mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	Function::ParentSymTab. These aren't needed at all. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@4186 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			336 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			336 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- SymbolTable.cpp - Implement the SymbolTable class -------------------=//
 | 
						|
//
 | 
						|
// This file implements the SymbolTable class for the VMCore library.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/SymbolTable.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/InstrTypes.h"
 | 
						|
#include "Support/StringExtras.h"
 | 
						|
#include <iostream>
 | 
						|
#include <algorithm>
 | 
						|
 | 
						|
using std::string;
 | 
						|
using std::pair;
 | 
						|
using std::make_pair;
 | 
						|
using std::map;
 | 
						|
using std::cerr;
 | 
						|
 | 
						|
#define DEBUG_SYMBOL_TABLE 0
 | 
						|
#define DEBUG_ABSTYPE 0
 | 
						|
 | 
						|
SymbolTable::~SymbolTable() {
 | 
						|
  // Drop all abstract type references in the type plane...
 | 
						|
  iterator TyPlane = find(Type::TypeTy);
 | 
						|
  if (TyPlane != end()) {
 | 
						|
    VarMap &TyP = TyPlane->second;
 | 
						|
    for (VarMap::iterator I = TyP.begin(), E = TyP.end(); I != E; ++I) {
 | 
						|
      const Type *Ty = cast<const Type>(I->second);
 | 
						|
      if (Ty->isAbstract())   // If abstract, drop the reference...
 | 
						|
	cast<DerivedType>(Ty)->removeAbstractTypeUser(this);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
 // TODO: FIXME: BIG ONE: This doesn't unreference abstract types for the planes
 | 
						|
 // that could still have entries!
 | 
						|
 | 
						|
#ifndef NDEBUG   // Only do this in -g mode...
 | 
						|
  bool LeftoverValues = true;
 | 
						|
  for (iterator i = begin(); i != end(); ++i) {
 | 
						|
    for (type_iterator I = i->second.begin(); I != i->second.end(); ++I)
 | 
						|
      if (!isa<Constant>(I->second) && !isa<Type>(I->second)) {
 | 
						|
	cerr << "Value still in symbol table! Type = '"
 | 
						|
             << i->first->getDescription() << "' Name = '"
 | 
						|
             << I->first << "'\n";
 | 
						|
	LeftoverValues = false;
 | 
						|
      }
 | 
						|
  }
 | 
						|
  
 | 
						|
  assert(LeftoverValues && "Values remain in symbol table!");
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
// getUniqueName - Given a base name, return a string that is either equal to
 | 
						|
// it (or derived from it) that does not already occur in the symbol table for
 | 
						|
// the specified type.
 | 
						|
//
 | 
						|
string SymbolTable::getUniqueName(const Type *Ty, const string &BaseName) {
 | 
						|
  iterator I = find(Ty);
 | 
						|
  if (I == end()) return BaseName;
 | 
						|
 | 
						|
  string TryName = BaseName;
 | 
						|
  unsigned Counter = 0;
 | 
						|
  type_iterator End = I->second.end();
 | 
						|
 | 
						|
  while (I->second.find(TryName) != End)     // Loop until we find unoccupied
 | 
						|
    TryName = BaseName + utostr(++Counter);  // Name in the symbol table
 | 
						|
  return TryName;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
// lookup - Returns null on failure...
 | 
						|
Value *SymbolTable::lookup(const Type *Ty, const string &Name) {
 | 
						|
  iterator I = find(Ty);
 | 
						|
  if (I != end()) {                      // We have symbols in that plane...
 | 
						|
    type_iterator J = I->second.find(Name);
 | 
						|
    if (J != I->second.end())            // and the name is in our hash table...
 | 
						|
      return J->second;
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
void SymbolTable::remove(Value *N) {
 | 
						|
  assert(N->hasName() && "Value doesn't have name!");
 | 
						|
  if (InternallyInconsistent) return;
 | 
						|
 | 
						|
  iterator I = find(N->getType());
 | 
						|
  assert(I != end() &&
 | 
						|
         "Trying to remove a type that doesn't have a plane yet!");
 | 
						|
  removeEntry(I, I->second.find(N->getName()));
 | 
						|
}
 | 
						|
 | 
						|
// removeEntry - Remove a value from the symbol table...
 | 
						|
//
 | 
						|
Value *SymbolTable::removeEntry(iterator Plane, type_iterator Entry) {
 | 
						|
  if (InternallyInconsistent) return 0;
 | 
						|
  assert(Plane != super::end() &&
 | 
						|
         Entry != Plane->second.end() && "Invalid entry to remove!");
 | 
						|
 | 
						|
  Value *Result = Entry->second;
 | 
						|
  const Type *Ty = Result->getType();
 | 
						|
#if DEBUG_SYMBOL_TABLE
 | 
						|
  dump();
 | 
						|
  std::cerr << " Removing Value: " << Result->getName() << "\n";
 | 
						|
#endif
 | 
						|
 | 
						|
  // Remove the value from the plane...
 | 
						|
  Plane->second.erase(Entry);
 | 
						|
 | 
						|
  // If the plane is empty, remove it now!
 | 
						|
  if (Plane->second.empty()) {
 | 
						|
    // If the plane represented an abstract type that we were interested in,
 | 
						|
    // unlink ourselves from this plane.
 | 
						|
    //
 | 
						|
    if (Plane->first->isAbstract()) {
 | 
						|
#if DEBUG_ABSTYPE
 | 
						|
      cerr << "Plane Empty: Removing type: " << Plane->first->getDescription()
 | 
						|
           << "\n";
 | 
						|
#endif
 | 
						|
      cast<DerivedType>(Plane->first)->removeAbstractTypeUser(this);
 | 
						|
    }
 | 
						|
 | 
						|
    erase(Plane);
 | 
						|
  }
 | 
						|
 | 
						|
  // If we are removing an abstract type, remove the symbol table from it's use
 | 
						|
  // list...
 | 
						|
  if (Ty == Type::TypeTy) {
 | 
						|
    const Type *T = cast<const Type>(Result);
 | 
						|
    if (T->isAbstract()) {
 | 
						|
#if DEBUG_ABSTYPE
 | 
						|
      cerr << "Removing abs type from symtab" << T->getDescription() << "\n";
 | 
						|
#endif
 | 
						|
      cast<DerivedType>(T)->removeAbstractTypeUser(this);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
// insertEntry - Insert a value into the symbol table with the specified
 | 
						|
// name...
 | 
						|
//
 | 
						|
void SymbolTable::insertEntry(const string &Name, const Type *VTy, Value *V) {
 | 
						|
 | 
						|
  // Check to see if there is a naming conflict.  If so, rename this value!
 | 
						|
  if (lookup(VTy, Name)) {
 | 
						|
    string UniqueName = getUniqueName(VTy, Name);
 | 
						|
    assert(InternallyInconsistent == false && "Infinite loop inserting entry!");
 | 
						|
    InternallyInconsistent = true;
 | 
						|
    V->setName(UniqueName, this);
 | 
						|
    InternallyInconsistent = false;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
#if DEBUG_SYMBOL_TABLE
 | 
						|
  dump();
 | 
						|
  cerr << " Inserting definition: " << Name << ": " 
 | 
						|
       << VTy->getDescription() << "\n";
 | 
						|
#endif
 | 
						|
 | 
						|
  iterator I = find(VTy);
 | 
						|
  if (I == end()) {      // Not in collection yet... insert dummy entry
 | 
						|
    // Insert a new empty element.  I points to the new elements.
 | 
						|
    I = super::insert(make_pair(VTy, VarMap())).first;
 | 
						|
    assert(I != end() && "How did insert fail?");
 | 
						|
 | 
						|
    // Check to see if the type is abstract.  If so, it might be refined in the
 | 
						|
    // future, which would cause the plane of the old type to get merged into
 | 
						|
    // a new type plane.
 | 
						|
    //
 | 
						|
    if (VTy->isAbstract()) {
 | 
						|
      cast<DerivedType>(VTy)->addAbstractTypeUser(this);
 | 
						|
#if DEBUG_ABSTYPE
 | 
						|
      cerr << "Added abstract type value: " << VTy->getDescription() << "\n";
 | 
						|
#endif
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  I->second.insert(make_pair(Name, V));
 | 
						|
 | 
						|
  // If we are adding an abstract type, add the symbol table to it's use list.
 | 
						|
  if (VTy == Type::TypeTy) {
 | 
						|
    const Type *T = cast<const Type>(V);
 | 
						|
    if (T->isAbstract()) {
 | 
						|
      cast<DerivedType>(T)->addAbstractTypeUser(this);
 | 
						|
#if DEBUG_ABSTYPE
 | 
						|
      cerr << "Added abstract type to ST: " << T->getDescription() << "\n";
 | 
						|
#endif
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// This function is called when one of the types in the type plane are refined
 | 
						|
void SymbolTable::refineAbstractType(const DerivedType *OldType,
 | 
						|
				     const Type *NewType) {
 | 
						|
  if (OldType == NewType && OldType->isAbstract())
 | 
						|
    return;  // Noop, don't waste time dinking around
 | 
						|
 | 
						|
  // Search to see if we have any values of the type oldtype.  If so, we need to
 | 
						|
  // move them into the newtype plane...
 | 
						|
  iterator TPI = find(OldType);
 | 
						|
  if (OldType != NewType && TPI != end()) {
 | 
						|
    // Get a handle to the new type plane...
 | 
						|
    iterator NewTypeIt = find(NewType);
 | 
						|
    if (NewTypeIt == super::end()) {      // If no plane exists, add one
 | 
						|
      NewTypeIt = super::insert(make_pair(NewType, VarMap())).first;
 | 
						|
      
 | 
						|
      if (NewType->isAbstract()) {
 | 
						|
        cast<DerivedType>(NewType)->addAbstractTypeUser(this);
 | 
						|
#if DEBUG_ABSTYPE
 | 
						|
        cerr << "[Added] refined to abstype: "<<NewType->getDescription()<<"\n";
 | 
						|
#endif
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    VarMap &NewPlane = NewTypeIt->second;
 | 
						|
    VarMap &OldPlane = TPI->second;
 | 
						|
    while (!OldPlane.empty()) {
 | 
						|
      pair<const string, Value*> V = *OldPlane.begin();
 | 
						|
 | 
						|
      // Check to see if there is already a value in the symbol table that this
 | 
						|
      // would collide with.
 | 
						|
      type_iterator TI = NewPlane.find(V.first);
 | 
						|
      if (TI != NewPlane.end() && TI->second == V.second) {
 | 
						|
        // No action
 | 
						|
 | 
						|
      } else if (TI != NewPlane.end()) {
 | 
						|
        // The only thing we are allowing for now is two method prototypes being
 | 
						|
        // folded into one.
 | 
						|
        //
 | 
						|
        Function *ExistM = dyn_cast<Function>(TI->second);
 | 
						|
        Function *NewM = dyn_cast<Function>(V.second);
 | 
						|
 | 
						|
        if (ExistM && NewM && ExistM->isExternal() && NewM->isExternal()) {
 | 
						|
          // Ok we have two external methods.  Make all uses of the new one
 | 
						|
          // use the old one...
 | 
						|
          //
 | 
						|
          NewM->replaceAllUsesWith(ExistM);
 | 
						|
          
 | 
						|
          // Now we just convert it to an unnamed method... which won't get
 | 
						|
          // added to our symbol table.  The problem is that if we call
 | 
						|
          // setName on the method that it will try to remove itself from
 | 
						|
          // the symbol table and die... because it's not in the symtab
 | 
						|
          // right now.  To fix this, we have an internally consistent flag
 | 
						|
          // that turns remove into a noop.  Thus the name will get null'd
 | 
						|
          // out, but the symbol table won't get upset.
 | 
						|
          //
 | 
						|
          assert(InternallyInconsistent == false &&
 | 
						|
                 "Symbol table already inconsistent!");
 | 
						|
          InternallyInconsistent = true;
 | 
						|
 | 
						|
          // Remove newM from the symtab
 | 
						|
          NewM->setName("");
 | 
						|
          InternallyInconsistent = false;
 | 
						|
 | 
						|
          // Now we can remove this method from the module entirely...
 | 
						|
          NewM->getParent()->getFunctionList().remove(NewM);
 | 
						|
          delete NewM;
 | 
						|
 | 
						|
        } else {
 | 
						|
          assert(0 && "Two ploanes folded together with overlapping "
 | 
						|
                 "value names!");
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        insertEntry(V.first, NewType, V.second);
 | 
						|
 | 
						|
      }
 | 
						|
      // Remove the item from the old type plane
 | 
						|
      OldPlane.erase(OldPlane.begin());
 | 
						|
    }
 | 
						|
 | 
						|
    // Ok, now we are not referencing the type anymore... take me off your user
 | 
						|
    // list please!
 | 
						|
#if DEBUG_ABSTYPE
 | 
						|
    cerr << "Removing type " << OldType->getDescription() << "\n";
 | 
						|
#endif
 | 
						|
    OldType->removeAbstractTypeUser(this);
 | 
						|
 | 
						|
    // Remove the plane that is no longer used
 | 
						|
    erase(TPI);
 | 
						|
  } else if (TPI != end()) {
 | 
						|
    assert(OldType == NewType);
 | 
						|
#if DEBUG_ABSTYPE
 | 
						|
    cerr << "Removing SELF type " << OldType->getDescription() << "\n";
 | 
						|
#endif
 | 
						|
    OldType->removeAbstractTypeUser(this);
 | 
						|
  }
 | 
						|
 | 
						|
  TPI = find(Type::TypeTy);
 | 
						|
  if (TPI != end()) {  
 | 
						|
    // Loop over all of the types in the symbol table, replacing any references
 | 
						|
    // to OldType with references to NewType.  Note that there may be multiple
 | 
						|
    // occurances, and although we only need to remove one at a time, it's
 | 
						|
    // faster to remove them all in one pass.
 | 
						|
    //
 | 
						|
    VarMap &TyPlane = TPI->second;
 | 
						|
    for (VarMap::iterator I = TyPlane.begin(), E = TyPlane.end(); I != E; ++I)
 | 
						|
      if (I->second == (Value*)OldType) {  // FIXME when Types aren't const.
 | 
						|
#if DEBUG_ABSTYPE
 | 
						|
        cerr << "Removing type " << OldType->getDescription() << "\n";
 | 
						|
#endif
 | 
						|
        OldType->removeAbstractTypeUser(this);
 | 
						|
        
 | 
						|
        I->second = (Value*)NewType;  // TODO FIXME when types aren't const
 | 
						|
        if (NewType->isAbstract()) {
 | 
						|
#if DEBUG_ABSTYPE
 | 
						|
          cerr << "Added type " << NewType->getDescription() << "\n";
 | 
						|
#endif
 | 
						|
          cast<const DerivedType>(NewType)->addAbstractTypeUser(this);
 | 
						|
        }
 | 
						|
      }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void DumpVal(const pair<const string, Value *> &V) {
 | 
						|
  std::cout << "  '" << V.first << "' = ";
 | 
						|
  V.second->dump();
 | 
						|
  std::cout << "\n";
 | 
						|
}
 | 
						|
 | 
						|
static void DumpPlane(const pair<const Type *, map<const string, Value *> >&P) {
 | 
						|
  std::cout << "  Plane: ";
 | 
						|
  P.first->dump();
 | 
						|
  std::cout << "\n";
 | 
						|
  for_each(P.second.begin(), P.second.end(), DumpVal);
 | 
						|
}
 | 
						|
 | 
						|
void SymbolTable::dump() const {
 | 
						|
  std::cout << "Symbol table dump:\n";
 | 
						|
  for_each(begin(), end(), DumpPlane);
 | 
						|
}
 |