mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-24 08:33:39 +00:00
49cab03c81
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@6340 91177308-0d34-0410-b5e6-96231b3b80d8
460 lines
15 KiB
C++
460 lines
15 KiB
C++
//===-- X86/Printer.cpp - Convert X86 code to human readable rep. ---------===//
|
|
//
|
|
// This file contains a printer that converts from our internal representation
|
|
// of LLVM code to a nice human readable form that is suitable for debuggging.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "X86.h"
|
|
#include "X86InstrInfo.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/Constant.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineConstantPool.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "Support/Statistic.h"
|
|
|
|
namespace {
|
|
struct Printer : public MachineFunctionPass {
|
|
std::ostream &O;
|
|
unsigned ConstIdx;
|
|
Printer(std::ostream &o) : O(o), ConstIdx(0) {}
|
|
|
|
virtual const char *getPassName() const {
|
|
return "X86 Assembly Printer";
|
|
}
|
|
|
|
void printConstantPool(MachineConstantPool *MCP, const TargetData &TD);
|
|
bool runOnMachineFunction(MachineFunction &F);
|
|
};
|
|
}
|
|
|
|
/// createX86CodePrinterPass - Print out the specified machine code function to
|
|
/// the specified stream. This function should work regardless of whether or
|
|
/// not the function is in SSA form or not.
|
|
///
|
|
Pass *createX86CodePrinterPass(std::ostream &O) {
|
|
return new Printer(O);
|
|
}
|
|
|
|
|
|
// printConstantPool - Print out any constants which have been spilled to
|
|
// memory...
|
|
void Printer::printConstantPool(MachineConstantPool *MCP, const TargetData &TD){
|
|
const std::vector<Constant*> &CP = MCP->getConstants();
|
|
if (CP.empty()) return;
|
|
|
|
for (unsigned i = 0, e = CP.size(); i != e; ++i) {
|
|
O << "\t.section .rodata\n";
|
|
O << "\t.align " << (unsigned)TD.getTypeAlignment(CP[i]->getType()) << "\n";
|
|
O << ".CPI" << i+ConstIdx << ":\t\t\t\t\t;" << *CP[i] << "\n";
|
|
O << "\t*Constant output not implemented yet!*\n\n";
|
|
}
|
|
ConstIdx += CP.size(); // Don't recycle constant pool index numbers
|
|
}
|
|
|
|
/// runOnFunction - This uses the X86InstructionInfo::print method
|
|
/// to print assembly for each instruction.
|
|
bool Printer::runOnMachineFunction(MachineFunction &MF) {
|
|
static unsigned BBNumber = 0;
|
|
const TargetMachine &TM = MF.getTarget();
|
|
const TargetInstrInfo &TII = TM.getInstrInfo();
|
|
|
|
// Print out constants referenced by the function
|
|
printConstantPool(MF.getConstantPool(), TM.getTargetData());
|
|
|
|
// Print out labels for the function.
|
|
O << "\t.text\n";
|
|
O << "\t.align 16\n";
|
|
O << "\t.globl\t" << MF.getFunction()->getName() << "\n";
|
|
O << "\t.type\t" << MF.getFunction()->getName() << ", @function\n";
|
|
O << MF.getFunction()->getName() << ":\n";
|
|
|
|
// Print out code for the function.
|
|
for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
|
|
I != E; ++I) {
|
|
// Print a label for the basic block.
|
|
O << ".BB" << BBNumber++ << ":\n";
|
|
for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
|
|
II != E; ++II) {
|
|
// Print the assembly for the instruction.
|
|
O << "\t";
|
|
TII.print(*II, O, TM);
|
|
}
|
|
}
|
|
|
|
// We didn't modify anything.
|
|
return false;
|
|
}
|
|
|
|
static bool isScale(const MachineOperand &MO) {
|
|
return MO.isImmediate() &&
|
|
(MO.getImmedValue() == 1 || MO.getImmedValue() == 2 ||
|
|
MO.getImmedValue() == 4 || MO.getImmedValue() == 8);
|
|
}
|
|
|
|
static bool isMem(const MachineInstr *MI, unsigned Op) {
|
|
if (MI->getOperand(Op).isFrameIndex()) return true;
|
|
if (MI->getOperand(Op).isConstantPoolIndex()) return true;
|
|
return Op+4 <= MI->getNumOperands() &&
|
|
MI->getOperand(Op ).isRegister() &&isScale(MI->getOperand(Op+1)) &&
|
|
MI->getOperand(Op+2).isRegister() &&MI->getOperand(Op+3).isImmediate();
|
|
}
|
|
|
|
static void printOp(std::ostream &O, const MachineOperand &MO,
|
|
const MRegisterInfo &RI) {
|
|
switch (MO.getType()) {
|
|
case MachineOperand::MO_VirtualRegister:
|
|
if (Value *V = MO.getVRegValueOrNull()) {
|
|
O << "<" << V->getName() << ">";
|
|
return;
|
|
}
|
|
// FALLTHROUGH
|
|
case MachineOperand::MO_MachineRegister:
|
|
if (MO.getReg() < MRegisterInfo::FirstVirtualRegister)
|
|
O << RI.get(MO.getReg()).Name;
|
|
else
|
|
O << "%reg" << MO.getReg();
|
|
return;
|
|
|
|
case MachineOperand::MO_SignExtendedImmed:
|
|
case MachineOperand::MO_UnextendedImmed:
|
|
O << (int)MO.getImmedValue();
|
|
return;
|
|
case MachineOperand::MO_PCRelativeDisp:
|
|
O << "<" << MO.getVRegValue()->getName() << ">";
|
|
return;
|
|
case MachineOperand::MO_GlobalAddress:
|
|
O << "<" << MO.getGlobal()->getName() << ">";
|
|
return;
|
|
case MachineOperand::MO_ExternalSymbol:
|
|
O << "<" << MO.getSymbolName() << ">";
|
|
return;
|
|
default:
|
|
O << "<unknown op ty>"; return;
|
|
}
|
|
}
|
|
|
|
static const std::string sizePtr(const TargetInstrDescriptor &Desc) {
|
|
switch (Desc.TSFlags & X86II::ArgMask) {
|
|
default: assert(0 && "Unknown arg size!");
|
|
case X86II::Arg8: return "BYTE PTR";
|
|
case X86II::Arg16: return "WORD PTR";
|
|
case X86II::Arg32: return "DWORD PTR";
|
|
case X86II::Arg64: return "QWORD PTR";
|
|
case X86II::ArgF32: return "DWORD PTR";
|
|
case X86II::ArgF64: return "QWORD PTR";
|
|
case X86II::ArgF80: return "XWORD PTR";
|
|
}
|
|
}
|
|
|
|
static void printMemReference(std::ostream &O, const MachineInstr *MI,
|
|
unsigned Op, const MRegisterInfo &RI) {
|
|
assert(isMem(MI, Op) && "Invalid memory reference!");
|
|
|
|
if (MI->getOperand(Op).isFrameIndex()) {
|
|
O << "[frame slot #" << MI->getOperand(Op).getFrameIndex();
|
|
if (MI->getOperand(Op+3).getImmedValue())
|
|
O << " + " << MI->getOperand(Op+3).getImmedValue();
|
|
O << "]";
|
|
return;
|
|
} else if (MI->getOperand(Op).isConstantPoolIndex()) {
|
|
O << "[.CPI" << MI->getOperand(Op).getConstantPoolIndex();
|
|
if (MI->getOperand(Op+3).getImmedValue())
|
|
O << " + " << MI->getOperand(Op+3).getImmedValue();
|
|
O << "]";
|
|
return;
|
|
}
|
|
|
|
const MachineOperand &BaseReg = MI->getOperand(Op);
|
|
int ScaleVal = MI->getOperand(Op+1).getImmedValue();
|
|
const MachineOperand &IndexReg = MI->getOperand(Op+2);
|
|
int DispVal = MI->getOperand(Op+3).getImmedValue();
|
|
|
|
O << "[";
|
|
bool NeedPlus = false;
|
|
if (BaseReg.getReg()) {
|
|
printOp(O, BaseReg, RI);
|
|
NeedPlus = true;
|
|
}
|
|
|
|
if (IndexReg.getReg()) {
|
|
if (NeedPlus) O << " + ";
|
|
if (ScaleVal != 1)
|
|
O << ScaleVal << "*";
|
|
printOp(O, IndexReg, RI);
|
|
NeedPlus = true;
|
|
}
|
|
|
|
if (DispVal) {
|
|
if (NeedPlus)
|
|
if (DispVal > 0)
|
|
O << " + ";
|
|
else {
|
|
O << " - ";
|
|
DispVal = -DispVal;
|
|
}
|
|
O << DispVal;
|
|
}
|
|
O << "]";
|
|
}
|
|
|
|
// print - Print out an x86 instruction in intel syntax
|
|
void X86InstrInfo::print(const MachineInstr *MI, std::ostream &O,
|
|
const TargetMachine &TM) const {
|
|
unsigned Opcode = MI->getOpcode();
|
|
const TargetInstrDescriptor &Desc = get(Opcode);
|
|
|
|
switch (Desc.TSFlags & X86II::FormMask) {
|
|
case X86II::Pseudo:
|
|
if (Opcode == X86::PHI) {
|
|
printOp(O, MI->getOperand(0), RI);
|
|
O << " = phi ";
|
|
for (unsigned i = 1, e = MI->getNumOperands(); i != e; i+=2) {
|
|
if (i != 1) O << ", ";
|
|
O << "[";
|
|
printOp(O, MI->getOperand(i), RI);
|
|
O << ", ";
|
|
printOp(O, MI->getOperand(i+1), RI);
|
|
O << "]";
|
|
}
|
|
} else {
|
|
unsigned i = 0;
|
|
if (MI->getNumOperands() && (MI->getOperand(0).opIsDefOnly() ||
|
|
MI->getOperand(0).opIsDefAndUse())) {
|
|
printOp(O, MI->getOperand(0), RI);
|
|
O << " = ";
|
|
++i;
|
|
}
|
|
O << getName(MI->getOpcode());
|
|
|
|
for (unsigned e = MI->getNumOperands(); i != e; ++i) {
|
|
O << " ";
|
|
if (MI->getOperand(i).opIsDefOnly() ||
|
|
MI->getOperand(i).opIsDefAndUse()) O << "*";
|
|
printOp(O, MI->getOperand(i), RI);
|
|
if (MI->getOperand(i).opIsDefOnly() ||
|
|
MI->getOperand(i).opIsDefAndUse()) O << "*";
|
|
}
|
|
}
|
|
O << "\n";
|
|
return;
|
|
|
|
case X86II::RawFrm:
|
|
// The accepted forms of Raw instructions are:
|
|
// 1. nop - No operand required
|
|
// 2. jmp foo - PC relative displacement operand
|
|
// 3. call bar - GlobalAddress Operand or External Symbol Operand
|
|
//
|
|
assert(MI->getNumOperands() == 0 ||
|
|
(MI->getNumOperands() == 1 &&
|
|
(MI->getOperand(0).isPCRelativeDisp() ||
|
|
MI->getOperand(0).isGlobalAddress() ||
|
|
MI->getOperand(0).isExternalSymbol())) &&
|
|
"Illegal raw instruction!");
|
|
O << getName(MI->getOpcode()) << " ";
|
|
|
|
if (MI->getNumOperands() == 1) {
|
|
printOp(O, MI->getOperand(0), RI);
|
|
}
|
|
O << "\n";
|
|
return;
|
|
|
|
case X86II::AddRegFrm: {
|
|
// There are currently two forms of acceptable AddRegFrm instructions.
|
|
// Either the instruction JUST takes a single register (like inc, dec, etc),
|
|
// or it takes a register and an immediate of the same size as the register
|
|
// (move immediate f.e.). Note that this immediate value might be stored as
|
|
// an LLVM value, to represent, for example, loading the address of a global
|
|
// into a register. The initial register might be duplicated if this is a
|
|
// M_2_ADDR_REG instruction
|
|
//
|
|
assert(MI->getOperand(0).isRegister() &&
|
|
(MI->getNumOperands() == 1 ||
|
|
(MI->getNumOperands() == 2 &&
|
|
(MI->getOperand(1).getVRegValueOrNull() ||
|
|
MI->getOperand(1).isImmediate() ||
|
|
MI->getOperand(1).isRegister() ||
|
|
MI->getOperand(1).isGlobalAddress() ||
|
|
MI->getOperand(1).isExternalSymbol()))) &&
|
|
"Illegal form for AddRegFrm instruction!");
|
|
|
|
unsigned Reg = MI->getOperand(0).getReg();
|
|
|
|
O << getName(MI->getOpCode()) << " ";
|
|
printOp(O, MI->getOperand(0), RI);
|
|
if (MI->getNumOperands() == 2 &&
|
|
(!MI->getOperand(1).isRegister() ||
|
|
MI->getOperand(1).getVRegValueOrNull() ||
|
|
MI->getOperand(1).isGlobalAddress() ||
|
|
MI->getOperand(1).isExternalSymbol())) {
|
|
O << ", ";
|
|
printOp(O, MI->getOperand(1), RI);
|
|
}
|
|
O << "\n";
|
|
return;
|
|
}
|
|
case X86II::MRMDestReg: {
|
|
// There are two acceptable forms of MRMDestReg instructions, those with 2,
|
|
// 3 and 4 operands:
|
|
//
|
|
// 2 Operands: this is for things like mov that do not read a second input
|
|
//
|
|
// 3 Operands: in this form, the first two registers (the destination, and
|
|
// the first operand) should be the same, post register allocation. The 3rd
|
|
// operand is an additional input. This should be for things like add
|
|
// instructions.
|
|
//
|
|
// 4 Operands: This form is for instructions which are 3 operands forms, but
|
|
// have a constant argument as well.
|
|
//
|
|
bool isTwoAddr = isTwoAddrInstr(Opcode);
|
|
assert(MI->getOperand(0).isRegister() &&
|
|
(MI->getNumOperands() == 2 ||
|
|
(isTwoAddr && MI->getOperand(1).isRegister() &&
|
|
MI->getOperand(0).getReg() == MI->getOperand(1).getReg() &&
|
|
(MI->getNumOperands() == 3 ||
|
|
(MI->getNumOperands() == 4 && MI->getOperand(3).isImmediate()))))
|
|
&& "Bad format for MRMDestReg!");
|
|
|
|
O << getName(MI->getOpCode()) << " ";
|
|
printOp(O, MI->getOperand(0), RI);
|
|
O << ", ";
|
|
printOp(O, MI->getOperand(1+isTwoAddr), RI);
|
|
if (MI->getNumOperands() == 4) {
|
|
O << ", ";
|
|
printOp(O, MI->getOperand(3), RI);
|
|
}
|
|
O << "\n";
|
|
return;
|
|
}
|
|
|
|
case X86II::MRMDestMem: {
|
|
// These instructions are the same as MRMDestReg, but instead of having a
|
|
// register reference for the mod/rm field, it's a memory reference.
|
|
//
|
|
assert(isMem(MI, 0) && MI->getNumOperands() == 4+1 &&
|
|
MI->getOperand(4).isRegister() && "Bad format for MRMDestMem!");
|
|
|
|
O << getName(MI->getOpCode()) << " " << sizePtr(Desc) << " ";
|
|
printMemReference(O, MI, 0, RI);
|
|
O << ", ";
|
|
printOp(O, MI->getOperand(4), RI);
|
|
O << "\n";
|
|
return;
|
|
}
|
|
|
|
case X86II::MRMSrcReg: {
|
|
// There is a two forms that are acceptable for MRMSrcReg instructions,
|
|
// those with 3 and 2 operands:
|
|
//
|
|
// 3 Operands: in this form, the last register (the second input) is the
|
|
// ModR/M input. The first two operands should be the same, post register
|
|
// allocation. This is for things like: add r32, r/m32
|
|
//
|
|
// 2 Operands: this is for things like mov that do not read a second input
|
|
//
|
|
assert(MI->getOperand(0).isRegister() &&
|
|
MI->getOperand(1).isRegister() &&
|
|
(MI->getNumOperands() == 2 ||
|
|
(MI->getNumOperands() == 3 && MI->getOperand(2).isRegister()))
|
|
&& "Bad format for MRMSrcReg!");
|
|
if (MI->getNumOperands() == 3 &&
|
|
MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
|
|
O << "**";
|
|
|
|
O << getName(MI->getOpCode()) << " ";
|
|
printOp(O, MI->getOperand(0), RI);
|
|
O << ", ";
|
|
printOp(O, MI->getOperand(MI->getNumOperands()-1), RI);
|
|
O << "\n";
|
|
return;
|
|
}
|
|
|
|
case X86II::MRMSrcMem: {
|
|
// These instructions are the same as MRMSrcReg, but instead of having a
|
|
// register reference for the mod/rm field, it's a memory reference.
|
|
//
|
|
assert(MI->getOperand(0).isRegister() &&
|
|
(MI->getNumOperands() == 1+4 && isMem(MI, 1)) ||
|
|
(MI->getNumOperands() == 2+4 && MI->getOperand(1).isRegister() &&
|
|
isMem(MI, 2))
|
|
&& "Bad format for MRMDestReg!");
|
|
if (MI->getNumOperands() == 2+4 &&
|
|
MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
|
|
O << "**";
|
|
|
|
O << getName(MI->getOpCode()) << " ";
|
|
printOp(O, MI->getOperand(0), RI);
|
|
O << ", " << sizePtr(Desc) << " ";
|
|
printMemReference(O, MI, MI->getNumOperands()-4, RI);
|
|
O << "\n";
|
|
return;
|
|
}
|
|
|
|
case X86II::MRMS0r: case X86II::MRMS1r:
|
|
case X86II::MRMS2r: case X86II::MRMS3r:
|
|
case X86II::MRMS4r: case X86II::MRMS5r:
|
|
case X86II::MRMS6r: case X86II::MRMS7r: {
|
|
// In this form, the following are valid formats:
|
|
// 1. sete r
|
|
// 2. cmp reg, immediate
|
|
// 2. shl rdest, rinput <implicit CL or 1>
|
|
// 3. sbb rdest, rinput, immediate [rdest = rinput]
|
|
//
|
|
assert(MI->getNumOperands() > 0 && MI->getNumOperands() < 4 &&
|
|
MI->getOperand(0).isRegister() && "Bad MRMSxR format!");
|
|
assert((MI->getNumOperands() != 2 ||
|
|
MI->getOperand(1).isRegister() || MI->getOperand(1).isImmediate())&&
|
|
"Bad MRMSxR format!");
|
|
assert((MI->getNumOperands() < 3 ||
|
|
(MI->getOperand(1).isRegister() && MI->getOperand(2).isImmediate())) &&
|
|
"Bad MRMSxR format!");
|
|
|
|
if (MI->getNumOperands() > 1 && MI->getOperand(1).isRegister() &&
|
|
MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
|
|
O << "**";
|
|
|
|
O << getName(MI->getOpCode()) << " ";
|
|
printOp(O, MI->getOperand(0), RI);
|
|
if (MI->getOperand(MI->getNumOperands()-1).isImmediate()) {
|
|
O << ", ";
|
|
printOp(O, MI->getOperand(MI->getNumOperands()-1), RI);
|
|
}
|
|
O << "\n";
|
|
|
|
return;
|
|
}
|
|
|
|
case X86II::MRMS0m: case X86II::MRMS1m:
|
|
case X86II::MRMS2m: case X86II::MRMS3m:
|
|
case X86II::MRMS4m: case X86II::MRMS5m:
|
|
case X86II::MRMS6m: case X86II::MRMS7m: {
|
|
// In this form, the following are valid formats:
|
|
// 1. sete [m]
|
|
// 2. cmp [m], immediate
|
|
// 2. shl [m], rinput <implicit CL or 1>
|
|
// 3. sbb [m], immediate
|
|
//
|
|
assert(MI->getNumOperands() >= 4 && MI->getNumOperands() <= 5 &&
|
|
isMem(MI, 0) && "Bad MRMSxM format!");
|
|
assert((MI->getNumOperands() != 5 || MI->getOperand(4).isImmediate()) &&
|
|
"Bad MRMSxM format!");
|
|
|
|
O << getName(MI->getOpCode()) << " ";
|
|
O << sizePtr(Desc) << " ";
|
|
printMemReference(O, MI, 0, RI);
|
|
if (MI->getNumOperands() == 5) {
|
|
O << ", ";
|
|
printOp(O, MI->getOperand(4), RI);
|
|
}
|
|
O << "\n";
|
|
return;
|
|
}
|
|
|
|
default:
|
|
O << "\tUNKNOWN FORM:\t\t-"; MI->print(O, TM); break;
|
|
}
|
|
}
|