mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	that the nodes can be folded with other nodes, and we can not duplicate code in every backend. Alpha will probably want this too. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@23835 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1727 lines
		
	
	
		
			61 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1727 lines
		
	
	
		
			61 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- PPC32ISelPattern.cpp - A pattern matching inst selector for PPC32 -===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by Nate Begeman and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines a pattern matching instruction selector for 32 bit PowerPC.
 | |
| // Magic number generation for integer divide from the PowerPC Compiler Writer's
 | |
| // Guide, section 3.2.3.5
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "PPC.h"
 | |
| #include "PPCInstrBuilder.h"
 | |
| #include "PPCTargetMachine.h"
 | |
| #include "PPCISelLowering.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/CodeGen/MachineConstantPool.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/SelectionDAG.h"
 | |
| #include "llvm/CodeGen/SelectionDAGISel.h"
 | |
| #include "llvm/CodeGen/SSARegMap.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include <set>
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
| Statistic<> Recorded("ppc-codegen", "Number of recording ops emitted");
 | |
| Statistic<> FusedFP ("ppc-codegen", "Number of fused fp operations");
 | |
| Statistic<> FrameOff("ppc-codegen", "Number of frame idx offsets collapsed");
 | |
| 
 | |
| //===--------------------------------------------------------------------===//
 | |
| // ISel - PPC32 specific code to select PPC32 machine instructions for
 | |
| // SelectionDAG operations.
 | |
| //===--------------------------------------------------------------------===//
 | |
| 
 | |
| class ISel : public SelectionDAGISel {
 | |
|   PPCTargetLowering PPCLowering;
 | |
|   SelectionDAG *ISelDAG;  // Hack to support us having a dag->dag transform
 | |
|                           // for sdiv and udiv until it is put into the future
 | |
|                           // dag combiner.
 | |
| 
 | |
|   /// ExprMap - As shared expressions are codegen'd, we keep track of which
 | |
|   /// vreg the value is produced in, so we only emit one copy of each compiled
 | |
|   /// tree.
 | |
|   std::map<SDOperand, unsigned> ExprMap;
 | |
| 
 | |
|   unsigned GlobalBaseReg;
 | |
|   bool GlobalBaseInitialized;
 | |
|   bool RecordSuccess;
 | |
| public:
 | |
|   ISel(TargetMachine &TM) : SelectionDAGISel(PPCLowering), PPCLowering(TM),
 | |
|                             ISelDAG(0) {}
 | |
| 
 | |
|   /// runOnFunction - Override this function in order to reset our per-function
 | |
|   /// variables.
 | |
|   virtual bool runOnFunction(Function &Fn) {
 | |
|     // Make sure we re-emit a set of the global base reg if necessary
 | |
|     GlobalBaseInitialized = false;
 | |
|     return SelectionDAGISel::runOnFunction(Fn);
 | |
|   }
 | |
| 
 | |
|   /// InstructionSelectBasicBlock - This callback is invoked by
 | |
|   /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
 | |
|   virtual void InstructionSelectBasicBlock(SelectionDAG &DAG) {
 | |
|     DEBUG(BB->dump());
 | |
|     // Codegen the basic block.
 | |
|     ISelDAG = &DAG;
 | |
|     Select(DAG.getRoot());
 | |
| 
 | |
|     // Clear state used for selection.
 | |
|     ExprMap.clear();
 | |
|     ISelDAG = 0;
 | |
|   }
 | |
| 
 | |
|   // convenience functions for virtual register creation
 | |
|   inline unsigned MakeIntReg() {
 | |
|     return RegMap->createVirtualRegister(PPC::GPRCRegisterClass);
 | |
|   }
 | |
|   
 | |
|   // dag -> dag expanders for integer divide by constant
 | |
|   SDOperand BuildSDIVSequence(SDOperand N);
 | |
|   SDOperand BuildUDIVSequence(SDOperand N);
 | |
| 
 | |
|   unsigned getGlobalBaseReg();
 | |
|   void MoveCRtoGPR(unsigned CCReg, ISD::CondCode CC, unsigned Result);
 | |
|   bool SelectBitfieldInsert(SDOperand OR, unsigned Result);
 | |
|   unsigned FoldIfWideZeroExtend(SDOperand N);
 | |
|   unsigned SelectCC(SDOperand LHS, SDOperand RHS, ISD::CondCode CC);
 | |
|   bool SelectIntImmediateExpr(SDOperand N, unsigned Result,
 | |
|                               unsigned OCHi, unsigned OCLo,
 | |
|                               bool IsArithmetic = false, bool Negate = false);
 | |
|   unsigned SelectExpr(SDOperand N, bool Recording=false);
 | |
|   void Select(SDOperand N);
 | |
| 
 | |
|   unsigned SelectAddr(SDOperand N, unsigned& Reg, int& offset);
 | |
|   void SelectBranchCC(SDOperand N);
 | |
|   
 | |
|   virtual const char *getPassName() const {
 | |
|     return "PowerPC Pattern Instruction Selection";
 | |
|   } 
 | |
| };
 | |
| 
 | |
| // isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
 | |
| // any number of 0s on either side.  The 1s are allowed to wrap from LSB to
 | |
| // MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.  0x0F0F0000 is
 | |
| // not, since all 1s are not contiguous.
 | |
| static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) {
 | |
|   if (isShiftedMask_32(Val)) {
 | |
|     // look for the first non-zero bit
 | |
|     MB = CountLeadingZeros_32(Val);
 | |
|     // look for the first zero bit after the run of ones
 | |
|     ME = CountLeadingZeros_32((Val - 1) ^ Val);
 | |
|     return true;
 | |
|   } else if (isShiftedMask_32(Val = ~Val)) { // invert mask
 | |
|     // effectively look for the first zero bit
 | |
|     ME = CountLeadingZeros_32(Val) - 1;
 | |
|     // effectively look for the first one bit after the run of zeros
 | |
|     MB = CountLeadingZeros_32((Val - 1) ^ Val) + 1;
 | |
|     return true;
 | |
|   }
 | |
|   // no run present
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // isRotateAndMask - Returns true if Mask and Shift can be folded in to a rotate
 | |
| // and mask opcode and mask operation.
 | |
| static bool isRotateAndMask(unsigned Opcode, unsigned Shift, unsigned Mask,
 | |
|                             bool IsShiftMask,
 | |
|                             unsigned &SH, unsigned &MB, unsigned &ME) {
 | |
|   if (Shift > 31) return false;
 | |
|   unsigned Indeterminant = ~0;       // bit mask marking indeterminant results
 | |
|   
 | |
|   if (Opcode == ISD::SHL) { // shift left
 | |
|     // apply shift to mask if it comes first
 | |
|     if (IsShiftMask) Mask = Mask << Shift;
 | |
|     // determine which bits are made indeterminant by shift
 | |
|     Indeterminant = ~(0xFFFFFFFFu << Shift);
 | |
|   } else if (Opcode == ISD::SRL) { // shift rights
 | |
|     // apply shift to mask if it comes first
 | |
|     if (IsShiftMask) Mask = Mask >> Shift;
 | |
|     // determine which bits are made indeterminant by shift
 | |
|     Indeterminant = ~(0xFFFFFFFFu >> Shift);
 | |
|     // adjust for the left rotate
 | |
|     Shift = 32 - Shift;
 | |
|   }
 | |
|   
 | |
|   // if the mask doesn't intersect any Indeterminant bits
 | |
|   if (Mask && !(Mask & Indeterminant)) {
 | |
|     SH = Shift;
 | |
|     // make sure the mask is still a mask (wrap arounds may not be)
 | |
|     return isRunOfOnes(Mask, MB, ME);
 | |
|   }
 | |
|   
 | |
|   // can't do it
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // isIntImmediate - This method tests to see if a constant operand.
 | |
| // If so Imm will receive the 32 bit value.
 | |
| static bool isIntImmediate(SDOperand N, unsigned& Imm) {
 | |
|   // test for constant
 | |
|   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
 | |
|     // retrieve value
 | |
|     Imm = (unsigned)CN->getValue();
 | |
|     // passes muster
 | |
|     return true;
 | |
|   }
 | |
|   // not a constant
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // isOpcWithIntImmediate - This method tests to see if the node is a specific
 | |
| // opcode and that it has a immediate integer right operand.
 | |
| // If so Imm will receive the 32 bit value.
 | |
| static bool isOpcWithIntImmediate(SDOperand N, unsigned Opc, unsigned& Imm) {
 | |
|   return N.getOpcode() == Opc && isIntImmediate(N.getOperand(1), Imm);
 | |
| }
 | |
| 
 | |
| // isOprShiftImm - Returns true if the specified operand is a shift opcode with
 | |
| // a immediate shift count less than 32.
 | |
| static bool isOprShiftImm(SDOperand N, unsigned& Opc, unsigned& SH) {
 | |
|   Opc = N.getOpcode();
 | |
|   return (Opc == ISD::SHL || Opc == ISD::SRL || Opc == ISD::SRA) &&
 | |
|          isIntImmediate(N.getOperand(1), SH) && SH < 32;
 | |
| }
 | |
| 
 | |
| // isOprNot - Returns true if the specified operand is an xor with immediate -1.
 | |
| static bool isOprNot(SDOperand N) {
 | |
|   unsigned Imm;
 | |
|   return isOpcWithIntImmediate(N, ISD::XOR, Imm) && (signed)Imm == -1;
 | |
| }
 | |
| 
 | |
| // Immediate constant composers.
 | |
| // Lo16 - grabs the lo 16 bits from a 32 bit constant.
 | |
| // Hi16 - grabs the hi 16 bits from a 32 bit constant.
 | |
| // HA16 - computes the hi bits required if the lo bits are add/subtracted in
 | |
| // arithmethically.
 | |
| static unsigned Lo16(unsigned x)  { return x & 0x0000FFFF; }
 | |
| static unsigned Hi16(unsigned x)  { return Lo16(x >> 16); }
 | |
| static unsigned HA16(unsigned x)  { return Hi16((signed)x - (signed short)x); }
 | |
| 
 | |
| /// NodeHasRecordingVariant - If SelectExpr can always produce code for
 | |
| /// NodeOpcode that also sets CR0 as a side effect, return true.  Otherwise,
 | |
| /// return false.
 | |
| static bool NodeHasRecordingVariant(unsigned NodeOpcode) {
 | |
|   switch(NodeOpcode) {
 | |
|   default: return false;
 | |
|   case ISD::AND:
 | |
|   case ISD::OR:
 | |
|     return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getBCCForSetCC - Returns the PowerPC condition branch mnemonic corresponding
 | |
| /// to Condition.
 | |
| static unsigned getBCCForSetCC(ISD::CondCode CC) {
 | |
|   switch (CC) {
 | |
|   default: assert(0 && "Unknown condition!"); abort();
 | |
|   case ISD::SETEQ:  return PPC::BEQ;
 | |
|   case ISD::SETNE:  return PPC::BNE;
 | |
|   case ISD::SETULT:
 | |
|   case ISD::SETLT:  return PPC::BLT;
 | |
|   case ISD::SETULE:
 | |
|   case ISD::SETLE:  return PPC::BLE;
 | |
|   case ISD::SETUGT:
 | |
|   case ISD::SETGT:  return PPC::BGT;
 | |
|   case ISD::SETUGE:
 | |
|   case ISD::SETGE:  return PPC::BGE;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// getCRIdxForSetCC - Return the index of the condition register field
 | |
| /// associated with the SetCC condition, and whether or not the field is
 | |
| /// treated as inverted.  That is, lt = 0; ge = 0 inverted.
 | |
| static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool& Inv) {
 | |
|   switch (CC) {
 | |
|   default: assert(0 && "Unknown condition!"); abort();
 | |
|   case ISD::SETULT:
 | |
|   case ISD::SETLT:  Inv = false;  return 0;
 | |
|   case ISD::SETUGE:
 | |
|   case ISD::SETGE:  Inv = true;   return 0;
 | |
|   case ISD::SETUGT:
 | |
|   case ISD::SETGT:  Inv = false;  return 1;
 | |
|   case ISD::SETULE:
 | |
|   case ISD::SETLE:  Inv = true;   return 1;
 | |
|   case ISD::SETEQ:  Inv = false;  return 2;
 | |
|   case ISD::SETNE:  Inv = true;   return 2;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// IndexedOpForOp - Return the indexed variant for each of the PowerPC load
 | |
| /// and store immediate instructions.
 | |
| static unsigned IndexedOpForOp(unsigned Opcode) {
 | |
|   switch(Opcode) {
 | |
|   default: assert(0 && "Unknown opcode!"); abort();
 | |
|   case PPC::LBZ: return PPC::LBZX;  case PPC::STB: return PPC::STBX;
 | |
|   case PPC::LHZ: return PPC::LHZX;  case PPC::STH: return PPC::STHX;
 | |
|   case PPC::LHA: return PPC::LHAX;  case PPC::STW: return PPC::STWX;
 | |
|   case PPC::LWZ: return PPC::LWZX;  case PPC::STFS: return PPC::STFSX;
 | |
|   case PPC::LFS: return PPC::LFSX;  case PPC::STFD: return PPC::STFDX;
 | |
|   case PPC::LFD: return PPC::LFDX;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| }
 | |
| 
 | |
| /// getGlobalBaseReg - Output the instructions required to put the
 | |
| /// base address to use for accessing globals into a register.
 | |
| ///
 | |
| unsigned ISel::getGlobalBaseReg() {
 | |
|   if (!GlobalBaseInitialized) {
 | |
|     // Insert the set of GlobalBaseReg into the first MBB of the function
 | |
|     MachineBasicBlock &FirstMBB = BB->getParent()->front();
 | |
|     MachineBasicBlock::iterator MBBI = FirstMBB.begin();
 | |
|     GlobalBaseReg = MakeIntReg();
 | |
|     BuildMI(FirstMBB, MBBI, PPC::MovePCtoLR, 0, PPC::LR);
 | |
|     BuildMI(FirstMBB, MBBI, PPC::MFLR, 1, GlobalBaseReg);
 | |
|     GlobalBaseInitialized = true;
 | |
|   }
 | |
|   return GlobalBaseReg;
 | |
| }
 | |
| 
 | |
| /// MoveCRtoGPR - Move CCReg[Idx] to the least significant bit of Result.  If
 | |
| /// Inv is true, then invert the result.
 | |
| void ISel::MoveCRtoGPR(unsigned CCReg, ISD::CondCode CC, unsigned Result){
 | |
|   bool Inv;
 | |
|   unsigned IntCR = MakeIntReg();
 | |
|   unsigned Idx = getCRIdxForSetCC(CC, Inv);
 | |
|   BuildMI(BB, PPC::MCRF, 1, PPC::CR7).addReg(CCReg);
 | |
|   bool GPOpt =
 | |
|     TLI.getTargetMachine().getSubtarget<PPCSubtarget>().isGigaProcessor();
 | |
|   if (GPOpt)
 | |
|     BuildMI(BB, PPC::MFOCRF, 1, IntCR).addReg(PPC::CR7);
 | |
|   else
 | |
|     BuildMI(BB, PPC::MFCR, 0, IntCR);
 | |
|   if (Inv) {
 | |
|     unsigned Tmp1 = MakeIntReg();
 | |
|     BuildMI(BB, PPC::RLWINM, 4, Tmp1).addReg(IntCR).addImm(32-(3-Idx))
 | |
|       .addImm(31).addImm(31);
 | |
|     BuildMI(BB, PPC::XORI, 2, Result).addReg(Tmp1).addImm(1);
 | |
|   } else {
 | |
|     BuildMI(BB, PPC::RLWINM, 4, Result).addReg(IntCR).addImm(32-(3-Idx))
 | |
|       .addImm(31).addImm(31);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// SelectBitfieldInsert - turn an or of two masked values into
 | |
| /// the rotate left word immediate then mask insert (rlwimi) instruction.
 | |
| /// Returns true on success, false if the caller still needs to select OR.
 | |
| ///
 | |
| /// Patterns matched:
 | |
| /// 1. or shl, and   5. or and, and
 | |
| /// 2. or and, shl   6. or shl, shr
 | |
| /// 3. or shr, and   7. or shr, shl
 | |
| /// 4. or and, shr
 | |
| bool ISel::SelectBitfieldInsert(SDOperand OR, unsigned Result) {
 | |
|   bool IsRotate = false;
 | |
|   unsigned TgtMask = 0xFFFFFFFF, InsMask = 0xFFFFFFFF, Amount = 0;
 | |
|   unsigned Value;
 | |
| 
 | |
|   SDOperand Op0 = OR.getOperand(0);
 | |
|   SDOperand Op1 = OR.getOperand(1);
 | |
| 
 | |
|   unsigned Op0Opc = Op0.getOpcode();
 | |
|   unsigned Op1Opc = Op1.getOpcode();
 | |
| 
 | |
|   // Verify that we have the correct opcodes
 | |
|   if (ISD::SHL != Op0Opc && ISD::SRL != Op0Opc && ISD::AND != Op0Opc)
 | |
|     return false;
 | |
|   if (ISD::SHL != Op1Opc && ISD::SRL != Op1Opc && ISD::AND != Op1Opc)
 | |
|     return false;
 | |
| 
 | |
|   // Generate Mask value for Target
 | |
|   if (isIntImmediate(Op0.getOperand(1), Value)) {
 | |
|     switch(Op0Opc) {
 | |
|     case ISD::SHL: TgtMask <<= Value; break;
 | |
|     case ISD::SRL: TgtMask >>= Value; break;
 | |
|     case ISD::AND: TgtMask &= Value; break;
 | |
|     }
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Generate Mask value for Insert
 | |
|   if (isIntImmediate(Op1.getOperand(1), Value)) {
 | |
|     switch(Op1Opc) {
 | |
|     case ISD::SHL:
 | |
|       Amount = Value;
 | |
|       InsMask <<= Amount;
 | |
|       if (Op0Opc == ISD::SRL) IsRotate = true;
 | |
|       break;
 | |
|     case ISD::SRL:
 | |
|       Amount = Value;
 | |
|       InsMask >>= Amount;
 | |
|       Amount = 32-Amount;
 | |
|       if (Op0Opc == ISD::SHL) IsRotate = true;
 | |
|       break;
 | |
|     case ISD::AND:
 | |
|       InsMask &= Value;
 | |
|       break;
 | |
|     }
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   unsigned Tmp3 = 0;
 | |
| 
 | |
|   // If both of the inputs are ANDs and one of them has a logical shift by
 | |
|   // constant as its input, make that the inserted value so that we can combine
 | |
|   // the shift into the rotate part of the rlwimi instruction
 | |
|   if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
 | |
|     if (Op1.getOperand(0).getOpcode() == ISD::SHL ||
 | |
|         Op1.getOperand(0).getOpcode() == ISD::SRL) {
 | |
|       if (isIntImmediate(Op1.getOperand(0).getOperand(1), Value)) {
 | |
|         Amount = Op1.getOperand(0).getOpcode() == ISD::SHL ?
 | |
|           Value : 32 - Value;
 | |
|         Tmp3 = SelectExpr(Op1.getOperand(0).getOperand(0));
 | |
|       }
 | |
|     } else if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
 | |
|                Op0.getOperand(0).getOpcode() == ISD::SRL) {
 | |
|       if (isIntImmediate(Op0.getOperand(0).getOperand(1), Value)) {
 | |
|         std::swap(Op0, Op1);
 | |
|         std::swap(TgtMask, InsMask);
 | |
|         Amount = Op1.getOperand(0).getOpcode() == ISD::SHL ?
 | |
|           Value : 32 - Value;
 | |
|         Tmp3 = SelectExpr(Op1.getOperand(0).getOperand(0));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Verify that the Target mask and Insert mask together form a full word mask
 | |
|   // and that the Insert mask is a run of set bits (which implies both are runs
 | |
|   // of set bits).  Given that, Select the arguments and generate the rlwimi
 | |
|   // instruction.
 | |
|   unsigned MB, ME;
 | |
|   if (((TgtMask & InsMask) == 0) && isRunOfOnes(InsMask, MB, ME)) {
 | |
|     unsigned Tmp1, Tmp2;
 | |
|     bool fullMask = (TgtMask ^ InsMask) == 0xFFFFFFFF;
 | |
|     // Check for rotlwi / rotrwi here, a special case of bitfield insert
 | |
|     // where both bitfield halves are sourced from the same value.
 | |
|     if (IsRotate && fullMask &&
 | |
|         OR.getOperand(0).getOperand(0) == OR.getOperand(1).getOperand(0)) {
 | |
|       Tmp1 = SelectExpr(OR.getOperand(0).getOperand(0));
 | |
|       BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp1).addImm(Amount)
 | |
|         .addImm(0).addImm(31);
 | |
|       return true;
 | |
|     }
 | |
|     if (Op0Opc == ISD::AND && fullMask)
 | |
|       Tmp1 = SelectExpr(Op0.getOperand(0));
 | |
|     else
 | |
|       Tmp1 = SelectExpr(Op0);
 | |
|     Tmp2 = Tmp3 ? Tmp3 : SelectExpr(Op1.getOperand(0));
 | |
|     BuildMI(BB, PPC::RLWIMI, 5, Result).addReg(Tmp1).addReg(Tmp2)
 | |
|       .addImm(Amount).addImm(MB).addImm(ME);
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// FoldIfWideZeroExtend - 32 bit PowerPC implicit masks shift amounts to the
 | |
| /// low six bits.  If the shift amount is an ISD::AND node with a mask that is
 | |
| /// wider than the implicit mask, then we can get rid of the AND and let the
 | |
| /// shift do the mask.
 | |
| unsigned ISel::FoldIfWideZeroExtend(SDOperand N) {
 | |
|   unsigned C;
 | |
|   if (isOpcWithIntImmediate(N, ISD::AND, C) && isMask_32(C) && C > 63)
 | |
|     return SelectExpr(N.getOperand(0));
 | |
|   else
 | |
|     return SelectExpr(N);
 | |
| }
 | |
| 
 | |
| unsigned ISel::SelectCC(SDOperand LHS, SDOperand RHS, ISD::CondCode CC) {
 | |
|   unsigned Result, Tmp1, Tmp2;
 | |
|   bool AlreadySelected = false;
 | |
| 
 | |
|   // Allocate a condition register for this expression
 | |
|   Result = RegMap->createVirtualRegister(PPC::CRRCRegisterClass);
 | |
| 
 | |
|   // Use U to determine whether the SETCC immediate range is signed or not.
 | |
|   bool U = ISD::isUnsignedIntSetCC(CC);
 | |
|   if (isIntImmediate(RHS, Tmp2) && 
 | |
|       ((U && isUInt16(Tmp2)) || (!U && isInt16(Tmp2)))) {
 | |
|     Tmp2 = Lo16(Tmp2);
 | |
|     // For comparisons against zero, we can implicity set CR0 if a recording
 | |
|     // variant (e.g. 'or.' instead of 'or') of the instruction that defines
 | |
|     // operand zero of the SetCC node is available.
 | |
|     if (Tmp2 == 0 &&
 | |
|         NodeHasRecordingVariant(LHS.getOpcode()) && LHS.Val->hasOneUse()) {
 | |
|       RecordSuccess = false;
 | |
|       Tmp1 = SelectExpr(LHS, true);
 | |
|       if (RecordSuccess) {
 | |
|         ++Recorded;
 | |
|         BuildMI(BB, PPC::MCRF, 1, Result).addReg(PPC::CR0);
 | |
|         return Result;
 | |
|       }
 | |
|       AlreadySelected = true;
 | |
|     }
 | |
|     // If we could not implicitly set CR0, then emit a compare immediate
 | |
|     // instead.
 | |
|     if (!AlreadySelected) Tmp1 = SelectExpr(LHS);
 | |
|     if (U)
 | |
|       BuildMI(BB, PPC::CMPLWI, 2, Result).addReg(Tmp1).addImm(Tmp2);
 | |
|     else
 | |
|       BuildMI(BB, PPC::CMPWI, 2, Result).addReg(Tmp1).addSImm(Tmp2);
 | |
|   } else {
 | |
|     unsigned CompareOpc;
 | |
|     if (MVT::isInteger(LHS.getValueType()))
 | |
|       CompareOpc = U ? PPC::CMPLW : PPC::CMPW;
 | |
|     else if (LHS.getValueType() == MVT::f32)
 | |
|       CompareOpc = PPC::FCMPUS;
 | |
|     else
 | |
|       CompareOpc = PPC::FCMPUD;
 | |
|     Tmp1 = SelectExpr(LHS);
 | |
|     Tmp2 = SelectExpr(RHS);
 | |
|     BuildMI(BB, CompareOpc, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// Check to see if the load is a constant offset from a base register.
 | |
| unsigned ISel::SelectAddr(SDOperand N, unsigned& Reg, int& offset)
 | |
| {
 | |
|   unsigned imm = 0, opcode = N.getOpcode();
 | |
|   if (N.getOpcode() == ISD::ADD) {
 | |
|     bool isFrame = N.getOperand(0).getOpcode() == ISD::FrameIndex;
 | |
|     if (isIntImmediate(N.getOperand(1), imm) && isInt16(imm)) {
 | |
|       offset = Lo16(imm);
 | |
|       if (isFrame) {
 | |
|         ++FrameOff;
 | |
|         Reg = cast<FrameIndexSDNode>(N.getOperand(0))->getIndex();
 | |
|         return 1;
 | |
|       } else {
 | |
|         Reg = SelectExpr(N.getOperand(0));
 | |
|         return 0;
 | |
|       }
 | |
|     } else {
 | |
|       Reg = SelectExpr(N.getOperand(0));
 | |
|       offset = SelectExpr(N.getOperand(1));
 | |
|       return 2;
 | |
|     }
 | |
|   }
 | |
|   // Now check if we're dealing with a global, and whether or not we should emit
 | |
|   // an optimized load or store for statics.
 | |
|   if(GlobalAddressSDNode *GN = dyn_cast<GlobalAddressSDNode>(N)) {
 | |
|     GlobalValue *GV = GN->getGlobal();
 | |
|     if (!GV->hasWeakLinkage() && !GV->isExternal()) {
 | |
|       unsigned GlobalHi = MakeIntReg();
 | |
|       if (PICEnabled)
 | |
|         BuildMI(BB, PPC::ADDIS, 2, GlobalHi).addReg(getGlobalBaseReg())
 | |
|           .addGlobalAddress(GV);
 | |
|       else
 | |
|         BuildMI(BB, PPC::LIS, 1, GlobalHi).addGlobalAddress(GV);
 | |
|       Reg = GlobalHi;
 | |
|       offset = 0;
 | |
|       return 3;
 | |
|     }
 | |
|   }
 | |
|   Reg = SelectExpr(N);
 | |
|   offset = 0;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| void ISel::SelectBranchCC(SDOperand N)
 | |
| {
 | |
|   MachineBasicBlock *Dest =
 | |
|     cast<BasicBlockSDNode>(N.getOperand(4))->getBasicBlock();
 | |
| 
 | |
|   Select(N.getOperand(0));  //chain
 | |
|   ISD::CondCode CC = cast<CondCodeSDNode>(N.getOperand(1))->get();
 | |
|   unsigned CCReg = SelectCC(N.getOperand(2), N.getOperand(3), CC);
 | |
|   unsigned Opc = getBCCForSetCC(CC);
 | |
| 
 | |
|   // If this is a two way branch, then grab the fallthrough basic block argument
 | |
|   // and build a PowerPC branch pseudo-op, suitable for long branch conversion
 | |
|   // if necessary by the branch selection pass.  Otherwise, emit a standard
 | |
|   // conditional branch.
 | |
|   if (N.getOpcode() == ISD::BRTWOWAY_CC) {
 | |
|     MachineBasicBlock *Fallthrough =
 | |
|       cast<BasicBlockSDNode>(N.getOperand(5))->getBasicBlock();
 | |
|     BuildMI(BB, PPC::COND_BRANCH, 4).addReg(CCReg).addImm(Opc)
 | |
|       .addMBB(Dest).addMBB(Fallthrough);
 | |
|     BuildMI(BB, PPC::B, 1).addMBB(Fallthrough);
 | |
|   } else {
 | |
|     // Iterate to the next basic block
 | |
|     ilist<MachineBasicBlock>::iterator It = BB;
 | |
|     ++It;
 | |
| 
 | |
|     // If the fallthrough path is off the end of the function, which would be
 | |
|     // undefined behavior, set it to be the same as the current block because
 | |
|     // we have nothing better to set it to, and leaving it alone will cause the
 | |
|     // PowerPC Branch Selection pass to crash.
 | |
|     if (It == BB->getParent()->end()) It = Dest;
 | |
|     BuildMI(BB, PPC::COND_BRANCH, 4).addReg(CCReg).addImm(Opc)
 | |
|       .addMBB(Dest).addMBB(It);
 | |
|   }
 | |
|   return;
 | |
| }
 | |
| 
 | |
| // SelectIntImmediateExpr - Choose code for opcodes with immediate value.
 | |
| bool ISel::SelectIntImmediateExpr(SDOperand N, unsigned Result,
 | |
|                                   unsigned OCHi, unsigned OCLo,
 | |
|                                   bool IsArithmetic, bool Negate) {
 | |
|   // check constant
 | |
|   ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1));
 | |
|   // exit if not a constant
 | |
|   if (!CN) return false;
 | |
|   // extract immediate
 | |
|   unsigned C = (unsigned)CN->getValue();
 | |
|   // negate if required (ISD::SUB)
 | |
|   if (Negate) C = -C;
 | |
|   // get the hi and lo portions of constant
 | |
|   unsigned Hi = IsArithmetic ? HA16(C) : Hi16(C);
 | |
|   unsigned Lo = Lo16(C);
 | |
|   // assume no intermediate result from lo instruction (same as final result)
 | |
|   unsigned Tmp = Result;
 | |
|   // check if two instructions are needed
 | |
|   if (Hi && Lo) {
 | |
|     // exit if usage indicates it would be better to load immediate into a 
 | |
|     // register
 | |
|     if (CN->use_size() > 2) return false;
 | |
|     // need intermediate result for two instructions
 | |
|     Tmp = MakeIntReg();
 | |
|   }
 | |
|   // get first operand
 | |
|   unsigned Opr0 = SelectExpr(N.getOperand(0));
 | |
|   // is a lo instruction needed
 | |
|   if (Lo) {
 | |
|     // generate instruction for lo portion
 | |
|     BuildMI(BB, OCLo, 2, Tmp).addReg(Opr0).addImm(Lo);
 | |
|     // need to switch out first operand for hi instruction
 | |
|     Opr0 = Tmp;
 | |
|   }
 | |
|   // is a hi instruction needed
 | |
|   if (Hi) {
 | |
|     // generate instruction for hi portion
 | |
|     BuildMI(BB, OCHi, 2, Result).addReg(Opr0).addImm(Hi);
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| unsigned ISel::SelectExpr(SDOperand N, bool Recording) {
 | |
|   unsigned Result;
 | |
|   unsigned Tmp1, Tmp2, Tmp3;
 | |
|   unsigned Opc = 0;
 | |
|   unsigned opcode = N.getOpcode();
 | |
| 
 | |
|   SDNode *Node = N.Val;
 | |
|   MVT::ValueType DestType = N.getValueType();
 | |
| 
 | |
|   if (Node->getOpcode() == ISD::CopyFromReg) {
 | |
|     unsigned Reg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
 | |
|     // Just use the specified register as our input.
 | |
|     if (MRegisterInfo::isVirtualRegister(Reg) || Reg == PPC::R1)
 | |
|       return Reg;
 | |
|   }
 | |
| 
 | |
|   unsigned &Reg = ExprMap[N];
 | |
|   if (Reg) return Reg;
 | |
| 
 | |
|   switch (N.getOpcode()) {
 | |
|   default:
 | |
|     Reg = Result = (N.getValueType() != MVT::Other) ?
 | |
|                             MakeReg(N.getValueType()) : 1;
 | |
|     break;
 | |
|   case ISD::AssertSext:
 | |
|   case ISD::AssertZext:
 | |
|     // Don't allocate a vreg for these nodes.
 | |
|     return Reg = SelectExpr(N.getOperand(0));
 | |
|   case ISD::TAILCALL:
 | |
|   case ISD::CALL:
 | |
|     // If this is a call instruction, make sure to prepare ALL of the result
 | |
|     // values as well as the chain.
 | |
|     if (Node->getNumValues() == 1)
 | |
|       Reg = Result = 1;  // Void call, just a chain.
 | |
|     else {
 | |
|       Result = MakeReg(Node->getValueType(0));
 | |
|       ExprMap[N.getValue(0)] = Result;
 | |
|       for (unsigned i = 1, e = N.Val->getNumValues()-1; i != e; ++i)
 | |
|         ExprMap[N.getValue(i)] = MakeReg(Node->getValueType(i));
 | |
|       ExprMap[SDOperand(Node, Node->getNumValues()-1)] = 1;
 | |
|     }
 | |
|     break;
 | |
|   case ISD::ADD_PARTS:
 | |
|   case ISD::SUB_PARTS:
 | |
|     Result = MakeReg(Node->getValueType(0));
 | |
|     ExprMap[N.getValue(0)] = Result;
 | |
|     for (unsigned i = 1, e = N.Val->getNumValues(); i != e; ++i)
 | |
|       ExprMap[N.getValue(i)] = MakeReg(Node->getValueType(i));
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   switch (opcode) {
 | |
|   default:
 | |
|     Node->dump(); std::cerr << '\n';
 | |
|     assert(0 && "Node not handled!\n");
 | |
|   case PPCISD::FSEL:
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
|     Tmp2 = SelectExpr(N.getOperand(1));
 | |
|     Tmp3 = SelectExpr(N.getOperand(2));
 | |
| 
 | |
|     // Extend the comparison to 64-bits if needed.
 | |
|     if (N.getOperand(0).getValueType() == MVT::f32) {
 | |
|       unsigned Tmp1New = MakeReg(MVT::f64);
 | |
|       BuildMI(BB, PPC::FMRSD, 1, Tmp1New).addReg(Tmp1);
 | |
|       Tmp1 = Tmp1New;
 | |
|     }
 | |
|       
 | |
|     Opc = N.Val->getValueType(0) == MVT::f32 ? PPC::FSELS : PPC::FSELD;
 | |
|     BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3);
 | |
|     return Result;
 | |
|   case PPCISD::FCFID:
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
|     BuildMI(BB, PPC::FCFID, 1, Result).addReg(Tmp1);
 | |
|     return Result;
 | |
|   case PPCISD::FCTIDZ:
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
|     BuildMI(BB, PPC::FCTIDZ, 1, Result).addReg(Tmp1);
 | |
|     return Result;
 | |
|   case PPCISD::FCTIWZ:
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
|     BuildMI(BB, PPC::FCTIWZ, 1, Result).addReg(Tmp1);
 | |
|     return Result;
 | |
|   case ISD::UNDEF:
 | |
|     if (Node->getValueType(0) == MVT::i32)
 | |
|       BuildMI(BB, PPC::IMPLICIT_DEF_GPR, 0, Result);
 | |
|     else if (Node->getValueType(0) == MVT::f32)
 | |
|       BuildMI(BB, PPC::IMPLICIT_DEF_F4, 0, Result);
 | |
|     else
 | |
|       BuildMI(BB, PPC::IMPLICIT_DEF_F8, 0, Result);
 | |
|     return Result;
 | |
|   case ISD::DYNAMIC_STACKALLOC:
 | |
|     // Generate both result values.  FIXME: Need a better commment here?
 | |
|     if (Result != 1)
 | |
|       ExprMap[N.getValue(1)] = 1;
 | |
|     else
 | |
|       Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
 | |
| 
 | |
|     // FIXME: We are currently ignoring the requested alignment for handling
 | |
|     // greater than the stack alignment.  This will need to be revisited at some
 | |
|     // point.  Align = N.getOperand(2);
 | |
|     if (!isa<ConstantSDNode>(N.getOperand(2)) ||
 | |
|         cast<ConstantSDNode>(N.getOperand(2))->getValue() != 0) {
 | |
|       std::cerr << "Cannot allocate stack object with greater alignment than"
 | |
|                 << " the stack alignment yet!";
 | |
|       abort();
 | |
|     }
 | |
|     Select(N.getOperand(0));
 | |
|     Tmp1 = SelectExpr(N.getOperand(1));
 | |
|     // Subtract size from stack pointer, thereby allocating some space.
 | |
|     BuildMI(BB, PPC::SUBF, 2, PPC::R1).addReg(Tmp1).addReg(PPC::R1);
 | |
|     // Put a pointer to the space into the result register by copying the SP
 | |
|     BuildMI(BB, PPC::OR4, 2, Result).addReg(PPC::R1).addReg(PPC::R1);
 | |
|     return Result;
 | |
| 
 | |
|   case ISD::ConstantPool:
 | |
|     Tmp1 = BB->getParent()->getConstantPool()->
 | |
|                getConstantPoolIndex(cast<ConstantPoolSDNode>(N)->get());
 | |
|     Tmp2 = MakeIntReg();
 | |
|     if (PICEnabled)
 | |
|       BuildMI(BB, PPC::ADDIS, 2, Tmp2).addReg(getGlobalBaseReg())
 | |
|         .addConstantPoolIndex(Tmp1);
 | |
|     else
 | |
|       BuildMI(BB, PPC::LIS, 1, Tmp2).addConstantPoolIndex(Tmp1);
 | |
|     BuildMI(BB, PPC::LA, 2, Result).addReg(Tmp2).addConstantPoolIndex(Tmp1);
 | |
|     return Result;
 | |
| 
 | |
|   case ISD::FrameIndex:
 | |
|     Tmp1 = cast<FrameIndexSDNode>(N)->getIndex();
 | |
|     addFrameReference(BuildMI(BB, PPC::ADDI, 2, Result), (int)Tmp1, 0, false);
 | |
|     return Result;
 | |
| 
 | |
|   case ISD::GlobalAddress: {
 | |
|     GlobalValue *GV = cast<GlobalAddressSDNode>(N)->getGlobal();
 | |
|     Tmp1 = MakeIntReg();
 | |
|     if (PICEnabled)
 | |
|       BuildMI(BB, PPC::ADDIS, 2, Tmp1).addReg(getGlobalBaseReg())
 | |
|         .addGlobalAddress(GV);
 | |
|     else
 | |
|       BuildMI(BB, PPC::LIS, 1, Tmp1).addGlobalAddress(GV);
 | |
|     if (GV->hasWeakLinkage() || GV->isExternal()) {
 | |
|       BuildMI(BB, PPC::LWZ, 2, Result).addGlobalAddress(GV).addReg(Tmp1);
 | |
|     } else {
 | |
|       BuildMI(BB, PPC::LA, 2, Result).addReg(Tmp1).addGlobalAddress(GV);
 | |
|     }
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   case ISD::LOAD:
 | |
|   case ISD::EXTLOAD:
 | |
|   case ISD::ZEXTLOAD:
 | |
|   case ISD::SEXTLOAD: {
 | |
|     MVT::ValueType TypeBeingLoaded = (ISD::LOAD == opcode) ?
 | |
|       Node->getValueType(0) : cast<VTSDNode>(Node->getOperand(3))->getVT();
 | |
|     bool sext = (ISD::SEXTLOAD == opcode);
 | |
| 
 | |
|     // Make sure we generate both values.
 | |
|     if (Result != 1)
 | |
|       ExprMap[N.getValue(1)] = 1;   // Generate the token
 | |
|     else
 | |
|       Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
 | |
| 
 | |
|     SDOperand Chain   = N.getOperand(0);
 | |
|     SDOperand Address = N.getOperand(1);
 | |
|     Select(Chain);
 | |
| 
 | |
|     switch (TypeBeingLoaded) {
 | |
|     default: Node->dump(); assert(0 && "Cannot load this type!");
 | |
|     case MVT::i1:  Opc = PPC::LBZ; break;
 | |
|     case MVT::i8:  Opc = PPC::LBZ; break;
 | |
|     case MVT::i16: Opc = sext ? PPC::LHA : PPC::LHZ; break;
 | |
|     case MVT::i32: Opc = PPC::LWZ; break;
 | |
|     case MVT::f32: Opc = PPC::LFS; break;
 | |
|     case MVT::f64: Opc = PPC::LFD; break;
 | |
|     }
 | |
| 
 | |
|     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Address)) {
 | |
|       Tmp1 = MakeIntReg();
 | |
|       unsigned CPI = BB->getParent()->getConstantPool()->
 | |
|         getConstantPoolIndex(CP->get());
 | |
|       if (PICEnabled)
 | |
|         BuildMI(BB, PPC::ADDIS, 2, Tmp1).addReg(getGlobalBaseReg())
 | |
|           .addConstantPoolIndex(CPI);
 | |
|       else
 | |
|         BuildMI(BB, PPC::LIS, 1, Tmp1).addConstantPoolIndex(CPI);
 | |
|       BuildMI(BB, Opc, 2, Result).addConstantPoolIndex(CPI).addReg(Tmp1);
 | |
|     } else if (Address.getOpcode() == ISD::FrameIndex) {
 | |
|       Tmp1 = cast<FrameIndexSDNode>(Address)->getIndex();
 | |
|       addFrameReference(BuildMI(BB, Opc, 2, Result), (int)Tmp1);
 | |
|     } else {
 | |
|       int offset;
 | |
|       switch(SelectAddr(Address, Tmp1, offset)) {
 | |
|       default: assert(0 && "Unhandled return value from SelectAddr");
 | |
|       case 0:   // imm offset, no frame, no index
 | |
|         BuildMI(BB, Opc, 2, Result).addSImm(offset).addReg(Tmp1);
 | |
|         break;
 | |
|       case 1:   // imm offset + frame index
 | |
|         addFrameReference(BuildMI(BB, Opc, 2, Result), (int)Tmp1, offset);
 | |
|         break;
 | |
|       case 2:   // base+index addressing
 | |
|         Opc = IndexedOpForOp(Opc);
 | |
|         BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(offset);
 | |
|         break;
 | |
|       case 3: {
 | |
|         GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Address);
 | |
|         GlobalValue *GV = GN->getGlobal();
 | |
|         BuildMI(BB, Opc, 2, Result).addGlobalAddress(GV).addReg(Tmp1);
 | |
|       }
 | |
|       }
 | |
|     }
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   case ISD::TAILCALL:
 | |
|   case ISD::CALL: {
 | |
|     unsigned GPR_idx = 0, FPR_idx = 0;
 | |
|     static const unsigned GPR[] = {
 | |
|       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
 | |
|       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
 | |
|     };
 | |
|     static const unsigned FPR[] = {
 | |
|       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
 | |
|       PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
 | |
|     };
 | |
| 
 | |
|     // Lower the chain for this call.
 | |
|     Select(N.getOperand(0));
 | |
|     ExprMap[N.getValue(Node->getNumValues()-1)] = 1;
 | |
| 
 | |
|     MachineInstr *CallMI;
 | |
|     // Emit the correct call instruction based on the type of symbol called.
 | |
|     if (GlobalAddressSDNode *GASD =
 | |
|         dyn_cast<GlobalAddressSDNode>(N.getOperand(1))) {
 | |
|       CallMI = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(GASD->getGlobal(),
 | |
|                                                            true);
 | |
|     } else if (ExternalSymbolSDNode *ESSDN =
 | |
|                dyn_cast<ExternalSymbolSDNode>(N.getOperand(1))) {
 | |
|       CallMI = BuildMI(PPC::CALLpcrel, 1).addExternalSymbol(ESSDN->getSymbol(),
 | |
|                                                             true);
 | |
|     } else {
 | |
|       Tmp1 = SelectExpr(N.getOperand(1));
 | |
|       BuildMI(BB, PPC::MTCTR, 1).addReg(Tmp1);
 | |
|       BuildMI(BB, PPC::OR4, 2, PPC::R12).addReg(Tmp1).addReg(Tmp1);
 | |
|       CallMI = BuildMI(PPC::CALLindirect, 3).addImm(20).addImm(0)
 | |
|         .addReg(PPC::R12);
 | |
|     }
 | |
| 
 | |
|     // Load the register args to virtual regs
 | |
|     std::vector<unsigned> ArgVR;
 | |
|     for(int i = 2, e = Node->getNumOperands(); i < e; ++i)
 | |
|       ArgVR.push_back(SelectExpr(N.getOperand(i)));
 | |
| 
 | |
|     // Copy the virtual registers into the appropriate argument register
 | |
|     for(int i = 0, e = ArgVR.size(); i < e; ++i) {
 | |
|       switch(N.getOperand(i+2).getValueType()) {
 | |
|       default: Node->dump(); assert(0 && "Unknown value type for call");
 | |
|       case MVT::i32:
 | |
|         assert(GPR_idx < 8 && "Too many int args");
 | |
|         if (N.getOperand(i+2).getOpcode() != ISD::UNDEF) {
 | |
|           BuildMI(BB, PPC::OR4,2,GPR[GPR_idx]).addReg(ArgVR[i]).addReg(ArgVR[i]);
 | |
|           CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
 | |
|         }
 | |
|         ++GPR_idx;
 | |
|         break;
 | |
|       case MVT::f64:
 | |
|       case MVT::f32:
 | |
|         assert(FPR_idx < 13 && "Too many fp args");
 | |
|         BuildMI(BB, N.getOperand(i+2).getValueType() == MVT::f32 ? PPC::FMRS :
 | |
|                 PPC::FMRD, 1, FPR[FPR_idx]).addReg(ArgVR[i]);
 | |
|         CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
 | |
|         ++FPR_idx;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Put the call instruction in the correct place in the MachineBasicBlock
 | |
|     BB->push_back(CallMI);
 | |
| 
 | |
|     switch (Node->getValueType(0)) {
 | |
|     default: assert(0 && "Unknown value type for call result!");
 | |
|     case MVT::Other: return 1;
 | |
|     case MVT::i32:
 | |
|       if (Node->getValueType(1) == MVT::i32) {
 | |
|         BuildMI(BB, PPC::OR4, 2, Result+1).addReg(PPC::R3).addReg(PPC::R3);
 | |
|         BuildMI(BB, PPC::OR4, 2, Result).addReg(PPC::R4).addReg(PPC::R4);
 | |
|       } else {
 | |
|         BuildMI(BB, PPC::OR4, 2, Result).addReg(PPC::R3).addReg(PPC::R3);
 | |
|       }
 | |
|       break;
 | |
|     case MVT::f32:
 | |
|       BuildMI(BB, PPC::FMRS, 1, Result).addReg(PPC::F1);
 | |
|       break;
 | |
|     case MVT::f64:
 | |
|       BuildMI(BB, PPC::FMRD, 1, Result).addReg(PPC::F1);
 | |
|       break;
 | |
|     }
 | |
|     return Result+N.ResNo;
 | |
|   }
 | |
| 
 | |
|   case ISD::SIGN_EXTEND_INREG:
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
|     switch(cast<VTSDNode>(Node->getOperand(1))->getVT()) {
 | |
|     default: Node->dump(); assert(0 && "Unhandled SIGN_EXTEND type"); break;
 | |
|     case MVT::i16:
 | |
|       BuildMI(BB, PPC::EXTSH, 1, Result).addReg(Tmp1);
 | |
|       break;
 | |
|     case MVT::i8:
 | |
|       BuildMI(BB, PPC::EXTSB, 1, Result).addReg(Tmp1);
 | |
|       break;
 | |
|     }
 | |
|     return Result;
 | |
| 
 | |
|   case ISD::CopyFromReg:
 | |
|     DestType = N.getValue(0).getValueType();
 | |
|     if (Result == 1)
 | |
|       Result = ExprMap[N.getValue(0)] = MakeReg(DestType);
 | |
|     else 
 | |
|       ExprMap[N.getValue(1)] = 1;
 | |
|     Tmp1 = dyn_cast<RegisterSDNode>(Node->getOperand(1))->getReg();
 | |
|     if (MVT::isInteger(DestType))
 | |
|       BuildMI(BB, PPC::OR4, 2, Result).addReg(Tmp1).addReg(Tmp1);
 | |
|     else if (DestType == MVT::f32)
 | |
|       BuildMI(BB, PPC::FMRS, 1, Result).addReg(Tmp1);
 | |
|     else
 | |
|       BuildMI(BB, PPC::FMRD, 1, Result).addReg(Tmp1);
 | |
|     return Result;
 | |
| 
 | |
|   case ISD::SHL:
 | |
|     if (isIntImmediate(N.getOperand(1), Tmp2)) {
 | |
|       unsigned SH, MB, ME;
 | |
|       if (isOpcWithIntImmediate(N.getOperand(0), ISD::AND, Tmp3) &&
 | |
|           isRotateAndMask(ISD::SHL, Tmp2, Tmp3, true, SH, MB, ME)) {
 | |
|         Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
 | |
|         BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp1).addImm(SH)
 | |
|           .addImm(MB).addImm(ME);
 | |
|         return Result;
 | |
|       }
 | |
|       Tmp1 = SelectExpr(N.getOperand(0));
 | |
|       Tmp2 &= 0x1F;
 | |
|       BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp1).addImm(Tmp2).addImm(0)
 | |
|         .addImm(31-Tmp2);
 | |
|     } else {
 | |
|       Tmp1 = SelectExpr(N.getOperand(0));
 | |
|       Tmp2 = FoldIfWideZeroExtend(N.getOperand(1));
 | |
|       BuildMI(BB, PPC::SLW, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|     }
 | |
|     return Result;
 | |
| 
 | |
|   case ISD::SRL:
 | |
|     if (isIntImmediate(N.getOperand(1), Tmp2)) {
 | |
|       unsigned SH, MB, ME;
 | |
|       if (isOpcWithIntImmediate(N.getOperand(0), ISD::AND, Tmp3) &&
 | |
|           isRotateAndMask(ISD::SRL, Tmp2, Tmp3, true, SH, MB, ME)) {
 | |
|         Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
 | |
|         BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp1).addImm(SH & 0x1F)
 | |
|           .addImm(MB).addImm(ME);
 | |
|         return Result;
 | |
|       }
 | |
|       Tmp1 = SelectExpr(N.getOperand(0));
 | |
|       Tmp2 &= 0x1F;
 | |
|       BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp1).addImm((32-Tmp2) & 0x1F)
 | |
|         .addImm(Tmp2).addImm(31);
 | |
|     } else {
 | |
|       Tmp1 = SelectExpr(N.getOperand(0));
 | |
|       Tmp2 = FoldIfWideZeroExtend(N.getOperand(1));
 | |
|       BuildMI(BB, PPC::SRW, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|     }
 | |
|     return Result;
 | |
| 
 | |
|   case ISD::SRA:
 | |
|     if (isIntImmediate(N.getOperand(1), Tmp2)) {
 | |
|       Tmp1 = SelectExpr(N.getOperand(0));
 | |
|       BuildMI(BB, PPC::SRAWI, 2, Result).addReg(Tmp1).addImm(Tmp2 & 0x1F);
 | |
|     } else {
 | |
|       Tmp1 = SelectExpr(N.getOperand(0));
 | |
|       Tmp2 = FoldIfWideZeroExtend(N.getOperand(1));
 | |
|       BuildMI(BB, PPC::SRAW, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|     }
 | |
|     return Result;
 | |
| 
 | |
|   case ISD::CTLZ:
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
|     BuildMI(BB, PPC::CNTLZW, 1, Result).addReg(Tmp1);
 | |
|     return Result;
 | |
| 
 | |
|   case ISD::ADD:
 | |
|     if (SelectIntImmediateExpr(N, Result, PPC::ADDIS, PPC::ADDI, true))
 | |
|       return Result;
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
|     Tmp2 = SelectExpr(N.getOperand(1));
 | |
|     BuildMI(BB, PPC::ADD4, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|     return Result;
 | |
|     
 | |
|   case ISD::FADD:
 | |
|     if (!NoExcessFPPrecision && N.getOperand(0).getOpcode() == ISD::FMUL &&
 | |
|         N.getOperand(0).Val->hasOneUse()) {
 | |
|       ++FusedFP; // Statistic
 | |
|       Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
 | |
|       Tmp2 = SelectExpr(N.getOperand(0).getOperand(1));
 | |
|       Tmp3 = SelectExpr(N.getOperand(1));
 | |
|       Opc = DestType == MVT::f64 ? PPC::FMADD : PPC::FMADDS;
 | |
|       BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3);
 | |
|       return Result;
 | |
|     }
 | |
|     if (!NoExcessFPPrecision && N.getOperand(1).getOpcode() == ISD::FMUL &&
 | |
|         N.getOperand(1).Val->hasOneUse()) {
 | |
|       ++FusedFP; // Statistic
 | |
|       Tmp1 = SelectExpr(N.getOperand(1).getOperand(0));
 | |
|       Tmp2 = SelectExpr(N.getOperand(1).getOperand(1));
 | |
|       Tmp3 = SelectExpr(N.getOperand(0));
 | |
|       Opc = DestType == MVT::f64 ? PPC::FMADD : PPC::FMADDS;
 | |
|       BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3);
 | |
|       return Result;
 | |
|     }
 | |
|     Opc = DestType == MVT::f64 ? PPC::FADD : PPC::FADDS;
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
|     Tmp2 = SelectExpr(N.getOperand(1));
 | |
|     BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|     return Result;
 | |
|  
 | |
|   case ISD::AND:
 | |
|     if (isIntImmediate(N.getOperand(1), Tmp2)) {
 | |
|       if (isShiftedMask_32(Tmp2) || isShiftedMask_32(~Tmp2)) {
 | |
|         unsigned SH, MB, ME;
 | |
|         Opc = Recording ? PPC::RLWINMo : PPC::RLWINM;
 | |
|         unsigned OprOpc;
 | |
|         if (isOprShiftImm(N.getOperand(0), OprOpc, Tmp3) &&
 | |
|             isRotateAndMask(OprOpc, Tmp3, Tmp2, false, SH, MB, ME)) {
 | |
|           Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
 | |
|         } else {
 | |
|           Tmp1 = SelectExpr(N.getOperand(0));
 | |
|           isRunOfOnes(Tmp2, MB, ME);
 | |
|           SH = 0;
 | |
|         }
 | |
|         BuildMI(BB, Opc, 4, Result).addReg(Tmp1).addImm(SH)
 | |
|           .addImm(MB).addImm(ME);
 | |
|         RecordSuccess = true;
 | |
|         return Result;
 | |
|       } else if (isUInt16(Tmp2)) {
 | |
|         Tmp2 = Lo16(Tmp2);
 | |
|         Tmp1 = SelectExpr(N.getOperand(0));
 | |
|         BuildMI(BB, PPC::ANDIo, 2, Result).addReg(Tmp1).addImm(Tmp2);
 | |
|         RecordSuccess = true;
 | |
|         return Result;
 | |
|       } else if (isUInt16(Tmp2)) {
 | |
|         Tmp2 = Hi16(Tmp2);
 | |
|         Tmp1 = SelectExpr(N.getOperand(0));
 | |
|         BuildMI(BB, PPC::ANDISo, 2, Result).addReg(Tmp1).addImm(Tmp2);
 | |
|         RecordSuccess = true;
 | |
|        return Result;
 | |
|       }
 | |
|     }
 | |
|     if (isOprNot(N.getOperand(1))) {
 | |
|       Tmp1 = SelectExpr(N.getOperand(0));
 | |
|       Tmp2 = SelectExpr(N.getOperand(1).getOperand(0));
 | |
|       BuildMI(BB, PPC::ANDC, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|       RecordSuccess = false;
 | |
|       return Result;
 | |
|     }
 | |
|     if (isOprNot(N.getOperand(0))) {
 | |
|       Tmp1 = SelectExpr(N.getOperand(1));
 | |
|       Tmp2 = SelectExpr(N.getOperand(0).getOperand(0));
 | |
|       BuildMI(BB, PPC::ANDC, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|       RecordSuccess = false;
 | |
|       return Result;
 | |
|     }
 | |
|     // emit a regular and
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
|     Tmp2 = SelectExpr(N.getOperand(1));
 | |
|     Opc = Recording ? PPC::ANDo : PPC::AND;
 | |
|     BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|     RecordSuccess = true;
 | |
|     return Result;
 | |
| 
 | |
|   case ISD::OR:
 | |
|     if (SelectBitfieldInsert(N, Result))
 | |
|       return Result;
 | |
|     if (SelectIntImmediateExpr(N, Result, PPC::ORIS, PPC::ORI))
 | |
|       return Result;
 | |
|     if (isOprNot(N.getOperand(1))) {
 | |
|       Tmp1 = SelectExpr(N.getOperand(0));
 | |
|       Tmp2 = SelectExpr(N.getOperand(1).getOperand(0));
 | |
|       BuildMI(BB, PPC::ORC, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|       RecordSuccess = false;
 | |
|       return Result;
 | |
|     }
 | |
|     if (isOprNot(N.getOperand(0))) {
 | |
|       Tmp1 = SelectExpr(N.getOperand(1));
 | |
|       Tmp2 = SelectExpr(N.getOperand(0).getOperand(0));
 | |
|       BuildMI(BB, PPC::ORC, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|       RecordSuccess = false;
 | |
|       return Result;
 | |
|     }
 | |
|     // emit regular or
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
|     Tmp2 = SelectExpr(N.getOperand(1));
 | |
|     Opc = Recording ? PPC::ORo : PPC::OR4;
 | |
|     RecordSuccess = true;
 | |
|     BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|     return Result;
 | |
| 
 | |
|   case ISD::XOR: {
 | |
|     // Check for EQV: xor, (xor a, -1), b
 | |
|     if (isOprNot(N.getOperand(0))) {
 | |
|       Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
 | |
|       Tmp2 = SelectExpr(N.getOperand(1));
 | |
|       BuildMI(BB, PPC::EQV, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|       return Result;
 | |
|     }
 | |
|     // Check for NOT, NOR, EQV, and NAND: xor (copy, or, xor, and), -1
 | |
|     if (isOprNot(N)) {
 | |
|       switch(N.getOperand(0).getOpcode()) {
 | |
|       case ISD::OR:
 | |
|         Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
 | |
|         Tmp2 = SelectExpr(N.getOperand(0).getOperand(1));
 | |
|         BuildMI(BB, PPC::NOR, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|         break;
 | |
|       case ISD::AND:
 | |
|         Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
 | |
|         Tmp2 = SelectExpr(N.getOperand(0).getOperand(1));
 | |
|         BuildMI(BB, PPC::NAND, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|         break;
 | |
|       case ISD::XOR:
 | |
|         Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
 | |
|         Tmp2 = SelectExpr(N.getOperand(0).getOperand(1));
 | |
|         BuildMI(BB, PPC::EQV, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|         break;
 | |
|       default:
 | |
|         Tmp1 = SelectExpr(N.getOperand(0));
 | |
|         BuildMI(BB, PPC::NOR, 2, Result).addReg(Tmp1).addReg(Tmp1);
 | |
|         break;
 | |
|       }
 | |
|       return Result;
 | |
|     }
 | |
|     if (SelectIntImmediateExpr(N, Result, PPC::XORIS, PPC::XORI))
 | |
|       return Result;
 | |
|     // emit regular xor
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
|     Tmp2 = SelectExpr(N.getOperand(1));
 | |
|     BuildMI(BB, PPC::XOR, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   case ISD::FSUB:
 | |
|     if (!NoExcessFPPrecision && N.getOperand(0).getOpcode() == ISD::FMUL &&
 | |
|         N.getOperand(0).Val->hasOneUse()) {
 | |
|       ++FusedFP; // Statistic
 | |
|       Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
 | |
|       Tmp2 = SelectExpr(N.getOperand(0).getOperand(1));
 | |
|       Tmp3 = SelectExpr(N.getOperand(1));
 | |
|       Opc = DestType == MVT::f64 ? PPC::FMSUB : PPC::FMSUBS;
 | |
|       BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3);
 | |
|       return Result;
 | |
|     }
 | |
|     if (!NoExcessFPPrecision && N.getOperand(1).getOpcode() == ISD::FMUL &&
 | |
|         N.getOperand(1).Val->hasOneUse()) {
 | |
|       ++FusedFP; // Statistic
 | |
|       Tmp1 = SelectExpr(N.getOperand(1).getOperand(0));
 | |
|       Tmp2 = SelectExpr(N.getOperand(1).getOperand(1));
 | |
|       Tmp3 = SelectExpr(N.getOperand(0));
 | |
|       Opc = DestType == MVT::f64 ? PPC::FNMSUB : PPC::FNMSUBS;
 | |
|       BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3);
 | |
|       return Result;
 | |
|     }
 | |
|     Opc = DestType == MVT::f64 ? PPC::FSUB : PPC::FSUBS;
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
|     Tmp2 = SelectExpr(N.getOperand(1));
 | |
|     BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|     return Result;
 | |
|   case ISD::SUB:
 | |
|     if (isIntImmediate(N.getOperand(0), Tmp1) && isInt16(Tmp1)) {
 | |
|       Tmp1 = Lo16(Tmp1);
 | |
|       Tmp2 = SelectExpr(N.getOperand(1));
 | |
|       if (0 == Tmp1)
 | |
|         BuildMI(BB, PPC::NEG, 1, Result).addReg(Tmp2);
 | |
|       else
 | |
|         BuildMI(BB, PPC::SUBFIC, 2, Result).addReg(Tmp2).addSImm(Tmp1);
 | |
|       return Result;
 | |
|     }
 | |
|     if (SelectIntImmediateExpr(N, Result, PPC::ADDIS, PPC::ADDI, true, true))
 | |
|         return Result;
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
|     Tmp2 = SelectExpr(N.getOperand(1));
 | |
|     BuildMI(BB, PPC::SUBF, 2, Result).addReg(Tmp2).addReg(Tmp1);
 | |
|     return Result;
 | |
| 
 | |
|   case ISD::FMUL:
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
|     Tmp2 = SelectExpr(N.getOperand(1));
 | |
|     BuildMI(BB, DestType == MVT::f32 ? PPC::FMULS : PPC::FMUL, 2, 
 | |
|             Result).addReg(Tmp1).addReg(Tmp2);
 | |
|     return Result;
 | |
|   
 | |
|   case ISD::MUL:
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
|     if (isIntImmediate(N.getOperand(1), Tmp2) && isInt16(Tmp2)) {
 | |
|       Tmp2 = Lo16(Tmp2);
 | |
|       BuildMI(BB, PPC::MULLI, 2, Result).addReg(Tmp1).addSImm(Tmp2);
 | |
|     } else {
 | |
|       Tmp2 = SelectExpr(N.getOperand(1));
 | |
|       BuildMI(BB, PPC::MULLW, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|     }
 | |
|     return Result;
 | |
| 
 | |
|   case ISD::MULHS:
 | |
|   case ISD::MULHU:
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
|     Tmp2 = SelectExpr(N.getOperand(1));
 | |
|     Opc = (ISD::MULHU == opcode) ? PPC::MULHWU : PPC::MULHW;
 | |
|     BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|     return Result;
 | |
| 
 | |
|   case ISD::FDIV:
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
|     Tmp2 = SelectExpr(N.getOperand(1));
 | |
|     switch (DestType) {
 | |
|     default: assert(0 && "Unknown type to ISD::FDIV"); break;
 | |
|     case MVT::f32: Opc = PPC::FDIVS; break;
 | |
|     case MVT::f64: Opc = PPC::FDIV; break;
 | |
|     }
 | |
|     BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|     return Result;
 | |
|     
 | |
|   case ISD::SDIV:
 | |
|     if (isIntImmediate(N.getOperand(1), Tmp3)) {
 | |
|       if ((signed)Tmp3 > 0 && isPowerOf2_32(Tmp3)) {
 | |
|         Tmp3 = Log2_32(Tmp3);
 | |
|         Tmp1 = MakeIntReg();
 | |
|         Tmp2 = SelectExpr(N.getOperand(0));
 | |
|         BuildMI(BB, PPC::SRAWI, 2, Tmp1).addReg(Tmp2).addImm(Tmp3);
 | |
|         BuildMI(BB, PPC::ADDZE, 1, Result).addReg(Tmp1);
 | |
|         return Result;
 | |
|       } else if ((signed)Tmp3 < 0 && isPowerOf2_32(-Tmp3)) {
 | |
|         Tmp3 = Log2_32(-Tmp3);
 | |
|         Tmp2 = SelectExpr(N.getOperand(0));
 | |
|         Tmp1 = MakeIntReg();
 | |
|         unsigned Tmp4 = MakeIntReg();
 | |
|         BuildMI(BB, PPC::SRAWI, 2, Tmp1).addReg(Tmp2).addImm(Tmp3);
 | |
|         BuildMI(BB, PPC::ADDZE, 1, Tmp4).addReg(Tmp1);
 | |
|         BuildMI(BB, PPC::NEG, 1, Result).addReg(Tmp4);
 | |
|         return Result;
 | |
|       }
 | |
|     }
 | |
|     // fall thru
 | |
|   case ISD::UDIV:
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
|     Tmp2 = SelectExpr(N.getOperand(1));
 | |
|     Opc = (ISD::UDIV == opcode) ? PPC::DIVWU : PPC::DIVW; break;
 | |
|     BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|     return Result;
 | |
| 
 | |
|   case ISD::ADD_PARTS:
 | |
|   case ISD::SUB_PARTS: {
 | |
|     assert(N.getNumOperands() == 4 && N.getValueType() == MVT::i32 &&
 | |
|            "Not an i64 add/sub!");
 | |
|     unsigned Tmp4 = 0;
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
|     Tmp2 = SelectExpr(N.getOperand(1));
 | |
|     
 | |
|     if (N.getOpcode() == ISD::ADD_PARTS) {
 | |
|       bool ME = false, ZE = false;
 | |
|       if (isIntImmediate(N.getOperand(3), Tmp3)) {
 | |
|         ME = (signed)Tmp3 == -1;
 | |
|         ZE = Tmp3 == 0;
 | |
|       }
 | |
|       
 | |
|       if (!ZE && !ME)
 | |
|         Tmp4 = SelectExpr(N.getOperand(3));
 | |
| 
 | |
|       if (isIntImmediate(N.getOperand(2), Tmp3) &&
 | |
|           ((signed)Tmp3 >= -32768 || (signed)Tmp3 < 32768)) {
 | |
|         // Codegen the low 32 bits of the add.  Interestingly, there is no
 | |
|         // shifted form of add immediate carrying.
 | |
|         BuildMI(BB, PPC::ADDIC, 2, Result).addReg(Tmp1).addSImm(Tmp3);
 | |
|       } else {
 | |
|         Tmp3 = SelectExpr(N.getOperand(2));
 | |
|         BuildMI(BB, PPC::ADDC, 2, Result).addReg(Tmp1).addReg(Tmp3);
 | |
|       }
 | |
|       
 | |
|       // Codegen the high 32 bits, adding zero, minus one, or the full value
 | |
|       // along with the carry flag produced by addc/addic to tmp2.
 | |
|       if (ZE) {
 | |
|         BuildMI(BB, PPC::ADDZE, 1, Result+1).addReg(Tmp2);
 | |
|       } else if (ME) {
 | |
|         BuildMI(BB, PPC::ADDME, 1, Result+1).addReg(Tmp2);
 | |
|       } else {
 | |
|         BuildMI(BB, PPC::ADDE, 2, Result+1).addReg(Tmp2).addReg(Tmp4);
 | |
|       }
 | |
|     } else {
 | |
|       Tmp3 = SelectExpr(N.getOperand(2));
 | |
|       Tmp4 = SelectExpr(N.getOperand(3));
 | |
|       BuildMI(BB, PPC::SUBFC, 2, Result).addReg(Tmp3).addReg(Tmp1);
 | |
|       BuildMI(BB, PPC::SUBFE, 2, Result+1).addReg(Tmp4).addReg(Tmp2);
 | |
|     }
 | |
|     return Result+N.ResNo;
 | |
|   }
 | |
| 
 | |
|   case ISD::SETCC: {
 | |
|     ISD::CondCode CC = cast<CondCodeSDNode>(Node->getOperand(2))->get();
 | |
|     if (isIntImmediate(Node->getOperand(1), Tmp3)) {
 | |
|       // We can codegen setcc op, imm very efficiently compared to a brcond.
 | |
|       // Check for those cases here.
 | |
|       // setcc op, 0
 | |
|       if (Tmp3 == 0) {
 | |
|         Tmp1 = SelectExpr(Node->getOperand(0));
 | |
|         switch (CC) {
 | |
|         default: Node->dump(); assert(0 && "Unhandled SetCC condition");abort();
 | |
|         case ISD::SETEQ:
 | |
|           Tmp2 = MakeIntReg();
 | |
|           BuildMI(BB, PPC::CNTLZW, 1, Tmp2).addReg(Tmp1);
 | |
|           BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp2).addImm(27)
 | |
|             .addImm(5).addImm(31);
 | |
|           break;
 | |
|         case ISD::SETNE:
 | |
|           Tmp2 = MakeIntReg();
 | |
|           BuildMI(BB, PPC::ADDIC, 2, Tmp2).addReg(Tmp1).addSImm(-1);
 | |
|           BuildMI(BB, PPC::SUBFE, 2, Result).addReg(Tmp2).addReg(Tmp1);
 | |
|           break;
 | |
|         case ISD::SETLT:
 | |
|           BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp1).addImm(1)
 | |
|             .addImm(31).addImm(31);
 | |
|           break;
 | |
|         case ISD::SETGT:
 | |
|           Tmp2 = MakeIntReg();
 | |
|           Tmp3 = MakeIntReg();
 | |
|           BuildMI(BB, PPC::NEG, 2, Tmp2).addReg(Tmp1);
 | |
|           BuildMI(BB, PPC::ANDC, 2, Tmp3).addReg(Tmp2).addReg(Tmp1);
 | |
|           BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp3).addImm(1)
 | |
|             .addImm(31).addImm(31);
 | |
|           break;
 | |
|         }
 | |
|         return Result;
 | |
|       } else if (Tmp3 == ~0U) {        // setcc op, -1
 | |
|         Tmp1 = SelectExpr(Node->getOperand(0));
 | |
|         switch (CC) {
 | |
|         default: assert(0 && "Unhandled SetCC condition"); abort();
 | |
|         case ISD::SETEQ:
 | |
|           Tmp2 = MakeIntReg();
 | |
|           Tmp3 = MakeIntReg();
 | |
|           BuildMI(BB, PPC::ADDIC, 2, Tmp2).addReg(Tmp1).addSImm(1);
 | |
|           BuildMI(BB, PPC::LI, 1, Tmp3).addSImm(0);
 | |
|           BuildMI(BB, PPC::ADDZE, 1, Result).addReg(Tmp3);
 | |
|           break;
 | |
|         case ISD::SETNE:
 | |
|           Tmp2 = MakeIntReg();
 | |
|           Tmp3 = MakeIntReg();
 | |
|           BuildMI(BB, PPC::NOR, 2, Tmp2).addReg(Tmp1).addReg(Tmp1);
 | |
|           BuildMI(BB, PPC::ADDIC, 2, Tmp3).addReg(Tmp2).addSImm(-1);
 | |
|           BuildMI(BB, PPC::SUBFE, 2, Result).addReg(Tmp3).addReg(Tmp2);
 | |
|           break;
 | |
|         case ISD::SETLT:
 | |
|           Tmp2 = MakeIntReg();
 | |
|           Tmp3 = MakeIntReg();
 | |
|           BuildMI(BB, PPC::ADDI, 2, Tmp2).addReg(Tmp1).addSImm(1);
 | |
|           BuildMI(BB, PPC::AND, 2, Tmp3).addReg(Tmp2).addReg(Tmp1);
 | |
|           BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp3).addImm(1)
 | |
|             .addImm(31).addImm(31);
 | |
|           break;
 | |
|         case ISD::SETGT:
 | |
|           Tmp2 = MakeIntReg();
 | |
|           BuildMI(BB, PPC::RLWINM, 4, Tmp2).addReg(Tmp1).addImm(1)
 | |
|             .addImm(31).addImm(31);
 | |
|           BuildMI(BB, PPC::XORI, 2, Result).addReg(Tmp2).addImm(1);
 | |
|           break;
 | |
|         }
 | |
|         return Result;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     unsigned CCReg = SelectCC(N.getOperand(0), N.getOperand(1), CC);
 | |
|     MoveCRtoGPR(CCReg, CC, Result);
 | |
|     return Result;
 | |
|   }
 | |
|     
 | |
|   case ISD::SELECT_CC: {
 | |
|     ISD::CondCode CC = cast<CondCodeSDNode>(N.getOperand(4))->get();
 | |
| 
 | |
|     // handle the setcc cases here.  select_cc lhs, 0, 1, 0, cc
 | |
|     ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N.getOperand(1));
 | |
|     ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N.getOperand(2));
 | |
|     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N.getOperand(3));
 | |
|     if (N1C && N2C && N3C && N1C->isNullValue() && N3C->isNullValue() &&
 | |
|         N2C->getValue() == 1ULL && CC == ISD::SETNE) {
 | |
|       Tmp1 = SelectExpr(Node->getOperand(0));
 | |
|       Tmp2 = MakeIntReg();
 | |
|       BuildMI(BB, PPC::ADDIC, 2, Tmp2).addReg(Tmp1).addSImm(-1);
 | |
|       BuildMI(BB, PPC::SUBFE, 2, Result).addReg(Tmp2).addReg(Tmp1);
 | |
|       return Result;
 | |
|     }
 | |
|     
 | |
|     // If the False value only has one use, we can generate better code by
 | |
|     // selecting it in the fallthrough basic block rather than here, which
 | |
|     // increases register pressure.
 | |
|     unsigned TrueValue = SelectExpr(N.getOperand(2));
 | |
|     unsigned FalseValue;
 | |
| 
 | |
|     // If the false value is simple enough, evaluate it inline in the false
 | |
|     // block.
 | |
|     if (N.getOperand(3).Val->hasOneUse() &&
 | |
|         (isa<ConstantSDNode>(N.getOperand(3)) ||
 | |
|          isa<GlobalAddressSDNode>(N.getOperand(3))))
 | |
|       FalseValue = 0;
 | |
|     else
 | |
|       FalseValue = SelectExpr(N.getOperand(3));
 | |
|     unsigned CCReg = SelectCC(N.getOperand(0), N.getOperand(1), CC);
 | |
|     Opc = getBCCForSetCC(CC);
 | |
|     
 | |
|     // Create an iterator with which to insert the MBB for copying the false
 | |
|     // value and the MBB to hold the PHI instruction for this SetCC.
 | |
|     MachineBasicBlock *thisMBB = BB;
 | |
|     const BasicBlock *LLVM_BB = BB->getBasicBlock();
 | |
|     ilist<MachineBasicBlock>::iterator It = BB;
 | |
|     ++It;
 | |
| 
 | |
|     //  thisMBB:
 | |
|     //  ...
 | |
|     //   TrueVal = ...
 | |
|     //   cmpTY ccX, r1, r2
 | |
|     //   bCC copy1MBB
 | |
|     //   fallthrough --> copy0MBB
 | |
|     MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
 | |
|     MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
 | |
|     BuildMI(BB, Opc, 2).addReg(CCReg).addMBB(sinkMBB);
 | |
|     MachineFunction *F = BB->getParent();
 | |
|     F->getBasicBlockList().insert(It, copy0MBB);
 | |
|     F->getBasicBlockList().insert(It, sinkMBB);
 | |
|     // Update machine-CFG edges
 | |
|     BB->addSuccessor(copy0MBB);
 | |
|     BB->addSuccessor(sinkMBB);
 | |
| 
 | |
|     //  copy0MBB:
 | |
|     //   %FalseValue = ...
 | |
|     //   # fallthrough to sinkMBB
 | |
|     BB = copy0MBB;
 | |
| 
 | |
|     // If the false value is simple enough, evaluate it here, to avoid it being
 | |
|     // evaluated on the true edge.
 | |
|     if (FalseValue == 0)
 | |
|       FalseValue = SelectExpr(N.getOperand(3));
 | |
| 
 | |
|     // Update machine-CFG edges
 | |
|     BB->addSuccessor(sinkMBB);
 | |
| 
 | |
|     //  sinkMBB:
 | |
|     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
 | |
|     //  ...
 | |
|     BB = sinkMBB;
 | |
|     BuildMI(BB, PPC::PHI, 4, Result).addReg(FalseValue)
 | |
|       .addMBB(copy0MBB).addReg(TrueValue).addMBB(thisMBB);
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   case ISD::Constant: {
 | |
|     assert(N.getValueType() == MVT::i32 &&
 | |
|            "Only i32 constants are legal on this target!");
 | |
|     unsigned v = (unsigned)cast<ConstantSDNode>(N)->getValue();
 | |
|     if (isInt16(v)) {
 | |
|       BuildMI(BB, PPC::LI, 1, Result).addSImm(Lo16(v));
 | |
|     } else {
 | |
|       unsigned Hi = Hi16(v);
 | |
|       unsigned Lo = Lo16(v);
 | |
|       if (Lo) {
 | |
|         Tmp1 = MakeIntReg();
 | |
|         BuildMI(BB, PPC::LIS, 1, Tmp1).addSImm(Hi);
 | |
|         BuildMI(BB, PPC::ORI, 2, Result).addReg(Tmp1).addImm(Lo);
 | |
|       } else {
 | |
|         BuildMI(BB, PPC::LIS, 1, Result).addSImm(Hi);
 | |
|       }
 | |
|     }
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   case ISD::FNEG:
 | |
|     if (!NoExcessFPPrecision &&
 | |
|         ISD::FADD == N.getOperand(0).getOpcode() &&
 | |
|         N.getOperand(0).Val->hasOneUse() &&
 | |
|         ISD::FMUL == N.getOperand(0).getOperand(0).getOpcode() &&
 | |
|         N.getOperand(0).getOperand(0).Val->hasOneUse()) {
 | |
|       ++FusedFP; // Statistic
 | |
|       Tmp1 = SelectExpr(N.getOperand(0).getOperand(0).getOperand(0));
 | |
|       Tmp2 = SelectExpr(N.getOperand(0).getOperand(0).getOperand(1));
 | |
|       Tmp3 = SelectExpr(N.getOperand(0).getOperand(1));
 | |
|       Opc = DestType == MVT::f64 ? PPC::FNMADD : PPC::FNMADDS;
 | |
|       BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3);
 | |
|     } else if (!NoExcessFPPrecision &&
 | |
|         ISD::FADD == N.getOperand(0).getOpcode() &&
 | |
|         N.getOperand(0).Val->hasOneUse() &&
 | |
|         ISD::FMUL == N.getOperand(0).getOperand(1).getOpcode() &&
 | |
|         N.getOperand(0).getOperand(1).Val->hasOneUse()) {
 | |
|       ++FusedFP; // Statistic
 | |
|       Tmp1 = SelectExpr(N.getOperand(0).getOperand(1).getOperand(0));
 | |
|       Tmp2 = SelectExpr(N.getOperand(0).getOperand(1).getOperand(1));
 | |
|       Tmp3 = SelectExpr(N.getOperand(0).getOperand(0));
 | |
|       Opc = DestType == MVT::f64 ? PPC::FNMADD : PPC::FNMADDS;
 | |
|       BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3);
 | |
|     } else if (ISD::FABS == N.getOperand(0).getOpcode()) {
 | |
|       Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
 | |
|       if (N.getOperand(0).getValueType() == MVT::f32)
 | |
|         BuildMI(BB, PPC::FNABSS, 1, Result).addReg(Tmp1);
 | |
|       else
 | |
|         BuildMI(BB, PPC::FNABSD, 1, Result).addReg(Tmp1);
 | |
| 
 | |
|     } else {
 | |
|       Tmp1 = SelectExpr(N.getOperand(0));
 | |
|       if (N.getOperand(0).getValueType() == MVT::f32)
 | |
|         BuildMI(BB, PPC::FNEGS, 1, Result).addReg(Tmp1);
 | |
|       else
 | |
|         BuildMI(BB, PPC::FNEGD, 1, Result).addReg(Tmp1);
 | |
|     }
 | |
|     return Result;
 | |
| 
 | |
|   case ISD::FABS:
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
|     if (N.getOperand(0).getValueType() == MVT::f32)
 | |
|       BuildMI(BB, PPC::FABSS, 1, Result).addReg(Tmp1);
 | |
|     else
 | |
|       BuildMI(BB, PPC::FABSD, 1, Result).addReg(Tmp1);
 | |
|     return Result;
 | |
| 
 | |
|   case ISD::FSQRT:
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
|     Opc = DestType == MVT::f64 ? PPC::FSQRT : PPC::FSQRTS;
 | |
|     BuildMI(BB, Opc, 1, Result).addReg(Tmp1);
 | |
|     return Result;
 | |
| 
 | |
|   case ISD::FP_ROUND:
 | |
|     assert (DestType == MVT::f32 &&
 | |
|             N.getOperand(0).getValueType() == MVT::f64 &&
 | |
|             "only f64 to f32 conversion supported here");
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
|     BuildMI(BB, PPC::FRSP, 1, Result).addReg(Tmp1);
 | |
|     return Result;
 | |
| 
 | |
|   case ISD::FP_EXTEND:
 | |
|     assert (DestType == MVT::f64 &&
 | |
|             N.getOperand(0).getValueType() == MVT::f32 &&
 | |
|             "only f32 to f64 conversion supported here");
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
|     BuildMI(BB, PPC::FMRSD, 1, Result).addReg(Tmp1);
 | |
|     return Result;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| void ISel::Select(SDOperand N) {
 | |
|   unsigned Tmp1, Tmp2, Tmp3, Opc;
 | |
|   unsigned opcode = N.getOpcode();
 | |
| 
 | |
|   if (!ExprMap.insert(std::make_pair(N, 1)).second)
 | |
|     return;  // Already selected.
 | |
| 
 | |
|   SDNode *Node = N.Val;
 | |
| 
 | |
|   switch (Node->getOpcode()) {
 | |
|   default:
 | |
|     Node->dump(); std::cerr << "\n";
 | |
|     assert(0 && "Node not handled yet!");
 | |
|   case ISD::EntryToken: return;  // Noop
 | |
|   case ISD::TokenFactor:
 | |
|     for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
 | |
|       Select(Node->getOperand(i));
 | |
|     return;
 | |
|   case ISD::CALLSEQ_START:
 | |
|   case ISD::CALLSEQ_END:
 | |
|     Select(N.getOperand(0));
 | |
|     Tmp1 = cast<ConstantSDNode>(N.getOperand(1))->getValue();
 | |
|     Opc = N.getOpcode() == ISD::CALLSEQ_START ? PPC::ADJCALLSTACKDOWN :
 | |
|       PPC::ADJCALLSTACKUP;
 | |
|     BuildMI(BB, Opc, 1).addImm(Tmp1);
 | |
|     return;
 | |
|   case ISD::BR: {
 | |
|     MachineBasicBlock *Dest =
 | |
|       cast<BasicBlockSDNode>(N.getOperand(1))->getBasicBlock();
 | |
|     Select(N.getOperand(0));
 | |
|     BuildMI(BB, PPC::B, 1).addMBB(Dest);
 | |
|     return;
 | |
|   }
 | |
|   case ISD::BR_CC:
 | |
|   case ISD::BRTWOWAY_CC:
 | |
|     SelectBranchCC(N);
 | |
|     return;
 | |
|   case ISD::CopyToReg:
 | |
|     Select(N.getOperand(0));
 | |
|     Tmp1 = SelectExpr(N.getOperand(2));
 | |
|     Tmp2 = cast<RegisterSDNode>(N.getOperand(1))->getReg();
 | |
| 
 | |
|     if (Tmp1 != Tmp2) {
 | |
|       if (N.getOperand(2).getValueType() == MVT::f64)
 | |
|         BuildMI(BB, PPC::FMRD, 1, Tmp2).addReg(Tmp1);
 | |
|       else if (N.getOperand(2).getValueType() == MVT::f32)
 | |
|         BuildMI(BB, PPC::FMRS, 1, Tmp2).addReg(Tmp1);
 | |
|       else
 | |
|         BuildMI(BB, PPC::OR4, 2, Tmp2).addReg(Tmp1).addReg(Tmp1);
 | |
|     }
 | |
|     return;
 | |
|   case ISD::ImplicitDef:
 | |
|     Select(N.getOperand(0));
 | |
|     Tmp1 = cast<RegisterSDNode>(N.getOperand(1))->getReg();
 | |
|     if (N.getOperand(1).getValueType() == MVT::i32)
 | |
|       BuildMI(BB, PPC::IMPLICIT_DEF_GPR, 0, Tmp1);
 | |
|     else if (N.getOperand(1).getValueType() == MVT::f32)
 | |
|       BuildMI(BB, PPC::IMPLICIT_DEF_F4, 0, Tmp1);
 | |
|     else
 | |
|       BuildMI(BB, PPC::IMPLICIT_DEF_F8, 0, Tmp1);
 | |
|     return;
 | |
|   case ISD::RET:
 | |
|     switch (N.getNumOperands()) {
 | |
|     default:
 | |
|       assert(0 && "Unknown return instruction!");
 | |
|     case 3:
 | |
|       assert(N.getOperand(1).getValueType() == MVT::i32 &&
 | |
|              N.getOperand(2).getValueType() == MVT::i32 &&
 | |
|              "Unknown two-register value!");
 | |
|       Select(N.getOperand(0));
 | |
|       Tmp1 = SelectExpr(N.getOperand(1));
 | |
|       Tmp2 = SelectExpr(N.getOperand(2));
 | |
|       BuildMI(BB, PPC::OR4, 2, PPC::R3).addReg(Tmp2).addReg(Tmp2);
 | |
|       BuildMI(BB, PPC::OR4, 2, PPC::R4).addReg(Tmp1).addReg(Tmp1);
 | |
|       break;
 | |
|     case 2:
 | |
|       Select(N.getOperand(0));
 | |
|       Tmp1 = SelectExpr(N.getOperand(1));
 | |
|       switch (N.getOperand(1).getValueType()) {
 | |
|         default:
 | |
|           assert(0 && "Unknown return type!");
 | |
|         case MVT::f64:
 | |
|           BuildMI(BB, PPC::FMRD, 1, PPC::F1).addReg(Tmp1);
 | |
|           break;
 | |
|         case MVT::f32:
 | |
|           BuildMI(BB, PPC::FMRS, 1, PPC::F1).addReg(Tmp1);
 | |
|           break;
 | |
|         case MVT::i32:
 | |
|           BuildMI(BB, PPC::OR4, 2, PPC::R3).addReg(Tmp1).addReg(Tmp1);
 | |
|           break;
 | |
|       }
 | |
|     case 1:
 | |
|       Select(N.getOperand(0));
 | |
|       break;
 | |
|     }
 | |
|     BuildMI(BB, PPC::BLR, 0); // Just emit a 'ret' instruction
 | |
|     return;
 | |
|   case ISD::TRUNCSTORE:
 | |
|   case ISD::STORE: {
 | |
|     SDOperand Chain   = N.getOperand(0);
 | |
|     SDOperand Value   = N.getOperand(1);
 | |
|     SDOperand Address = N.getOperand(2);
 | |
|     Select(Chain);
 | |
| 
 | |
|     Tmp1 = SelectExpr(Value); //value
 | |
| 
 | |
|     if (opcode == ISD::STORE) {
 | |
|       switch(Value.getValueType()) {
 | |
|       default: assert(0 && "unknown Type in store");
 | |
|       case MVT::i32: Opc = PPC::STW; break;
 | |
|       case MVT::f64: Opc = PPC::STFD; break;
 | |
|       case MVT::f32: Opc = PPC::STFS; break;
 | |
|       }
 | |
|     } else { //ISD::TRUNCSTORE
 | |
|       switch(cast<VTSDNode>(Node->getOperand(4))->getVT()) {
 | |
|       default: assert(0 && "unknown Type in store");
 | |
|       case MVT::i8: Opc  = PPC::STB; break;
 | |
|       case MVT::i16: Opc = PPC::STH; break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if(Address.getOpcode() == ISD::FrameIndex) {
 | |
|       Tmp2 = cast<FrameIndexSDNode>(Address)->getIndex();
 | |
|       addFrameReference(BuildMI(BB, Opc, 3).addReg(Tmp1), (int)Tmp2);
 | |
|     } else {
 | |
|       int offset;
 | |
|       switch(SelectAddr(Address, Tmp2, offset)) {
 | |
|       default: assert(0 && "Unhandled return value from SelectAddr");
 | |
|       case 0:   // imm offset, no frame, no index
 | |
|         BuildMI(BB, Opc, 3).addReg(Tmp1).addSImm(offset).addReg(Tmp2);
 | |
|         break;
 | |
|       case 1:   // imm offset + frame index
 | |
|         addFrameReference(BuildMI(BB, Opc, 3).addReg(Tmp1), (int)Tmp2, offset);
 | |
|         break;
 | |
|       case 2:   // base+index addressing
 | |
|         Opc = IndexedOpForOp(Opc);
 | |
|         BuildMI(BB, Opc, 3).addReg(Tmp1).addReg(Tmp2).addReg(offset);
 | |
|         break;
 | |
|       case 3: {
 | |
|         GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Address);
 | |
|         GlobalValue *GV = GN->getGlobal();
 | |
|         BuildMI(BB, Opc, 3).addReg(Tmp1).addGlobalAddress(GV).addReg(Tmp2);
 | |
|       }
 | |
|       }
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   case ISD::EXTLOAD:
 | |
|   case ISD::SEXTLOAD:
 | |
|   case ISD::ZEXTLOAD:
 | |
|   case ISD::LOAD:
 | |
|   case ISD::CopyFromReg:
 | |
|   case ISD::TAILCALL:
 | |
|   case ISD::CALL:
 | |
|   case ISD::DYNAMIC_STACKALLOC:
 | |
|     ExprMap.erase(N);
 | |
|     SelectExpr(N);
 | |
|     return;
 | |
|   }
 | |
|   assert(0 && "Should not be reached!");
 | |
| }
 | |
| 
 | |
| 
 | |
| /// createPPCPatternInstructionSelector - This pass converts an LLVM function
 | |
| /// into a machine code representation using pattern matching and a machine
 | |
| /// description file.
 | |
| ///
 | |
| FunctionPass *llvm::createPPCISelPattern(TargetMachine &TM) {
 | |
|   return new ISel(TM);
 | |
| }
 | |
| 
 |