mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	direct inclusion edge from System to Support. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@85086 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			455 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			455 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file contains some functions that are useful for math stuff.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef LLVM_SUPPORT_MATHEXTRAS_H
 | 
						|
#define LLVM_SUPPORT_MATHEXTRAS_H
 | 
						|
 | 
						|
#include "llvm/System/DataTypes.h"
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
// NOTE: The following support functions use the _32/_64 extensions instead of
 | 
						|
// type overloading so that signed and unsigned integers can be used without
 | 
						|
// ambiguity.
 | 
						|
 | 
						|
/// Hi_32 - This function returns the high 32 bits of a 64 bit value.
 | 
						|
inline uint32_t Hi_32(uint64_t Value) {
 | 
						|
  return static_cast<uint32_t>(Value >> 32);
 | 
						|
}
 | 
						|
 | 
						|
/// Lo_32 - This function returns the low 32 bits of a 64 bit value.
 | 
						|
inline uint32_t Lo_32(uint64_t Value) {
 | 
						|
  return static_cast<uint32_t>(Value);
 | 
						|
}
 | 
						|
 | 
						|
/// is?Type - these functions produce optimal testing for integer data types.
 | 
						|
inline bool isInt8  (int64_t Value) {
 | 
						|
  return static_cast<int8_t>(Value) == Value;
 | 
						|
}
 | 
						|
inline bool isUInt8 (int64_t Value) {
 | 
						|
  return static_cast<uint8_t>(Value) == Value;
 | 
						|
}
 | 
						|
inline bool isInt16 (int64_t Value) {
 | 
						|
  return static_cast<int16_t>(Value) == Value;
 | 
						|
}
 | 
						|
inline bool isUInt16(int64_t Value) {
 | 
						|
  return static_cast<uint16_t>(Value) == Value;
 | 
						|
}
 | 
						|
inline bool isInt32 (int64_t Value) {
 | 
						|
  return static_cast<int32_t>(Value) == Value;
 | 
						|
}
 | 
						|
inline bool isUInt32(int64_t Value) {
 | 
						|
  return static_cast<uint32_t>(Value) == Value;
 | 
						|
}
 | 
						|
 | 
						|
template<unsigned N>
 | 
						|
inline bool isInt(int64_t x) {
 | 
						|
  return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1)));
 | 
						|
}
 | 
						|
 | 
						|
template<unsigned N>
 | 
						|
inline bool isUint(uint64_t x) {
 | 
						|
  return N >= 64 || x < (UINT64_C(1)<<N);
 | 
						|
}
 | 
						|
 | 
						|
/// isMask_32 - This function returns true if the argument is a sequence of ones
 | 
						|
/// starting at the least significant bit with the remainder zero (32 bit
 | 
						|
/// version).   Ex. isMask_32(0x0000FFFFU) == true.
 | 
						|
inline bool isMask_32(uint32_t Value) {
 | 
						|
  return Value && ((Value + 1) & Value) == 0;
 | 
						|
}
 | 
						|
 | 
						|
/// isMask_64 - This function returns true if the argument is a sequence of ones
 | 
						|
/// starting at the least significant bit with the remainder zero (64 bit
 | 
						|
/// version).
 | 
						|
inline bool isMask_64(uint64_t Value) {
 | 
						|
  return Value && ((Value + 1) & Value) == 0;
 | 
						|
}
 | 
						|
 | 
						|
/// isShiftedMask_32 - This function returns true if the argument contains a
 | 
						|
/// sequence of ones with the remainder zero (32 bit version.)
 | 
						|
/// Ex. isShiftedMask_32(0x0000FF00U) == true.
 | 
						|
inline bool isShiftedMask_32(uint32_t Value) {
 | 
						|
  return isMask_32((Value - 1) | Value);
 | 
						|
}
 | 
						|
 | 
						|
/// isShiftedMask_64 - This function returns true if the argument contains a
 | 
						|
/// sequence of ones with the remainder zero (64 bit version.)
 | 
						|
inline bool isShiftedMask_64(uint64_t Value) {
 | 
						|
  return isMask_64((Value - 1) | Value);
 | 
						|
}
 | 
						|
 | 
						|
/// isPowerOf2_32 - This function returns true if the argument is a power of
 | 
						|
/// two > 0. Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
 | 
						|
inline bool isPowerOf2_32(uint32_t Value) {
 | 
						|
  return Value && !(Value & (Value - 1));
 | 
						|
}
 | 
						|
 | 
						|
/// isPowerOf2_64 - This function returns true if the argument is a power of two
 | 
						|
/// > 0 (64 bit edition.)
 | 
						|
inline bool isPowerOf2_64(uint64_t Value) {
 | 
						|
  return Value && !(Value & (Value - int64_t(1L)));
 | 
						|
}
 | 
						|
 | 
						|
/// ByteSwap_16 - This function returns a byte-swapped representation of the
 | 
						|
/// 16-bit argument, Value.
 | 
						|
inline uint16_t ByteSwap_16(uint16_t Value) {
 | 
						|
#if defined(_MSC_VER) && !defined(_DEBUG)
 | 
						|
  // The DLL version of the runtime lacks these functions (bug!?), but in a
 | 
						|
  // release build they're replaced with BSWAP instructions anyway.
 | 
						|
  return _byteswap_ushort(Value);
 | 
						|
#else
 | 
						|
  uint16_t Hi = Value << 8;
 | 
						|
  uint16_t Lo = Value >> 8;
 | 
						|
  return Hi | Lo;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/// ByteSwap_32 - This function returns a byte-swapped representation of the
 | 
						|
/// 32-bit argument, Value.
 | 
						|
inline uint32_t ByteSwap_32(uint32_t Value) {
 | 
						|
#if (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3)) && !defined(__ICC)
 | 
						|
  return __builtin_bswap32(Value);
 | 
						|
#elif defined(_MSC_VER) && !defined(_DEBUG)
 | 
						|
  return _byteswap_ulong(Value);
 | 
						|
#else
 | 
						|
  uint32_t Byte0 = Value & 0x000000FF;
 | 
						|
  uint32_t Byte1 = Value & 0x0000FF00;
 | 
						|
  uint32_t Byte2 = Value & 0x00FF0000;
 | 
						|
  uint32_t Byte3 = Value & 0xFF000000;
 | 
						|
  return (Byte0 << 24) | (Byte1 << 8) | (Byte2 >> 8) | (Byte3 >> 24);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/// ByteSwap_64 - This function returns a byte-swapped representation of the
 | 
						|
/// 64-bit argument, Value.
 | 
						|
inline uint64_t ByteSwap_64(uint64_t Value) {
 | 
						|
#if (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3)) && !defined(__ICC)
 | 
						|
  return __builtin_bswap64(Value);
 | 
						|
#elif defined(_MSC_VER) && !defined(_DEBUG)
 | 
						|
  return _byteswap_uint64(Value);
 | 
						|
#else
 | 
						|
  uint64_t Hi = ByteSwap_32(uint32_t(Value));
 | 
						|
  uint32_t Lo = ByteSwap_32(uint32_t(Value >> 32));
 | 
						|
  return (Hi << 32) | Lo;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/// CountLeadingZeros_32 - this function performs the platform optimal form of
 | 
						|
/// counting the number of zeros from the most significant bit to the first one
 | 
						|
/// bit.  Ex. CountLeadingZeros_32(0x00F000FF) == 8.
 | 
						|
/// Returns 32 if the word is zero.
 | 
						|
inline unsigned CountLeadingZeros_32(uint32_t Value) {
 | 
						|
  unsigned Count; // result
 | 
						|
#if __GNUC__ >= 4
 | 
						|
  // PowerPC is defined for __builtin_clz(0)
 | 
						|
#if !defined(__ppc__) && !defined(__ppc64__)
 | 
						|
  if (!Value) return 32;
 | 
						|
#endif
 | 
						|
  Count = __builtin_clz(Value);
 | 
						|
#else
 | 
						|
  if (!Value) return 32;
 | 
						|
  Count = 0;
 | 
						|
  // bisecton method for count leading zeros
 | 
						|
  for (unsigned Shift = 32 >> 1; Shift; Shift >>= 1) {
 | 
						|
    uint32_t Tmp = Value >> Shift;
 | 
						|
    if (Tmp) {
 | 
						|
      Value = Tmp;
 | 
						|
    } else {
 | 
						|
      Count |= Shift;
 | 
						|
    }
 | 
						|
  }
 | 
						|
#endif
 | 
						|
  return Count;
 | 
						|
}
 | 
						|
 | 
						|
/// CountLeadingOnes_32 - this function performs the operation of
 | 
						|
/// counting the number of ones from the most significant bit to the first zero
 | 
						|
/// bit.  Ex. CountLeadingOnes_32(0xFF0FFF00) == 8.
 | 
						|
/// Returns 32 if the word is all ones.
 | 
						|
inline unsigned CountLeadingOnes_32(uint32_t Value) {
 | 
						|
  return CountLeadingZeros_32(~Value);
 | 
						|
}
 | 
						|
 | 
						|
/// CountLeadingZeros_64 - This function performs the platform optimal form
 | 
						|
/// of counting the number of zeros from the most significant bit to the first
 | 
						|
/// one bit (64 bit edition.)
 | 
						|
/// Returns 64 if the word is zero.
 | 
						|
inline unsigned CountLeadingZeros_64(uint64_t Value) {
 | 
						|
  unsigned Count; // result
 | 
						|
#if __GNUC__ >= 4
 | 
						|
  // PowerPC is defined for __builtin_clzll(0)
 | 
						|
#if !defined(__ppc__) && !defined(__ppc64__)
 | 
						|
  if (!Value) return 64;
 | 
						|
#endif
 | 
						|
  Count = __builtin_clzll(Value);
 | 
						|
#else
 | 
						|
  if (sizeof(long) == sizeof(int64_t)) {
 | 
						|
    if (!Value) return 64;
 | 
						|
    Count = 0;
 | 
						|
    // bisecton method for count leading zeros
 | 
						|
    for (unsigned Shift = 64 >> 1; Shift; Shift >>= 1) {
 | 
						|
      uint64_t Tmp = Value >> Shift;
 | 
						|
      if (Tmp) {
 | 
						|
        Value = Tmp;
 | 
						|
      } else {
 | 
						|
        Count |= Shift;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // get hi portion
 | 
						|
    uint32_t Hi = Hi_32(Value);
 | 
						|
 | 
						|
    // if some bits in hi portion
 | 
						|
    if (Hi) {
 | 
						|
        // leading zeros in hi portion plus all bits in lo portion
 | 
						|
        Count = CountLeadingZeros_32(Hi);
 | 
						|
    } else {
 | 
						|
        // get lo portion
 | 
						|
        uint32_t Lo = Lo_32(Value);
 | 
						|
        // same as 32 bit value
 | 
						|
        Count = CountLeadingZeros_32(Lo)+32;
 | 
						|
    }
 | 
						|
  }
 | 
						|
#endif
 | 
						|
  return Count;
 | 
						|
}
 | 
						|
 | 
						|
/// CountLeadingOnes_64 - This function performs the operation
 | 
						|
/// of counting the number of ones from the most significant bit to the first
 | 
						|
/// zero bit (64 bit edition.)
 | 
						|
/// Returns 64 if the word is all ones.
 | 
						|
inline unsigned CountLeadingOnes_64(uint64_t Value) {
 | 
						|
  return CountLeadingZeros_64(~Value);
 | 
						|
}
 | 
						|
 | 
						|
/// CountTrailingZeros_32 - this function performs the platform optimal form of
 | 
						|
/// counting the number of zeros from the least significant bit to the first one
 | 
						|
/// bit.  Ex. CountTrailingZeros_32(0xFF00FF00) == 8.
 | 
						|
/// Returns 32 if the word is zero.
 | 
						|
inline unsigned CountTrailingZeros_32(uint32_t Value) {
 | 
						|
#if __GNUC__ >= 4
 | 
						|
  return Value ? __builtin_ctz(Value) : 32;
 | 
						|
#else
 | 
						|
  static const unsigned Mod37BitPosition[] = {
 | 
						|
    32, 0, 1, 26, 2, 23, 27, 0, 3, 16, 24, 30, 28, 11, 0, 13,
 | 
						|
    4, 7, 17, 0, 25, 22, 31, 15, 29, 10, 12, 6, 0, 21, 14, 9,
 | 
						|
    5, 20, 8, 19, 18
 | 
						|
  };
 | 
						|
  return Mod37BitPosition[(-Value & Value) % 37];
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/// CountTrailingOnes_32 - this function performs the operation of
 | 
						|
/// counting the number of ones from the least significant bit to the first zero
 | 
						|
/// bit.  Ex. CountTrailingOnes_32(0x00FF00FF) == 8.
 | 
						|
/// Returns 32 if the word is all ones.
 | 
						|
inline unsigned CountTrailingOnes_32(uint32_t Value) {
 | 
						|
  return CountTrailingZeros_32(~Value);
 | 
						|
}
 | 
						|
 | 
						|
/// CountTrailingZeros_64 - This function performs the platform optimal form
 | 
						|
/// of counting the number of zeros from the least significant bit to the first
 | 
						|
/// one bit (64 bit edition.)
 | 
						|
/// Returns 64 if the word is zero.
 | 
						|
inline unsigned CountTrailingZeros_64(uint64_t Value) {
 | 
						|
#if __GNUC__ >= 4
 | 
						|
  return Value ? __builtin_ctzll(Value) : 64;
 | 
						|
#else
 | 
						|
  static const unsigned Mod67Position[] = {
 | 
						|
    64, 0, 1, 39, 2, 15, 40, 23, 3, 12, 16, 59, 41, 19, 24, 54,
 | 
						|
    4, 64, 13, 10, 17, 62, 60, 28, 42, 30, 20, 51, 25, 44, 55,
 | 
						|
    47, 5, 32, 65, 38, 14, 22, 11, 58, 18, 53, 63, 9, 61, 27,
 | 
						|
    29, 50, 43, 46, 31, 37, 21, 57, 52, 8, 26, 49, 45, 36, 56,
 | 
						|
    7, 48, 35, 6, 34, 33, 0
 | 
						|
  };
 | 
						|
  return Mod67Position[(-Value & Value) % 67];
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/// CountTrailingOnes_64 - This function performs the operation
 | 
						|
/// of counting the number of ones from the least significant bit to the first
 | 
						|
/// zero bit (64 bit edition.)
 | 
						|
/// Returns 64 if the word is all ones.
 | 
						|
inline unsigned CountTrailingOnes_64(uint64_t Value) {
 | 
						|
  return CountTrailingZeros_64(~Value);
 | 
						|
}
 | 
						|
 | 
						|
/// CountPopulation_32 - this function counts the number of set bits in a value.
 | 
						|
/// Ex. CountPopulation(0xF000F000) = 8
 | 
						|
/// Returns 0 if the word is zero.
 | 
						|
inline unsigned CountPopulation_32(uint32_t Value) {
 | 
						|
#if __GNUC__ >= 4
 | 
						|
  return __builtin_popcount(Value);
 | 
						|
#else
 | 
						|
  uint32_t v = Value - ((Value >> 1) & 0x55555555);
 | 
						|
  v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
 | 
						|
  return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/// CountPopulation_64 - this function counts the number of set bits in a value,
 | 
						|
/// (64 bit edition.)
 | 
						|
inline unsigned CountPopulation_64(uint64_t Value) {
 | 
						|
#if __GNUC__ >= 4
 | 
						|
  return __builtin_popcountll(Value);
 | 
						|
#else
 | 
						|
  uint64_t v = Value - ((Value >> 1) & 0x5555555555555555ULL);
 | 
						|
  v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL);
 | 
						|
  v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
 | 
						|
  return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/// Log2_32 - This function returns the floor log base 2 of the specified value,
 | 
						|
/// -1 if the value is zero. (32 bit edition.)
 | 
						|
/// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
 | 
						|
inline unsigned Log2_32(uint32_t Value) {
 | 
						|
  return 31 - CountLeadingZeros_32(Value);
 | 
						|
}
 | 
						|
 | 
						|
/// Log2_64 - This function returns the floor log base 2 of the specified value,
 | 
						|
/// -1 if the value is zero. (64 bit edition.)
 | 
						|
inline unsigned Log2_64(uint64_t Value) {
 | 
						|
  return 63 - CountLeadingZeros_64(Value);
 | 
						|
}
 | 
						|
 | 
						|
/// Log2_32_Ceil - This function returns the ceil log base 2 of the specified
 | 
						|
/// value, 32 if the value is zero. (32 bit edition).
 | 
						|
/// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
 | 
						|
inline unsigned Log2_32_Ceil(uint32_t Value) {
 | 
						|
  return 32-CountLeadingZeros_32(Value-1);
 | 
						|
}
 | 
						|
 | 
						|
/// Log2_64_Ceil - This function returns the ceil log base 2 of the specified
 | 
						|
/// value, 64 if the value is zero. (64 bit edition.)
 | 
						|
inline unsigned Log2_64_Ceil(uint64_t Value) {
 | 
						|
  return 64-CountLeadingZeros_64(Value-1);
 | 
						|
}
 | 
						|
 | 
						|
/// GreatestCommonDivisor64 - Return the greatest common divisor of the two
 | 
						|
/// values using Euclid's algorithm.
 | 
						|
inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) {
 | 
						|
  while (B) {
 | 
						|
    uint64_t T = B;
 | 
						|
    B = A % B;
 | 
						|
    A = T;
 | 
						|
  }
 | 
						|
  return A;
 | 
						|
}
 | 
						|
 | 
						|
/// BitsToDouble - This function takes a 64-bit integer and returns the bit
 | 
						|
/// equivalent double.
 | 
						|
inline double BitsToDouble(uint64_t Bits) {
 | 
						|
  union {
 | 
						|
    uint64_t L;
 | 
						|
    double D;
 | 
						|
  } T;
 | 
						|
  T.L = Bits;
 | 
						|
  return T.D;
 | 
						|
}
 | 
						|
 | 
						|
/// BitsToFloat - This function takes a 32-bit integer and returns the bit
 | 
						|
/// equivalent float.
 | 
						|
inline float BitsToFloat(uint32_t Bits) {
 | 
						|
  union {
 | 
						|
    uint32_t I;
 | 
						|
    float F;
 | 
						|
  } T;
 | 
						|
  T.I = Bits;
 | 
						|
  return T.F;
 | 
						|
}
 | 
						|
 | 
						|
/// DoubleToBits - This function takes a double and returns the bit
 | 
						|
/// equivalent 64-bit integer.  Note that copying doubles around
 | 
						|
/// changes the bits of NaNs on some hosts, notably x86, so this
 | 
						|
/// routine cannot be used if these bits are needed.
 | 
						|
inline uint64_t DoubleToBits(double Double) {
 | 
						|
  union {
 | 
						|
    uint64_t L;
 | 
						|
    double D;
 | 
						|
  } T;
 | 
						|
  T.D = Double;
 | 
						|
  return T.L;
 | 
						|
}
 | 
						|
 | 
						|
/// FloatToBits - This function takes a float and returns the bit
 | 
						|
/// equivalent 32-bit integer.  Note that copying floats around
 | 
						|
/// changes the bits of NaNs on some hosts, notably x86, so this
 | 
						|
/// routine cannot be used if these bits are needed.
 | 
						|
inline uint32_t FloatToBits(float Float) {
 | 
						|
  union {
 | 
						|
    uint32_t I;
 | 
						|
    float F;
 | 
						|
  } T;
 | 
						|
  T.F = Float;
 | 
						|
  return T.I;
 | 
						|
}
 | 
						|
 | 
						|
/// Platform-independent wrappers for the C99 isnan() function.
 | 
						|
int IsNAN(float f);
 | 
						|
int IsNAN(double d);
 | 
						|
 | 
						|
/// Platform-independent wrappers for the C99 isinf() function.
 | 
						|
int IsInf(float f);
 | 
						|
int IsInf(double d);
 | 
						|
 | 
						|
/// MinAlign - A and B are either alignments or offsets.  Return the minimum
 | 
						|
/// alignment that may be assumed after adding the two together.
 | 
						|
static inline uint64_t MinAlign(uint64_t A, uint64_t B) {
 | 
						|
  // The largest power of 2 that divides both A and B.
 | 
						|
  return (A | B) & -(A | B);
 | 
						|
}
 | 
						|
 | 
						|
/// NextPowerOf2 - Returns the next power of two (in 64-bits)
 | 
						|
/// that is strictly greater than A.  Returns zero on overflow.
 | 
						|
static inline uint64_t NextPowerOf2(uint64_t A) {
 | 
						|
  A |= (A >> 1);
 | 
						|
  A |= (A >> 2);
 | 
						|
  A |= (A >> 4);
 | 
						|
  A |= (A >> 8);
 | 
						|
  A |= (A >> 16);
 | 
						|
  A |= (A >> 32);
 | 
						|
  return A + 1;
 | 
						|
}
 | 
						|
 | 
						|
/// RoundUpToAlignment - Returns the next integer (mod 2**64) that is
 | 
						|
/// greater than or equal to \arg Value and is a multiple of \arg
 | 
						|
/// Align. Align must be non-zero.
 | 
						|
///
 | 
						|
/// Examples:
 | 
						|
/// RoundUpToAlignment(5, 8) = 8
 | 
						|
/// RoundUpToAlignment(17, 8) = 24
 | 
						|
/// RoundUpToAlignment(~0LL, 8) = 0
 | 
						|
inline uint64_t RoundUpToAlignment(uint64_t Value, uint64_t Align) {
 | 
						|
  return ((Value + Align - 1) / Align) * Align;
 | 
						|
}
 | 
						|
 | 
						|
/// OffsetToAlignment - Return the offset to the next integer (mod 2**64) that
 | 
						|
/// is greater than or equal to \arg Value and is a multiple of \arg
 | 
						|
/// Align. Align must be non-zero.
 | 
						|
inline uint64_t OffsetToAlignment(uint64_t Value, uint64_t Align) {
 | 
						|
  return RoundUpToAlignment(Value, Align) - Value;
 | 
						|
}
 | 
						|
 | 
						|
/// abs64 - absolute value of a 64-bit int.  Not all environments support
 | 
						|
/// "abs" on whatever their name for the 64-bit int type is.  The absolute
 | 
						|
/// value of the largest negative number is undefined, as with "abs".
 | 
						|
inline int64_t abs64(int64_t x) {
 | 
						|
  return (x < 0) ? -x : x;
 | 
						|
}
 | 
						|
 | 
						|
} // End llvm namespace
 | 
						|
 | 
						|
#endif
 |