llvm-6502/lib/Transforms/Scalar/LoopRerollPass.cpp
Mehdi Amini 529919ff31 DataLayout is mandatory, update the API to reflect it with references.
Summary:
Now that the DataLayout is a mandatory part of the module, let's start
cleaning the codebase. This patch is a first attempt at doing that.

This patch is not exactly NFC as for instance some places were passing
a nullptr instead of the DataLayout, possibly just because there was a
default value on the DataLayout argument to many functions in the API.
Even though it is not purely NFC, there is no change in the
validation.

I turned as many pointer to DataLayout to references, this helped
figuring out all the places where a nullptr could come up.

I had initially a local version of this patch broken into over 30
independant, commits but some later commit were cleaning the API and
touching part of the code modified in the previous commits, so it
seemed cleaner without the intermediate state.

Test Plan:

Reviewers: echristo

Subscribers: llvm-commits

From: Mehdi Amini <mehdi.amini@apple.com>

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231740 91177308-0d34-0410-b5e6-96231b3b80d8
2015-03-10 02:37:25 +00:00

1521 lines
52 KiB
C++

//===-- LoopReroll.cpp - Loop rerolling pass ------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass implements a simple loop reroller.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AliasSetTracker.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
using namespace llvm;
#define DEBUG_TYPE "loop-reroll"
STATISTIC(NumRerolledLoops, "Number of rerolled loops");
static cl::opt<unsigned>
MaxInc("max-reroll-increment", cl::init(2048), cl::Hidden,
cl::desc("The maximum increment for loop rerolling"));
static cl::opt<unsigned>
NumToleratedFailedMatches("reroll-num-tolerated-failed-matches", cl::init(400),
cl::Hidden,
cl::desc("The maximum number of failures to tolerate"
" during fuzzy matching. (default: 400)"));
// This loop re-rolling transformation aims to transform loops like this:
//
// int foo(int a);
// void bar(int *x) {
// for (int i = 0; i < 500; i += 3) {
// foo(i);
// foo(i+1);
// foo(i+2);
// }
// }
//
// into a loop like this:
//
// void bar(int *x) {
// for (int i = 0; i < 500; ++i)
// foo(i);
// }
//
// It does this by looking for loops that, besides the latch code, are composed
// of isomorphic DAGs of instructions, with each DAG rooted at some increment
// to the induction variable, and where each DAG is isomorphic to the DAG
// rooted at the induction variable (excepting the sub-DAGs which root the
// other induction-variable increments). In other words, we're looking for loop
// bodies of the form:
//
// %iv = phi [ (preheader, ...), (body, %iv.next) ]
// f(%iv)
// %iv.1 = add %iv, 1 <-- a root increment
// f(%iv.1)
// %iv.2 = add %iv, 2 <-- a root increment
// f(%iv.2)
// %iv.scale_m_1 = add %iv, scale-1 <-- a root increment
// f(%iv.scale_m_1)
// ...
// %iv.next = add %iv, scale
// %cmp = icmp(%iv, ...)
// br %cmp, header, exit
//
// where each f(i) is a set of instructions that, collectively, are a function
// only of i (and other loop-invariant values).
//
// As a special case, we can also reroll loops like this:
//
// int foo(int);
// void bar(int *x) {
// for (int i = 0; i < 500; ++i) {
// x[3*i] = foo(0);
// x[3*i+1] = foo(0);
// x[3*i+2] = foo(0);
// }
// }
//
// into this:
//
// void bar(int *x) {
// for (int i = 0; i < 1500; ++i)
// x[i] = foo(0);
// }
//
// in which case, we're looking for inputs like this:
//
// %iv = phi [ (preheader, ...), (body, %iv.next) ]
// %scaled.iv = mul %iv, scale
// f(%scaled.iv)
// %scaled.iv.1 = add %scaled.iv, 1
// f(%scaled.iv.1)
// %scaled.iv.2 = add %scaled.iv, 2
// f(%scaled.iv.2)
// %scaled.iv.scale_m_1 = add %scaled.iv, scale-1
// f(%scaled.iv.scale_m_1)
// ...
// %iv.next = add %iv, 1
// %cmp = icmp(%iv, ...)
// br %cmp, header, exit
namespace {
enum IterationLimits {
/// The maximum number of iterations that we'll try and reroll. This
/// has to be less than 25 in order to fit into a SmallBitVector.
IL_MaxRerollIterations = 16,
/// The bitvector index used by loop induction variables and other
/// instructions that belong to all iterations.
IL_All,
IL_End
};
class LoopReroll : public LoopPass {
public:
static char ID; // Pass ID, replacement for typeid
LoopReroll() : LoopPass(ID) {
initializeLoopRerollPass(*PassRegistry::getPassRegistry());
}
bool runOnLoop(Loop *L, LPPassManager &LPM) override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<AliasAnalysis>();
AU.addRequired<LoopInfoWrapperPass>();
AU.addPreserved<LoopInfoWrapperPass>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addPreserved<DominatorTreeWrapperPass>();
AU.addRequired<ScalarEvolution>();
AU.addRequired<TargetLibraryInfoWrapperPass>();
}
protected:
AliasAnalysis *AA;
LoopInfo *LI;
ScalarEvolution *SE;
TargetLibraryInfo *TLI;
DominatorTree *DT;
typedef SmallVector<Instruction *, 16> SmallInstructionVector;
typedef SmallSet<Instruction *, 16> SmallInstructionSet;
// A chain of isomorphic instructions, indentified by a single-use PHI,
// representing a reduction. Only the last value may be used outside the
// loop.
struct SimpleLoopReduction {
SimpleLoopReduction(Instruction *P, Loop *L)
: Valid(false), Instructions(1, P) {
assert(isa<PHINode>(P) && "First reduction instruction must be a PHI");
add(L);
}
bool valid() const {
return Valid;
}
Instruction *getPHI() const {
assert(Valid && "Using invalid reduction");
return Instructions.front();
}
Instruction *getReducedValue() const {
assert(Valid && "Using invalid reduction");
return Instructions.back();
}
Instruction *get(size_t i) const {
assert(Valid && "Using invalid reduction");
return Instructions[i+1];
}
Instruction *operator [] (size_t i) const { return get(i); }
// The size, ignoring the initial PHI.
size_t size() const {
assert(Valid && "Using invalid reduction");
return Instructions.size()-1;
}
typedef SmallInstructionVector::iterator iterator;
typedef SmallInstructionVector::const_iterator const_iterator;
iterator begin() {
assert(Valid && "Using invalid reduction");
return std::next(Instructions.begin());
}
const_iterator begin() const {
assert(Valid && "Using invalid reduction");
return std::next(Instructions.begin());
}
iterator end() { return Instructions.end(); }
const_iterator end() const { return Instructions.end(); }
protected:
bool Valid;
SmallInstructionVector Instructions;
void add(Loop *L);
};
// The set of all reductions, and state tracking of possible reductions
// during loop instruction processing.
struct ReductionTracker {
typedef SmallVector<SimpleLoopReduction, 16> SmallReductionVector;
// Add a new possible reduction.
void addSLR(SimpleLoopReduction &SLR) { PossibleReds.push_back(SLR); }
// Setup to track possible reductions corresponding to the provided
// rerolling scale. Only reductions with a number of non-PHI instructions
// that is divisible by the scale are considered. Three instructions sets
// are filled in:
// - A set of all possible instructions in eligible reductions.
// - A set of all PHIs in eligible reductions
// - A set of all reduced values (last instructions) in eligible
// reductions.
void restrictToScale(uint64_t Scale,
SmallInstructionSet &PossibleRedSet,
SmallInstructionSet &PossibleRedPHISet,
SmallInstructionSet &PossibleRedLastSet) {
PossibleRedIdx.clear();
PossibleRedIter.clear();
Reds.clear();
for (unsigned i = 0, e = PossibleReds.size(); i != e; ++i)
if (PossibleReds[i].size() % Scale == 0) {
PossibleRedLastSet.insert(PossibleReds[i].getReducedValue());
PossibleRedPHISet.insert(PossibleReds[i].getPHI());
PossibleRedSet.insert(PossibleReds[i].getPHI());
PossibleRedIdx[PossibleReds[i].getPHI()] = i;
for (Instruction *J : PossibleReds[i]) {
PossibleRedSet.insert(J);
PossibleRedIdx[J] = i;
}
}
}
// The functions below are used while processing the loop instructions.
// Are the two instructions both from reductions, and furthermore, from
// the same reduction?
bool isPairInSame(Instruction *J1, Instruction *J2) {
DenseMap<Instruction *, int>::iterator J1I = PossibleRedIdx.find(J1);
if (J1I != PossibleRedIdx.end()) {
DenseMap<Instruction *, int>::iterator J2I = PossibleRedIdx.find(J2);
if (J2I != PossibleRedIdx.end() && J1I->second == J2I->second)
return true;
}
return false;
}
// The two provided instructions, the first from the base iteration, and
// the second from iteration i, form a matched pair. If these are part of
// a reduction, record that fact.
void recordPair(Instruction *J1, Instruction *J2, unsigned i) {
if (PossibleRedIdx.count(J1)) {
assert(PossibleRedIdx.count(J2) &&
"Recording reduction vs. non-reduction instruction?");
PossibleRedIter[J1] = 0;
PossibleRedIter[J2] = i;
int Idx = PossibleRedIdx[J1];
assert(Idx == PossibleRedIdx[J2] &&
"Recording pair from different reductions?");
Reds.insert(Idx);
}
}
// The functions below can be called after we've finished processing all
// instructions in the loop, and we know which reductions were selected.
// Is the provided instruction the PHI of a reduction selected for
// rerolling?
bool isSelectedPHI(Instruction *J) {
if (!isa<PHINode>(J))
return false;
for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end();
RI != RIE; ++RI) {
int i = *RI;
if (cast<Instruction>(J) == PossibleReds[i].getPHI())
return true;
}
return false;
}
bool validateSelected();
void replaceSelected();
protected:
// The vector of all possible reductions (for any scale).
SmallReductionVector PossibleReds;
DenseMap<Instruction *, int> PossibleRedIdx;
DenseMap<Instruction *, int> PossibleRedIter;
DenseSet<int> Reds;
};
// A DAGRootSet models an induction variable being used in a rerollable
// loop. For example,
//
// x[i*3+0] = y1
// x[i*3+1] = y2
// x[i*3+2] = y3
//
// Base instruction -> i*3
// +---+----+
// / | \
// ST[y1] +1 +2 <-- Roots
// | |
// ST[y2] ST[y3]
//
// There may be multiple DAGRoots, for example:
//
// x[i*2+0] = ... (1)
// x[i*2+1] = ... (1)
// x[i*2+4] = ... (2)
// x[i*2+5] = ... (2)
// x[(i+1234)*2+5678] = ... (3)
// x[(i+1234)*2+5679] = ... (3)
//
// The loop will be rerolled by adding a new loop induction variable,
// one for the Base instruction in each DAGRootSet.
//
struct DAGRootSet {
Instruction *BaseInst;
SmallInstructionVector Roots;
// The instructions between IV and BaseInst (but not including BaseInst).
SmallInstructionSet SubsumedInsts;
};
// The set of all DAG roots, and state tracking of all roots
// for a particular induction variable.
struct DAGRootTracker {
DAGRootTracker(LoopReroll *Parent, Loop *L, Instruction *IV,
ScalarEvolution *SE, AliasAnalysis *AA,
TargetLibraryInfo *TLI)
: Parent(Parent), L(L), SE(SE), AA(AA), TLI(TLI), IV(IV) {}
/// Stage 1: Find all the DAG roots for the induction variable.
bool findRoots();
/// Stage 2: Validate if the found roots are valid.
bool validate(ReductionTracker &Reductions);
/// Stage 3: Assuming validate() returned true, perform the
/// replacement.
/// @param IterCount The maximum iteration count of L.
void replace(const SCEV *IterCount);
protected:
typedef MapVector<Instruction*, SmallBitVector> UsesTy;
bool findRootsRecursive(Instruction *IVU,
SmallInstructionSet SubsumedInsts);
bool findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts);
bool collectPossibleRoots(Instruction *Base,
std::map<int64_t,Instruction*> &Roots);
bool collectUsedInstructions(SmallInstructionSet &PossibleRedSet);
void collectInLoopUserSet(const SmallInstructionVector &Roots,
const SmallInstructionSet &Exclude,
const SmallInstructionSet &Final,
DenseSet<Instruction *> &Users);
void collectInLoopUserSet(Instruction *Root,
const SmallInstructionSet &Exclude,
const SmallInstructionSet &Final,
DenseSet<Instruction *> &Users);
UsesTy::iterator nextInstr(int Val, UsesTy &In,
const SmallInstructionSet &Exclude,
UsesTy::iterator *StartI=nullptr);
bool isBaseInst(Instruction *I);
bool isRootInst(Instruction *I);
bool instrDependsOn(Instruction *I,
UsesTy::iterator Start,
UsesTy::iterator End);
LoopReroll *Parent;
// Members of Parent, replicated here for brevity.
Loop *L;
ScalarEvolution *SE;
AliasAnalysis *AA;
TargetLibraryInfo *TLI;
// The loop induction variable.
Instruction *IV;
// Loop step amount.
uint64_t Inc;
// Loop reroll count; if Inc == 1, this records the scaling applied
// to the indvar: a[i*2+0] = ...; a[i*2+1] = ... ;
// If Inc is not 1, Scale = Inc.
uint64_t Scale;
// The roots themselves.
SmallVector<DAGRootSet,16> RootSets;
// All increment instructions for IV.
SmallInstructionVector LoopIncs;
// Map of all instructions in the loop (in order) to the iterations
// they are used in (or specially, IL_All for instructions
// used in the loop increment mechanism).
UsesTy Uses;
};
void collectPossibleIVs(Loop *L, SmallInstructionVector &PossibleIVs);
void collectPossibleReductions(Loop *L,
ReductionTracker &Reductions);
bool reroll(Instruction *IV, Loop *L, BasicBlock *Header, const SCEV *IterCount,
ReductionTracker &Reductions);
};
}
char LoopReroll::ID = 0;
INITIALIZE_PASS_BEGIN(LoopReroll, "loop-reroll", "Reroll loops", false, false)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(LoopReroll, "loop-reroll", "Reroll loops", false, false)
Pass *llvm::createLoopRerollPass() {
return new LoopReroll;
}
// Returns true if the provided instruction is used outside the given loop.
// This operates like Instruction::isUsedOutsideOfBlock, but considers PHIs in
// non-loop blocks to be outside the loop.
static bool hasUsesOutsideLoop(Instruction *I, Loop *L) {
for (User *U : I->users()) {
if (!L->contains(cast<Instruction>(U)))
return true;
}
return false;
}
// Collect the list of loop induction variables with respect to which it might
// be possible to reroll the loop.
void LoopReroll::collectPossibleIVs(Loop *L,
SmallInstructionVector &PossibleIVs) {
BasicBlock *Header = L->getHeader();
for (BasicBlock::iterator I = Header->begin(),
IE = Header->getFirstInsertionPt(); I != IE; ++I) {
if (!isa<PHINode>(I))
continue;
if (!I->getType()->isIntegerTy())
continue;
if (const SCEVAddRecExpr *PHISCEV =
dyn_cast<SCEVAddRecExpr>(SE->getSCEV(I))) {
if (PHISCEV->getLoop() != L)
continue;
if (!PHISCEV->isAffine())
continue;
if (const SCEVConstant *IncSCEV =
dyn_cast<SCEVConstant>(PHISCEV->getStepRecurrence(*SE))) {
if (!IncSCEV->getValue()->getValue().isStrictlyPositive())
continue;
if (IncSCEV->getValue()->uge(MaxInc))
continue;
DEBUG(dbgs() << "LRR: Possible IV: " << *I << " = " <<
*PHISCEV << "\n");
PossibleIVs.push_back(I);
}
}
}
}
// Add the remainder of the reduction-variable chain to the instruction vector
// (the initial PHINode has already been added). If successful, the object is
// marked as valid.
void LoopReroll::SimpleLoopReduction::add(Loop *L) {
assert(!Valid && "Cannot add to an already-valid chain");
// The reduction variable must be a chain of single-use instructions
// (including the PHI), except for the last value (which is used by the PHI
// and also outside the loop).
Instruction *C = Instructions.front();
if (C->user_empty())
return;
do {
C = cast<Instruction>(*C->user_begin());
if (C->hasOneUse()) {
if (!C->isBinaryOp())
return;
if (!(isa<PHINode>(Instructions.back()) ||
C->isSameOperationAs(Instructions.back())))
return;
Instructions.push_back(C);
}
} while (C->hasOneUse());
if (Instructions.size() < 2 ||
!C->isSameOperationAs(Instructions.back()) ||
C->use_empty())
return;
// C is now the (potential) last instruction in the reduction chain.
for (User *U : C->users()) {
// The only in-loop user can be the initial PHI.
if (L->contains(cast<Instruction>(U)))
if (cast<Instruction>(U) != Instructions.front())
return;
}
Instructions.push_back(C);
Valid = true;
}
// Collect the vector of possible reduction variables.
void LoopReroll::collectPossibleReductions(Loop *L,
ReductionTracker &Reductions) {
BasicBlock *Header = L->getHeader();
for (BasicBlock::iterator I = Header->begin(),
IE = Header->getFirstInsertionPt(); I != IE; ++I) {
if (!isa<PHINode>(I))
continue;
if (!I->getType()->isSingleValueType())
continue;
SimpleLoopReduction SLR(I, L);
if (!SLR.valid())
continue;
DEBUG(dbgs() << "LRR: Possible reduction: " << *I << " (with " <<
SLR.size() << " chained instructions)\n");
Reductions.addSLR(SLR);
}
}
// Collect the set of all users of the provided root instruction. This set of
// users contains not only the direct users of the root instruction, but also
// all users of those users, and so on. There are two exceptions:
//
// 1. Instructions in the set of excluded instructions are never added to the
// use set (even if they are users). This is used, for example, to exclude
// including root increments in the use set of the primary IV.
//
// 2. Instructions in the set of final instructions are added to the use set
// if they are users, but their users are not added. This is used, for
// example, to prevent a reduction update from forcing all later reduction
// updates into the use set.
void LoopReroll::DAGRootTracker::collectInLoopUserSet(
Instruction *Root, const SmallInstructionSet &Exclude,
const SmallInstructionSet &Final,
DenseSet<Instruction *> &Users) {
SmallInstructionVector Queue(1, Root);
while (!Queue.empty()) {
Instruction *I = Queue.pop_back_val();
if (!Users.insert(I).second)
continue;
if (!Final.count(I))
for (Use &U : I->uses()) {
Instruction *User = cast<Instruction>(U.getUser());
if (PHINode *PN = dyn_cast<PHINode>(User)) {
// Ignore "wrap-around" uses to PHIs of this loop's header.
if (PN->getIncomingBlock(U) == L->getHeader())
continue;
}
if (L->contains(User) && !Exclude.count(User)) {
Queue.push_back(User);
}
}
// We also want to collect single-user "feeder" values.
for (User::op_iterator OI = I->op_begin(),
OIE = I->op_end(); OI != OIE; ++OI) {
if (Instruction *Op = dyn_cast<Instruction>(*OI))
if (Op->hasOneUse() && L->contains(Op) && !Exclude.count(Op) &&
!Final.count(Op))
Queue.push_back(Op);
}
}
}
// Collect all of the users of all of the provided root instructions (combined
// into a single set).
void LoopReroll::DAGRootTracker::collectInLoopUserSet(
const SmallInstructionVector &Roots,
const SmallInstructionSet &Exclude,
const SmallInstructionSet &Final,
DenseSet<Instruction *> &Users) {
for (SmallInstructionVector::const_iterator I = Roots.begin(),
IE = Roots.end(); I != IE; ++I)
collectInLoopUserSet(*I, Exclude, Final, Users);
}
static bool isSimpleLoadStore(Instruction *I) {
if (LoadInst *LI = dyn_cast<LoadInst>(I))
return LI->isSimple();
if (StoreInst *SI = dyn_cast<StoreInst>(I))
return SI->isSimple();
if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
return !MI->isVolatile();
return false;
}
/// Return true if IVU is a "simple" arithmetic operation.
/// This is used for narrowing the search space for DAGRoots; only arithmetic
/// and GEPs can be part of a DAGRoot.
static bool isSimpleArithmeticOp(User *IVU) {
if (Instruction *I = dyn_cast<Instruction>(IVU)) {
switch (I->getOpcode()) {
default: return false;
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
case Instruction::Shl:
case Instruction::AShr:
case Instruction::LShr:
case Instruction::GetElementPtr:
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
return true;
}
}
return false;
}
static bool isLoopIncrement(User *U, Instruction *IV) {
BinaryOperator *BO = dyn_cast<BinaryOperator>(U);
if (!BO || BO->getOpcode() != Instruction::Add)
return false;
for (auto *UU : BO->users()) {
PHINode *PN = dyn_cast<PHINode>(UU);
if (PN && PN == IV)
return true;
}
return false;
}
bool LoopReroll::DAGRootTracker::
collectPossibleRoots(Instruction *Base, std::map<int64_t,Instruction*> &Roots) {
SmallInstructionVector BaseUsers;
for (auto *I : Base->users()) {
ConstantInt *CI = nullptr;
if (isLoopIncrement(I, IV)) {
LoopIncs.push_back(cast<Instruction>(I));
continue;
}
// The root nodes must be either GEPs, ORs or ADDs.
if (auto *BO = dyn_cast<BinaryOperator>(I)) {
if (BO->getOpcode() == Instruction::Add ||
BO->getOpcode() == Instruction::Or)
CI = dyn_cast<ConstantInt>(BO->getOperand(1));
} else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
Value *LastOperand = GEP->getOperand(GEP->getNumOperands()-1);
CI = dyn_cast<ConstantInt>(LastOperand);
}
if (!CI) {
if (Instruction *II = dyn_cast<Instruction>(I)) {
BaseUsers.push_back(II);
continue;
} else {
DEBUG(dbgs() << "LRR: Aborting due to non-instruction: " << *I << "\n");
return false;
}
}
int64_t V = CI->getValue().getSExtValue();
if (Roots.find(V) != Roots.end())
// No duplicates, please.
return false;
// FIXME: Add support for negative values.
if (V < 0) {
DEBUG(dbgs() << "LRR: Aborting due to negative value: " << V << "\n");
return false;
}
Roots[V] = cast<Instruction>(I);
}
if (Roots.empty())
return false;
// If we found non-loop-inc, non-root users of Base, assume they are
// for the zeroth root index. This is because "add %a, 0" gets optimized
// away.
if (BaseUsers.size()) {
if (Roots.find(0) != Roots.end()) {
DEBUG(dbgs() << "LRR: Multiple roots found for base - aborting!\n");
return false;
}
Roots[0] = Base;
}
// Calculate the number of users of the base, or lowest indexed, iteration.
unsigned NumBaseUses = BaseUsers.size();
if (NumBaseUses == 0)
NumBaseUses = Roots.begin()->second->getNumUses();
// Check that every node has the same number of users.
for (auto &KV : Roots) {
if (KV.first == 0)
continue;
if (KV.second->getNumUses() != NumBaseUses) {
DEBUG(dbgs() << "LRR: Aborting - Root and Base #users not the same: "
<< "#Base=" << NumBaseUses << ", #Root=" <<
KV.second->getNumUses() << "\n");
return false;
}
}
return true;
}
bool LoopReroll::DAGRootTracker::
findRootsRecursive(Instruction *I, SmallInstructionSet SubsumedInsts) {
// Does the user look like it could be part of a root set?
// All its users must be simple arithmetic ops.
if (I->getNumUses() > IL_MaxRerollIterations)
return false;
if ((I->getOpcode() == Instruction::Mul ||
I->getOpcode() == Instruction::PHI) &&
I != IV &&
findRootsBase(I, SubsumedInsts))
return true;
SubsumedInsts.insert(I);
for (User *V : I->users()) {
Instruction *I = dyn_cast<Instruction>(V);
if (std::find(LoopIncs.begin(), LoopIncs.end(), I) != LoopIncs.end())
continue;
if (!I || !isSimpleArithmeticOp(I) ||
!findRootsRecursive(I, SubsumedInsts))
return false;
}
return true;
}
bool LoopReroll::DAGRootTracker::
findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts) {
// The base instruction needs to be a multiply so
// that we can erase it.
if (IVU->getOpcode() != Instruction::Mul &&
IVU->getOpcode() != Instruction::PHI)
return false;
std::map<int64_t, Instruction*> V;
if (!collectPossibleRoots(IVU, V))
return false;
// If we didn't get a root for index zero, then IVU must be
// subsumed.
if (V.find(0) == V.end())
SubsumedInsts.insert(IVU);
// Partition the vector into monotonically increasing indexes.
DAGRootSet DRS;
DRS.BaseInst = nullptr;
for (auto &KV : V) {
if (!DRS.BaseInst) {
DRS.BaseInst = KV.second;
DRS.SubsumedInsts = SubsumedInsts;
} else if (DRS.Roots.empty()) {
DRS.Roots.push_back(KV.second);
} else if (V.find(KV.first - 1) != V.end()) {
DRS.Roots.push_back(KV.second);
} else {
// Linear sequence terminated.
RootSets.push_back(DRS);
DRS.BaseInst = KV.second;
DRS.SubsumedInsts = SubsumedInsts;
DRS.Roots.clear();
}
}
RootSets.push_back(DRS);
return true;
}
bool LoopReroll::DAGRootTracker::findRoots() {
const SCEVAddRecExpr *RealIVSCEV = cast<SCEVAddRecExpr>(SE->getSCEV(IV));
Inc = cast<SCEVConstant>(RealIVSCEV->getOperand(1))->
getValue()->getZExtValue();
assert(RootSets.empty() && "Unclean state!");
if (Inc == 1) {
for (auto *IVU : IV->users()) {
if (isLoopIncrement(IVU, IV))
LoopIncs.push_back(cast<Instruction>(IVU));
}
if (!findRootsRecursive(IV, SmallInstructionSet()))
return false;
LoopIncs.push_back(IV);
} else {
if (!findRootsBase(IV, SmallInstructionSet()))
return false;
}
// Ensure all sets have the same size.
if (RootSets.empty()) {
DEBUG(dbgs() << "LRR: Aborting because no root sets found!\n");
return false;
}
for (auto &V : RootSets) {
if (V.Roots.empty() || V.Roots.size() != RootSets[0].Roots.size()) {
DEBUG(dbgs()
<< "LRR: Aborting because not all root sets have the same size\n");
return false;
}
}
// And ensure all loop iterations are consecutive. We rely on std::map
// providing ordered traversal.
for (auto &V : RootSets) {
const auto *ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(V.BaseInst));
if (!ADR)
return false;
// Consider a DAGRootSet with N-1 roots (so N different values including
// BaseInst).
// Define d = Roots[0] - BaseInst, which should be the same as
// Roots[I] - Roots[I-1] for all I in [1..N).
// Define D = BaseInst@J - BaseInst@J-1, where "@J" means the value at the
// loop iteration J.
//
// Now, For the loop iterations to be consecutive:
// D = d * N
unsigned N = V.Roots.size() + 1;
const SCEV *StepSCEV = SE->getMinusSCEV(SE->getSCEV(V.Roots[0]), ADR);
const SCEV *ScaleSCEV = SE->getConstant(StepSCEV->getType(), N);
if (ADR->getStepRecurrence(*SE) != SE->getMulExpr(StepSCEV, ScaleSCEV)) {
DEBUG(dbgs() << "LRR: Aborting because iterations are not consecutive\n");
return false;
}
}
Scale = RootSets[0].Roots.size() + 1;
if (Scale > IL_MaxRerollIterations) {
DEBUG(dbgs() << "LRR: Aborting - too many iterations found. "
<< "#Found=" << Scale << ", #Max=" << IL_MaxRerollIterations
<< "\n");
return false;
}
DEBUG(dbgs() << "LRR: Successfully found roots: Scale=" << Scale << "\n");
return true;
}
bool LoopReroll::DAGRootTracker::collectUsedInstructions(SmallInstructionSet &PossibleRedSet) {
// Populate the MapVector with all instructions in the block, in order first,
// so we can iterate over the contents later in perfect order.
for (auto &I : *L->getHeader()) {
Uses[&I].resize(IL_End);
}
SmallInstructionSet Exclude;
for (auto &DRS : RootSets) {
Exclude.insert(DRS.Roots.begin(), DRS.Roots.end());
Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end());
Exclude.insert(DRS.BaseInst);
}
Exclude.insert(LoopIncs.begin(), LoopIncs.end());
for (auto &DRS : RootSets) {
DenseSet<Instruction*> VBase;
collectInLoopUserSet(DRS.BaseInst, Exclude, PossibleRedSet, VBase);
for (auto *I : VBase) {
Uses[I].set(0);
}
unsigned Idx = 1;
for (auto *Root : DRS.Roots) {
DenseSet<Instruction*> V;
collectInLoopUserSet(Root, Exclude, PossibleRedSet, V);
// While we're here, check the use sets are the same size.
if (V.size() != VBase.size()) {
DEBUG(dbgs() << "LRR: Aborting - use sets are different sizes\n");
return false;
}
for (auto *I : V) {
Uses[I].set(Idx);
}
++Idx;
}
// Make sure our subsumed instructions are remembered too.
for (auto *I : DRS.SubsumedInsts) {
Uses[I].set(IL_All);
}
}
// Make sure the loop increments are also accounted for.
Exclude.clear();
for (auto &DRS : RootSets) {
Exclude.insert(DRS.Roots.begin(), DRS.Roots.end());
Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end());
Exclude.insert(DRS.BaseInst);
}
DenseSet<Instruction*> V;
collectInLoopUserSet(LoopIncs, Exclude, PossibleRedSet, V);
for (auto *I : V) {
Uses[I].set(IL_All);
}
return true;
}
/// Get the next instruction in "In" that is a member of set Val.
/// Start searching from StartI, and do not return anything in Exclude.
/// If StartI is not given, start from In.begin().
LoopReroll::DAGRootTracker::UsesTy::iterator
LoopReroll::DAGRootTracker::nextInstr(int Val, UsesTy &In,
const SmallInstructionSet &Exclude,
UsesTy::iterator *StartI) {
UsesTy::iterator I = StartI ? *StartI : In.begin();
while (I != In.end() && (I->second.test(Val) == 0 ||
Exclude.count(I->first) != 0))
++I;
return I;
}
bool LoopReroll::DAGRootTracker::isBaseInst(Instruction *I) {
for (auto &DRS : RootSets) {
if (DRS.BaseInst == I)
return true;
}
return false;
}
bool LoopReroll::DAGRootTracker::isRootInst(Instruction *I) {
for (auto &DRS : RootSets) {
if (std::find(DRS.Roots.begin(), DRS.Roots.end(), I) != DRS.Roots.end())
return true;
}
return false;
}
/// Return true if instruction I depends on any instruction between
/// Start and End.
bool LoopReroll::DAGRootTracker::instrDependsOn(Instruction *I,
UsesTy::iterator Start,
UsesTy::iterator End) {
for (auto *U : I->users()) {
for (auto It = Start; It != End; ++It)
if (U == It->first)
return true;
}
return false;
}
bool LoopReroll::DAGRootTracker::validate(ReductionTracker &Reductions) {
// We now need to check for equivalence of the use graph of each root with
// that of the primary induction variable (excluding the roots). Our goal
// here is not to solve the full graph isomorphism problem, but rather to
// catch common cases without a lot of work. As a result, we will assume
// that the relative order of the instructions in each unrolled iteration
// is the same (although we will not make an assumption about how the
// different iterations are intermixed). Note that while the order must be
// the same, the instructions may not be in the same basic block.
// An array of just the possible reductions for this scale factor. When we
// collect the set of all users of some root instructions, these reduction
// instructions are treated as 'final' (their uses are not considered).
// This is important because we don't want the root use set to search down
// the reduction chain.
SmallInstructionSet PossibleRedSet;
SmallInstructionSet PossibleRedLastSet;
SmallInstructionSet PossibleRedPHISet;
Reductions.restrictToScale(Scale, PossibleRedSet,
PossibleRedPHISet, PossibleRedLastSet);
// Populate "Uses" with where each instruction is used.
if (!collectUsedInstructions(PossibleRedSet))
return false;
// Make sure we mark the reduction PHIs as used in all iterations.
for (auto *I : PossibleRedPHISet) {
Uses[I].set(IL_All);
}
// Make sure all instructions in the loop are in one and only one
// set.
for (auto &KV : Uses) {
if (KV.second.count() != 1) {
DEBUG(dbgs() << "LRR: Aborting - instruction is not used in 1 iteration: "
<< *KV.first << " (#uses=" << KV.second.count() << ")\n");
return false;
}
}
DEBUG(
for (auto &KV : Uses) {
dbgs() << "LRR: " << KV.second.find_first() << "\t" << *KV.first << "\n";
}
);
for (unsigned Iter = 1; Iter < Scale; ++Iter) {
// In addition to regular aliasing information, we need to look for
// instructions from later (future) iterations that have side effects
// preventing us from reordering them past other instructions with side
// effects.
bool FutureSideEffects = false;
AliasSetTracker AST(*AA);
// The map between instructions in f(%iv.(i+1)) and f(%iv).
DenseMap<Value *, Value *> BaseMap;
// Compare iteration Iter to the base.
SmallInstructionSet Visited;
auto BaseIt = nextInstr(0, Uses, Visited);
auto RootIt = nextInstr(Iter, Uses, Visited);
auto LastRootIt = Uses.begin();
while (BaseIt != Uses.end() && RootIt != Uses.end()) {
Instruction *BaseInst = BaseIt->first;
Instruction *RootInst = RootIt->first;
// Skip over the IV or root instructions; only match their users.
bool Continue = false;
if (isBaseInst(BaseInst)) {
Visited.insert(BaseInst);
BaseIt = nextInstr(0, Uses, Visited);
Continue = true;
}
if (isRootInst(RootInst)) {
LastRootIt = RootIt;
Visited.insert(RootInst);
RootIt = nextInstr(Iter, Uses, Visited);
Continue = true;
}
if (Continue) continue;
if (!BaseInst->isSameOperationAs(RootInst)) {
// Last chance saloon. We don't try and solve the full isomorphism
// problem, but try and at least catch the case where two instructions
// *of different types* are round the wrong way. We won't be able to
// efficiently tell, given two ADD instructions, which way around we
// should match them, but given an ADD and a SUB, we can at least infer
// which one is which.
//
// This should allow us to deal with a greater subset of the isomorphism
// problem. It does however change a linear algorithm into a quadratic
// one, so limit the number of probes we do.
auto TryIt = RootIt;
unsigned N = NumToleratedFailedMatches;
while (TryIt != Uses.end() &&
!BaseInst->isSameOperationAs(TryIt->first) &&
N--) {
++TryIt;
TryIt = nextInstr(Iter, Uses, Visited, &TryIt);
}
if (TryIt == Uses.end() || TryIt == RootIt ||
instrDependsOn(TryIt->first, RootIt, TryIt)) {
DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst <<
" vs. " << *RootInst << "\n");
return false;
}
RootIt = TryIt;
RootInst = TryIt->first;
}
// All instructions between the last root and this root
// may belong to some other iteration. If they belong to a
// future iteration, then they're dangerous to alias with.
//
// Note that because we allow a limited amount of flexibility in the order
// that we visit nodes, LastRootIt might be *before* RootIt, in which
// case we've already checked this set of instructions so we shouldn't
// do anything.
for (; LastRootIt < RootIt; ++LastRootIt) {
Instruction *I = LastRootIt->first;
if (LastRootIt->second.find_first() < (int)Iter)
continue;
if (I->mayWriteToMemory())
AST.add(I);
// Note: This is specifically guarded by a check on isa<PHINode>,
// which while a valid (somewhat arbitrary) micro-optimization, is
// needed because otherwise isSafeToSpeculativelyExecute returns
// false on PHI nodes.
if (!isa<PHINode>(I) && !isSimpleLoadStore(I) &&
!isSafeToSpeculativelyExecute(I))
// Intervening instructions cause side effects.
FutureSideEffects = true;
}
// Make sure that this instruction, which is in the use set of this
// root instruction, does not also belong to the base set or the set of
// some other root instruction.
if (RootIt->second.count() > 1) {
DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst <<
" vs. " << *RootInst << " (prev. case overlap)\n");
return false;
}
// Make sure that we don't alias with any instruction in the alias set
// tracker. If we do, then we depend on a future iteration, and we
// can't reroll.
if (RootInst->mayReadFromMemory())
for (auto &K : AST) {
if (K.aliasesUnknownInst(RootInst, *AA)) {
DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst <<
" vs. " << *RootInst << " (depends on future store)\n");
return false;
}
}
// If we've past an instruction from a future iteration that may have
// side effects, and this instruction might also, then we can't reorder
// them, and this matching fails. As an exception, we allow the alias
// set tracker to handle regular (simple) load/store dependencies.
if (FutureSideEffects && ((!isSimpleLoadStore(BaseInst) &&
!isSafeToSpeculativelyExecute(BaseInst)) ||
(!isSimpleLoadStore(RootInst) &&
!isSafeToSpeculativelyExecute(RootInst)))) {
DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst <<
" vs. " << *RootInst <<
" (side effects prevent reordering)\n");
return false;
}
// For instructions that are part of a reduction, if the operation is
// associative, then don't bother matching the operands (because we
// already know that the instructions are isomorphic, and the order
// within the iteration does not matter). For non-associative reductions,
// we do need to match the operands, because we need to reject
// out-of-order instructions within an iteration!
// For example (assume floating-point addition), we need to reject this:
// x += a[i]; x += b[i];
// x += a[i+1]; x += b[i+1];
// x += b[i+2]; x += a[i+2];
bool InReduction = Reductions.isPairInSame(BaseInst, RootInst);
if (!(InReduction && BaseInst->isAssociative())) {
bool Swapped = false, SomeOpMatched = false;
for (unsigned j = 0; j < BaseInst->getNumOperands(); ++j) {
Value *Op2 = RootInst->getOperand(j);
// If this is part of a reduction (and the operation is not
// associatve), then we match all operands, but not those that are
// part of the reduction.
if (InReduction)
if (Instruction *Op2I = dyn_cast<Instruction>(Op2))
if (Reductions.isPairInSame(RootInst, Op2I))
continue;
DenseMap<Value *, Value *>::iterator BMI = BaseMap.find(Op2);
if (BMI != BaseMap.end()) {
Op2 = BMI->second;
} else {
for (auto &DRS : RootSets) {
if (DRS.Roots[Iter-1] == (Instruction*) Op2) {
Op2 = DRS.BaseInst;
break;
}
}
}
if (BaseInst->getOperand(Swapped ? unsigned(!j) : j) != Op2) {
// If we've not already decided to swap the matched operands, and
// we've not already matched our first operand (note that we could
// have skipped matching the first operand because it is part of a
// reduction above), and the instruction is commutative, then try
// the swapped match.
if (!Swapped && BaseInst->isCommutative() && !SomeOpMatched &&
BaseInst->getOperand(!j) == Op2) {
Swapped = true;
} else {
DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst
<< " vs. " << *RootInst << " (operand " << j << ")\n");
return false;
}
}
SomeOpMatched = true;
}
}
if ((!PossibleRedLastSet.count(BaseInst) &&
hasUsesOutsideLoop(BaseInst, L)) ||
(!PossibleRedLastSet.count(RootInst) &&
hasUsesOutsideLoop(RootInst, L))) {
DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst <<
" vs. " << *RootInst << " (uses outside loop)\n");
return false;
}
Reductions.recordPair(BaseInst, RootInst, Iter);
BaseMap.insert(std::make_pair(RootInst, BaseInst));
LastRootIt = RootIt;
Visited.insert(BaseInst);
Visited.insert(RootInst);
BaseIt = nextInstr(0, Uses, Visited);
RootIt = nextInstr(Iter, Uses, Visited);
}
assert (BaseIt == Uses.end() && RootIt == Uses.end() &&
"Mismatched set sizes!");
}
DEBUG(dbgs() << "LRR: Matched all iteration increments for " <<
*IV << "\n");
return true;
}
void LoopReroll::DAGRootTracker::replace(const SCEV *IterCount) {
BasicBlock *Header = L->getHeader();
// Remove instructions associated with non-base iterations.
for (BasicBlock::reverse_iterator J = Header->rbegin();
J != Header->rend();) {
unsigned I = Uses[&*J].find_first();
if (I > 0 && I < IL_All) {
Instruction *D = &*J;
DEBUG(dbgs() << "LRR: removing: " << *D << "\n");
D->eraseFromParent();
continue;
}
++J;
}
const DataLayout &DL = Header->getModule()->getDataLayout();
// We need to create a new induction variable for each different BaseInst.
for (auto &DRS : RootSets) {
// Insert the new induction variable.
const SCEVAddRecExpr *RealIVSCEV =
cast<SCEVAddRecExpr>(SE->getSCEV(DRS.BaseInst));
const SCEV *Start = RealIVSCEV->getStart();
const SCEVAddRecExpr *H = cast<SCEVAddRecExpr>
(SE->getAddRecExpr(Start,
SE->getConstant(RealIVSCEV->getType(), 1),
L, SCEV::FlagAnyWrap));
{ // Limit the lifetime of SCEVExpander.
SCEVExpander Expander(*SE, DL, "reroll");
Value *NewIV = Expander.expandCodeFor(H, IV->getType(), Header->begin());
for (auto &KV : Uses) {
if (KV.second.find_first() == 0)
KV.first->replaceUsesOfWith(DRS.BaseInst, NewIV);
}
if (BranchInst *BI = dyn_cast<BranchInst>(Header->getTerminator())) {
// FIXME: Why do we need this check?
if (Uses[BI].find_first() == IL_All) {
const SCEV *ICSCEV = RealIVSCEV->evaluateAtIteration(IterCount, *SE);
// Iteration count SCEV minus 1
const SCEV *ICMinus1SCEV =
SE->getMinusSCEV(ICSCEV, SE->getConstant(ICSCEV->getType(), 1));
Value *ICMinus1; // Iteration count minus 1
if (isa<SCEVConstant>(ICMinus1SCEV)) {
ICMinus1 = Expander.expandCodeFor(ICMinus1SCEV, NewIV->getType(), BI);
} else {
BasicBlock *Preheader = L->getLoopPreheader();
if (!Preheader)
Preheader = InsertPreheaderForLoop(L, Parent);
ICMinus1 = Expander.expandCodeFor(ICMinus1SCEV, NewIV->getType(),
Preheader->getTerminator());
}
Value *Cond =
new ICmpInst(BI, CmpInst::ICMP_EQ, NewIV, ICMinus1, "exitcond");
BI->setCondition(Cond);
if (BI->getSuccessor(1) != Header)
BI->swapSuccessors();
}
}
}
}
SimplifyInstructionsInBlock(Header, TLI);
DeleteDeadPHIs(Header, TLI);
}
// Validate the selected reductions. All iterations must have an isomorphic
// part of the reduction chain and, for non-associative reductions, the chain
// entries must appear in order.
bool LoopReroll::ReductionTracker::validateSelected() {
// For a non-associative reduction, the chain entries must appear in order.
for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end();
RI != RIE; ++RI) {
int i = *RI;
int PrevIter = 0, BaseCount = 0, Count = 0;
for (Instruction *J : PossibleReds[i]) {
// Note that all instructions in the chain must have been found because
// all instructions in the function must have been assigned to some
// iteration.
int Iter = PossibleRedIter[J];
if (Iter != PrevIter && Iter != PrevIter + 1 &&
!PossibleReds[i].getReducedValue()->isAssociative()) {
DEBUG(dbgs() << "LRR: Out-of-order non-associative reduction: " <<
J << "\n");
return false;
}
if (Iter != PrevIter) {
if (Count != BaseCount) {
DEBUG(dbgs() << "LRR: Iteration " << PrevIter <<
" reduction use count " << Count <<
" is not equal to the base use count " <<
BaseCount << "\n");
return false;
}
Count = 0;
}
++Count;
if (Iter == 0)
++BaseCount;
PrevIter = Iter;
}
}
return true;
}
// For all selected reductions, remove all parts except those in the first
// iteration (and the PHI). Replace outside uses of the reduced value with uses
// of the first-iteration reduced value (in other words, reroll the selected
// reductions).
void LoopReroll::ReductionTracker::replaceSelected() {
// Fixup reductions to refer to the last instruction associated with the
// first iteration (not the last).
for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end();
RI != RIE; ++RI) {
int i = *RI;
int j = 0;
for (int e = PossibleReds[i].size(); j != e; ++j)
if (PossibleRedIter[PossibleReds[i][j]] != 0) {
--j;
break;
}
// Replace users with the new end-of-chain value.
SmallInstructionVector Users;
for (User *U : PossibleReds[i].getReducedValue()->users()) {
Users.push_back(cast<Instruction>(U));
}
for (SmallInstructionVector::iterator J = Users.begin(),
JE = Users.end(); J != JE; ++J)
(*J)->replaceUsesOfWith(PossibleReds[i].getReducedValue(),
PossibleReds[i][j]);
}
}
// Reroll the provided loop with respect to the provided induction variable.
// Generally, we're looking for a loop like this:
//
// %iv = phi [ (preheader, ...), (body, %iv.next) ]
// f(%iv)
// %iv.1 = add %iv, 1 <-- a root increment
// f(%iv.1)
// %iv.2 = add %iv, 2 <-- a root increment
// f(%iv.2)
// %iv.scale_m_1 = add %iv, scale-1 <-- a root increment
// f(%iv.scale_m_1)
// ...
// %iv.next = add %iv, scale
// %cmp = icmp(%iv, ...)
// br %cmp, header, exit
//
// Notably, we do not require that f(%iv), f(%iv.1), etc. be isolated groups of
// instructions. In other words, the instructions in f(%iv), f(%iv.1), etc. can
// be intermixed with eachother. The restriction imposed by this algorithm is
// that the relative order of the isomorphic instructions in f(%iv), f(%iv.1),
// etc. be the same.
//
// First, we collect the use set of %iv, excluding the other increment roots.
// This gives us f(%iv). Then we iterate over the loop instructions (scale-1)
// times, having collected the use set of f(%iv.(i+1)), during which we:
// - Ensure that the next unmatched instruction in f(%iv) is isomorphic to
// the next unmatched instruction in f(%iv.(i+1)).
// - Ensure that both matched instructions don't have any external users
// (with the exception of last-in-chain reduction instructions).
// - Track the (aliasing) write set, and other side effects, of all
// instructions that belong to future iterations that come before the matched
// instructions. If the matched instructions read from that write set, then
// f(%iv) or f(%iv.(i+1)) has some dependency on instructions in
// f(%iv.(j+1)) for some j > i, and we cannot reroll the loop. Similarly,
// if any of these future instructions had side effects (could not be
// speculatively executed), and so do the matched instructions, when we
// cannot reorder those side-effect-producing instructions, and rerolling
// fails.
//
// Finally, we make sure that all loop instructions are either loop increment
// roots, belong to simple latch code, parts of validated reductions, part of
// f(%iv) or part of some f(%iv.i). If all of that is true (and all reductions
// have been validated), then we reroll the loop.
bool LoopReroll::reroll(Instruction *IV, Loop *L, BasicBlock *Header,
const SCEV *IterCount,
ReductionTracker &Reductions) {
DAGRootTracker DAGRoots(this, L, IV, SE, AA, TLI);
if (!DAGRoots.findRoots())
return false;
DEBUG(dbgs() << "LRR: Found all root induction increments for: " <<
*IV << "\n");
if (!DAGRoots.validate(Reductions))
return false;
if (!Reductions.validateSelected())
return false;
// At this point, we've validated the rerolling, and we're committed to
// making changes!
Reductions.replaceSelected();
DAGRoots.replace(IterCount);
++NumRerolledLoops;
return true;
}
bool LoopReroll::runOnLoop(Loop *L, LPPassManager &LPM) {
if (skipOptnoneFunction(L))
return false;
AA = &getAnalysis<AliasAnalysis>();
LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
SE = &getAnalysis<ScalarEvolution>();
TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
BasicBlock *Header = L->getHeader();
DEBUG(dbgs() << "LRR: F[" << Header->getParent()->getName() <<
"] Loop %" << Header->getName() << " (" <<
L->getNumBlocks() << " block(s))\n");
bool Changed = false;
// For now, we'll handle only single BB loops.
if (L->getNumBlocks() > 1)
return Changed;
if (!SE->hasLoopInvariantBackedgeTakenCount(L))
return Changed;
const SCEV *LIBETC = SE->getBackedgeTakenCount(L);
const SCEV *IterCount =
SE->getAddExpr(LIBETC, SE->getConstant(LIBETC->getType(), 1));
DEBUG(dbgs() << "LRR: iteration count = " << *IterCount << "\n");
// First, we need to find the induction variable with respect to which we can
// reroll (there may be several possible options).
SmallInstructionVector PossibleIVs;
collectPossibleIVs(L, PossibleIVs);
if (PossibleIVs.empty()) {
DEBUG(dbgs() << "LRR: No possible IVs found\n");
return Changed;
}
ReductionTracker Reductions;
collectPossibleReductions(L, Reductions);
// For each possible IV, collect the associated possible set of 'root' nodes
// (i+1, i+2, etc.).
for (SmallInstructionVector::iterator I = PossibleIVs.begin(),
IE = PossibleIVs.end(); I != IE; ++I)
if (reroll(*I, L, Header, IterCount, Reductions)) {
Changed = true;
break;
}
return Changed;
}