mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142139 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			731 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			731 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- CodeGen/AsmPrinter/DwarfException.cpp - Dwarf Exception Impl ------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file contains support for writing DWARF exception info into asm files.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "DwarfException.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/CodeGen/AsmPrinter.h"
 | 
						|
#include "llvm/CodeGen/MachineModuleInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/MC/MCAsmInfo.h"
 | 
						|
#include "llvm/MC/MCContext.h"
 | 
						|
#include "llvm/MC/MCExpr.h"
 | 
						|
#include "llvm/MC/MCSection.h"
 | 
						|
#include "llvm/MC/MCStreamer.h"
 | 
						|
#include "llvm/MC/MCSymbol.h"
 | 
						|
#include "llvm/Target/Mangler.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include "llvm/Target/TargetFrameLowering.h"
 | 
						|
#include "llvm/Target/TargetLoweringObjectFile.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Target/TargetOptions.h"
 | 
						|
#include "llvm/Target/TargetRegisterInfo.h"
 | 
						|
#include "llvm/Support/Dwarf.h"
 | 
						|
#include "llvm/Support/FormattedStream.h"
 | 
						|
#include "llvm/ADT/SmallString.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include "llvm/ADT/Twine.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
DwarfException::DwarfException(AsmPrinter *A)
 | 
						|
  : Asm(A), MMI(Asm->MMI) {}
 | 
						|
 | 
						|
DwarfException::~DwarfException() {}
 | 
						|
 | 
						|
/// SharedTypeIds - How many leading type ids two landing pads have in common.
 | 
						|
unsigned DwarfException::SharedTypeIds(const LandingPadInfo *L,
 | 
						|
                                       const LandingPadInfo *R) {
 | 
						|
  const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
 | 
						|
  unsigned LSize = LIds.size(), RSize = RIds.size();
 | 
						|
  unsigned MinSize = LSize < RSize ? LSize : RSize;
 | 
						|
  unsigned Count = 0;
 | 
						|
 | 
						|
  for (; Count != MinSize; ++Count)
 | 
						|
    if (LIds[Count] != RIds[Count])
 | 
						|
      return Count;
 | 
						|
 | 
						|
  return Count;
 | 
						|
}
 | 
						|
 | 
						|
/// PadLT - Order landing pads lexicographically by type id.
 | 
						|
bool DwarfException::PadLT(const LandingPadInfo *L, const LandingPadInfo *R) {
 | 
						|
  const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
 | 
						|
  unsigned LSize = LIds.size(), RSize = RIds.size();
 | 
						|
  unsigned MinSize = LSize < RSize ? LSize : RSize;
 | 
						|
 | 
						|
  for (unsigned i = 0; i != MinSize; ++i)
 | 
						|
    if (LIds[i] != RIds[i])
 | 
						|
      return LIds[i] < RIds[i];
 | 
						|
 | 
						|
  return LSize < RSize;
 | 
						|
}
 | 
						|
 | 
						|
/// ComputeActionsTable - Compute the actions table and gather the first action
 | 
						|
/// index for each landing pad site.
 | 
						|
unsigned DwarfException::
 | 
						|
ComputeActionsTable(const SmallVectorImpl<const LandingPadInfo*> &LandingPads,
 | 
						|
                    SmallVectorImpl<ActionEntry> &Actions,
 | 
						|
                    SmallVectorImpl<unsigned> &FirstActions) {
 | 
						|
 | 
						|
  // The action table follows the call-site table in the LSDA. The individual
 | 
						|
  // records are of two types:
 | 
						|
  //
 | 
						|
  //   * Catch clause
 | 
						|
  //   * Exception specification
 | 
						|
  //
 | 
						|
  // The two record kinds have the same format, with only small differences.
 | 
						|
  // They are distinguished by the "switch value" field: Catch clauses
 | 
						|
  // (TypeInfos) have strictly positive switch values, and exception
 | 
						|
  // specifications (FilterIds) have strictly negative switch values. Value 0
 | 
						|
  // indicates a catch-all clause.
 | 
						|
  //
 | 
						|
  // Negative type IDs index into FilterIds. Positive type IDs index into
 | 
						|
  // TypeInfos.  The value written for a positive type ID is just the type ID
 | 
						|
  // itself.  For a negative type ID, however, the value written is the
 | 
						|
  // (negative) byte offset of the corresponding FilterIds entry.  The byte
 | 
						|
  // offset is usually equal to the type ID (because the FilterIds entries are
 | 
						|
  // written using a variable width encoding, which outputs one byte per entry
 | 
						|
  // as long as the value written is not too large) but can differ.  This kind
 | 
						|
  // of complication does not occur for positive type IDs because type infos are
 | 
						|
  // output using a fixed width encoding.  FilterOffsets[i] holds the byte
 | 
						|
  // offset corresponding to FilterIds[i].
 | 
						|
 | 
						|
  const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
 | 
						|
  SmallVector<int, 16> FilterOffsets;
 | 
						|
  FilterOffsets.reserve(FilterIds.size());
 | 
						|
  int Offset = -1;
 | 
						|
 | 
						|
  for (std::vector<unsigned>::const_iterator
 | 
						|
         I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) {
 | 
						|
    FilterOffsets.push_back(Offset);
 | 
						|
    Offset -= MCAsmInfo::getULEB128Size(*I);
 | 
						|
  }
 | 
						|
 | 
						|
  FirstActions.reserve(LandingPads.size());
 | 
						|
 | 
						|
  int FirstAction = 0;
 | 
						|
  unsigned SizeActions = 0;
 | 
						|
  const LandingPadInfo *PrevLPI = 0;
 | 
						|
 | 
						|
  for (SmallVectorImpl<const LandingPadInfo *>::const_iterator
 | 
						|
         I = LandingPads.begin(), E = LandingPads.end(); I != E; ++I) {
 | 
						|
    const LandingPadInfo *LPI = *I;
 | 
						|
    const std::vector<int> &TypeIds = LPI->TypeIds;
 | 
						|
    unsigned NumShared = PrevLPI ? SharedTypeIds(LPI, PrevLPI) : 0;
 | 
						|
    unsigned SizeSiteActions = 0;
 | 
						|
 | 
						|
    if (NumShared < TypeIds.size()) {
 | 
						|
      unsigned SizeAction = 0;
 | 
						|
      unsigned PrevAction = (unsigned)-1;
 | 
						|
 | 
						|
      if (NumShared) {
 | 
						|
        unsigned SizePrevIds = PrevLPI->TypeIds.size();
 | 
						|
        assert(Actions.size());
 | 
						|
        PrevAction = Actions.size() - 1;
 | 
						|
        SizeAction =
 | 
						|
          MCAsmInfo::getSLEB128Size(Actions[PrevAction].NextAction) +
 | 
						|
          MCAsmInfo::getSLEB128Size(Actions[PrevAction].ValueForTypeID);
 | 
						|
 | 
						|
        for (unsigned j = NumShared; j != SizePrevIds; ++j) {
 | 
						|
          assert(PrevAction != (unsigned)-1 && "PrevAction is invalid!");
 | 
						|
          SizeAction -=
 | 
						|
            MCAsmInfo::getSLEB128Size(Actions[PrevAction].ValueForTypeID);
 | 
						|
          SizeAction += -Actions[PrevAction].NextAction;
 | 
						|
          PrevAction = Actions[PrevAction].Previous;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Compute the actions.
 | 
						|
      for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) {
 | 
						|
        int TypeID = TypeIds[J];
 | 
						|
        assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
 | 
						|
        int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID;
 | 
						|
        unsigned SizeTypeID = MCAsmInfo::getSLEB128Size(ValueForTypeID);
 | 
						|
 | 
						|
        int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0;
 | 
						|
        SizeAction = SizeTypeID + MCAsmInfo::getSLEB128Size(NextAction);
 | 
						|
        SizeSiteActions += SizeAction;
 | 
						|
 | 
						|
        ActionEntry Action = { ValueForTypeID, NextAction, PrevAction };
 | 
						|
        Actions.push_back(Action);
 | 
						|
        PrevAction = Actions.size() - 1;
 | 
						|
      }
 | 
						|
 | 
						|
      // Record the first action of the landing pad site.
 | 
						|
      FirstAction = SizeActions + SizeSiteActions - SizeAction + 1;
 | 
						|
    } // else identical - re-use previous FirstAction
 | 
						|
 | 
						|
    // Information used when created the call-site table. The action record
 | 
						|
    // field of the call site record is the offset of the first associated
 | 
						|
    // action record, relative to the start of the actions table. This value is
 | 
						|
    // biased by 1 (1 indicating the start of the actions table), and 0
 | 
						|
    // indicates that there are no actions.
 | 
						|
    FirstActions.push_back(FirstAction);
 | 
						|
 | 
						|
    // Compute this sites contribution to size.
 | 
						|
    SizeActions += SizeSiteActions;
 | 
						|
 | 
						|
    PrevLPI = LPI;
 | 
						|
  }
 | 
						|
 | 
						|
  return SizeActions;
 | 
						|
}
 | 
						|
 | 
						|
/// CallToNoUnwindFunction - Return `true' if this is a call to a function
 | 
						|
/// marked `nounwind'. Return `false' otherwise.
 | 
						|
bool DwarfException::CallToNoUnwindFunction(const MachineInstr *MI) {
 | 
						|
  assert(MI->getDesc().isCall() && "This should be a call instruction!");
 | 
						|
 | 
						|
  bool MarkedNoUnwind = false;
 | 
						|
  bool SawFunc = false;
 | 
						|
 | 
						|
  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
 | 
						|
    const MachineOperand &MO = MI->getOperand(I);
 | 
						|
 | 
						|
    if (!MO.isGlobal()) continue;
 | 
						|
 | 
						|
    const Function *F = dyn_cast<Function>(MO.getGlobal());
 | 
						|
    if (F == 0) continue;
 | 
						|
 | 
						|
    if (SawFunc) {
 | 
						|
      // Be conservative. If we have more than one function operand for this
 | 
						|
      // call, then we can't make the assumption that it's the callee and
 | 
						|
      // not a parameter to the call.
 | 
						|
      //
 | 
						|
      // FIXME: Determine if there's a way to say that `F' is the callee or
 | 
						|
      // parameter.
 | 
						|
      MarkedNoUnwind = false;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    MarkedNoUnwind = F->doesNotThrow();
 | 
						|
    SawFunc = true;
 | 
						|
  }
 | 
						|
 | 
						|
  return MarkedNoUnwind;
 | 
						|
}
 | 
						|
 | 
						|
/// ComputeCallSiteTable - Compute the call-site table.  The entry for an invoke
 | 
						|
/// has a try-range containing the call, a non-zero landing pad, and an
 | 
						|
/// appropriate action.  The entry for an ordinary call has a try-range
 | 
						|
/// containing the call and zero for the landing pad and the action.  Calls
 | 
						|
/// marked 'nounwind' have no entry and must not be contained in the try-range
 | 
						|
/// of any entry - they form gaps in the table.  Entries must be ordered by
 | 
						|
/// try-range address.
 | 
						|
void DwarfException::
 | 
						|
ComputeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites,
 | 
						|
                     const RangeMapType &PadMap,
 | 
						|
                     const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
 | 
						|
                     const SmallVectorImpl<unsigned> &FirstActions) {
 | 
						|
  // The end label of the previous invoke or nounwind try-range.
 | 
						|
  MCSymbol *LastLabel = 0;
 | 
						|
 | 
						|
  // Whether there is a potentially throwing instruction (currently this means
 | 
						|
  // an ordinary call) between the end of the previous try-range and now.
 | 
						|
  bool SawPotentiallyThrowing = false;
 | 
						|
 | 
						|
  // Whether the last CallSite entry was for an invoke.
 | 
						|
  bool PreviousIsInvoke = false;
 | 
						|
 | 
						|
  // Visit all instructions in order of address.
 | 
						|
  for (MachineFunction::const_iterator I = Asm->MF->begin(), E = Asm->MF->end();
 | 
						|
       I != E; ++I) {
 | 
						|
    for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end();
 | 
						|
         MI != E; ++MI) {
 | 
						|
      if (!MI->isLabel()) {
 | 
						|
        if (MI->getDesc().isCall())
 | 
						|
          SawPotentiallyThrowing |= !CallToNoUnwindFunction(MI);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // End of the previous try-range?
 | 
						|
      MCSymbol *BeginLabel = MI->getOperand(0).getMCSymbol();
 | 
						|
      if (BeginLabel == LastLabel)
 | 
						|
        SawPotentiallyThrowing = false;
 | 
						|
 | 
						|
      // Beginning of a new try-range?
 | 
						|
      RangeMapType::const_iterator L = PadMap.find(BeginLabel);
 | 
						|
      if (L == PadMap.end())
 | 
						|
        // Nope, it was just some random label.
 | 
						|
        continue;
 | 
						|
 | 
						|
      const PadRange &P = L->second;
 | 
						|
      const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
 | 
						|
      assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
 | 
						|
             "Inconsistent landing pad map!");
 | 
						|
 | 
						|
      // For Dwarf exception handling (SjLj handling doesn't use this). If some
 | 
						|
      // instruction between the previous try-range and this one may throw,
 | 
						|
      // create a call-site entry with no landing pad for the region between the
 | 
						|
      // try-ranges.
 | 
						|
      if (SawPotentiallyThrowing && Asm->MAI->isExceptionHandlingDwarf()) {
 | 
						|
        CallSiteEntry Site = { LastLabel, BeginLabel, 0, 0 };
 | 
						|
        CallSites.push_back(Site);
 | 
						|
        PreviousIsInvoke = false;
 | 
						|
      }
 | 
						|
 | 
						|
      LastLabel = LandingPad->EndLabels[P.RangeIndex];
 | 
						|
      assert(BeginLabel && LastLabel && "Invalid landing pad!");
 | 
						|
 | 
						|
      if (!LandingPad->LandingPadLabel) {
 | 
						|
        // Create a gap.
 | 
						|
        PreviousIsInvoke = false;
 | 
						|
      } else {
 | 
						|
        // This try-range is for an invoke.
 | 
						|
        CallSiteEntry Site = {
 | 
						|
          BeginLabel,
 | 
						|
          LastLabel,
 | 
						|
          LandingPad->LandingPadLabel,
 | 
						|
          FirstActions[P.PadIndex]
 | 
						|
        };
 | 
						|
 | 
						|
        // Try to merge with the previous call-site. SJLJ doesn't do this
 | 
						|
        if (PreviousIsInvoke && Asm->MAI->isExceptionHandlingDwarf()) {
 | 
						|
          CallSiteEntry &Prev = CallSites.back();
 | 
						|
          if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) {
 | 
						|
            // Extend the range of the previous entry.
 | 
						|
            Prev.EndLabel = Site.EndLabel;
 | 
						|
            continue;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        // Otherwise, create a new call-site.
 | 
						|
        if (Asm->MAI->isExceptionHandlingDwarf())
 | 
						|
          CallSites.push_back(Site);
 | 
						|
        else {
 | 
						|
          // SjLj EH must maintain the call sites in the order assigned
 | 
						|
          // to them by the SjLjPrepare pass.
 | 
						|
          unsigned SiteNo = MMI->getCallSiteBeginLabel(BeginLabel);
 | 
						|
          if (CallSites.size() < SiteNo)
 | 
						|
            CallSites.resize(SiteNo);
 | 
						|
          CallSites[SiteNo - 1] = Site;
 | 
						|
        }
 | 
						|
        PreviousIsInvoke = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If some instruction between the previous try-range and the end of the
 | 
						|
  // function may throw, create a call-site entry with no landing pad for the
 | 
						|
  // region following the try-range.
 | 
						|
  if (SawPotentiallyThrowing && Asm->MAI->isExceptionHandlingDwarf()) {
 | 
						|
    CallSiteEntry Site = { LastLabel, 0, 0, 0 };
 | 
						|
    CallSites.push_back(Site);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// EmitExceptionTable - Emit landing pads and actions.
 | 
						|
///
 | 
						|
/// The general organization of the table is complex, but the basic concepts are
 | 
						|
/// easy.  First there is a header which describes the location and organization
 | 
						|
/// of the three components that follow.
 | 
						|
///
 | 
						|
///  1. The landing pad site information describes the range of code covered by
 | 
						|
///     the try.  In our case it's an accumulation of the ranges covered by the
 | 
						|
///     invokes in the try.  There is also a reference to the landing pad that
 | 
						|
///     handles the exception once processed.  Finally an index into the actions
 | 
						|
///     table.
 | 
						|
///  2. The action table, in our case, is composed of pairs of type IDs and next
 | 
						|
///     action offset.  Starting with the action index from the landing pad
 | 
						|
///     site, each type ID is checked for a match to the current exception.  If
 | 
						|
///     it matches then the exception and type id are passed on to the landing
 | 
						|
///     pad.  Otherwise the next action is looked up.  This chain is terminated
 | 
						|
///     with a next action of zero.  If no type id is found then the frame is
 | 
						|
///     unwound and handling continues.
 | 
						|
///  3. Type ID table contains references to all the C++ typeinfo for all
 | 
						|
///     catches in the function.  This tables is reverse indexed base 1.
 | 
						|
void DwarfException::EmitExceptionTable() {
 | 
						|
  const std::vector<const GlobalVariable *> &TypeInfos = MMI->getTypeInfos();
 | 
						|
  const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
 | 
						|
  const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads();
 | 
						|
 | 
						|
  // Sort the landing pads in order of their type ids.  This is used to fold
 | 
						|
  // duplicate actions.
 | 
						|
  SmallVector<const LandingPadInfo *, 64> LandingPads;
 | 
						|
  LandingPads.reserve(PadInfos.size());
 | 
						|
 | 
						|
  for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
 | 
						|
    LandingPads.push_back(&PadInfos[i]);
 | 
						|
 | 
						|
  std::sort(LandingPads.begin(), LandingPads.end(), PadLT);
 | 
						|
 | 
						|
  // Compute the actions table and gather the first action index for each
 | 
						|
  // landing pad site.
 | 
						|
  SmallVector<ActionEntry, 32> Actions;
 | 
						|
  SmallVector<unsigned, 64> FirstActions;
 | 
						|
  unsigned SizeActions=ComputeActionsTable(LandingPads, Actions, FirstActions);
 | 
						|
 | 
						|
  // Invokes and nounwind calls have entries in PadMap (due to being bracketed
 | 
						|
  // by try-range labels when lowered).  Ordinary calls do not, so appropriate
 | 
						|
  // try-ranges for them need be deduced when using DWARF exception handling.
 | 
						|
  RangeMapType PadMap;
 | 
						|
  for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
 | 
						|
    const LandingPadInfo *LandingPad = LandingPads[i];
 | 
						|
    for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
 | 
						|
      MCSymbol *BeginLabel = LandingPad->BeginLabels[j];
 | 
						|
      assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
 | 
						|
      PadRange P = { i, j };
 | 
						|
      PadMap[BeginLabel] = P;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Compute the call-site table.
 | 
						|
  SmallVector<CallSiteEntry, 64> CallSites;
 | 
						|
  ComputeCallSiteTable(CallSites, PadMap, LandingPads, FirstActions);
 | 
						|
 | 
						|
  // Final tallies.
 | 
						|
 | 
						|
  // Call sites.
 | 
						|
  bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
 | 
						|
  bool HaveTTData = IsSJLJ ? (!TypeInfos.empty() || !FilterIds.empty()) : true;
 | 
						|
 | 
						|
  unsigned CallSiteTableLength;
 | 
						|
  if (IsSJLJ)
 | 
						|
    CallSiteTableLength = 0;
 | 
						|
  else {
 | 
						|
    unsigned SiteStartSize  = 4; // dwarf::DW_EH_PE_udata4
 | 
						|
    unsigned SiteLengthSize = 4; // dwarf::DW_EH_PE_udata4
 | 
						|
    unsigned LandingPadSize = 4; // dwarf::DW_EH_PE_udata4
 | 
						|
    CallSiteTableLength =
 | 
						|
      CallSites.size() * (SiteStartSize + SiteLengthSize + LandingPadSize);
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned i = 0, e = CallSites.size(); i < e; ++i) {
 | 
						|
    CallSiteTableLength += MCAsmInfo::getULEB128Size(CallSites[i].Action);
 | 
						|
    if (IsSJLJ)
 | 
						|
      CallSiteTableLength += MCAsmInfo::getULEB128Size(i);
 | 
						|
  }
 | 
						|
 | 
						|
  // Type infos.
 | 
						|
  const MCSection *LSDASection = Asm->getObjFileLowering().getLSDASection();
 | 
						|
  unsigned TTypeEncoding;
 | 
						|
  unsigned TypeFormatSize;
 | 
						|
 | 
						|
  if (!HaveTTData) {
 | 
						|
    // For SjLj exceptions, if there is no TypeInfo, then we just explicitly say
 | 
						|
    // that we're omitting that bit.
 | 
						|
    TTypeEncoding = dwarf::DW_EH_PE_omit;
 | 
						|
    // dwarf::DW_EH_PE_absptr
 | 
						|
    TypeFormatSize = Asm->getTargetData().getPointerSize();
 | 
						|
  } else {
 | 
						|
    // Okay, we have actual filters or typeinfos to emit.  As such, we need to
 | 
						|
    // pick a type encoding for them.  We're about to emit a list of pointers to
 | 
						|
    // typeinfo objects at the end of the LSDA.  However, unless we're in static
 | 
						|
    // mode, this reference will require a relocation by the dynamic linker.
 | 
						|
    //
 | 
						|
    // Because of this, we have a couple of options:
 | 
						|
    //
 | 
						|
    //   1) If we are in -static mode, we can always use an absolute reference
 | 
						|
    //      from the LSDA, because the static linker will resolve it.
 | 
						|
    //
 | 
						|
    //   2) Otherwise, if the LSDA section is writable, we can output the direct
 | 
						|
    //      reference to the typeinfo and allow the dynamic linker to relocate
 | 
						|
    //      it.  Since it is in a writable section, the dynamic linker won't
 | 
						|
    //      have a problem.
 | 
						|
    //
 | 
						|
    //   3) Finally, if we're in PIC mode and the LDSA section isn't writable,
 | 
						|
    //      we need to use some form of indirection.  For example, on Darwin,
 | 
						|
    //      we can output a statically-relocatable reference to a dyld stub. The
 | 
						|
    //      offset to the stub is constant, but the contents are in a section
 | 
						|
    //      that is updated by the dynamic linker.  This is easy enough, but we
 | 
						|
    //      need to tell the personality function of the unwinder to indirect
 | 
						|
    //      through the dyld stub.
 | 
						|
    //
 | 
						|
    // FIXME: When (3) is actually implemented, we'll have to emit the stubs
 | 
						|
    // somewhere.  This predicate should be moved to a shared location that is
 | 
						|
    // in target-independent code.
 | 
						|
    //
 | 
						|
    TTypeEncoding = Asm->getObjFileLowering().getTTypeEncoding();
 | 
						|
    TypeFormatSize = Asm->GetSizeOfEncodedValue(TTypeEncoding);
 | 
						|
  }
 | 
						|
 | 
						|
  // Begin the exception table.
 | 
						|
  // Sometimes we want not to emit the data into separate section (e.g. ARM
 | 
						|
  // EHABI). In this case LSDASection will be NULL.
 | 
						|
  if (LSDASection)
 | 
						|
    Asm->OutStreamer.SwitchSection(LSDASection);
 | 
						|
  Asm->EmitAlignment(2);
 | 
						|
 | 
						|
  // Emit the LSDA.
 | 
						|
  MCSymbol *GCCETSym =
 | 
						|
    Asm->OutContext.GetOrCreateSymbol(Twine("GCC_except_table")+
 | 
						|
                                      Twine(Asm->getFunctionNumber()));
 | 
						|
  Asm->OutStreamer.EmitLabel(GCCETSym);
 | 
						|
  Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("exception",
 | 
						|
                                                Asm->getFunctionNumber()));
 | 
						|
 | 
						|
  if (IsSJLJ)
 | 
						|
    Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("_LSDA_",
 | 
						|
                                                  Asm->getFunctionNumber()));
 | 
						|
 | 
						|
  // Emit the LSDA header.
 | 
						|
  Asm->EmitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart");
 | 
						|
  Asm->EmitEncodingByte(TTypeEncoding, "@TType");
 | 
						|
 | 
						|
  // The type infos need to be aligned. GCC does this by inserting padding just
 | 
						|
  // before the type infos. However, this changes the size of the exception
 | 
						|
  // table, so you need to take this into account when you output the exception
 | 
						|
  // table size. However, the size is output using a variable length encoding.
 | 
						|
  // So by increasing the size by inserting padding, you may increase the number
 | 
						|
  // of bytes used for writing the size. If it increases, say by one byte, then
 | 
						|
  // you now need to output one less byte of padding to get the type infos
 | 
						|
  // aligned. However this decreases the size of the exception table. This
 | 
						|
  // changes the value you have to output for the exception table size. Due to
 | 
						|
  // the variable length encoding, the number of bytes used for writing the
 | 
						|
  // length may decrease. If so, you then have to increase the amount of
 | 
						|
  // padding. And so on. If you look carefully at the GCC code you will see that
 | 
						|
  // it indeed does this in a loop, going on and on until the values stabilize.
 | 
						|
  // We chose another solution: don't output padding inside the table like GCC
 | 
						|
  // does, instead output it before the table.
 | 
						|
  unsigned SizeTypes = TypeInfos.size() * TypeFormatSize;
 | 
						|
  unsigned CallSiteTableLengthSize =
 | 
						|
    MCAsmInfo::getULEB128Size(CallSiteTableLength);
 | 
						|
  unsigned TTypeBaseOffset =
 | 
						|
    sizeof(int8_t) +                            // Call site format
 | 
						|
    CallSiteTableLengthSize +                   // Call site table length size
 | 
						|
    CallSiteTableLength +                       // Call site table length
 | 
						|
    SizeActions +                               // Actions size
 | 
						|
    SizeTypes;
 | 
						|
  unsigned TTypeBaseOffsetSize = MCAsmInfo::getULEB128Size(TTypeBaseOffset);
 | 
						|
  unsigned TotalSize =
 | 
						|
    sizeof(int8_t) +                            // LPStart format
 | 
						|
    sizeof(int8_t) +                            // TType format
 | 
						|
    (HaveTTData ? TTypeBaseOffsetSize : 0) +    // TType base offset size
 | 
						|
    TTypeBaseOffset;                            // TType base offset
 | 
						|
  unsigned SizeAlign = (4 - TotalSize) & 3;
 | 
						|
 | 
						|
  if (HaveTTData) {
 | 
						|
    // Account for any extra padding that will be added to the call site table
 | 
						|
    // length.
 | 
						|
    Asm->EmitULEB128(TTypeBaseOffset, "@TType base offset", SizeAlign);
 | 
						|
    SizeAlign = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  bool VerboseAsm = Asm->OutStreamer.isVerboseAsm();
 | 
						|
 | 
						|
  // SjLj Exception handling
 | 
						|
  if (IsSJLJ) {
 | 
						|
    Asm->EmitEncodingByte(dwarf::DW_EH_PE_udata4, "Call site");
 | 
						|
 | 
						|
    // Add extra padding if it wasn't added to the TType base offset.
 | 
						|
    Asm->EmitULEB128(CallSiteTableLength, "Call site table length", SizeAlign);
 | 
						|
 | 
						|
    // Emit the landing pad site information.
 | 
						|
    unsigned idx = 0;
 | 
						|
    for (SmallVectorImpl<CallSiteEntry>::const_iterator
 | 
						|
         I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) {
 | 
						|
      const CallSiteEntry &S = *I;
 | 
						|
 | 
						|
      // Offset of the landing pad, counted in 16-byte bundles relative to the
 | 
						|
      // @LPStart address.
 | 
						|
      if (VerboseAsm) {
 | 
						|
        Asm->OutStreamer.AddComment(">> Call Site " + Twine(idx) + " <<");
 | 
						|
        Asm->OutStreamer.AddComment("  On exception at call site "+Twine(idx));
 | 
						|
      }
 | 
						|
      Asm->EmitULEB128(idx);
 | 
						|
 | 
						|
      // Offset of the first associated action record, relative to the start of
 | 
						|
      // the action table. This value is biased by 1 (1 indicates the start of
 | 
						|
      // the action table), and 0 indicates that there are no actions.
 | 
						|
      if (VerboseAsm) {
 | 
						|
        if (S.Action == 0)
 | 
						|
          Asm->OutStreamer.AddComment("  Action: cleanup");
 | 
						|
        else
 | 
						|
          Asm->OutStreamer.AddComment("  Action: " +
 | 
						|
                                      Twine((S.Action - 1) / 2 + 1));
 | 
						|
      }
 | 
						|
      Asm->EmitULEB128(S.Action);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // DWARF Exception handling
 | 
						|
    assert(Asm->MAI->isExceptionHandlingDwarf());
 | 
						|
 | 
						|
    // The call-site table is a list of all call sites that may throw an
 | 
						|
    // exception (including C++ 'throw' statements) in the procedure
 | 
						|
    // fragment. It immediately follows the LSDA header. Each entry indicates,
 | 
						|
    // for a given call, the first corresponding action record and corresponding
 | 
						|
    // landing pad.
 | 
						|
    //
 | 
						|
    // The table begins with the number of bytes, stored as an LEB128
 | 
						|
    // compressed, unsigned integer. The records immediately follow the record
 | 
						|
    // count. They are sorted in increasing call-site address. Each record
 | 
						|
    // indicates:
 | 
						|
    //
 | 
						|
    //   * The position of the call-site.
 | 
						|
    //   * The position of the landing pad.
 | 
						|
    //   * The first action record for that call site.
 | 
						|
    //
 | 
						|
    // A missing entry in the call-site table indicates that a call is not
 | 
						|
    // supposed to throw.
 | 
						|
 | 
						|
    // Emit the landing pad call site table.
 | 
						|
    Asm->EmitEncodingByte(dwarf::DW_EH_PE_udata4, "Call site");
 | 
						|
 | 
						|
    // Add extra padding if it wasn't added to the TType base offset.
 | 
						|
    Asm->EmitULEB128(CallSiteTableLength, "Call site table length", SizeAlign);
 | 
						|
 | 
						|
    unsigned Entry = 0;
 | 
						|
    for (SmallVectorImpl<CallSiteEntry>::const_iterator
 | 
						|
         I = CallSites.begin(), E = CallSites.end(); I != E; ++I) {
 | 
						|
      const CallSiteEntry &S = *I;
 | 
						|
 | 
						|
      MCSymbol *EHFuncBeginSym =
 | 
						|
        Asm->GetTempSymbol("eh_func_begin", Asm->getFunctionNumber());
 | 
						|
 | 
						|
      MCSymbol *BeginLabel = S.BeginLabel;
 | 
						|
      if (BeginLabel == 0)
 | 
						|
        BeginLabel = EHFuncBeginSym;
 | 
						|
      MCSymbol *EndLabel = S.EndLabel;
 | 
						|
      if (EndLabel == 0)
 | 
						|
        EndLabel = Asm->GetTempSymbol("eh_func_end", Asm->getFunctionNumber());
 | 
						|
 | 
						|
 | 
						|
      // Offset of the call site relative to the previous call site, counted in
 | 
						|
      // number of 16-byte bundles. The first call site is counted relative to
 | 
						|
      // the start of the procedure fragment.
 | 
						|
      if (VerboseAsm)
 | 
						|
        Asm->OutStreamer.AddComment(">> Call Site " + Twine(++Entry) + " <<");
 | 
						|
      Asm->EmitLabelDifference(BeginLabel, EHFuncBeginSym, 4);
 | 
						|
      if (VerboseAsm)
 | 
						|
        Asm->OutStreamer.AddComment(Twine("  Call between ") +
 | 
						|
                                    BeginLabel->getName() + " and " +
 | 
						|
                                    EndLabel->getName());
 | 
						|
      Asm->EmitLabelDifference(EndLabel, BeginLabel, 4);
 | 
						|
 | 
						|
      // Offset of the landing pad, counted in 16-byte bundles relative to the
 | 
						|
      // @LPStart address.
 | 
						|
      if (!S.PadLabel) {
 | 
						|
        if (VerboseAsm)
 | 
						|
          Asm->OutStreamer.AddComment("    has no landing pad");
 | 
						|
        Asm->OutStreamer.EmitIntValue(0, 4/*size*/, 0/*addrspace*/);
 | 
						|
      } else {
 | 
						|
        if (VerboseAsm)
 | 
						|
          Asm->OutStreamer.AddComment(Twine("    jumps to ") +
 | 
						|
                                      S.PadLabel->getName());
 | 
						|
        Asm->EmitLabelDifference(S.PadLabel, EHFuncBeginSym, 4);
 | 
						|
      }
 | 
						|
 | 
						|
      // Offset of the first associated action record, relative to the start of
 | 
						|
      // the action table. This value is biased by 1 (1 indicates the start of
 | 
						|
      // the action table), and 0 indicates that there are no actions.
 | 
						|
      if (VerboseAsm) {
 | 
						|
        if (S.Action == 0)
 | 
						|
          Asm->OutStreamer.AddComment("  On action: cleanup");
 | 
						|
        else
 | 
						|
          Asm->OutStreamer.AddComment("  On action: " +
 | 
						|
                                      Twine((S.Action - 1) / 2 + 1));
 | 
						|
      }
 | 
						|
      Asm->EmitULEB128(S.Action);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Emit the Action Table.
 | 
						|
  int Entry = 0;
 | 
						|
  for (SmallVectorImpl<ActionEntry>::const_iterator
 | 
						|
         I = Actions.begin(), E = Actions.end(); I != E; ++I) {
 | 
						|
    const ActionEntry &Action = *I;
 | 
						|
 | 
						|
    if (VerboseAsm) {
 | 
						|
      // Emit comments that decode the action table.
 | 
						|
      Asm->OutStreamer.AddComment(">> Action Record " + Twine(++Entry) + " <<");
 | 
						|
    }
 | 
						|
 | 
						|
    // Type Filter
 | 
						|
    //
 | 
						|
    //   Used by the runtime to match the type of the thrown exception to the
 | 
						|
    //   type of the catch clauses or the types in the exception specification.
 | 
						|
    if (VerboseAsm) {
 | 
						|
      if (Action.ValueForTypeID > 0)
 | 
						|
        Asm->OutStreamer.AddComment("  Catch TypeInfo " +
 | 
						|
                                    Twine(Action.ValueForTypeID));
 | 
						|
      else if (Action.ValueForTypeID < 0)
 | 
						|
        Asm->OutStreamer.AddComment("  Filter TypeInfo " +
 | 
						|
                                    Twine(Action.ValueForTypeID));
 | 
						|
      else
 | 
						|
        Asm->OutStreamer.AddComment("  Cleanup");
 | 
						|
    }
 | 
						|
    Asm->EmitSLEB128(Action.ValueForTypeID);
 | 
						|
 | 
						|
    // Action Record
 | 
						|
    //
 | 
						|
    //   Self-relative signed displacement in bytes of the next action record,
 | 
						|
    //   or 0 if there is no next action record.
 | 
						|
    if (VerboseAsm) {
 | 
						|
      if (Action.NextAction == 0) {
 | 
						|
        Asm->OutStreamer.AddComment("  No further actions");
 | 
						|
      } else {
 | 
						|
        unsigned NextAction = Entry + (Action.NextAction + 1) / 2;
 | 
						|
        Asm->OutStreamer.AddComment("  Continue to action "+Twine(NextAction));
 | 
						|
      }
 | 
						|
    }
 | 
						|
    Asm->EmitSLEB128(Action.NextAction);
 | 
						|
  }
 | 
						|
 | 
						|
  // Emit the Catch TypeInfos.
 | 
						|
  if (VerboseAsm && !TypeInfos.empty()) {
 | 
						|
    Asm->OutStreamer.AddComment(">> Catch TypeInfos <<");
 | 
						|
    Asm->OutStreamer.AddBlankLine();
 | 
						|
    Entry = TypeInfos.size();
 | 
						|
  }
 | 
						|
 | 
						|
  for (std::vector<const GlobalVariable *>::const_reverse_iterator
 | 
						|
         I = TypeInfos.rbegin(), E = TypeInfos.rend(); I != E; ++I) {
 | 
						|
    const GlobalVariable *GV = *I;
 | 
						|
    if (VerboseAsm)
 | 
						|
      Asm->OutStreamer.AddComment("TypeInfo " + Twine(Entry--));
 | 
						|
    if (GV)
 | 
						|
      Asm->EmitReference(GV, TTypeEncoding);
 | 
						|
    else
 | 
						|
      Asm->OutStreamer.EmitIntValue(0,Asm->GetSizeOfEncodedValue(TTypeEncoding),
 | 
						|
                                    0);
 | 
						|
  }
 | 
						|
 | 
						|
  // Emit the Exception Specifications.
 | 
						|
  if (VerboseAsm && !FilterIds.empty()) {
 | 
						|
    Asm->OutStreamer.AddComment(">> Filter TypeInfos <<");
 | 
						|
    Asm->OutStreamer.AddBlankLine();
 | 
						|
    Entry = 0;
 | 
						|
  }
 | 
						|
  for (std::vector<unsigned>::const_iterator
 | 
						|
         I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) {
 | 
						|
    unsigned TypeID = *I;
 | 
						|
    if (VerboseAsm) {
 | 
						|
      --Entry;
 | 
						|
      if (TypeID != 0)
 | 
						|
        Asm->OutStreamer.AddComment("FilterInfo " + Twine(Entry));
 | 
						|
    }
 | 
						|
 | 
						|
    Asm->EmitULEB128(TypeID);
 | 
						|
  }
 | 
						|
 | 
						|
  Asm->EmitAlignment(2);
 | 
						|
}
 | 
						|
 | 
						|
/// EndModule - Emit all exception information that should come after the
 | 
						|
/// content.
 | 
						|
void DwarfException::EndModule() {
 | 
						|
  assert(0 && "Should be implemented");
 | 
						|
}
 | 
						|
 | 
						|
/// BeginFunction - Gather pre-function exception information. Assumes it's
 | 
						|
/// being emitted immediately after the function entry point.
 | 
						|
void DwarfException::BeginFunction(const MachineFunction *MF) {
 | 
						|
  assert(0 && "Should be implemented");
 | 
						|
}
 | 
						|
 | 
						|
/// EndFunction - Gather and emit post-function exception information.
 | 
						|
///
 | 
						|
void DwarfException::EndFunction() {
 | 
						|
  assert(0 && "Should be implemented");
 | 
						|
}
 |