mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	Sorry for the fallout here, I forgot the examples aren't built by default any more. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171371 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			306 lines
		
	
	
		
			9.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			306 lines
		
	
	
		
			9.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- examples/ParallelJIT/ParallelJIT.cpp - Exercise threaded-safe JIT -===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Parallel JIT
 | 
						|
//
 | 
						|
// This test program creates two LLVM functions then calls them from three
 | 
						|
// separate threads.  It requires the pthreads library.
 | 
						|
// The three threads are created and then block waiting on a condition variable.
 | 
						|
// Once all threads are blocked on the conditional variable, the main thread
 | 
						|
// wakes them up. This complicated work is performed so that all three threads
 | 
						|
// call into the JIT at the same time (or the best possible approximation of the
 | 
						|
// same time). This test had assertion errors until I got the locking right.
 | 
						|
 | 
						|
#include "llvm/ExecutionEngine/GenericValue.h"
 | 
						|
#include "llvm/ExecutionEngine/Interpreter.h"
 | 
						|
#include "llvm/ExecutionEngine/JIT.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/Support/TargetSelect.h"
 | 
						|
#include <iostream>
 | 
						|
#include <pthread.h>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
static Function* createAdd1(Module *M) {
 | 
						|
  // Create the add1 function entry and insert this entry into module M.  The
 | 
						|
  // function will have a return type of "int" and take an argument of "int".
 | 
						|
  // The '0' terminates the list of argument types.
 | 
						|
  Function *Add1F =
 | 
						|
    cast<Function>(M->getOrInsertFunction("add1",
 | 
						|
                                          Type::getInt32Ty(M->getContext()),
 | 
						|
                                          Type::getInt32Ty(M->getContext()),
 | 
						|
                                          (Type *)0));
 | 
						|
 | 
						|
  // Add a basic block to the function. As before, it automatically inserts
 | 
						|
  // because of the last argument.
 | 
						|
  BasicBlock *BB = BasicBlock::Create(M->getContext(), "EntryBlock", Add1F);
 | 
						|
 | 
						|
  // Get pointers to the constant `1'.
 | 
						|
  Value *One = ConstantInt::get(Type::getInt32Ty(M->getContext()), 1);
 | 
						|
 | 
						|
  // Get pointers to the integer argument of the add1 function...
 | 
						|
  assert(Add1F->arg_begin() != Add1F->arg_end()); // Make sure there's an arg
 | 
						|
  Argument *ArgX = Add1F->arg_begin();  // Get the arg
 | 
						|
  ArgX->setName("AnArg");            // Give it a nice symbolic name for fun.
 | 
						|
 | 
						|
  // Create the add instruction, inserting it into the end of BB.
 | 
						|
  Instruction *Add = BinaryOperator::CreateAdd(One, ArgX, "addresult", BB);
 | 
						|
 | 
						|
  // Create the return instruction and add it to the basic block
 | 
						|
  ReturnInst::Create(M->getContext(), Add, BB);
 | 
						|
 | 
						|
  // Now, function add1 is ready.
 | 
						|
  return Add1F;
 | 
						|
}
 | 
						|
 | 
						|
static Function *CreateFibFunction(Module *M) {
 | 
						|
  // Create the fib function and insert it into module M.  This function is said
 | 
						|
  // to return an int and take an int parameter.
 | 
						|
  Function *FibF = 
 | 
						|
    cast<Function>(M->getOrInsertFunction("fib",
 | 
						|
                                          Type::getInt32Ty(M->getContext()),
 | 
						|
                                          Type::getInt32Ty(M->getContext()),
 | 
						|
                                          (Type *)0));
 | 
						|
 | 
						|
  // Add a basic block to the function.
 | 
						|
  BasicBlock *BB = BasicBlock::Create(M->getContext(), "EntryBlock", FibF);
 | 
						|
 | 
						|
  // Get pointers to the constants.
 | 
						|
  Value *One = ConstantInt::get(Type::getInt32Ty(M->getContext()), 1);
 | 
						|
  Value *Two = ConstantInt::get(Type::getInt32Ty(M->getContext()), 2);
 | 
						|
 | 
						|
  // Get pointer to the integer argument of the add1 function...
 | 
						|
  Argument *ArgX = FibF->arg_begin();   // Get the arg.
 | 
						|
  ArgX->setName("AnArg");            // Give it a nice symbolic name for fun.
 | 
						|
 | 
						|
  // Create the true_block.
 | 
						|
  BasicBlock *RetBB = BasicBlock::Create(M->getContext(), "return", FibF);
 | 
						|
  // Create an exit block.
 | 
						|
  BasicBlock* RecurseBB = BasicBlock::Create(M->getContext(), "recurse", FibF);
 | 
						|
 | 
						|
  // Create the "if (arg < 2) goto exitbb"
 | 
						|
  Value *CondInst = new ICmpInst(*BB, ICmpInst::ICMP_SLE, ArgX, Two, "cond");
 | 
						|
  BranchInst::Create(RetBB, RecurseBB, CondInst, BB);
 | 
						|
 | 
						|
  // Create: ret int 1
 | 
						|
  ReturnInst::Create(M->getContext(), One, RetBB);
 | 
						|
 | 
						|
  // create fib(x-1)
 | 
						|
  Value *Sub = BinaryOperator::CreateSub(ArgX, One, "arg", RecurseBB);
 | 
						|
  Value *CallFibX1 = CallInst::Create(FibF, Sub, "fibx1", RecurseBB);
 | 
						|
 | 
						|
  // create fib(x-2)
 | 
						|
  Sub = BinaryOperator::CreateSub(ArgX, Two, "arg", RecurseBB);
 | 
						|
  Value *CallFibX2 = CallInst::Create(FibF, Sub, "fibx2", RecurseBB);
 | 
						|
 | 
						|
  // fib(x-1)+fib(x-2)
 | 
						|
  Value *Sum =
 | 
						|
    BinaryOperator::CreateAdd(CallFibX1, CallFibX2, "addresult", RecurseBB);
 | 
						|
 | 
						|
  // Create the return instruction and add it to the basic block
 | 
						|
  ReturnInst::Create(M->getContext(), Sum, RecurseBB);
 | 
						|
 | 
						|
  return FibF;
 | 
						|
}
 | 
						|
 | 
						|
struct threadParams {
 | 
						|
  ExecutionEngine* EE;
 | 
						|
  Function* F;
 | 
						|
  int value;
 | 
						|
};
 | 
						|
 | 
						|
// We block the subthreads just before they begin to execute:
 | 
						|
// we want all of them to call into the JIT at the same time,
 | 
						|
// to verify that the locking is working correctly.
 | 
						|
class WaitForThreads
 | 
						|
{
 | 
						|
public:
 | 
						|
  WaitForThreads()
 | 
						|
  {
 | 
						|
    n = 0;
 | 
						|
    waitFor = 0;
 | 
						|
 | 
						|
    int result = pthread_cond_init( &condition, NULL );
 | 
						|
    assert( result == 0 );
 | 
						|
 | 
						|
    result = pthread_mutex_init( &mutex, NULL );
 | 
						|
    assert( result == 0 );
 | 
						|
  }
 | 
						|
 | 
						|
  ~WaitForThreads()
 | 
						|
  {
 | 
						|
    int result = pthread_cond_destroy( &condition );
 | 
						|
    assert( result == 0 );
 | 
						|
 | 
						|
    result = pthread_mutex_destroy( &mutex );
 | 
						|
    assert( result == 0 );
 | 
						|
  }
 | 
						|
 | 
						|
  // All threads will stop here until another thread calls releaseThreads
 | 
						|
  void block()
 | 
						|
  {
 | 
						|
    int result = pthread_mutex_lock( &mutex );
 | 
						|
    assert( result == 0 );
 | 
						|
    n ++;
 | 
						|
    //~ std::cout << "block() n " << n << " waitFor " << waitFor << std::endl;
 | 
						|
 | 
						|
    assert( waitFor == 0 || n <= waitFor );
 | 
						|
    if ( waitFor > 0 && n == waitFor )
 | 
						|
    {
 | 
						|
      // There are enough threads blocked that we can release all of them
 | 
						|
      std::cout << "Unblocking threads from block()" << std::endl;
 | 
						|
      unblockThreads();
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
      // We just need to wait until someone unblocks us
 | 
						|
      result = pthread_cond_wait( &condition, &mutex );
 | 
						|
      assert( result == 0 );
 | 
						|
    }
 | 
						|
 | 
						|
    // unlock the mutex before returning
 | 
						|
    result = pthread_mutex_unlock( &mutex );
 | 
						|
    assert( result == 0 );
 | 
						|
  }
 | 
						|
 | 
						|
  // If there are num or more threads blocked, it will signal them all
 | 
						|
  // Otherwise, this thread blocks until there are enough OTHER threads
 | 
						|
  // blocked
 | 
						|
  void releaseThreads( size_t num )
 | 
						|
  {
 | 
						|
    int result = pthread_mutex_lock( &mutex );
 | 
						|
    assert( result == 0 );
 | 
						|
 | 
						|
    if ( n >= num ) {
 | 
						|
      std::cout << "Unblocking threads from releaseThreads()" << std::endl;
 | 
						|
      unblockThreads();
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
      waitFor = num;
 | 
						|
      pthread_cond_wait( &condition, &mutex );
 | 
						|
    }
 | 
						|
 | 
						|
    // unlock the mutex before returning
 | 
						|
    result = pthread_mutex_unlock( &mutex );
 | 
						|
    assert( result == 0 );
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  void unblockThreads()
 | 
						|
  {
 | 
						|
    // Reset the counters to zero: this way, if any new threads
 | 
						|
    // enter while threads are exiting, they will block instead
 | 
						|
    // of triggering a new release of threads
 | 
						|
    n = 0;
 | 
						|
 | 
						|
    // Reset waitFor to zero: this way, if waitFor threads enter
 | 
						|
    // while threads are exiting, they will block instead of
 | 
						|
    // triggering a new release of threads
 | 
						|
    waitFor = 0;
 | 
						|
 | 
						|
    int result = pthread_cond_broadcast( &condition );
 | 
						|
    (void)result;
 | 
						|
    assert(result == 0);
 | 
						|
  }
 | 
						|
 | 
						|
  size_t n;
 | 
						|
  size_t waitFor;
 | 
						|
  pthread_cond_t condition;
 | 
						|
  pthread_mutex_t mutex;
 | 
						|
};
 | 
						|
 | 
						|
static WaitForThreads synchronize;
 | 
						|
 | 
						|
void* callFunc( void* param )
 | 
						|
{
 | 
						|
  struct threadParams* p = (struct threadParams*) param;
 | 
						|
 | 
						|
  // Call the `foo' function with no arguments:
 | 
						|
  std::vector<GenericValue> Args(1);
 | 
						|
  Args[0].IntVal = APInt(32, p->value);
 | 
						|
 | 
						|
  synchronize.block(); // wait until other threads are at this point
 | 
						|
  GenericValue gv = p->EE->runFunction(p->F, Args);
 | 
						|
 | 
						|
  return (void*)(intptr_t)gv.IntVal.getZExtValue();
 | 
						|
}
 | 
						|
 | 
						|
int main() {
 | 
						|
  InitializeNativeTarget();
 | 
						|
  LLVMContext Context;
 | 
						|
 | 
						|
  // Create some module to put our function into it.
 | 
						|
  Module *M = new Module("test", Context);
 | 
						|
 | 
						|
  Function* add1F = createAdd1( M );
 | 
						|
  Function* fibF = CreateFibFunction( M );
 | 
						|
 | 
						|
  // Now we create the JIT.
 | 
						|
  ExecutionEngine* EE = EngineBuilder(M).create();
 | 
						|
 | 
						|
  //~ std::cout << "We just constructed this LLVM module:\n\n" << *M;
 | 
						|
  //~ std::cout << "\n\nRunning foo: " << std::flush;
 | 
						|
 | 
						|
  // Create one thread for add1 and two threads for fib
 | 
						|
  struct threadParams add1 = { EE, add1F, 1000 };
 | 
						|
  struct threadParams fib1 = { EE, fibF, 39 };
 | 
						|
  struct threadParams fib2 = { EE, fibF, 42 };
 | 
						|
 | 
						|
  pthread_t add1Thread;
 | 
						|
  int result = pthread_create( &add1Thread, NULL, callFunc, &add1 );
 | 
						|
  if ( result != 0 ) {
 | 
						|
          std::cerr << "Could not create thread" << std::endl;
 | 
						|
          return 1;
 | 
						|
  }
 | 
						|
 | 
						|
  pthread_t fibThread1;
 | 
						|
  result = pthread_create( &fibThread1, NULL, callFunc, &fib1 );
 | 
						|
  if ( result != 0 ) {
 | 
						|
          std::cerr << "Could not create thread" << std::endl;
 | 
						|
          return 1;
 | 
						|
  }
 | 
						|
 | 
						|
  pthread_t fibThread2;
 | 
						|
  result = pthread_create( &fibThread2, NULL, callFunc, &fib2 );
 | 
						|
  if ( result != 0 ) {
 | 
						|
          std::cerr << "Could not create thread" << std::endl;
 | 
						|
          return 1;
 | 
						|
  }
 | 
						|
 | 
						|
  synchronize.releaseThreads(3); // wait until other threads are at this point
 | 
						|
 | 
						|
  void* returnValue;
 | 
						|
  result = pthread_join( add1Thread, &returnValue );
 | 
						|
  if ( result != 0 ) {
 | 
						|
          std::cerr << "Could not join thread" << std::endl;
 | 
						|
          return 1;
 | 
						|
  }
 | 
						|
  std::cout << "Add1 returned " << intptr_t(returnValue) << std::endl;
 | 
						|
 | 
						|
  result = pthread_join( fibThread1, &returnValue );
 | 
						|
  if ( result != 0 ) {
 | 
						|
          std::cerr << "Could not join thread" << std::endl;
 | 
						|
          return 1;
 | 
						|
  }
 | 
						|
  std::cout << "Fib1 returned " << intptr_t(returnValue) << std::endl;
 | 
						|
 | 
						|
  result = pthread_join( fibThread2, &returnValue );
 | 
						|
  if ( result != 0 ) {
 | 
						|
          std::cerr << "Could not join thread" << std::endl;
 | 
						|
          return 1;
 | 
						|
  }
 | 
						|
  std::cout << "Fib2 returned " << intptr_t(returnValue) << std::endl;
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 |