mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209982 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			787 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			787 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- Host.cpp - Implement OS Host Concept --------------------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //  This header file implements the operating system Host concept.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Support/Host.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/StringRef.h"
 | |
| #include "llvm/ADT/StringSwitch.h"
 | |
| #include "llvm/ADT/Triple.h"
 | |
| #include "llvm/Config/config.h"
 | |
| #include "llvm/Support/DataStream.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <string.h>
 | |
| 
 | |
| // Include the platform-specific parts of this class.
 | |
| #ifdef LLVM_ON_UNIX
 | |
| #include "Unix/Host.inc"
 | |
| #endif
 | |
| #ifdef LLVM_ON_WIN32
 | |
| #include "Windows/Host.inc"
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| #include <intrin.h>
 | |
| #endif
 | |
| #if defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))
 | |
| #include <mach/mach.h>
 | |
| #include <mach/mach_host.h>
 | |
| #include <mach/host_info.h>
 | |
| #include <mach/machine.h>
 | |
| #endif
 | |
| 
 | |
| #define DEBUG_TYPE "host-detection"
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //  Implementations of the CPU detection routines
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #if defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)\
 | |
|  || defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
 | |
| 
 | |
| /// GetX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in the
 | |
| /// specified arguments.  If we can't run cpuid on the host, return true.
 | |
| static bool GetX86CpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX,
 | |
|                                unsigned *rECX, unsigned *rEDX) {
 | |
| #if defined(__GNUC__) || defined(__clang__)
 | |
|   #if defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
 | |
|     // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually.
 | |
|     asm ("movq\t%%rbx, %%rsi\n\t"
 | |
|          "cpuid\n\t"
 | |
|          "xchgq\t%%rbx, %%rsi\n\t"
 | |
|          : "=a" (*rEAX),
 | |
|            "=S" (*rEBX),
 | |
|            "=c" (*rECX),
 | |
|            "=d" (*rEDX)
 | |
|          :  "a" (value));
 | |
|     return false;
 | |
|   #elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)
 | |
|     asm ("movl\t%%ebx, %%esi\n\t"
 | |
|          "cpuid\n\t"
 | |
|          "xchgl\t%%ebx, %%esi\n\t"
 | |
|          : "=a" (*rEAX),
 | |
|            "=S" (*rEBX),
 | |
|            "=c" (*rECX),
 | |
|            "=d" (*rEDX)
 | |
|          :  "a" (value));
 | |
|     return false;
 | |
| // pedantic #else returns to appease -Wunreachable-code (so we don't generate
 | |
| // postprocessed code that looks like "return true; return false;")
 | |
|   #else
 | |
|     return true;
 | |
|   #endif
 | |
| #elif defined(_MSC_VER)
 | |
|   // The MSVC intrinsic is portable across x86 and x64.
 | |
|   int registers[4];
 | |
|   __cpuid(registers, value);
 | |
|   *rEAX = registers[0];
 | |
|   *rEBX = registers[1];
 | |
|   *rECX = registers[2];
 | |
|   *rEDX = registers[3];
 | |
|   return false;
 | |
| #else
 | |
|   return true;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /// GetX86CpuIDAndInfoEx - Execute the specified cpuid with subleaf and return the
 | |
| /// 4 values in the specified arguments.  If we can't run cpuid on the host,
 | |
| /// return true.
 | |
| static bool GetX86CpuIDAndInfoEx(unsigned value, unsigned subleaf,
 | |
|                                  unsigned *rEAX, unsigned *rEBX, unsigned *rECX,
 | |
|                                  unsigned *rEDX) {
 | |
| #if defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
 | |
|   #if defined(__GNUC__)
 | |
|     // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually.
 | |
|     asm ("movq\t%%rbx, %%rsi\n\t"
 | |
|          "cpuid\n\t"
 | |
|          "xchgq\t%%rbx, %%rsi\n\t"
 | |
|          : "=a" (*rEAX),
 | |
|            "=S" (*rEBX),
 | |
|            "=c" (*rECX),
 | |
|            "=d" (*rEDX)
 | |
|          :  "a" (value),
 | |
|             "c" (subleaf));
 | |
|     return false;
 | |
|   #elif defined(_MSC_VER)
 | |
|     // __cpuidex was added in MSVC++ 9.0 SP1
 | |
|     #if (_MSC_VER > 1500) || (_MSC_VER == 1500 && _MSC_FULL_VER >= 150030729)
 | |
|       int registers[4];
 | |
|       __cpuidex(registers, value, subleaf);
 | |
|       *rEAX = registers[0];
 | |
|       *rEBX = registers[1];
 | |
|       *rECX = registers[2];
 | |
|       *rEDX = registers[3];
 | |
|       return false;
 | |
|     #else
 | |
|       return true;
 | |
|     #endif
 | |
|   #else
 | |
|     return true;
 | |
|   #endif
 | |
| #elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)
 | |
|   #if defined(__GNUC__)
 | |
|     asm ("movl\t%%ebx, %%esi\n\t"
 | |
|          "cpuid\n\t"
 | |
|          "xchgl\t%%ebx, %%esi\n\t"
 | |
|          : "=a" (*rEAX),
 | |
|            "=S" (*rEBX),
 | |
|            "=c" (*rECX),
 | |
|            "=d" (*rEDX)
 | |
|          :  "a" (value),
 | |
|             "c" (subleaf));
 | |
|     return false;
 | |
|   #elif defined(_MSC_VER)
 | |
|     __asm {
 | |
|       mov   eax,value
 | |
|       mov   ecx,subleaf
 | |
|       cpuid
 | |
|       mov   esi,rEAX
 | |
|       mov   dword ptr [esi],eax
 | |
|       mov   esi,rEBX
 | |
|       mov   dword ptr [esi],ebx
 | |
|       mov   esi,rECX
 | |
|       mov   dword ptr [esi],ecx
 | |
|       mov   esi,rEDX
 | |
|       mov   dword ptr [esi],edx
 | |
|     }
 | |
|     return false;
 | |
|   #else
 | |
|     return true;
 | |
|   #endif
 | |
| #else
 | |
|   return true;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static bool OSHasAVXSupport() {
 | |
| #if defined(__GNUC__)
 | |
|   // Check xgetbv; this uses a .byte sequence instead of the instruction
 | |
|   // directly because older assemblers do not include support for xgetbv and
 | |
|   // there is no easy way to conditionally compile based on the assembler used.
 | |
|   int rEAX, rEDX;
 | |
|   __asm__ (".byte 0x0f, 0x01, 0xd0" : "=a" (rEAX), "=d" (rEDX) : "c" (0));
 | |
| #elif defined(_MSC_FULL_VER) && defined(_XCR_XFEATURE_ENABLED_MASK)
 | |
|   unsigned long long rEAX = _xgetbv(_XCR_XFEATURE_ENABLED_MASK);
 | |
| #else
 | |
|   int rEAX = 0; // Ensures we return false
 | |
| #endif
 | |
|   return (rEAX & 6) == 6;
 | |
| }
 | |
| 
 | |
| static void DetectX86FamilyModel(unsigned EAX, unsigned &Family,
 | |
|                                  unsigned &Model) {
 | |
|   Family = (EAX >> 8) & 0xf; // Bits 8 - 11
 | |
|   Model  = (EAX >> 4) & 0xf; // Bits 4 - 7
 | |
|   if (Family == 6 || Family == 0xf) {
 | |
|     if (Family == 0xf)
 | |
|       // Examine extended family ID if family ID is F.
 | |
|       Family += (EAX >> 20) & 0xff;    // Bits 20 - 27
 | |
|     // Examine extended model ID if family ID is 6 or F.
 | |
|     Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
 | |
|   }
 | |
| }
 | |
| 
 | |
| StringRef sys::getHostCPUName() {
 | |
|   unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
 | |
|   if (GetX86CpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX))
 | |
|     return "generic";
 | |
|   unsigned Family = 0;
 | |
|   unsigned Model  = 0;
 | |
|   DetectX86FamilyModel(EAX, Family, Model);
 | |
| 
 | |
|   union {
 | |
|     unsigned u[3];
 | |
|     char     c[12];
 | |
|   } text;
 | |
| 
 | |
|   GetX86CpuIDAndInfo(0, &EAX, text.u+0, text.u+2, text.u+1);
 | |
| 
 | |
|   unsigned MaxLeaf = EAX;
 | |
|   bool HasSSE3 = (ECX & 0x1);
 | |
|   bool HasSSE41 = (ECX & 0x80000);
 | |
|   // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV 
 | |
|   // indicates that the AVX registers will be saved and restored on context
 | |
|   // switch, then we have full AVX support.
 | |
|   const unsigned AVXBits = (1 << 27) | (1 << 28);
 | |
|   bool HasAVX = ((ECX & AVXBits) == AVXBits) && OSHasAVXSupport();
 | |
|   bool HasAVX2 = HasAVX && MaxLeaf >= 0x7 &&
 | |
|                  !GetX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX) &&
 | |
|                  (EBX & 0x20);
 | |
|   GetX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
 | |
|   bool Em64T = (EDX >> 29) & 0x1;
 | |
|   bool HasTBM = (ECX >> 21) & 0x1;
 | |
| 
 | |
|   if (memcmp(text.c, "GenuineIntel", 12) == 0) {
 | |
|     switch (Family) {
 | |
|     case 3:
 | |
|       return "i386";
 | |
|     case 4:
 | |
|       switch (Model) {
 | |
|       case 0: // Intel486 DX processors
 | |
|       case 1: // Intel486 DX processors
 | |
|       case 2: // Intel486 SX processors
 | |
|       case 3: // Intel487 processors, IntelDX2 OverDrive processors,
 | |
|               // IntelDX2 processors
 | |
|       case 4: // Intel486 SL processor
 | |
|       case 5: // IntelSX2 processors
 | |
|       case 7: // Write-Back Enhanced IntelDX2 processors
 | |
|       case 8: // IntelDX4 OverDrive processors, IntelDX4 processors
 | |
|       default: return "i486";
 | |
|       }
 | |
|     case 5:
 | |
|       switch (Model) {
 | |
|       case  1: // Pentium OverDrive processor for Pentium processor (60, 66),
 | |
|                // Pentium processors (60, 66)
 | |
|       case  2: // Pentium OverDrive processor for Pentium processor (75, 90,
 | |
|                // 100, 120, 133), Pentium processors (75, 90, 100, 120, 133,
 | |
|                // 150, 166, 200)
 | |
|       case  3: // Pentium OverDrive processors for Intel486 processor-based
 | |
|                // systems
 | |
|         return "pentium";
 | |
| 
 | |
|       case  4: // Pentium OverDrive processor with MMX technology for Pentium
 | |
|                // processor (75, 90, 100, 120, 133), Pentium processor with
 | |
|                // MMX technology (166, 200)
 | |
|         return "pentium-mmx";
 | |
| 
 | |
|       default: return "pentium";
 | |
|       }
 | |
|     case 6:
 | |
|       switch (Model) {
 | |
|       case  1: // Pentium Pro processor
 | |
|         return "pentiumpro";
 | |
| 
 | |
|       case  3: // Intel Pentium II OverDrive processor, Pentium II processor,
 | |
|                // model 03
 | |
|       case  5: // Pentium II processor, model 05, Pentium II Xeon processor,
 | |
|                // model 05, and Intel Celeron processor, model 05
 | |
|       case  6: // Celeron processor, model 06
 | |
|         return "pentium2";
 | |
| 
 | |
|       case  7: // Pentium III processor, model 07, and Pentium III Xeon
 | |
|                // processor, model 07
 | |
|       case  8: // Pentium III processor, model 08, Pentium III Xeon processor,
 | |
|                // model 08, and Celeron processor, model 08
 | |
|       case 10: // Pentium III Xeon processor, model 0Ah
 | |
|       case 11: // Pentium III processor, model 0Bh
 | |
|         return "pentium3";
 | |
| 
 | |
|       case  9: // Intel Pentium M processor, Intel Celeron M processor model 09.
 | |
|       case 13: // Intel Pentium M processor, Intel Celeron M processor, model
 | |
|                // 0Dh. All processors are manufactured using the 90 nm process.
 | |
|         return "pentium-m";
 | |
| 
 | |
|       case 14: // Intel Core Duo processor, Intel Core Solo processor, model
 | |
|                // 0Eh. All processors are manufactured using the 65 nm process.
 | |
|         return "yonah";
 | |
| 
 | |
|       case 15: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile
 | |
|                // processor, Intel Core 2 Quad processor, Intel Core 2 Quad
 | |
|                // mobile processor, Intel Core 2 Extreme processor, Intel
 | |
|                // Pentium Dual-Core processor, Intel Xeon processor, model
 | |
|                // 0Fh. All processors are manufactured using the 65 nm process.
 | |
|       case 22: // Intel Celeron processor model 16h. All processors are
 | |
|                // manufactured using the 65 nm process
 | |
|         return "core2";
 | |
| 
 | |
|       case 21: // Intel EP80579 Integrated Processor and Intel EP80579
 | |
|                // Integrated Processor with Intel QuickAssist Technology
 | |
|         return "i686"; // FIXME: ???
 | |
| 
 | |
|       case 23: // Intel Core 2 Extreme processor, Intel Xeon processor, model
 | |
|                // 17h. All processors are manufactured using the 45 nm process.
 | |
|                //
 | |
|                // 45nm: Penryn , Wolfdale, Yorkfield (XE)
 | |
|         // Not all Penryn processors support SSE 4.1 (such as the Pentium brand)
 | |
|         return HasSSE41 ? "penryn" : "core2";
 | |
| 
 | |
|       case 26: // Intel Core i7 processor and Intel Xeon processor. All
 | |
|                // processors are manufactured using the 45 nm process.
 | |
|       case 29: // Intel Xeon processor MP. All processors are manufactured using
 | |
|                // the 45 nm process.
 | |
|       case 30: // Intel(R) Core(TM) i7 CPU         870  @ 2.93GHz.
 | |
|                // As found in a Summer 2010 model iMac.
 | |
|       case 37: // Intel Core i7, laptop version.
 | |
|       case 44: // Intel Core i7 processor and Intel Xeon processor. All
 | |
|                // processors are manufactured using the 32 nm process.
 | |
|       case 46: // Nehalem EX
 | |
|       case 47: // Westmere EX
 | |
|         return "corei7";
 | |
| 
 | |
|       // SandyBridge:
 | |
|       case 42: // Intel Core i7 processor. All processors are manufactured
 | |
|                // using the 32 nm process.
 | |
|       case 45:
 | |
|         // Not all Sandy Bridge processors support AVX (such as the Pentium
 | |
|         // versions instead of the i7 versions).
 | |
|         return HasAVX ? "corei7-avx" : "corei7";
 | |
| 
 | |
|       // Ivy Bridge:
 | |
|       case 58:
 | |
|       case 62: // Ivy Bridge EP
 | |
|         // Not all Ivy Bridge processors support AVX (such as the Pentium
 | |
|         // versions instead of the i7 versions).
 | |
|         return HasAVX ? "core-avx-i" : "corei7";
 | |
| 
 | |
|       // Haswell:
 | |
|       case 60:
 | |
|       case 63:
 | |
|       case 69:
 | |
|       case 70:
 | |
|         // Not all Haswell processors support AVX too (such as the Pentium
 | |
|         // versions instead of the i7 versions).
 | |
|         return HasAVX2 ? "core-avx2" : "corei7";
 | |
| 
 | |
|       case 28: // Most 45 nm Intel Atom processors
 | |
|       case 38: // 45 nm Atom Lincroft
 | |
|       case 39: // 32 nm Atom Medfield
 | |
|       case 53: // 32 nm Atom Midview
 | |
|       case 54: // 32 nm Atom Midview
 | |
|         return "atom";
 | |
| 
 | |
|       // Atom Silvermont codes from the Intel software optimization guide.
 | |
|       case 55:
 | |
|       case 74:
 | |
|       case 77:
 | |
|         return "slm";
 | |
| 
 | |
|       default: return (Em64T) ? "x86-64" : "i686";
 | |
|       }
 | |
|     case 15: {
 | |
|       switch (Model) {
 | |
|       case  0: // Pentium 4 processor, Intel Xeon processor. All processors are
 | |
|                // model 00h and manufactured using the 0.18 micron process.
 | |
|       case  1: // Pentium 4 processor, Intel Xeon processor, Intel Xeon
 | |
|                // processor MP, and Intel Celeron processor. All processors are
 | |
|                // model 01h and manufactured using the 0.18 micron process.
 | |
|       case  2: // Pentium 4 processor, Mobile Intel Pentium 4 processor - M,
 | |
|                // Intel Xeon processor, Intel Xeon processor MP, Intel Celeron
 | |
|                // processor, and Mobile Intel Celeron processor. All processors
 | |
|                // are model 02h and manufactured using the 0.13 micron process.
 | |
|         return (Em64T) ? "x86-64" : "pentium4";
 | |
| 
 | |
|       case  3: // Pentium 4 processor, Intel Xeon processor, Intel Celeron D
 | |
|                // processor. All processors are model 03h and manufactured using
 | |
|                // the 90 nm process.
 | |
|       case  4: // Pentium 4 processor, Pentium 4 processor Extreme Edition,
 | |
|                // Pentium D processor, Intel Xeon processor, Intel Xeon
 | |
|                // processor MP, Intel Celeron D processor. All processors are
 | |
|                // model 04h and manufactured using the 90 nm process.
 | |
|       case  6: // Pentium 4 processor, Pentium D processor, Pentium processor
 | |
|                // Extreme Edition, Intel Xeon processor, Intel Xeon processor
 | |
|                // MP, Intel Celeron D processor. All processors are model 06h
 | |
|                // and manufactured using the 65 nm process.
 | |
|         return (Em64T) ? "nocona" : "prescott";
 | |
| 
 | |
|       default:
 | |
|         return (Em64T) ? "x86-64" : "pentium4";
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     default:
 | |
|       return "generic";
 | |
|     }
 | |
|   } else if (memcmp(text.c, "AuthenticAMD", 12) == 0) {
 | |
|     // FIXME: this poorly matches the generated SubtargetFeatureKV table.  There
 | |
|     // appears to be no way to generate the wide variety of AMD-specific targets
 | |
|     // from the information returned from CPUID.
 | |
|     switch (Family) {
 | |
|       case 4:
 | |
|         return "i486";
 | |
|       case 5:
 | |
|         switch (Model) {
 | |
|         case 6:
 | |
|         case 7:  return "k6";
 | |
|         case 8:  return "k6-2";
 | |
|         case 9:
 | |
|         case 13: return "k6-3";
 | |
|         case 10: return "geode";
 | |
|         default: return "pentium";
 | |
|         }
 | |
|       case 6:
 | |
|         switch (Model) {
 | |
|         case 4:  return "athlon-tbird";
 | |
|         case 6:
 | |
|         case 7:
 | |
|         case 8:  return "athlon-mp";
 | |
|         case 10: return "athlon-xp";
 | |
|         default: return "athlon";
 | |
|         }
 | |
|       case 15:
 | |
|         if (HasSSE3)
 | |
|           return "k8-sse3";
 | |
|         switch (Model) {
 | |
|         case 1:  return "opteron";
 | |
|         case 5:  return "athlon-fx"; // also opteron
 | |
|         default: return "athlon64";
 | |
|         }
 | |
|       case 16:
 | |
|         return "amdfam10";
 | |
|       case 20:
 | |
|         return "btver1";
 | |
|       case 21:
 | |
|         if (!HasAVX) // If the OS doesn't support AVX provide a sane fallback.
 | |
|           return "btver1";
 | |
|         if (Model >= 0x50)
 | |
|           return "bdver4"; // 50h-6Fh: Excavator
 | |
|         if (Model >= 0x30)
 | |
|           return "bdver3"; // 30h-3Fh: Steamroller
 | |
|         if (Model >= 0x10 || HasTBM)
 | |
|           return "bdver2"; // 10h-1Fh: Piledriver
 | |
|         return "bdver1";   // 00h-0Fh: Bulldozer
 | |
|       case 22:
 | |
|         if (!HasAVX) // If the OS doesn't support AVX provide a sane fallback.
 | |
|           return "btver1";
 | |
|         return "btver2";
 | |
|     default:
 | |
|       return "generic";
 | |
|     }
 | |
|   }
 | |
|   return "generic";
 | |
| }
 | |
| #elif defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))
 | |
| StringRef sys::getHostCPUName() {
 | |
|   host_basic_info_data_t hostInfo;
 | |
|   mach_msg_type_number_t infoCount;
 | |
| 
 | |
|   infoCount = HOST_BASIC_INFO_COUNT;
 | |
|   host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&hostInfo, 
 | |
|             &infoCount);
 | |
|             
 | |
|   if (hostInfo.cpu_type != CPU_TYPE_POWERPC) return "generic";
 | |
| 
 | |
|   switch(hostInfo.cpu_subtype) {
 | |
|   case CPU_SUBTYPE_POWERPC_601:   return "601";
 | |
|   case CPU_SUBTYPE_POWERPC_602:   return "602";
 | |
|   case CPU_SUBTYPE_POWERPC_603:   return "603";
 | |
|   case CPU_SUBTYPE_POWERPC_603e:  return "603e";
 | |
|   case CPU_SUBTYPE_POWERPC_603ev: return "603ev";
 | |
|   case CPU_SUBTYPE_POWERPC_604:   return "604";
 | |
|   case CPU_SUBTYPE_POWERPC_604e:  return "604e";
 | |
|   case CPU_SUBTYPE_POWERPC_620:   return "620";
 | |
|   case CPU_SUBTYPE_POWERPC_750:   return "750";
 | |
|   case CPU_SUBTYPE_POWERPC_7400:  return "7400";
 | |
|   case CPU_SUBTYPE_POWERPC_7450:  return "7450";
 | |
|   case CPU_SUBTYPE_POWERPC_970:   return "970";
 | |
|   default: ;
 | |
|   }
 | |
|   
 | |
|   return "generic";
 | |
| }
 | |
| #elif defined(__linux__) && (defined(__ppc__) || defined(__powerpc__))
 | |
| StringRef sys::getHostCPUName() {
 | |
|   // Access to the Processor Version Register (PVR) on PowerPC is privileged,
 | |
|   // and so we must use an operating-system interface to determine the current
 | |
|   // processor type. On Linux, this is exposed through the /proc/cpuinfo file.
 | |
|   const char *generic = "generic";
 | |
| 
 | |
|   // Note: We cannot mmap /proc/cpuinfo here and then process the resulting
 | |
|   // memory buffer because the 'file' has 0 size (it can be read from only
 | |
|   // as a stream).
 | |
| 
 | |
|   std::string Err;
 | |
|   DataStreamer *DS = getDataFileStreamer("/proc/cpuinfo", &Err);
 | |
|   if (!DS) {
 | |
|     DEBUG(dbgs() << "Unable to open /proc/cpuinfo: " << Err << "\n");
 | |
|     return generic;
 | |
|   }
 | |
| 
 | |
|   // The cpu line is second (after the 'processor: 0' line), so if this
 | |
|   // buffer is too small then something has changed (or is wrong).
 | |
|   char buffer[1024];
 | |
|   size_t CPUInfoSize = DS->GetBytes((unsigned char*) buffer, sizeof(buffer));
 | |
|   delete DS;
 | |
| 
 | |
|   const char *CPUInfoStart = buffer;
 | |
|   const char *CPUInfoEnd = buffer + CPUInfoSize;
 | |
| 
 | |
|   const char *CIP = CPUInfoStart;
 | |
| 
 | |
|   const char *CPUStart = 0;
 | |
|   size_t CPULen = 0;
 | |
| 
 | |
|   // We need to find the first line which starts with cpu, spaces, and a colon.
 | |
|   // After the colon, there may be some additional spaces and then the cpu type.
 | |
|   while (CIP < CPUInfoEnd && CPUStart == 0) {
 | |
|     if (CIP < CPUInfoEnd && *CIP == '\n')
 | |
|       ++CIP;
 | |
| 
 | |
|     if (CIP < CPUInfoEnd && *CIP == 'c') {
 | |
|       ++CIP;
 | |
|       if (CIP < CPUInfoEnd && *CIP == 'p') {
 | |
|         ++CIP;
 | |
|         if (CIP < CPUInfoEnd && *CIP == 'u') {
 | |
|           ++CIP;
 | |
|           while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
 | |
|             ++CIP;
 | |
|   
 | |
|           if (CIP < CPUInfoEnd && *CIP == ':') {
 | |
|             ++CIP;
 | |
|             while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
 | |
|               ++CIP;
 | |
|   
 | |
|             if (CIP < CPUInfoEnd) {
 | |
|               CPUStart = CIP;
 | |
|               while (CIP < CPUInfoEnd && (*CIP != ' ' && *CIP != '\t' &&
 | |
|                                           *CIP != ',' && *CIP != '\n'))
 | |
|                 ++CIP;
 | |
|               CPULen = CIP - CPUStart;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (CPUStart == 0)
 | |
|       while (CIP < CPUInfoEnd && *CIP != '\n')
 | |
|         ++CIP;
 | |
|   }
 | |
| 
 | |
|   if (CPUStart == 0)
 | |
|     return generic;
 | |
| 
 | |
|   return StringSwitch<const char *>(StringRef(CPUStart, CPULen))
 | |
|     .Case("604e", "604e")
 | |
|     .Case("604", "604")
 | |
|     .Case("7400", "7400")
 | |
|     .Case("7410", "7400")
 | |
|     .Case("7447", "7400")
 | |
|     .Case("7455", "7450")
 | |
|     .Case("G4", "g4")
 | |
|     .Case("POWER4", "970")
 | |
|     .Case("PPC970FX", "970")
 | |
|     .Case("PPC970MP", "970")
 | |
|     .Case("G5", "g5")
 | |
|     .Case("POWER5", "g5")
 | |
|     .Case("A2", "a2")
 | |
|     .Case("POWER6", "pwr6")
 | |
|     .Case("POWER7", "pwr7")
 | |
|     .Default(generic);
 | |
| }
 | |
| #elif defined(__linux__) && defined(__arm__)
 | |
| StringRef sys::getHostCPUName() {
 | |
|   // The cpuid register on arm is not accessible from user space. On Linux,
 | |
|   // it is exposed through the /proc/cpuinfo file.
 | |
|   // Note: We cannot mmap /proc/cpuinfo here and then process the resulting
 | |
|   // memory buffer because the 'file' has 0 size (it can be read from only
 | |
|   // as a stream).
 | |
| 
 | |
|   std::string Err;
 | |
|   DataStreamer *DS = getDataFileStreamer("/proc/cpuinfo", &Err);
 | |
|   if (!DS) {
 | |
|     DEBUG(dbgs() << "Unable to open /proc/cpuinfo: " << Err << "\n");
 | |
|     return "generic";
 | |
|   }
 | |
| 
 | |
|   // Read 1024 bytes from /proc/cpuinfo, which should contain the CPU part line
 | |
|   // in all cases.
 | |
|   char buffer[1024];
 | |
|   size_t CPUInfoSize = DS->GetBytes((unsigned char*) buffer, sizeof(buffer));
 | |
|   delete DS;
 | |
| 
 | |
|   StringRef Str(buffer, CPUInfoSize);
 | |
| 
 | |
|   SmallVector<StringRef, 32> Lines;
 | |
|   Str.split(Lines, "\n");
 | |
| 
 | |
|   // Look for the CPU implementer line.
 | |
|   StringRef Implementer;
 | |
|   for (unsigned I = 0, E = Lines.size(); I != E; ++I)
 | |
|     if (Lines[I].startswith("CPU implementer"))
 | |
|       Implementer = Lines[I].substr(15).ltrim("\t :");
 | |
| 
 | |
|   if (Implementer == "0x41") // ARM Ltd.
 | |
|     // Look for the CPU part line.
 | |
|     for (unsigned I = 0, E = Lines.size(); I != E; ++I)
 | |
|       if (Lines[I].startswith("CPU part"))
 | |
|         // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
 | |
|         // values correspond to the "Part number" in the CP15/c0 register. The
 | |
|         // contents are specified in the various processor manuals.
 | |
|         return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
 | |
|           .Case("0x926", "arm926ej-s")
 | |
|           .Case("0xb02", "mpcore")
 | |
|           .Case("0xb36", "arm1136j-s")
 | |
|           .Case("0xb56", "arm1156t2-s")
 | |
|           .Case("0xb76", "arm1176jz-s")
 | |
|           .Case("0xc08", "cortex-a8")
 | |
|           .Case("0xc09", "cortex-a9")
 | |
|           .Case("0xc0f", "cortex-a15")
 | |
|           .Case("0xc20", "cortex-m0")
 | |
|           .Case("0xc23", "cortex-m3")
 | |
|           .Case("0xc24", "cortex-m4")
 | |
|           .Default("generic");
 | |
| 
 | |
|   if (Implementer == "0x51") // Qualcomm Technologies, Inc.
 | |
|     // Look for the CPU part line.
 | |
|     for (unsigned I = 0, E = Lines.size(); I != E; ++I)
 | |
|       if (Lines[I].startswith("CPU part"))
 | |
|         // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
 | |
|         // values correspond to the "Part number" in the CP15/c0 register. The
 | |
|         // contents are specified in the various processor manuals.
 | |
|         return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
 | |
|           .Case("0x06f", "krait") // APQ8064
 | |
|           .Default("generic");
 | |
| 
 | |
|   return "generic";
 | |
| }
 | |
| #elif defined(__linux__) && defined(__s390x__)
 | |
| StringRef sys::getHostCPUName() {
 | |
|   // STIDP is a privileged operation, so use /proc/cpuinfo instead.
 | |
|   // Note: We cannot mmap /proc/cpuinfo here and then process the resulting
 | |
|   // memory buffer because the 'file' has 0 size (it can be read from only
 | |
|   // as a stream).
 | |
| 
 | |
|   std::string Err;
 | |
|   DataStreamer *DS = getDataFileStreamer("/proc/cpuinfo", &Err);
 | |
|   if (!DS) {
 | |
|     DEBUG(dbgs() << "Unable to open /proc/cpuinfo: " << Err << "\n");
 | |
|     return "generic";
 | |
|   }
 | |
| 
 | |
|   // The "processor 0:" line comes after a fair amount of other information,
 | |
|   // including a cache breakdown, but this should be plenty.
 | |
|   char buffer[2048];
 | |
|   size_t CPUInfoSize = DS->GetBytes((unsigned char*) buffer, sizeof(buffer));
 | |
|   delete DS;
 | |
| 
 | |
|   StringRef Str(buffer, CPUInfoSize);
 | |
|   SmallVector<StringRef, 32> Lines;
 | |
|   Str.split(Lines, "\n");
 | |
|   for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
 | |
|     if (Lines[I].startswith("processor ")) {
 | |
|       size_t Pos = Lines[I].find("machine = ");
 | |
|       if (Pos != StringRef::npos) {
 | |
|         Pos += sizeof("machine = ") - 1;
 | |
|         unsigned int Id;
 | |
|         if (!Lines[I].drop_front(Pos).getAsInteger(10, Id)) {
 | |
|           if (Id >= 2827)
 | |
|             return "zEC12";
 | |
|           if (Id >= 2817)
 | |
|             return "z196";
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return "generic";
 | |
| }
 | |
| #else
 | |
| StringRef sys::getHostCPUName() {
 | |
|   return "generic";
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if defined(__linux__) && (defined(__arm__) || defined(__aarch64__))
 | |
| bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
 | |
|   std::string Err;
 | |
|   DataStreamer *DS = getDataFileStreamer("/proc/cpuinfo", &Err);
 | |
|   if (!DS) {
 | |
|     DEBUG(dbgs() << "Unable to open /proc/cpuinfo: " << Err << "\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Read 1024 bytes from /proc/cpuinfo, which should contain the Features line
 | |
|   // in all cases.
 | |
|   char buffer[1024];
 | |
|   size_t CPUInfoSize = DS->GetBytes((unsigned char*) buffer, sizeof(buffer));
 | |
|   delete DS;
 | |
| 
 | |
|   StringRef Str(buffer, CPUInfoSize);
 | |
| 
 | |
|   SmallVector<StringRef, 32> Lines;
 | |
|   Str.split(Lines, "\n");
 | |
| 
 | |
|   SmallVector<StringRef, 32> CPUFeatures;
 | |
| 
 | |
|   // Look for the CPU features.
 | |
|   for (unsigned I = 0, E = Lines.size(); I != E; ++I)
 | |
|     if (Lines[I].startswith("Features")) {
 | |
|       Lines[I].split(CPUFeatures, " ");
 | |
|       break;
 | |
|     }
 | |
| 
 | |
| #if defined(__aarch64__)
 | |
|   // Keep track of which crypto features we have seen
 | |
|   enum {
 | |
|     CAP_AES   = 0x1,
 | |
|     CAP_PMULL = 0x2,
 | |
|     CAP_SHA1  = 0x4,
 | |
|     CAP_SHA2  = 0x8
 | |
|   };
 | |
|   uint32_t crypto = 0;
 | |
| #endif
 | |
| 
 | |
|   for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
 | |
|     StringRef LLVMFeatureStr = StringSwitch<StringRef>(CPUFeatures[I])
 | |
| #if defined(__aarch64__)
 | |
|       .Case("asimd", "neon")
 | |
|       .Case("fp", "fp-armv8")
 | |
|       .Case("crc32", "crc")
 | |
| #else
 | |
|       .Case("half", "fp16")
 | |
|       .Case("neon", "neon")
 | |
|       .Case("vfpv3", "vfp3")
 | |
|       .Case("vfpv3d16", "d16")
 | |
|       .Case("vfpv4", "vfp4")
 | |
|       .Case("idiva", "hwdiv-arm")
 | |
|       .Case("idivt", "hwdiv")
 | |
| #endif
 | |
|       .Default("");
 | |
| 
 | |
| #if defined(__aarch64__)
 | |
|     // We need to check crypto separately since we need all of the crypto
 | |
|     // extensions to enable the subtarget feature
 | |
|     if (CPUFeatures[I] == "aes")
 | |
|       crypto |= CAP_AES;
 | |
|     else if (CPUFeatures[I] == "pmull")
 | |
|       crypto |= CAP_PMULL;
 | |
|     else if (CPUFeatures[I] == "sha1")
 | |
|       crypto |= CAP_SHA1;
 | |
|     else if (CPUFeatures[I] == "sha2")
 | |
|       crypto |= CAP_SHA2;
 | |
| #endif
 | |
| 
 | |
|     if (LLVMFeatureStr != "")
 | |
|       Features.GetOrCreateValue(LLVMFeatureStr).setValue(true);
 | |
|   }
 | |
| 
 | |
| #if defined(__aarch64__)
 | |
|   // If we have all crypto bits we can add the feature
 | |
|   if (crypto == (CAP_AES | CAP_PMULL | CAP_SHA1 | CAP_SHA2))
 | |
|     Features.GetOrCreateValue("crypto").setValue(true);
 | |
| #endif
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| #else
 | |
| bool sys::getHostCPUFeatures(StringMap<bool> &Features){
 | |
|   return false;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| std::string sys::getProcessTriple() {
 | |
|   Triple PT(Triple::normalize(LLVM_HOST_TRIPLE));
 | |
| 
 | |
|   if (sizeof(void *) == 8 && PT.isArch32Bit())
 | |
|     PT = PT.get64BitArchVariant();
 | |
|   if (sizeof(void *) == 4 && PT.isArch64Bit())
 | |
|     PT = PT.get32BitArchVariant();
 | |
| 
 | |
|   return PT.str();
 | |
| }
 |