mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	Naveen Neelakantam, thanks! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@21543 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			474 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			474 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- Dominators.cpp - Dominator Calculation -----------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements simple dominator construction algorithms for finding
 | |
| // forward dominators.  Postdominators are available in libanalysis, but are not
 | |
| // included in libvmcore, because it's not needed.  Forward dominators are
 | |
| // needed to support the Verifier pass.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Assembly/Writer.h"
 | |
| #include "llvm/ADT/DepthFirstIterator.h"
 | |
| #include "llvm/ADT/SetOperations.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  ImmediateDominators Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Immediate Dominators construction - This pass constructs immediate dominator
 | |
| // information for a flow-graph based on the algorithm described in this
 | |
| // document:
 | |
| //
 | |
| //   A Fast Algorithm for Finding Dominators in a Flowgraph
 | |
| //   T. Lengauer & R. Tarjan, ACM TOPLAS July 1979, pgs 121-141.
 | |
| //
 | |
| // This implements both the O(n*ack(n)) and the O(n*log(n)) versions of EVAL and
 | |
| // LINK, but it turns out that the theoretically slower O(n*log(n))
 | |
| // implementation is actually faster than the "efficient" algorithm (even for
 | |
| // large CFGs) because the constant overheads are substantially smaller.  The
 | |
| // lower-complexity version can be enabled with the following #define:
 | |
| //
 | |
| #define BALANCE_IDOM_TREE 0
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static RegisterAnalysis<ImmediateDominators>
 | |
| C("idom", "Immediate Dominators Construction", true);
 | |
| 
 | |
| unsigned ImmediateDominators::DFSPass(BasicBlock *V, InfoRec &VInfo,
 | |
|                                       unsigned N) {
 | |
|   VInfo.Semi = ++N;
 | |
|   VInfo.Label = V;
 | |
| 
 | |
|   Vertex.push_back(V);        // Vertex[n] = V;
 | |
|   //Info[V].Ancestor = 0;     // Ancestor[n] = 0
 | |
|   //Child[V] = 0;             // Child[v] = 0
 | |
|   VInfo.Size = 1;             // Size[v] = 1
 | |
| 
 | |
|   for (succ_iterator SI = succ_begin(V), E = succ_end(V); SI != E; ++SI) {
 | |
|     InfoRec &SuccVInfo = Info[*SI];
 | |
|     if (SuccVInfo.Semi == 0) {
 | |
|       SuccVInfo.Parent = V;
 | |
|       N = DFSPass(*SI, SuccVInfo, N);
 | |
|     }
 | |
|   }
 | |
|   return N;
 | |
| }
 | |
| 
 | |
| void ImmediateDominators::Compress(BasicBlock *V, InfoRec &VInfo) {
 | |
|   BasicBlock *VAncestor = VInfo.Ancestor;
 | |
|   InfoRec &VAInfo = Info[VAncestor];
 | |
|   if (VAInfo.Ancestor == 0)
 | |
|     return;
 | |
| 
 | |
|   Compress(VAncestor, VAInfo);
 | |
| 
 | |
|   BasicBlock *VAncestorLabel = VAInfo.Label;
 | |
|   BasicBlock *VLabel = VInfo.Label;
 | |
|   if (Info[VAncestorLabel].Semi < Info[VLabel].Semi)
 | |
|     VInfo.Label = VAncestorLabel;
 | |
| 
 | |
|   VInfo.Ancestor = VAInfo.Ancestor;
 | |
| }
 | |
| 
 | |
| BasicBlock *ImmediateDominators::Eval(BasicBlock *V) {
 | |
|   InfoRec &VInfo = Info[V];
 | |
| #if !BALANCE_IDOM_TREE
 | |
|   // Higher-complexity but faster implementation
 | |
|   if (VInfo.Ancestor == 0)
 | |
|     return V;
 | |
|   Compress(V, VInfo);
 | |
|   return VInfo.Label;
 | |
| #else
 | |
|   // Lower-complexity but slower implementation
 | |
|   if (VInfo.Ancestor == 0)
 | |
|     return VInfo.Label;
 | |
|   Compress(V, VInfo);
 | |
|   BasicBlock *VLabel = VInfo.Label;
 | |
| 
 | |
|   BasicBlock *VAncestorLabel = Info[VInfo.Ancestor].Label;
 | |
|   if (Info[VAncestorLabel].Semi >= Info[VLabel].Semi)
 | |
|     return VLabel;
 | |
|   else
 | |
|     return VAncestorLabel;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void ImmediateDominators::Link(BasicBlock *V, BasicBlock *W, InfoRec &WInfo){
 | |
| #if !BALANCE_IDOM_TREE
 | |
|   // Higher-complexity but faster implementation
 | |
|   WInfo.Ancestor = V;
 | |
| #else
 | |
|   // Lower-complexity but slower implementation
 | |
|   BasicBlock *WLabel = WInfo.Label;
 | |
|   unsigned WLabelSemi = Info[WLabel].Semi;
 | |
|   BasicBlock *S = W;
 | |
|   InfoRec *SInfo = &Info[S];
 | |
| 
 | |
|   BasicBlock *SChild = SInfo->Child;
 | |
|   InfoRec *SChildInfo = &Info[SChild];
 | |
| 
 | |
|   while (WLabelSemi < Info[SChildInfo->Label].Semi) {
 | |
|     BasicBlock *SChildChild = SChildInfo->Child;
 | |
|     if (SInfo->Size+Info[SChildChild].Size >= 2*SChildInfo->Size) {
 | |
|       SChildInfo->Ancestor = S;
 | |
|       SInfo->Child = SChild = SChildChild;
 | |
|       SChildInfo = &Info[SChild];
 | |
|     } else {
 | |
|       SChildInfo->Size = SInfo->Size;
 | |
|       S = SInfo->Ancestor = SChild;
 | |
|       SInfo = SChildInfo;
 | |
|       SChild = SChildChild;
 | |
|       SChildInfo = &Info[SChild];
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   InfoRec &VInfo = Info[V];
 | |
|   SInfo->Label = WLabel;
 | |
| 
 | |
|   assert(V != W && "The optimization here will not work in this case!");
 | |
|   unsigned WSize = WInfo.Size;
 | |
|   unsigned VSize = (VInfo.Size += WSize);
 | |
| 
 | |
|   if (VSize < 2*WSize)
 | |
|     std::swap(S, VInfo.Child);
 | |
| 
 | |
|   while (S) {
 | |
|     SInfo = &Info[S];
 | |
|     SInfo->Ancestor = V;
 | |
|     S = SInfo->Child;
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| bool ImmediateDominators::runOnFunction(Function &F) {
 | |
|   IDoms.clear();     // Reset from the last time we were run...
 | |
|   BasicBlock *Root = &F.getEntryBlock();
 | |
|   Roots.clear();
 | |
|   Roots.push_back(Root);
 | |
| 
 | |
|   Vertex.push_back(0);
 | |
| 
 | |
|   // Step #1: Number blocks in depth-first order and initialize variables used
 | |
|   // in later stages of the algorithm.
 | |
|   unsigned N = 0;
 | |
|   for (unsigned i = 0, e = Roots.size(); i != e; ++i)
 | |
|     N = DFSPass(Roots[i], Info[Roots[i]], 0);
 | |
| 
 | |
|   for (unsigned i = N; i >= 2; --i) {
 | |
|     BasicBlock *W = Vertex[i];
 | |
|     InfoRec &WInfo = Info[W];
 | |
| 
 | |
|     // Step #2: Calculate the semidominators of all vertices
 | |
|     for (pred_iterator PI = pred_begin(W), E = pred_end(W); PI != E; ++PI)
 | |
|       if (Info.count(*PI)) {  // Only if this predecessor is reachable!
 | |
|         unsigned SemiU = Info[Eval(*PI)].Semi;
 | |
|         if (SemiU < WInfo.Semi)
 | |
|           WInfo.Semi = SemiU;
 | |
|       }
 | |
| 
 | |
|     Info[Vertex[WInfo.Semi]].Bucket.push_back(W);
 | |
| 
 | |
|     BasicBlock *WParent = WInfo.Parent;
 | |
|     Link(WParent, W, WInfo);
 | |
| 
 | |
|     // Step #3: Implicitly define the immediate dominator of vertices
 | |
|     std::vector<BasicBlock*> &WParentBucket = Info[WParent].Bucket;
 | |
|     while (!WParentBucket.empty()) {
 | |
|       BasicBlock *V = WParentBucket.back();
 | |
|       WParentBucket.pop_back();
 | |
|       BasicBlock *U = Eval(V);
 | |
|       IDoms[V] = Info[U].Semi < Info[V].Semi ? U : WParent;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Step #4: Explicitly define the immediate dominator of each vertex
 | |
|   for (unsigned i = 2; i <= N; ++i) {
 | |
|     BasicBlock *W = Vertex[i];
 | |
|     BasicBlock *&WIDom = IDoms[W];
 | |
|     if (WIDom != Vertex[Info[W].Semi])
 | |
|       WIDom = IDoms[WIDom];
 | |
|   }
 | |
| 
 | |
|   // Free temporary memory used to construct idom's
 | |
|   Info.clear();
 | |
|   std::vector<BasicBlock*>().swap(Vertex);
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void ImmediateDominatorsBase::print(std::ostream &o, const Module* ) const {
 | |
|   Function *F = getRoots()[0]->getParent();
 | |
|   for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) {
 | |
|     o << "  Immediate Dominator For Basic Block:";
 | |
|     WriteAsOperand(o, I, false);
 | |
|     o << " is:";
 | |
|     if (BasicBlock *ID = get(I))
 | |
|       WriteAsOperand(o, ID, false);
 | |
|     else
 | |
|       o << " <<exit node>>";
 | |
|     o << "\n";
 | |
|   }
 | |
|   o << "\n";
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  DominatorSet Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static RegisterAnalysis<DominatorSet>
 | |
| B("domset", "Dominator Set Construction", true);
 | |
| 
 | |
| // dominates - Return true if A dominates B.  This performs the special checks
 | |
| // necessary if A and B are in the same basic block.
 | |
| //
 | |
| bool DominatorSetBase::dominates(Instruction *A, Instruction *B) const {
 | |
|   BasicBlock *BBA = A->getParent(), *BBB = B->getParent();
 | |
|   if (BBA != BBB) return dominates(BBA, BBB);
 | |
| 
 | |
|   // Loop through the basic block until we find A or B.
 | |
|   BasicBlock::iterator I = BBA->begin();
 | |
|   for (; &*I != A && &*I != B; ++I) /*empty*/;
 | |
| 
 | |
|   if(!IsPostDominators) {
 | |
|     // A dominates B if it is found first in the basic block.
 | |
|     return &*I == A;
 | |
|   } else {
 | |
|     // A post-dominates B if B is found first in the basic block.
 | |
|     return &*I == B;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| // runOnFunction - This method calculates the forward dominator sets for the
 | |
| // specified function.
 | |
| //
 | |
| bool DominatorSet::runOnFunction(Function &F) {
 | |
|   BasicBlock *Root = &F.getEntryBlock();
 | |
|   Roots.clear();
 | |
|   Roots.push_back(Root);
 | |
|   assert(pred_begin(Root) == pred_end(Root) &&
 | |
|          "Root node has predecessors in function!");
 | |
| 
 | |
|   ImmediateDominators &ID = getAnalysis<ImmediateDominators>();
 | |
|   Doms.clear();
 | |
|   if (Roots.empty()) return false;
 | |
| 
 | |
|   // Root nodes only dominate themselves.
 | |
|   for (unsigned i = 0, e = Roots.size(); i != e; ++i)
 | |
|     Doms[Roots[i]].insert(Roots[i]);
 | |
| 
 | |
|   // Loop over all of the blocks in the function, calculating dominator sets for
 | |
|   // each function.
 | |
|   for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
 | |
|     if (BasicBlock *IDom = ID[I]) {   // Get idom if block is reachable
 | |
|       DomSetType &DS = Doms[I];
 | |
|       assert(DS.empty() && "Domset already filled in for this block?");
 | |
|       DS.insert(I);  // Blocks always dominate themselves
 | |
| 
 | |
|       // Insert all dominators into the set...
 | |
|       while (IDom) {
 | |
|         // If we have already computed the dominator sets for our immediate
 | |
|         // dominator, just use it instead of walking all the way up to the root.
 | |
|         DomSetType &IDS = Doms[IDom];
 | |
|         if (!IDS.empty()) {
 | |
|           DS.insert(IDS.begin(), IDS.end());
 | |
|           break;
 | |
|         } else {
 | |
|           DS.insert(IDom);
 | |
|           IDom = ID[IDom];
 | |
|         }
 | |
|       }
 | |
|     } else {
 | |
|       // Ensure that every basic block has at least an empty set of nodes.  This
 | |
|       // is important for the case when there is unreachable blocks.
 | |
|       Doms[I];
 | |
|     }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void DominatorSet::stub() {}
 | |
| 
 | |
| namespace llvm {
 | |
| static std::ostream &operator<<(std::ostream &o,
 | |
|                                 const std::set<BasicBlock*> &BBs) {
 | |
|   for (std::set<BasicBlock*>::const_iterator I = BBs.begin(), E = BBs.end();
 | |
|        I != E; ++I)
 | |
|     if (*I)
 | |
|       WriteAsOperand(o, *I, false);
 | |
|     else
 | |
|       o << " <<exit node>>";
 | |
|   return o;
 | |
| }
 | |
| }
 | |
| 
 | |
| void DominatorSetBase::print(std::ostream &o, const Module* ) const {
 | |
|   for (const_iterator I = begin(), E = end(); I != E; ++I) {
 | |
|     o << "  DomSet For BB: ";
 | |
|     if (I->first)
 | |
|       WriteAsOperand(o, I->first, false);
 | |
|     else
 | |
|       o << " <<exit node>>";
 | |
|     o << " is:\t" << I->second << "\n";
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  DominatorTree Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static RegisterAnalysis<DominatorTree>
 | |
| E("domtree", "Dominator Tree Construction", true);
 | |
| 
 | |
| // DominatorTreeBase::reset - Free all of the tree node memory.
 | |
| //
 | |
| void DominatorTreeBase::reset() {
 | |
|   for (NodeMapType::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I)
 | |
|     delete I->second;
 | |
|   Nodes.clear();
 | |
|   RootNode = 0;
 | |
| }
 | |
| 
 | |
| void DominatorTreeBase::Node::setIDom(Node *NewIDom) {
 | |
|   assert(IDom && "No immediate dominator?");
 | |
|   if (IDom != NewIDom) {
 | |
|     std::vector<Node*>::iterator I =
 | |
|       std::find(IDom->Children.begin(), IDom->Children.end(), this);
 | |
|     assert(I != IDom->Children.end() &&
 | |
|            "Not in immediate dominator children set!");
 | |
|     // I am no longer your child...
 | |
|     IDom->Children.erase(I);
 | |
| 
 | |
|     // Switch to new dominator
 | |
|     IDom = NewIDom;
 | |
|     IDom->Children.push_back(this);
 | |
|   }
 | |
| }
 | |
| 
 | |
| DominatorTreeBase::Node *DominatorTree::getNodeForBlock(BasicBlock *BB) {
 | |
|   Node *&BBNode = Nodes[BB];
 | |
|   if (BBNode) return BBNode;
 | |
| 
 | |
|   // Haven't calculated this node yet?  Get or calculate the node for the
 | |
|   // immediate dominator.
 | |
|   BasicBlock *IDom = getAnalysis<ImmediateDominators>()[BB];
 | |
|   Node *IDomNode = getNodeForBlock(IDom);
 | |
| 
 | |
|   // Add a new tree node for this BasicBlock, and link it as a child of
 | |
|   // IDomNode
 | |
|   return BBNode = IDomNode->addChild(new Node(BB, IDomNode));
 | |
| }
 | |
| 
 | |
| void DominatorTree::calculate(const ImmediateDominators &ID) {
 | |
|   assert(Roots.size() == 1 && "DominatorTree should have 1 root block!");
 | |
|   BasicBlock *Root = Roots[0];
 | |
|   Nodes[Root] = RootNode = new Node(Root, 0); // Add a node for the root...
 | |
| 
 | |
|   Function *F = Root->getParent();
 | |
|   // Loop over all of the reachable blocks in the function...
 | |
|   for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
 | |
|     if (BasicBlock *ImmDom = ID.get(I)) {  // Reachable block.
 | |
|       Node *&BBNode = Nodes[I];
 | |
|       if (!BBNode) {  // Haven't calculated this node yet?
 | |
|         // Get or calculate the node for the immediate dominator
 | |
|         Node *IDomNode = getNodeForBlock(ImmDom);
 | |
| 
 | |
|         // Add a new tree node for this BasicBlock, and link it as a child of
 | |
|         // IDomNode
 | |
|         BBNode = IDomNode->addChild(new Node(I, IDomNode));
 | |
|       }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static std::ostream &operator<<(std::ostream &o,
 | |
|                                 const DominatorTreeBase::Node *Node) {
 | |
|   if (Node->getBlock())
 | |
|     WriteAsOperand(o, Node->getBlock(), false);
 | |
|   else
 | |
|     o << " <<exit node>>";
 | |
|   return o << "\n";
 | |
| }
 | |
| 
 | |
| static void PrintDomTree(const DominatorTreeBase::Node *N, std::ostream &o,
 | |
|                          unsigned Lev) {
 | |
|   o << std::string(2*Lev, ' ') << "[" << Lev << "] " << N;
 | |
|   for (DominatorTreeBase::Node::const_iterator I = N->begin(), E = N->end();
 | |
|        I != E; ++I)
 | |
|     PrintDomTree(*I, o, Lev+1);
 | |
| }
 | |
| 
 | |
| void DominatorTreeBase::print(std::ostream &o, const Module* ) const {
 | |
|   o << "=============================--------------------------------\n"
 | |
|     << "Inorder Dominator Tree:\n";
 | |
|   PrintDomTree(getRootNode(), o, 1);
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  DominanceFrontier Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static RegisterAnalysis<DominanceFrontier>
 | |
| G("domfrontier", "Dominance Frontier Construction", true);
 | |
| 
 | |
| const DominanceFrontier::DomSetType &
 | |
| DominanceFrontier::calculate(const DominatorTree &DT,
 | |
|                              const DominatorTree::Node *Node) {
 | |
|   // Loop over CFG successors to calculate DFlocal[Node]
 | |
|   BasicBlock *BB = Node->getBlock();
 | |
|   DomSetType &S = Frontiers[BB];       // The new set to fill in...
 | |
| 
 | |
|   for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
 | |
|        SI != SE; ++SI) {
 | |
|     // Does Node immediately dominate this successor?
 | |
|     if (DT[*SI]->getIDom() != Node)
 | |
|       S.insert(*SI);
 | |
|   }
 | |
| 
 | |
|   // At this point, S is DFlocal.  Now we union in DFup's of our children...
 | |
|   // Loop through and visit the nodes that Node immediately dominates (Node's
 | |
|   // children in the IDomTree)
 | |
|   //
 | |
|   for (DominatorTree::Node::const_iterator NI = Node->begin(), NE = Node->end();
 | |
|        NI != NE; ++NI) {
 | |
|     DominatorTree::Node *IDominee = *NI;
 | |
|     const DomSetType &ChildDF = calculate(DT, IDominee);
 | |
| 
 | |
|     DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end();
 | |
|     for (; CDFI != CDFE; ++CDFI) {
 | |
|       if (!Node->dominates(DT[*CDFI]))
 | |
|         S.insert(*CDFI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| void DominanceFrontierBase::print(std::ostream &o, const Module* ) const {
 | |
|   for (const_iterator I = begin(), E = end(); I != E; ++I) {
 | |
|     o << "  DomFrontier for BB";
 | |
|     if (I->first)
 | |
|       WriteAsOperand(o, I->first, false);
 | |
|     else
 | |
|       o << " <<exit node>>";
 | |
|     o << " is:\t" << I->second << "\n";
 | |
|   }
 | |
| }
 | |
| 
 |