlot,
 | |
|                           MRI.getRegClass(SVI.SpillReg), &TRI);
 | |
|   --MII; // Point to store instruction.
 | |
|   LIS.InsertMachineInstrInMaps(MII);
 | |
|   DEBUG(dbgs() << "\thoisted: " << SVI.SpillVNI->def << '\t' << *MII);
 | |
| 
 | |
|   ++NumSpills;
 | |
|   ++NumHoists;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any
 | |
| /// redundant spills of this value in SLI.reg and sibling copies.
 | |
| void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) {
 | |
|   assert(VNI && "Missing value");
 | |
|   SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
 | |
|   WorkList.push_back(std::make_pair(&SLI, VNI));
 | |
|   assert(StackInt && "No stack slot assigned yet.");
 | |
| 
 | |
|   do {
 | |
|     LiveInterval *LI;
 | |
|     tie(LI, VNI) = WorkList.pop_back_val();
 | |
|     unsigned Reg = LI->reg;
 | |
|     DEBUG(dbgs() << "Checking redundant spills for "
 | |
|                  << VNI->id << '@' << VNI->def << " in " << *LI << '\n');
 | |
| 
 | |
|     // Regs to spill are taken care of.
 | |
|     if (isRegToSpill(Reg))
 | |
|       continue;
 | |
| 
 | |
|     // Add all of VNI's live range to StackInt.
 | |
|     StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0));
 | |
|     DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n');
 | |
| 
 | |
|     // Find all spills and copies of VNI.
 | |
|     for (MachineRegisterInfo::use_nodbg_iterator UI = MRI.use_nodbg_begin(Reg);
 | |
|          MachineInstr *MI = UI.skipInstruction();) {
 | |
|       if (!MI->isCopy() && !MI->mayStore())
 | |
|         continue;
 | |
|       SlotIndex Idx = LIS.getInstructionIndex(MI);
 | |
|       if (LI->getVNInfoAt(Idx) != VNI)
 | |
|         continue;
 | |
| 
 | |
|       // Follow sibling copies down the dominator tree.
 | |
|       if (unsigned DstReg = isFullCopyOf(MI, Reg)) {
 | |
|         if (isSibling(DstReg)) {
 | |
|            LiveInterval &DstLI = LIS.getInterval(DstReg);
 | |
|            VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot());
 | |
|            assert(DstVNI && "Missing defined value");
 | |
|            assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot");
 | |
|            WorkList.push_back(std::make_pair(&DstLI, DstVNI));
 | |
|         }
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Erase spills.
 | |
|       int FI;
 | |
|       if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) {
 | |
|         DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << *MI);
 | |
|         // eliminateDeadDefs won't normally remove stores, so switch opcode.
 | |
|         MI->setDesc(TII.get(TargetOpcode::KILL));
 | |
|         DeadDefs.push_back(MI);
 | |
|         ++NumSpillsRemoved;
 | |
|         --NumSpills;
 | |
|       }
 | |
|     }
 | |
|   } while (!WorkList.empty());
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                            Rematerialization
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// markValueUsed - Remember that VNI failed to rematerialize, so its defining
 | |
| /// instruction cannot be eliminated. See through snippet copies
 | |
| void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) {
 | |
|   SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
 | |
|   WorkList.push_back(std::make_pair(LI, VNI));
 | |
|   do {
 | |
|     tie(LI, VNI) = WorkList.pop_back_val();
 | |
|     if (!UsedValues.insert(VNI))
 | |
|       continue;
 | |
| 
 | |
|     if (VNI->isPHIDef()) {
 | |
|       MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
 | |
|       for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
 | |
|              PE = MBB->pred_end(); PI != PE; ++PI) {
 | |
|         VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(*PI));
 | |
|         if (PVNI)
 | |
|           WorkList.push_back(std::make_pair(LI, PVNI));
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Follow snippet copies.
 | |
|     MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
 | |
|     if (!SnippetCopies.count(MI))
 | |
|       continue;
 | |
|     LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg());
 | |
|     assert(isRegToSpill(SnipLI.reg) && "Unexpected register in copy");
 | |
|     VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true));
 | |
|     assert(SnipVNI && "Snippet undefined before copy");
 | |
|     WorkList.push_back(std::make_pair(&SnipLI, SnipVNI));
 | |
|   } while (!WorkList.empty());
 | |
| }
 | |
| 
 | |
| /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading.
 | |
| bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg,
 | |
|                                      MachineBasicBlock::iterator MI) {
 | |
|   SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true);
 | |
|   VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex());
 | |
| 
 | |
|   if (!ParentVNI) {
 | |
|     DEBUG(dbgs() << "\tadding <undef> flags: ");
 | |
|     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|       MachineOperand &MO = MI->getOperand(i);
 | |
|       if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg)
 | |
|         MO.setIsUndef();
 | |
|     }
 | |
|     DEBUG(dbgs() << UseIdx << '\t' << *MI);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (SnippetCopies.count(MI))
 | |
|     return false;
 | |
| 
 | |
|   // Use an OrigVNI from traceSiblingValue when ParentVNI is a sibling copy.
 | |
|   LiveRangeEdit::Remat RM(ParentVNI);
 | |
|   SibValueMap::const_iterator SibI = SibValues.find(ParentVNI);
 | |
|   if (SibI != SibValues.end())
 | |
|     RM.OrigMI = SibI->second.DefMI;
 | |
|   if (!Edit->canRematerializeAt(RM, UseIdx, false, LIS)) {
 | |
|     markValueUsed(&VirtReg, ParentVNI);
 | |
|     DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << *MI);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // If the instruction also writes VirtReg.reg, it had better not require the
 | |
|   // same register for uses and defs.
 | |
|   SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops;
 | |
|   MIBundleOperands::RegInfo RI =
 | |
|     MIBundleOperands(MI).analyzeVirtReg(VirtReg.reg, &Ops);
 | |
|   if (RI.Tied) {
 | |
|     markValueUsed(&VirtReg, ParentVNI);
 | |
|     DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << *MI);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Before rematerializing into a register for a single instruction, try to
 | |
|   // fold a load into the instruction. That avoids allocating a new register.
 | |
|   if (RM.OrigMI->canFoldAsLoad() &&
 | |
|       foldMemoryOperand(Ops, RM.OrigMI)) {
 | |
|     Edit->markRematerialized(RM.ParentVNI);
 | |
|     ++NumFoldedLoads;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Alocate a new register for the remat.
 | |
|   LiveInterval &NewLI = Edit->createFrom(Original, LIS, VRM);
 | |
|   NewLI.markNotSpillable();
 | |
| 
 | |
|   // Finally we can rematerialize OrigMI before MI.
 | |
|   SlotIndex DefIdx = Edit->rematerializeAt(*MI->getParent(), MI, NewLI.reg, RM,
 | |
|                                            LIS, TII, TRI);
 | |
|   DEBUG(dbgs() << "\tremat:  " << DefIdx << '\t'
 | |
|                << *LIS.getInstructionFromIndex(DefIdx));
 | |
| 
 | |
|   // Replace operands
 | |
|   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
 | |
|     MachineOperand &MO = MI->getOperand(Ops[i].second);
 | |
|     if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) {
 | |
|       MO.setReg(NewLI.reg);
 | |
|       MO.setIsKill();
 | |
|     }
 | |
|   }
 | |
|   DEBUG(dbgs() << "\t        " << UseIdx << '\t' << *MI);
 | |
| 
 | |
|   VNInfo *DefVNI = NewLI.getNextValue(DefIdx, LIS.getVNInfoAllocator());
 | |
|   NewLI.addRange(LiveRange(DefIdx, UseIdx.getRegSlot(), DefVNI));
 | |
|   DEBUG(dbgs() << "\tinterval: " << NewLI << '\n');
 | |
|   ++NumRemats;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// reMaterializeAll - Try to rematerialize as many uses as possible,
 | |
| /// and trim the live ranges after.
 | |
| void InlineSpiller::reMaterializeAll() {
 | |
|   // analyzeSiblingValues has already tested all relevant defining instructions.
 | |
|   if (!Edit->anyRematerializable(LIS, TII, AA))
 | |
|     return;
 | |
| 
 | |
|   UsedValues.clear();
 | |
| 
 | |
|   // Try to remat before all uses of snippets.
 | |
|   bool anyRemat = false;
 | |
|   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
 | |
|     unsigned Reg = RegsToSpill[i];
 | |
|     LiveInterval &LI = LIS.getInterval(Reg);
 | |
|     for (MachineRegisterInfo::use_nodbg_iterator
 | |
|          RI = MRI.use_nodbg_begin(Reg);
 | |
|          MachineInstr *MI = RI.skipBundle();)
 | |
|       anyRemat |= reMaterializeFor(LI, MI);
 | |
|   }
 | |
|   if (!anyRemat)
 | |
|     return;
 | |
| 
 | |
|   // Remove any values that were completely rematted.
 | |
|   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
 | |
|     unsigned Reg = RegsToSpill[i];
 | |
|     LiveInterval &LI = LIS.getInterval(Reg);
 | |
|     for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end();
 | |
|          I != E; ++I) {
 | |
|       VNInfo *VNI = *I;
 | |
|       if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI))
 | |
|         continue;
 | |
|       MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
 | |
|       MI->addRegisterDead(Reg, &TRI);
 | |
|       if (!MI->allDefsAreDead())
 | |
|         continue;
 | |
|       DEBUG(dbgs() << "All defs dead: " << *MI);
 | |
|       DeadDefs.push_back(MI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Eliminate dead code after remat. Note that some snippet copies may be
 | |
|   // deleted here.
 | |
|   if (DeadDefs.empty())
 | |
|     return;
 | |
|   DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n");
 | |
|   Edit->eliminateDeadDefs(DeadDefs, LIS, VRM, TII, RegsToSpill);
 | |
| 
 | |
|   // Get rid of deleted and empty intervals.
 | |
|   for (unsigned i = RegsToSpill.size(); i != 0; --i) {
 | |
|     unsigned Reg = RegsToSpill[i-1];
 | |
|     if (!LIS.hasInterval(Reg)) {
 | |
|       RegsToSpill.erase(RegsToSpill.begin() + (i - 1));
 | |
|       continue;
 | |
|     }
 | |
|     LiveInterval &LI = LIS.getInterval(Reg);
 | |
|     if (!LI.empty())
 | |
|       continue;
 | |
|     Edit->eraseVirtReg(Reg, LIS);
 | |
|     RegsToSpill.erase(RegsToSpill.begin() + (i - 1));
 | |
|   }
 | |
|   DEBUG(dbgs() << RegsToSpill.size() << " registers to spill after remat.\n");
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                                 Spilling
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// If MI is a load or store of StackSlot, it can be removed.
 | |
| bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, unsigned Reg) {
 | |
|   int FI = 0;
 | |
|   unsigned InstrReg = TII.isLoadFromStackSlot(MI, FI);
 | |
|   bool IsLoad = InstrReg;
 | |
|   if (!IsLoad)
 | |
|     InstrReg = TII.isStoreToStackSlot(MI, FI);
 | |
| 
 | |
|   // We have a stack access. Is it the right register and slot?
 | |
|   if (InstrReg != Reg || FI != StackSlot)
 | |
|     return false;
 | |
| 
 | |
|   DEBUG(dbgs() << "Coalescing stack access: " << *MI);
 | |
|   LIS.RemoveMachineInstrFromMaps(MI);
 | |
|   MI->eraseFromParent();
 | |
| 
 | |
|   if (IsLoad) {
 | |
|     ++NumReloadsRemoved;
 | |
|     --NumReloads;
 | |
|   } else {
 | |
|     ++NumSpillsRemoved;
 | |
|     --NumSpills;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// foldMemoryOperand - Try folding stack slot references in Ops into their
 | |
| /// instructions.
 | |
| ///
 | |
| /// @param Ops    Operand indices from analyzeVirtReg().
 | |
| /// @param LoadMI Load instruction to use instead of stack slot when non-null.
 | |
| /// @return       True on success.
 | |
| bool InlineSpiller::
 | |
| foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> > Ops,
 | |
|                   MachineInstr *LoadMI) {
 | |
|   if (Ops.empty())
 | |
|     return false;
 | |
|   // Don't attempt folding in bundles.
 | |
|   MachineInstr *MI = Ops.front().first;
 | |
|   if (Ops.back().first != MI || MI->isBundled())
 | |
|     return false;
 | |
| 
 | |
|   bool WasCopy = MI->isCopy();
 | |
|   unsigned ImpReg = 0;
 | |
| 
 | |
|   // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
 | |
|   // operands.
 | |
|   SmallVector<unsigned, 8> FoldOps;
 | |
|   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
 | |
|     unsigned Idx = Ops[i].second;
 | |
|     MachineOperand &MO = MI->getOperand(Idx);
 | |
|     if (MO.isImplicit()) {
 | |
|       ImpReg = MO.getReg();
 | |
|       continue;
 | |
|     }
 | |
|     // FIXME: Teach targets to deal with subregs.
 | |
|     if (MO.getSubReg())
 | |
|       return false;
 | |
|     // We cannot fold a load instruction into a def.
 | |
|     if (LoadMI && MO.isDef())
 | |
|       return false;
 | |
|     // Tied use operands should not be passed to foldMemoryOperand.
 | |
|     if (!MI->isRegTiedToDefOperand(Idx))
 | |
|       FoldOps.push_back(Idx);
 | |
|   }
 | |
| 
 | |
|   MachineInstr *FoldMI =
 | |
|                 LoadMI ? TII.foldMemoryOperand(MI, FoldOps, LoadMI)
 | |
|                        : TII.foldMemoryOperand(MI, FoldOps, StackSlot);
 | |
|   if (!FoldMI)
 | |
|     return false;
 | |
|   LIS.ReplaceMachineInstrInMaps(MI, FoldMI);
 | |
|   MI->eraseFromParent();
 | |
| 
 | |
|   // TII.foldMemoryOperand may have left some implicit operands on the
 | |
|   // instruction.  Strip them.
 | |
|   if (ImpReg)
 | |
|     for (unsigned i = FoldMI->getNumOperands(); i; --i) {
 | |
|       MachineOperand &MO = FoldMI->getOperand(i - 1);
 | |
|       if (!MO.isReg() || !MO.isImplicit())
 | |
|         break;
 | |
|       if (MO.getReg() == ImpReg)
 | |
|         FoldMI->RemoveOperand(i - 1);
 | |
|     }
 | |
| 
 | |
|   DEBUG(dbgs() << "\tfolded:  " << LIS.getInstructionIndex(FoldMI) << '\t'
 | |
|                << *FoldMI);
 | |
|   if (!WasCopy)
 | |
|     ++NumFolded;
 | |
|   else if (Ops.front().second == 0)
 | |
|     ++NumSpills;
 | |
|   else
 | |
|     ++NumReloads;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// insertReload - Insert a reload of NewLI.reg before MI.
 | |
| void InlineSpiller::insertReload(LiveInterval &NewLI,
 | |
|                                  SlotIndex Idx,
 | |
|                                  MachineBasicBlock::iterator MI) {
 | |
|   MachineBasicBlock &MBB = *MI->getParent();
 | |
|   TII.loadRegFromStackSlot(MBB, MI, NewLI.reg, StackSlot,
 | |
|                            MRI.getRegClass(NewLI.reg), &TRI);
 | |
|   --MI; // Point to load instruction.
 | |
|   SlotIndex LoadIdx = LIS.InsertMachineInstrInMaps(MI).getRegSlot();
 | |
|   DEBUG(dbgs() << "\treload:  " << LoadIdx << '\t' << *MI);
 | |
|   VNInfo *LoadVNI = NewLI.getNextValue(LoadIdx, LIS.getVNInfoAllocator());
 | |
|   NewLI.addRange(LiveRange(LoadIdx, Idx, LoadVNI));
 | |
|   ++NumReloads;
 | |
| }
 | |
| 
 | |
| /// insertSpill - Insert a spill of NewLI.reg after MI.
 | |
| void InlineSpiller::insertSpill(LiveInterval &NewLI, const LiveInterval &OldLI,
 | |
|                                 SlotIndex Idx, MachineBasicBlock::iterator MI) {
 | |
|   MachineBasicBlock &MBB = *MI->getParent();
 | |
|   TII.storeRegToStackSlot(MBB, ++MI, NewLI.reg, true, StackSlot,
 | |
|                           MRI.getRegClass(NewLI.reg), &TRI);
 | |
|   --MI; // Point to store instruction.
 | |
|   SlotIndex StoreIdx = LIS.InsertMachineInstrInMaps(MI).getRegSlot();
 | |
|   DEBUG(dbgs() << "\tspilled: " << StoreIdx << '\t' << *MI);
 | |
|   VNInfo *StoreVNI = NewLI.getNextValue(Idx, LIS.getVNInfoAllocator());
 | |
|   NewLI.addRange(LiveRange(Idx, StoreIdx, StoreVNI));
 | |
|   ++NumSpills;
 | |
| }
 | |
| 
 | |
| /// spillAroundUses - insert spill code around each use of Reg.
 | |
| void InlineSpiller::spillAroundUses(unsigned Reg) {
 | |
|   DEBUG(dbgs() << "spillAroundUses " << PrintReg(Reg) << '\n');
 | |
|   LiveInterval &OldLI = LIS.getInterval(Reg);
 | |
| 
 | |
|   // Iterate over instructions using Reg.
 | |
|   for (MachineRegisterInfo::reg_iterator RegI = MRI.reg_begin(Reg);
 | |
|        MachineInstr *MI = RegI.skipBundle();) {
 | |
| 
 | |
|     // Debug values are not allowed to affect codegen.
 | |
|     if (MI->isDebugValue()) {
 | |
|       // Modify DBG_VALUE now that the value is in a spill slot.
 | |
|       uint64_t Offset = MI->getOperand(1).getImm();
 | |
|       const MDNode *MDPtr = MI->getOperand(2).getMetadata();
 | |
|       DebugLoc DL = MI->getDebugLoc();
 | |
|       if (MachineInstr *NewDV = TII.emitFrameIndexDebugValue(MF, StackSlot,
 | |
|                                                            Offset, MDPtr, DL)) {
 | |
|         DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << *MI);
 | |
|         MachineBasicBlock *MBB = MI->getParent();
 | |
|         MBB->insert(MBB->erase(MI), NewDV);
 | |
|       } else {
 | |
|         DEBUG(dbgs() << "Removing debug info due to spill:" << "\t" << *MI);
 | |
|         MI->eraseFromParent();
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Ignore copies to/from snippets. We'll delete them.
 | |
|     if (SnippetCopies.count(MI))
 | |
|       continue;
 | |
| 
 | |
|     // Stack slot accesses may coalesce away.
 | |
|     if (coalesceStackAccess(MI, Reg))
 | |
|       continue;
 | |
| 
 | |
|     // Analyze instruction.
 | |
|     SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops;
 | |
|     MIBundleOperands::RegInfo RI =
 | |
|       MIBundleOperands(MI).analyzeVirtReg(Reg, &Ops);
 | |
| 
 | |
|     // Find the slot index where this instruction reads and writes OldLI.
 | |
|     // This is usually the def slot, except for tied early clobbers.
 | |
|     SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
 | |
|     if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true)))
 | |
|       if (SlotIndex::isSameInstr(Idx, VNI->def))
 | |
|         Idx = VNI->def;
 | |
| 
 | |
|     // Check for a sibling copy.
 | |
|     unsigned SibReg = isFullCopyOf(MI, Reg);
 | |
|     if (SibReg && isSibling(SibReg)) {
 | |
|       // This may actually be a copy between snippets.
 | |
|       if (isRegToSpill(SibReg)) {
 | |
|         DEBUG(dbgs() << "Found new snippet copy: " << *MI);
 | |
|         SnippetCopies.insert(MI);
 | |
|         continue;
 | |
|       }
 | |
|       if (RI.Writes) {
 | |
|         // Hoist the spill of a sib-reg copy.
 | |
|         if (hoistSpill(OldLI, MI)) {
 | |
|           // This COPY is now dead, the value is already in the stack slot.
 | |
|           MI->getOperand(0).setIsDead();
 | |
|           DeadDefs.push_back(MI);
 | |
|           continue;
 | |
|         }
 | |
|       } else {
 | |
|         // This is a reload for a sib-reg copy. Drop spills downstream.
 | |
|         LiveInterval &SibLI = LIS.getInterval(SibReg);
 | |
|         eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx));
 | |
|         // The COPY will fold to a reload below.
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Attempt to fold memory ops.
 | |
|     if (foldMemoryOperand(Ops))
 | |
|       continue;
 | |
| 
 | |
|     // Allocate interval around instruction.
 | |
|     // FIXME: Infer regclass from instruction alone.
 | |
|     LiveInterval &NewLI = Edit->createFrom(Reg, LIS, VRM);
 | |
|     NewLI.markNotSpillable();
 | |
| 
 | |
|     if (RI.Reads)
 | |
|       insertReload(NewLI, Idx, MI);
 | |
| 
 | |
|     // Rewrite instruction operands.
 | |
|     bool hasLiveDef = false;
 | |
|     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
 | |
|       MachineOperand &MO = Ops[i].first->getOperand(Ops[i].second);
 | |
|       MO.setReg(NewLI.reg);
 | |
|       if (MO.isUse()) {
 | |
|         if (!Ops[i].first->isRegTiedToDefOperand(Ops[i].second))
 | |
|           MO.setIsKill();
 | |
|       } else {
 | |
|         if (!MO.isDead())
 | |
|           hasLiveDef = true;
 | |
|       }
 | |
|     }
 | |
|     DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI);
 | |
| 
 | |
|     // FIXME: Use a second vreg if instruction has no tied ops.
 | |
|     if (RI.Writes) {
 | |
|       if (hasLiveDef)
 | |
|         insertSpill(NewLI, OldLI, Idx, MI);
 | |
|       else {
 | |
|         // This instruction defines a dead value.  We don't need to spill it,
 | |
|         // but do create a live range for the dead value.
 | |
|         VNInfo *VNI = NewLI.getNextValue(Idx, LIS.getVNInfoAllocator());
 | |
|         NewLI.addRange(LiveRange(Idx, Idx.getDeadSlot(), VNI));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     DEBUG(dbgs() << "\tinterval: " << NewLI << '\n');
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// spillAll - Spill all registers remaining after rematerialization.
 | |
| void InlineSpiller::spillAll() {
 | |
|   // Update LiveStacks now that we are committed to spilling.
 | |
|   if (StackSlot == VirtRegMap::NO_STACK_SLOT) {
 | |
|     StackSlot = VRM.assignVirt2StackSlot(Original);
 | |
|     StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original));
 | |
|     StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator());
 | |
|   } else
 | |
|     StackInt = &LSS.getInterval(StackSlot);
 | |
| 
 | |
|   if (Original != Edit->getReg())
 | |
|     VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot);
 | |
| 
 | |
|   assert(StackInt->getNumValNums() == 1 && "Bad stack interval values");
 | |
|   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
 | |
|     StackInt->MergeRangesInAsValue(LIS.getInterval(RegsToSpill[i]),
 | |
|                                    StackInt->getValNumInfo(0));
 | |
|   DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n');
 | |
| 
 | |
|   // Spill around uses of all RegsToSpill.
 | |
|   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
 | |
|     spillAroundUses(RegsToSpill[i]);
 | |
| 
 | |
|   // Hoisted spills may cause dead code.
 | |
|   if (!DeadDefs.empty()) {
 | |
|     DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n");
 | |
|     Edit->eliminateDeadDefs(DeadDefs, LIS, VRM, TII, RegsToSpill);
 | |
|   }
 | |
| 
 | |
|   // Finally delete the SnippetCopies.
 | |
|   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
 | |
|     for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(RegsToSpill[i]);
 | |
|          MachineInstr *MI = RI.skipInstruction();) {
 | |
|       assert(SnippetCopies.count(MI) && "Remaining use wasn't a snippet copy");
 | |
|       // FIXME: Do this with a LiveRangeEdit callback.
 | |
|       LIS.RemoveMachineInstrFromMaps(MI);
 | |
|       MI->eraseFromParent();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Delete all spilled registers.
 | |
|   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
 | |
|     Edit->eraseVirtReg(RegsToSpill[i], LIS);
 | |
| }
 | |
| 
 | |
| void InlineSpiller::spill(LiveRangeEdit &edit) {
 | |
|   ++NumSpilledRanges;
 | |
|   Edit = &edit;
 | |
|   assert(!TargetRegisterInfo::isStackSlot(edit.getReg())
 | |
|          && "Trying to spill a stack slot.");
 | |
|   // Share a stack slot among all descendants of Original.
 | |
|   Original = VRM.getOriginal(edit.getReg());
 | |
|   StackSlot = VRM.getStackSlot(Original);
 | |
|   StackInt = 0;
 | |
| 
 | |
|   DEBUG(dbgs() << "Inline spilling "
 | |
|                << MRI.getRegClass(edit.getReg())->getName()
 | |
|                << ':' << edit.getParent() << "\nFrom original "
 | |
|                << LIS.getInterval(Original) << '\n');
 | |
|   assert(edit.getParent().isSpillable() &&
 | |
|          "Attempting to spill already spilled value.");
 | |
|   assert(DeadDefs.empty() && "Previous spill didn't remove dead defs");
 | |
| 
 | |
|   collectRegsToSpill();
 | |
|   analyzeSiblingValues();
 | |
|   reMaterializeAll();
 | |
| 
 | |
|   // Remat may handle everything.
 | |
|   if (!RegsToSpill.empty())
 | |
|     spillAll();
 | |
| 
 | |
|   Edit->calculateRegClassAndHint(MF, LIS, Loops);
 | |
| }
 |