mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@4627 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			655 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			655 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- ExternalFunctions.cpp - Implement External Functions --------------===//
 | |
| // 
 | |
| //  This file contains both code to deal with invoking "external" functions, but
 | |
| //  also contains code that implements "exported" external functions.
 | |
| //
 | |
| //  External functions in LLI are implemented by dlopen'ing the lli executable
 | |
| //  and using dlsym to look op the functions that we want to invoke.  If a
 | |
| //  function is found, then the arguments are mangled and passed in to the
 | |
| //  function call.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "Interpreter.h"
 | |
| #include "ExecutionAnnotations.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/SymbolTable.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include <map>
 | |
| #include <dlfcn.h>
 | |
| #include <link.h>
 | |
| #include <math.h>
 | |
| #include <stdio.h>
 | |
| using std::vector;
 | |
| using std::cout;
 | |
| 
 | |
| extern TargetData TD;
 | |
| 
 | |
| typedef GenericValue (*ExFunc)(FunctionType *, const vector<GenericValue> &);
 | |
| static std::map<const Function *, ExFunc> Functions;
 | |
| static std::map<std::string, ExFunc> FuncNames;
 | |
| 
 | |
| static Interpreter *TheInterpreter;
 | |
| 
 | |
| // getCurrentExecutablePath() - Return the directory that the lli executable
 | |
| // lives in.
 | |
| //
 | |
| std::string Interpreter::getCurrentExecutablePath() const {
 | |
|   Dl_info Info;
 | |
|   if (dladdr(&TheInterpreter, &Info) == 0) return "";
 | |
|   
 | |
|   std::string LinkAddr(Info.dli_fname);
 | |
|   unsigned SlashPos = LinkAddr.rfind('/');
 | |
|   if (SlashPos != std::string::npos)
 | |
|     LinkAddr.resize(SlashPos);    // Trim the executable name off...
 | |
| 
 | |
|   return LinkAddr;
 | |
| }
 | |
| 
 | |
| 
 | |
| static char getTypeID(const Type *Ty) {
 | |
|   switch (Ty->getPrimitiveID()) {
 | |
|   case Type::VoidTyID:    return 'V';
 | |
|   case Type::BoolTyID:    return 'o';
 | |
|   case Type::UByteTyID:   return 'B';
 | |
|   case Type::SByteTyID:   return 'b';
 | |
|   case Type::UShortTyID:  return 'S';
 | |
|   case Type::ShortTyID:   return 's';
 | |
|   case Type::UIntTyID:    return 'I';
 | |
|   case Type::IntTyID:     return 'i';
 | |
|   case Type::ULongTyID:   return 'L';
 | |
|   case Type::LongTyID:    return 'l';
 | |
|   case Type::FloatTyID:   return 'F';
 | |
|   case Type::DoubleTyID:  return 'D';
 | |
|   case Type::PointerTyID: return 'P';
 | |
|   case Type::FunctionTyID:  return 'M';
 | |
|   case Type::StructTyID:  return 'T';
 | |
|   case Type::ArrayTyID:   return 'A';
 | |
|   case Type::OpaqueTyID:  return 'O';
 | |
|   default: return 'U';
 | |
|   }
 | |
| }
 | |
| 
 | |
| static ExFunc lookupFunction(const Function *M) {
 | |
|   // Function not found, look it up... start by figuring out what the
 | |
|   // composite function name should be.
 | |
|   std::string ExtName = "lle_";
 | |
|   const FunctionType *MT = M->getFunctionType();
 | |
|   for (unsigned i = 0; const Type *Ty = MT->getContainedType(i); ++i)
 | |
|     ExtName += getTypeID(Ty);
 | |
|   ExtName += "_" + M->getName();
 | |
| 
 | |
|   //cout << "Tried: '" << ExtName << "'\n";
 | |
|   ExFunc FnPtr = FuncNames[ExtName];
 | |
|   if (FnPtr == 0)
 | |
|     FnPtr = (ExFunc)dlsym(RTLD_DEFAULT, ExtName.c_str());
 | |
|   if (FnPtr == 0)
 | |
|     FnPtr = FuncNames["lle_X_"+M->getName()];
 | |
|   if (FnPtr == 0)  // Try calling a generic function... if it exists...
 | |
|     FnPtr = (ExFunc)dlsym(RTLD_DEFAULT, ("lle_X_"+M->getName()).c_str());
 | |
|   if (FnPtr != 0)
 | |
|     Functions.insert(std::make_pair(M, FnPtr));  // Cache for later
 | |
|   return FnPtr;
 | |
| }
 | |
| 
 | |
| GenericValue Interpreter::callExternalMethod(Function *M,
 | |
|                                          const vector<GenericValue> &ArgVals) {
 | |
|   TheInterpreter = this;
 | |
| 
 | |
|   // Do a lookup to see if the function is in our cache... this should just be a
 | |
|   // defered annotation!
 | |
|   std::map<const Function *, ExFunc>::iterator FI = Functions.find(M);
 | |
|   ExFunc Fn = (FI == Functions.end()) ? lookupFunction(M) : FI->second;
 | |
|   if (Fn == 0) {
 | |
|     cout << "Tried to execute an unknown external function: "
 | |
| 	 << M->getType()->getDescription() << " " << M->getName() << "\n";
 | |
|     return GenericValue();
 | |
|   }
 | |
| 
 | |
|   // TODO: FIXME when types are not const!
 | |
|   GenericValue Result = Fn(const_cast<FunctionType*>(M->getFunctionType()),
 | |
|                            ArgVals);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Functions "exported" to the running application...
 | |
| //
 | |
| extern "C" {  // Don't add C++ manglings to llvm mangling :)
 | |
| 
 | |
| // Implement void printstr([ubyte {x N}] *)
 | |
| GenericValue lle_VP_printstr(FunctionType *M, const vector<GenericValue> &ArgVal){
 | |
|   assert(ArgVal.size() == 1 && "printstr only takes one argument!");
 | |
|   cout << (char*)ArgVal[0].PointerVal;
 | |
|   return GenericValue();
 | |
| }
 | |
| 
 | |
| // Implement 'void print(X)' for every type...
 | |
| GenericValue lle_X_print(FunctionType *M, const vector<GenericValue> &ArgVals) {
 | |
|   assert(ArgVals.size() == 1 && "generic print only takes one argument!");
 | |
| 
 | |
|   Interpreter::print(M->getParamTypes()[0], ArgVals[0]);
 | |
|   return GenericValue();
 | |
| }
 | |
| 
 | |
| // Implement 'void printVal(X)' for every type...
 | |
| GenericValue lle_X_printVal(FunctionType *M, const vector<GenericValue> &ArgVal) {
 | |
|   assert(ArgVal.size() == 1 && "generic print only takes one argument!");
 | |
| 
 | |
|   // Specialize print([ubyte {x N} ] *) and print(sbyte *)
 | |
|   if (const PointerType *PTy = 
 | |
|       dyn_cast<PointerType>(M->getParamTypes()[0].get()))
 | |
|     if (PTy->getElementType() == Type::SByteTy ||
 | |
|         isa<ArrayType>(PTy->getElementType())) {
 | |
|       return lle_VP_printstr(M, ArgVal);
 | |
|     }
 | |
| 
 | |
|   Interpreter::printValue(M->getParamTypes()[0], ArgVal[0]);
 | |
|   return GenericValue();
 | |
| }
 | |
| 
 | |
| // Implement 'void printString(X)'
 | |
| // Argument must be [ubyte {x N} ] * or sbyte *
 | |
| GenericValue lle_X_printString(FunctionType *M, const vector<GenericValue> &ArgVal) {
 | |
|   assert(ArgVal.size() == 1 && "generic print only takes one argument!");
 | |
|   return lle_VP_printstr(M, ArgVal);
 | |
| }
 | |
| 
 | |
| // Implement 'void print<TYPE>(X)' for each primitive type or pointer type
 | |
| #define PRINT_TYPE_FUNC(TYPENAME,TYPEID) \
 | |
|   GenericValue lle_X_print##TYPENAME(FunctionType *M,\
 | |
|                                      const vector<GenericValue> &ArgVal) {\
 | |
|     assert(ArgVal.size() == 1 && "generic print only takes one argument!");\
 | |
|     assert(M->getParamTypes()[0].get()->getPrimitiveID() == Type::TYPEID);\
 | |
|     Interpreter::printValue(M->getParamTypes()[0], ArgVal[0]);\
 | |
|     return GenericValue();\
 | |
|   }
 | |
| 
 | |
| PRINT_TYPE_FUNC(SByte,   SByteTyID)
 | |
| PRINT_TYPE_FUNC(UByte,   UByteTyID)
 | |
| PRINT_TYPE_FUNC(Short,   ShortTyID)
 | |
| PRINT_TYPE_FUNC(UShort,  UShortTyID)
 | |
| PRINT_TYPE_FUNC(Int,     IntTyID)
 | |
| PRINT_TYPE_FUNC(UInt,    UIntTyID)
 | |
| PRINT_TYPE_FUNC(Long,    LongTyID)
 | |
| PRINT_TYPE_FUNC(ULong,   ULongTyID)
 | |
| PRINT_TYPE_FUNC(Float,   FloatTyID)
 | |
| PRINT_TYPE_FUNC(Double,  DoubleTyID)
 | |
| PRINT_TYPE_FUNC(Pointer, PointerTyID)
 | |
| 
 | |
| 
 | |
| // void putchar(sbyte)
 | |
| GenericValue lle_Vb_putchar(FunctionType *M, const vector<GenericValue> &Args) {
 | |
|   cout << Args[0].SByteVal;
 | |
|   return GenericValue();
 | |
| }
 | |
| 
 | |
| // int putchar(int)
 | |
| GenericValue lle_ii_putchar(FunctionType *M, const vector<GenericValue> &Args) {
 | |
|   cout << ((char)Args[0].IntVal) << std::flush;
 | |
|   return Args[0];
 | |
| }
 | |
| 
 | |
| // void putchar(ubyte)
 | |
| GenericValue lle_VB_putchar(FunctionType *M, const vector<GenericValue> &Args) {
 | |
|   cout << Args[0].SByteVal << std::flush;
 | |
|   return Args[0];
 | |
| }
 | |
| 
 | |
| // void __main()
 | |
| GenericValue lle_V___main(FunctionType *M, const vector<GenericValue> &Args) {
 | |
|   return GenericValue();
 | |
| }
 | |
| 
 | |
| // void exit(int)
 | |
| GenericValue lle_X_exit(FunctionType *M, const vector<GenericValue> &Args) {
 | |
|   TheInterpreter->exitCalled(Args[0]);
 | |
|   return GenericValue();
 | |
| }
 | |
| 
 | |
| // void abort(void)
 | |
| GenericValue lle_X_abort(FunctionType *M, const vector<GenericValue> &Args) {
 | |
|   std::cerr << "***PROGRAM ABORTED***!\n";
 | |
|   GenericValue GV;
 | |
|   GV.IntVal = 1;
 | |
|   TheInterpreter->exitCalled(GV);
 | |
|   return GenericValue();
 | |
| }
 | |
| 
 | |
| // void *malloc(uint)
 | |
| GenericValue lle_X_malloc(FunctionType *M, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 1 && "Malloc expects one argument!");
 | |
|   GenericValue GV;
 | |
|   GV.PointerVal = (PointerTy)malloc(Args[0].UIntVal);
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| // void free(void *)
 | |
| GenericValue lle_X_free(FunctionType *M, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 1);
 | |
|   free((void*)Args[0].PointerVal);
 | |
|   return GenericValue();
 | |
| }
 | |
| 
 | |
| // int atoi(char *)
 | |
| GenericValue lle_X_atoi(FunctionType *M, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 1);
 | |
|   GenericValue GV;
 | |
|   GV.IntVal = atoi((char*)Args[0].PointerVal);
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| // double pow(double, double)
 | |
| GenericValue lle_X_pow(FunctionType *M, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 2);
 | |
|   GenericValue GV;
 | |
|   GV.DoubleVal = pow(Args[0].DoubleVal, Args[1].DoubleVal);
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| // double exp(double)
 | |
| GenericValue lle_X_exp(FunctionType *M, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 1);
 | |
|   GenericValue GV;
 | |
|   GV.DoubleVal = exp(Args[0].DoubleVal);
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| // double sqrt(double)
 | |
| GenericValue lle_X_sqrt(FunctionType *M, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 1);
 | |
|   GenericValue GV;
 | |
|   GV.DoubleVal = sqrt(Args[0].DoubleVal);
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| // double log(double)
 | |
| GenericValue lle_X_log(FunctionType *M, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 1);
 | |
|   GenericValue GV;
 | |
|   GV.DoubleVal = log(Args[0].DoubleVal);
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| // double floor(double)
 | |
| GenericValue lle_X_floor(FunctionType *M, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 1);
 | |
|   GenericValue GV;
 | |
|   GV.DoubleVal = floor(Args[0].DoubleVal);
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| // double drand48()
 | |
| GenericValue lle_X_drand48(FunctionType *M, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 0);
 | |
|   GenericValue GV;
 | |
|   GV.DoubleVal = drand48();
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| // long lrand48()
 | |
| GenericValue lle_X_lrand48(FunctionType *M, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 0);
 | |
|   GenericValue GV;
 | |
|   GV.IntVal = lrand48();
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| // void srand48(long)
 | |
| GenericValue lle_X_srand48(FunctionType *M, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 1);
 | |
|   srand48(Args[0].IntVal);
 | |
|   return GenericValue();
 | |
| }
 | |
| 
 | |
| // void srand(uint)
 | |
| GenericValue lle_X_srand(FunctionType *M, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 1);
 | |
|   srand(Args[0].UIntVal);
 | |
|   return GenericValue();
 | |
| }
 | |
| 
 | |
| // int sprintf(sbyte *, sbyte *, ...) - a very rough implementation to make
 | |
| // output useful.
 | |
| GenericValue lle_X_sprintf(FunctionType *M, const vector<GenericValue> &Args) {
 | |
|   char *OutputBuffer = (char *)Args[0].PointerVal;
 | |
|   const char *FmtStr = (const char *)Args[1].PointerVal;
 | |
|   unsigned ArgNo = 2;
 | |
| 
 | |
|   // printf should return # chars printed.  This is completely incorrect, but
 | |
|   // close enough for now.
 | |
|   GenericValue GV; GV.IntVal = strlen(FmtStr);
 | |
|   while (1) {
 | |
|     switch (*FmtStr) {
 | |
|     case 0: return GV;             // Null terminator...
 | |
|     default:                       // Normal nonspecial character
 | |
|       sprintf(OutputBuffer++, "%c", *FmtStr++);
 | |
|       break;
 | |
|     case '\\': {                   // Handle escape codes
 | |
|       sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1));
 | |
|       FmtStr += 2; OutputBuffer += 2;
 | |
|       break;
 | |
|     }
 | |
|     case '%': {                    // Handle format specifiers
 | |
|       char FmtBuf[100] = "", Buffer[1000] = "";
 | |
|       char *FB = FmtBuf;
 | |
|       *FB++ = *FmtStr++;
 | |
|       char Last = *FB++ = *FmtStr++;
 | |
|       unsigned HowLong = 0;
 | |
|       while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' &&
 | |
|              Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' &&
 | |
|              Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' &&
 | |
|              Last != 'p' && Last != 's' && Last != '%') {
 | |
|         if (Last == 'l' || Last == 'L') HowLong++;  // Keep track of l's
 | |
|         Last = *FB++ = *FmtStr++;
 | |
|       }
 | |
|       *FB = 0;
 | |
|       
 | |
|       switch (Last) {
 | |
|       case '%':
 | |
|         sprintf(Buffer, FmtBuf); break;
 | |
|       case 'c':
 | |
|         sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal); break;
 | |
|       case 'd': case 'i':
 | |
|       case 'u': case 'o':
 | |
|       case 'x': case 'X':
 | |
|         if (HowLong >= 1) {
 | |
|           if (HowLong == 1) {
 | |
|             // Make sure we use %lld with a 64 bit argument because we might be
 | |
|             // compiling LLI on a 32 bit compiler.
 | |
|             unsigned Size = strlen(FmtBuf);
 | |
|             FmtBuf[Size] = FmtBuf[Size-1];
 | |
|             FmtBuf[Size+1] = 0;
 | |
|             FmtBuf[Size-1] = 'l';
 | |
|           }
 | |
|           sprintf(Buffer, FmtBuf, Args[ArgNo++].ULongVal);
 | |
|         } else
 | |
|           sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal); break;
 | |
|       case 'e': case 'E': case 'g': case 'G': case 'f':
 | |
|         sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break;
 | |
|       case 'p':
 | |
|         sprintf(Buffer, FmtBuf, (void*)Args[ArgNo++].PointerVal); break;
 | |
|       case 's': 
 | |
|         sprintf(Buffer, FmtBuf, (char*)Args[ArgNo++].PointerVal); break;
 | |
|       default:  cout << "<unknown printf code '" << *FmtStr << "'!>";
 | |
|         ArgNo++; break;
 | |
|       }
 | |
|       strcpy(OutputBuffer, Buffer);
 | |
|       OutputBuffer += strlen(Buffer);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // int printf(sbyte *, ...) - a very rough implementation to make output useful.
 | |
| GenericValue lle_X_printf(FunctionType *M, const vector<GenericValue> &Args) {
 | |
|   char Buffer[10000];
 | |
|   vector<GenericValue> NewArgs;
 | |
|   GenericValue GV; GV.PointerVal = (PointerTy)Buffer;
 | |
|   NewArgs.push_back(GV);
 | |
|   NewArgs.insert(NewArgs.end(), Args.begin(), Args.end());
 | |
|   GV = lle_X_sprintf(M, NewArgs);
 | |
|   cout << Buffer;
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| // int sscanf(const char *format, ...);
 | |
| GenericValue lle_X_sscanf(FunctionType *M, const vector<GenericValue> &args) {
 | |
|   assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!");
 | |
| 
 | |
|   const char *Args[10];
 | |
|   for (unsigned i = 0; i < args.size(); ++i)
 | |
|     Args[i] = (const char*)args[i].PointerVal;
 | |
| 
 | |
|   GenericValue GV;
 | |
|   GV.IntVal = sscanf(Args[0], Args[1], Args[2], Args[3], Args[4],
 | |
|                      Args[5], Args[6], Args[7], Args[8], Args[9]);
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| 
 | |
| // int clock(void) - Profiling implementation
 | |
| GenericValue lle_i_clock(FunctionType *M, const vector<GenericValue> &Args) {
 | |
|   extern int clock(void);
 | |
|   GenericValue GV; GV.IntVal = clock();
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // IO Functions...
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // getFILE - Turn a pointer in the host address space into a legit pointer in
 | |
| // the interpreter address space.  For the most part, this is an identity
 | |
| // transformation, but if the program refers to stdio, stderr, stdin then they
 | |
| // have pointers that are relative to the __iob array.  If this is the case,
 | |
| // change the FILE into the REAL stdio stream.
 | |
| // 
 | |
| static FILE *getFILE(PointerTy Ptr) {
 | |
|   static Module *LastMod = 0;
 | |
|   static PointerTy IOBBase = 0;
 | |
|   static unsigned FILESize;
 | |
| 
 | |
|   if (LastMod != TheInterpreter->getModule()) {  // Module change or initialize?
 | |
|     Module *M = LastMod = TheInterpreter->getModule();
 | |
| 
 | |
|     // Check to see if the currently loaded module contains an __iob symbol...
 | |
|     GlobalVariable *IOB = 0;
 | |
|     if (SymbolTable *ST = M->getSymbolTable()) {
 | |
|       for (SymbolTable::iterator I = ST->begin(), E = ST->end(); I != E; ++I) {
 | |
|         SymbolTable::VarMap &M = I->second;
 | |
|         for (SymbolTable::VarMap::iterator J = M.begin(), E = M.end();
 | |
|              J != E; ++J)
 | |
|           if (J->first == "__iob")
 | |
|             if ((IOB = dyn_cast<GlobalVariable>(J->second)))
 | |
|               break;
 | |
|         if (IOB) break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If we found an __iob symbol now, find out what the actual address it's
 | |
|     // held in is...
 | |
|     if (IOB) {
 | |
|       // Get the address the array lives in...
 | |
|       GlobalAddress *Address = 
 | |
|         (GlobalAddress*)IOB->getOrCreateAnnotation(GlobalAddressAID);
 | |
|       IOBBase = (PointerTy)(GenericValue*)Address->Ptr;
 | |
| 
 | |
|       // Figure out how big each element of the array is...
 | |
|       const ArrayType *AT =
 | |
|         dyn_cast<ArrayType>(IOB->getType()->getElementType());
 | |
|       if (AT)
 | |
|         FILESize = TD.getTypeSize(AT->getElementType());
 | |
|       else
 | |
|         FILESize = 16*8;  // Default size
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check to see if this is a reference to __iob...
 | |
|   if (IOBBase) {
 | |
|     unsigned FDNum = (Ptr-IOBBase)/FILESize;
 | |
|     if (FDNum == 0)
 | |
|       return stdin;
 | |
|     else if (FDNum == 1)
 | |
|       return stdout;
 | |
|     else if (FDNum == 2)
 | |
|       return stderr;
 | |
|   }
 | |
| 
 | |
|   return (FILE*)Ptr;
 | |
| }
 | |
| 
 | |
| 
 | |
| // FILE *fopen(const char *filename, const char *mode);
 | |
| GenericValue lle_X_fopen(FunctionType *M, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 2);
 | |
|   GenericValue GV;
 | |
| 
 | |
|   GV.PointerVal = (PointerTy)fopen((const char *)Args[0].PointerVal,
 | |
|                                    (const char *)Args[1].PointerVal);
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| // int fclose(FILE *F);
 | |
| GenericValue lle_X_fclose(FunctionType *M, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 1);
 | |
|   GenericValue GV;
 | |
| 
 | |
|   GV.IntVal = fclose(getFILE(Args[0].PointerVal));
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| // int feof(FILE *stream);
 | |
| GenericValue lle_X_feof(FunctionType *M, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 1);
 | |
|   GenericValue GV;
 | |
| 
 | |
|   GV.IntVal = feof(getFILE(Args[0].PointerVal));
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| // size_t fread(void *ptr, size_t size, size_t nitems, FILE *stream);
 | |
| GenericValue lle_X_fread(FunctionType *M, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 4);
 | |
|   GenericValue GV;
 | |
| 
 | |
|   GV.UIntVal = fread((void*)Args[0].PointerVal, Args[1].UIntVal,
 | |
|                      Args[2].UIntVal, getFILE(Args[3].PointerVal));
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| // size_t fwrite(const void *ptr, size_t size, size_t nitems, FILE *stream);
 | |
| GenericValue lle_X_fwrite(FunctionType *M, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 4);
 | |
|   GenericValue GV;
 | |
| 
 | |
|   GV.UIntVal = fwrite((void*)Args[0].PointerVal, Args[1].UIntVal,
 | |
|                       Args[2].UIntVal, getFILE(Args[3].PointerVal));
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| // char *fgets(char *s, int n, FILE *stream);
 | |
| GenericValue lle_X_fgets(FunctionType *M, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 3);
 | |
|   GenericValue GV;
 | |
| 
 | |
|   GV.PointerVal = (PointerTy)fgets((char*)Args[0].PointerVal, Args[1].IntVal,
 | |
|                                    getFILE(Args[2].PointerVal));
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| // FILE *freopen(const char *path, const char *mode, FILE *stream);
 | |
| GenericValue lle_X_freopen(FunctionType *M, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 3);
 | |
|   GenericValue GV;
 | |
|   GV.PointerVal = (PointerTy)freopen((char*)Args[0].PointerVal,
 | |
|                                      (char*)Args[1].PointerVal,
 | |
|                                      getFILE(Args[2].PointerVal));
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| // int fflush(FILE *stream);
 | |
| GenericValue lle_X_fflush(FunctionType *M, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 1);
 | |
|   GenericValue GV;
 | |
|   GV.IntVal = fflush(getFILE(Args[0].PointerVal));
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| // int getc(FILE *stream);
 | |
| GenericValue lle_X_getc(FunctionType *M, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 1);
 | |
|   GenericValue GV;
 | |
|   GV.IntVal = getc(getFILE(Args[0].PointerVal));
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| // int fputc(int C, FILE *stream);
 | |
| GenericValue lle_X_fputc(FunctionType *M, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 2);
 | |
|   GenericValue GV;
 | |
|   GV.IntVal = fputc(Args[0].IntVal, getFILE(Args[1].PointerVal));
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| // int ungetc(int C, FILE *stream);
 | |
| GenericValue lle_X_ungetc(FunctionType *M, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 2);
 | |
|   GenericValue GV;
 | |
|   GV.IntVal = ungetc(Args[0].IntVal, getFILE(Args[1].PointerVal));
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| // int fprintf(FILE *,sbyte *, ...) - a very rough implementation to make output
 | |
| // useful.
 | |
| GenericValue lle_X_fprintf(FunctionType *M, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() > 2);
 | |
|   char Buffer[10000];
 | |
|   vector<GenericValue> NewArgs;
 | |
|   GenericValue GV; GV.PointerVal = (PointerTy)Buffer;
 | |
|   NewArgs.push_back(GV);
 | |
|   NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end());
 | |
|   GV = lle_X_sprintf(M, NewArgs);
 | |
| 
 | |
|   fputs(Buffer, getFILE(Args[0].PointerVal));
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| } // End extern "C"
 | |
| 
 | |
| 
 | |
| void Interpreter::initializeExternalMethods() {
 | |
|   FuncNames["lle_VP_printstr"] = lle_VP_printstr;
 | |
|   FuncNames["lle_X_print"] = lle_X_print;
 | |
|   FuncNames["lle_X_printVal"] = lle_X_printVal;
 | |
|   FuncNames["lle_X_printString"] = lle_X_printString;
 | |
|   FuncNames["lle_X_printUByte"] = lle_X_printUByte;
 | |
|   FuncNames["lle_X_printSByte"] = lle_X_printSByte;
 | |
|   FuncNames["lle_X_printUShort"] = lle_X_printUShort;
 | |
|   FuncNames["lle_X_printShort"] = lle_X_printShort;
 | |
|   FuncNames["lle_X_printInt"] = lle_X_printInt;
 | |
|   FuncNames["lle_X_printUInt"] = lle_X_printUInt;
 | |
|   FuncNames["lle_X_printLong"] = lle_X_printLong;
 | |
|   FuncNames["lle_X_printULong"] = lle_X_printULong;
 | |
|   FuncNames["lle_X_printFloat"] = lle_X_printFloat;
 | |
|   FuncNames["lle_X_printDouble"] = lle_X_printDouble;
 | |
|   FuncNames["lle_X_printPointer"] = lle_X_printPointer;
 | |
|   FuncNames["lle_Vb_putchar"]     = lle_Vb_putchar;
 | |
|   FuncNames["lle_ii_putchar"]     = lle_ii_putchar;
 | |
|   FuncNames["lle_VB_putchar"]     = lle_VB_putchar;
 | |
|   FuncNames["lle_V___main"]       = lle_V___main;
 | |
|   FuncNames["lle_X_exit"]         = lle_X_exit;
 | |
|   FuncNames["lle_X_abort"]        = lle_X_abort;
 | |
|   FuncNames["lle_X_malloc"]       = lle_X_malloc;
 | |
|   FuncNames["lle_X_free"]         = lle_X_free;
 | |
|   FuncNames["lle_X_atoi"]         = lle_X_atoi;
 | |
|   FuncNames["lle_X_pow"]          = lle_X_pow;
 | |
|   FuncNames["lle_X_exp"]          = lle_X_exp;
 | |
|   FuncNames["lle_X_log"]          = lle_X_log;
 | |
|   FuncNames["lle_X_floor"]        = lle_X_floor;
 | |
|   FuncNames["lle_X_srand"]        = lle_X_srand;
 | |
|   FuncNames["lle_X_drand48"]      = lle_X_drand48;
 | |
|   FuncNames["lle_X_srand48"]      = lle_X_srand48;
 | |
|   FuncNames["lle_X_lrand48"]      = lle_X_lrand48;
 | |
|   FuncNames["lle_X_sqrt"]         = lle_X_sqrt;
 | |
|   FuncNames["lle_X_printf"]       = lle_X_printf;
 | |
|   FuncNames["lle_X_sprintf"]      = lle_X_sprintf;
 | |
|   FuncNames["lle_X_sscanf"]       = lle_X_sscanf;
 | |
|   FuncNames["lle_i_clock"]        = lle_i_clock;
 | |
|   FuncNames["lle_X_fopen"]        = lle_X_fopen;
 | |
|   FuncNames["lle_X_fclose"]       = lle_X_fclose;
 | |
|   FuncNames["lle_X_feof"]         = lle_X_feof;
 | |
|   FuncNames["lle_X_fread"]        = lle_X_fread;
 | |
|   FuncNames["lle_X_fwrite"]       = lle_X_fwrite;
 | |
|   FuncNames["lle_X_fgets"]        = lle_X_fgets;
 | |
|   FuncNames["lle_X_fflush"]       = lle_X_fflush;
 | |
|   FuncNames["lle_X_fgetc"]        = lle_X_getc;
 | |
|   FuncNames["lle_X_getc"]         = lle_X_getc;
 | |
|   FuncNames["lle_X_fputc"]        = lle_X_fputc;
 | |
|   FuncNames["lle_X_ungetc"]       = lle_X_ungetc;
 | |
|   FuncNames["lle_X_fprintf"]      = lle_X_fprintf;
 | |
|   FuncNames["lle_X_freopen"]      = lle_X_freopen;
 | |
| }
 |