mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	AKA: Recompile *ALL* the source code! This one went much better. No manual edits here. I spot-checked for silliness and grep-checked for really broken edits and everything seemed good. It all still compiles. Yell if you see something that looks goofy. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169133 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1040 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1040 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- llvm/ADT/DenseMap.h - Dense probed hash table ------------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the DenseMap class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_ADT_DENSEMAP_H
 | |
| #define LLVM_ADT_DENSEMAP_H
 | |
| 
 | |
| #include "llvm/ADT/DenseMapInfo.h"
 | |
| #include "llvm/Support/AlignOf.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/PointerLikeTypeTraits.h"
 | |
| #include "llvm/Support/type_traits.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <climits>
 | |
| #include <cstddef>
 | |
| #include <cstring>
 | |
| #include <iterator>
 | |
| #include <new>
 | |
| #include <utility>
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| template<typename KeyT, typename ValueT,
 | |
|          typename KeyInfoT = DenseMapInfo<KeyT>,
 | |
|          bool IsConst = false>
 | |
| class DenseMapIterator;
 | |
| 
 | |
| template<typename DerivedT,
 | |
|          typename KeyT, typename ValueT, typename KeyInfoT>
 | |
| class DenseMapBase {
 | |
| protected:
 | |
|   typedef std::pair<KeyT, ValueT> BucketT;
 | |
| 
 | |
| public:
 | |
|   typedef KeyT key_type;
 | |
|   typedef ValueT mapped_type;
 | |
|   typedef BucketT value_type;
 | |
| 
 | |
|   typedef DenseMapIterator<KeyT, ValueT, KeyInfoT> iterator;
 | |
|   typedef DenseMapIterator<KeyT, ValueT,
 | |
|                            KeyInfoT, true> const_iterator;
 | |
|   inline iterator begin() {
 | |
|     // When the map is empty, avoid the overhead of AdvancePastEmptyBuckets().
 | |
|     return empty() ? end() : iterator(getBuckets(), getBucketsEnd());
 | |
|   }
 | |
|   inline iterator end() {
 | |
|     return iterator(getBucketsEnd(), getBucketsEnd(), true);
 | |
|   }
 | |
|   inline const_iterator begin() const {
 | |
|     return empty() ? end() : const_iterator(getBuckets(), getBucketsEnd());
 | |
|   }
 | |
|   inline const_iterator end() const {
 | |
|     return const_iterator(getBucketsEnd(), getBucketsEnd(), true);
 | |
|   }
 | |
| 
 | |
|   bool empty() const { return getNumEntries() == 0; }
 | |
|   unsigned size() const { return getNumEntries(); }
 | |
| 
 | |
|   /// Grow the densemap so that it has at least Size buckets. Does not shrink
 | |
|   void resize(size_t Size) {
 | |
|     if (Size > getNumBuckets())
 | |
|       grow(Size);
 | |
|   }
 | |
| 
 | |
|   void clear() {
 | |
|     if (getNumEntries() == 0 && getNumTombstones() == 0) return;
 | |
|     
 | |
|     // If the capacity of the array is huge, and the # elements used is small,
 | |
|     // shrink the array.
 | |
|     if (getNumEntries() * 4 < getNumBuckets() && getNumBuckets() > 64) {
 | |
|       shrink_and_clear();
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
 | |
|     for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
 | |
|       if (!KeyInfoT::isEqual(P->first, EmptyKey)) {
 | |
|         if (!KeyInfoT::isEqual(P->first, TombstoneKey)) {
 | |
|           P->second.~ValueT();
 | |
|           decrementNumEntries();
 | |
|         }
 | |
|         P->first = EmptyKey;
 | |
|       }
 | |
|     }
 | |
|     assert(getNumEntries() == 0 && "Node count imbalance!");
 | |
|     setNumTombstones(0);
 | |
|   }
 | |
| 
 | |
|   /// count - Return true if the specified key is in the map.
 | |
|   bool count(const KeyT &Val) const {
 | |
|     const BucketT *TheBucket;
 | |
|     return LookupBucketFor(Val, TheBucket);
 | |
|   }
 | |
| 
 | |
|   iterator find(const KeyT &Val) {
 | |
|     BucketT *TheBucket;
 | |
|     if (LookupBucketFor(Val, TheBucket))
 | |
|       return iterator(TheBucket, getBucketsEnd(), true);
 | |
|     return end();
 | |
|   }
 | |
|   const_iterator find(const KeyT &Val) const {
 | |
|     const BucketT *TheBucket;
 | |
|     if (LookupBucketFor(Val, TheBucket))
 | |
|       return const_iterator(TheBucket, getBucketsEnd(), true);
 | |
|     return end();
 | |
|   }
 | |
| 
 | |
|   /// Alternate version of find() which allows a different, and possibly
 | |
|   /// less expensive, key type.
 | |
|   /// The DenseMapInfo is responsible for supplying methods
 | |
|   /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key
 | |
|   /// type used.
 | |
|   template<class LookupKeyT>
 | |
|   iterator find_as(const LookupKeyT &Val) {
 | |
|     BucketT *TheBucket;
 | |
|     if (LookupBucketFor(Val, TheBucket))
 | |
|       return iterator(TheBucket, getBucketsEnd(), true);
 | |
|     return end();
 | |
|   }
 | |
|   template<class LookupKeyT>
 | |
|   const_iterator find_as(const LookupKeyT &Val) const {
 | |
|     const BucketT *TheBucket;
 | |
|     if (LookupBucketFor(Val, TheBucket))
 | |
|       return const_iterator(TheBucket, getBucketsEnd(), true);
 | |
|     return end();
 | |
|   }
 | |
| 
 | |
|   /// lookup - Return the entry for the specified key, or a default
 | |
|   /// constructed value if no such entry exists.
 | |
|   ValueT lookup(const KeyT &Val) const {
 | |
|     const BucketT *TheBucket;
 | |
|     if (LookupBucketFor(Val, TheBucket))
 | |
|       return TheBucket->second;
 | |
|     return ValueT();
 | |
|   }
 | |
| 
 | |
|   // Inserts key,value pair into the map if the key isn't already in the map.
 | |
|   // If the key is already in the map, it returns false and doesn't update the
 | |
|   // value.
 | |
|   std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
 | |
|     BucketT *TheBucket;
 | |
|     if (LookupBucketFor(KV.first, TheBucket))
 | |
|       return std::make_pair(iterator(TheBucket, getBucketsEnd(), true),
 | |
|                             false); // Already in map.
 | |
| 
 | |
|     // Otherwise, insert the new element.
 | |
|     TheBucket = InsertIntoBucket(KV.first, KV.second, TheBucket);
 | |
|     return std::make_pair(iterator(TheBucket, getBucketsEnd(), true), true);
 | |
|   }
 | |
| 
 | |
|   /// insert - Range insertion of pairs.
 | |
|   template<typename InputIt>
 | |
|   void insert(InputIt I, InputIt E) {
 | |
|     for (; I != E; ++I)
 | |
|       insert(*I);
 | |
|   }
 | |
| 
 | |
| 
 | |
|   bool erase(const KeyT &Val) {
 | |
|     BucketT *TheBucket;
 | |
|     if (!LookupBucketFor(Val, TheBucket))
 | |
|       return false; // not in map.
 | |
| 
 | |
|     TheBucket->second.~ValueT();
 | |
|     TheBucket->first = getTombstoneKey();
 | |
|     decrementNumEntries();
 | |
|     incrementNumTombstones();
 | |
|     return true;
 | |
|   }
 | |
|   void erase(iterator I) {
 | |
|     BucketT *TheBucket = &*I;
 | |
|     TheBucket->second.~ValueT();
 | |
|     TheBucket->first = getTombstoneKey();
 | |
|     decrementNumEntries();
 | |
|     incrementNumTombstones();
 | |
|   }
 | |
| 
 | |
|   value_type& FindAndConstruct(const KeyT &Key) {
 | |
|     BucketT *TheBucket;
 | |
|     if (LookupBucketFor(Key, TheBucket))
 | |
|       return *TheBucket;
 | |
| 
 | |
|     return *InsertIntoBucket(Key, ValueT(), TheBucket);
 | |
|   }
 | |
| 
 | |
|   ValueT &operator[](const KeyT &Key) {
 | |
|     return FindAndConstruct(Key).second;
 | |
|   }
 | |
| 
 | |
| #if LLVM_HAS_RVALUE_REFERENCES
 | |
|   value_type& FindAndConstruct(KeyT &&Key) {
 | |
|     BucketT *TheBucket;
 | |
|     if (LookupBucketFor(Key, TheBucket))
 | |
|       return *TheBucket;
 | |
| 
 | |
|     return *InsertIntoBucket(Key, ValueT(), TheBucket);
 | |
|   }
 | |
| 
 | |
|   ValueT &operator[](KeyT &&Key) {
 | |
|     return FindAndConstruct(Key).second;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /// isPointerIntoBucketsArray - Return true if the specified pointer points
 | |
|   /// somewhere into the DenseMap's array of buckets (i.e. either to a key or
 | |
|   /// value in the DenseMap).
 | |
|   bool isPointerIntoBucketsArray(const void *Ptr) const {
 | |
|     return Ptr >= getBuckets() && Ptr < getBucketsEnd();
 | |
|   }
 | |
| 
 | |
|   /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets
 | |
|   /// array.  In conjunction with the previous method, this can be used to
 | |
|   /// determine whether an insertion caused the DenseMap to reallocate.
 | |
|   const void *getPointerIntoBucketsArray() const { return getBuckets(); }
 | |
| 
 | |
| protected:
 | |
|   DenseMapBase() {}
 | |
| 
 | |
|   void destroyAll() {
 | |
|     if (getNumBuckets() == 0) // Nothing to do.
 | |
|       return;
 | |
| 
 | |
|     const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
 | |
|     for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
 | |
|       if (!KeyInfoT::isEqual(P->first, EmptyKey) &&
 | |
|           !KeyInfoT::isEqual(P->first, TombstoneKey))
 | |
|         P->second.~ValueT();
 | |
|       P->first.~KeyT();
 | |
|     }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|     memset((void*)getBuckets(), 0x5a, sizeof(BucketT)*getNumBuckets());
 | |
| #endif
 | |
|   }
 | |
| 
 | |
|   void initEmpty() {
 | |
|     setNumEntries(0);
 | |
|     setNumTombstones(0);
 | |
| 
 | |
|     assert((getNumBuckets() & (getNumBuckets()-1)) == 0 &&
 | |
|            "# initial buckets must be a power of two!");
 | |
|     const KeyT EmptyKey = getEmptyKey();
 | |
|     for (BucketT *B = getBuckets(), *E = getBucketsEnd(); B != E; ++B)
 | |
|       new (&B->first) KeyT(EmptyKey);
 | |
|   }
 | |
| 
 | |
|   void moveFromOldBuckets(BucketT *OldBucketsBegin, BucketT *OldBucketsEnd) {
 | |
|     initEmpty();
 | |
| 
 | |
|     // Insert all the old elements.
 | |
|     const KeyT EmptyKey = getEmptyKey();
 | |
|     const KeyT TombstoneKey = getTombstoneKey();
 | |
|     for (BucketT *B = OldBucketsBegin, *E = OldBucketsEnd; B != E; ++B) {
 | |
|       if (!KeyInfoT::isEqual(B->first, EmptyKey) &&
 | |
|           !KeyInfoT::isEqual(B->first, TombstoneKey)) {
 | |
|         // Insert the key/value into the new table.
 | |
|         BucketT *DestBucket;
 | |
|         bool FoundVal = LookupBucketFor(B->first, DestBucket);
 | |
|         (void)FoundVal; // silence warning.
 | |
|         assert(!FoundVal && "Key already in new map?");
 | |
|         DestBucket->first = llvm_move(B->first);
 | |
|         new (&DestBucket->second) ValueT(llvm_move(B->second));
 | |
|         incrementNumEntries();
 | |
| 
 | |
|         // Free the value.
 | |
|         B->second.~ValueT();
 | |
|       }
 | |
|       B->first.~KeyT();
 | |
|     }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|     if (OldBucketsBegin != OldBucketsEnd)
 | |
|       memset((void*)OldBucketsBegin, 0x5a,
 | |
|              sizeof(BucketT) * (OldBucketsEnd - OldBucketsBegin));
 | |
| #endif
 | |
|   }
 | |
| 
 | |
|   template <typename OtherBaseT>
 | |
|   void copyFrom(const DenseMapBase<OtherBaseT, KeyT, ValueT, KeyInfoT>& other) {
 | |
|     assert(getNumBuckets() == other.getNumBuckets());
 | |
| 
 | |
|     setNumEntries(other.getNumEntries());
 | |
|     setNumTombstones(other.getNumTombstones());
 | |
| 
 | |
|     if (isPodLike<KeyT>::value && isPodLike<ValueT>::value)
 | |
|       memcpy(getBuckets(), other.getBuckets(),
 | |
|              getNumBuckets() * sizeof(BucketT));
 | |
|     else
 | |
|       for (size_t i = 0; i < getNumBuckets(); ++i) {
 | |
|         new (&getBuckets()[i].first) KeyT(other.getBuckets()[i].first);
 | |
|         if (!KeyInfoT::isEqual(getBuckets()[i].first, getEmptyKey()) &&
 | |
|             !KeyInfoT::isEqual(getBuckets()[i].first, getTombstoneKey()))
 | |
|           new (&getBuckets()[i].second) ValueT(other.getBuckets()[i].second);
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   void swap(DenseMapBase& RHS) {
 | |
|     std::swap(getNumEntries(), RHS.getNumEntries());
 | |
|     std::swap(getNumTombstones(), RHS.getNumTombstones());
 | |
|   }
 | |
| 
 | |
|   static unsigned getHashValue(const KeyT &Val) {
 | |
|     return KeyInfoT::getHashValue(Val);
 | |
|   }
 | |
|   template<typename LookupKeyT>
 | |
|   static unsigned getHashValue(const LookupKeyT &Val) {
 | |
|     return KeyInfoT::getHashValue(Val);
 | |
|   }
 | |
|   static const KeyT getEmptyKey() {
 | |
|     return KeyInfoT::getEmptyKey();
 | |
|   }
 | |
|   static const KeyT getTombstoneKey() {
 | |
|     return KeyInfoT::getTombstoneKey();
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   unsigned getNumEntries() const {
 | |
|     return static_cast<const DerivedT *>(this)->getNumEntries();
 | |
|   }
 | |
|   void setNumEntries(unsigned Num) {
 | |
|     static_cast<DerivedT *>(this)->setNumEntries(Num);
 | |
|   }
 | |
|   void incrementNumEntries() {
 | |
|     setNumEntries(getNumEntries() + 1);
 | |
|   }
 | |
|   void decrementNumEntries() {
 | |
|     setNumEntries(getNumEntries() - 1);
 | |
|   }
 | |
|   unsigned getNumTombstones() const {
 | |
|     return static_cast<const DerivedT *>(this)->getNumTombstones();
 | |
|   }
 | |
|   void setNumTombstones(unsigned Num) {
 | |
|     static_cast<DerivedT *>(this)->setNumTombstones(Num);
 | |
|   }
 | |
|   void incrementNumTombstones() {
 | |
|     setNumTombstones(getNumTombstones() + 1);
 | |
|   }
 | |
|   void decrementNumTombstones() {
 | |
|     setNumTombstones(getNumTombstones() - 1);
 | |
|   }
 | |
|   const BucketT *getBuckets() const {
 | |
|     return static_cast<const DerivedT *>(this)->getBuckets();
 | |
|   }
 | |
|   BucketT *getBuckets() {
 | |
|     return static_cast<DerivedT *>(this)->getBuckets();
 | |
|   }
 | |
|   unsigned getNumBuckets() const {
 | |
|     return static_cast<const DerivedT *>(this)->getNumBuckets();
 | |
|   }
 | |
|   BucketT *getBucketsEnd() {
 | |
|     return getBuckets() + getNumBuckets();
 | |
|   }
 | |
|   const BucketT *getBucketsEnd() const {
 | |
|     return getBuckets() + getNumBuckets();
 | |
|   }
 | |
| 
 | |
|   void grow(unsigned AtLeast) {
 | |
|     static_cast<DerivedT *>(this)->grow(AtLeast);
 | |
|   }
 | |
| 
 | |
|   void shrink_and_clear() {
 | |
|     static_cast<DerivedT *>(this)->shrink_and_clear();
 | |
|   }
 | |
| 
 | |
| 
 | |
|   BucketT *InsertIntoBucket(const KeyT &Key, const ValueT &Value,
 | |
|                             BucketT *TheBucket) {
 | |
|     TheBucket = InsertIntoBucketImpl(Key, TheBucket);
 | |
| 
 | |
|     TheBucket->first = Key;
 | |
|     new (&TheBucket->second) ValueT(Value);
 | |
|     return TheBucket;
 | |
|   }
 | |
| 
 | |
| #if LLVM_HAS_RVALUE_REFERENCES
 | |
|   BucketT *InsertIntoBucket(const KeyT &Key, ValueT &&Value,
 | |
|                             BucketT *TheBucket) {
 | |
|     TheBucket = InsertIntoBucketImpl(Key, TheBucket);
 | |
| 
 | |
|     TheBucket->first = Key;
 | |
|     new (&TheBucket->second) ValueT(std::move(Value));
 | |
|     return TheBucket;
 | |
|   }
 | |
| 
 | |
|   BucketT *InsertIntoBucket(KeyT &&Key, ValueT &&Value, BucketT *TheBucket) {
 | |
|     TheBucket = InsertIntoBucketImpl(Key, TheBucket);
 | |
| 
 | |
|     TheBucket->first = std::move(Key);
 | |
|     new (&TheBucket->second) ValueT(std::move(Value));
 | |
|     return TheBucket;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   BucketT *InsertIntoBucketImpl(const KeyT &Key, BucketT *TheBucket) {
 | |
|     // If the load of the hash table is more than 3/4, or if fewer than 1/8 of
 | |
|     // the buckets are empty (meaning that many are filled with tombstones),
 | |
|     // grow the table.
 | |
|     //
 | |
|     // The later case is tricky.  For example, if we had one empty bucket with
 | |
|     // tons of tombstones, failing lookups (e.g. for insertion) would have to
 | |
|     // probe almost the entire table until it found the empty bucket.  If the
 | |
|     // table completely filled with tombstones, no lookup would ever succeed,
 | |
|     // causing infinite loops in lookup.
 | |
|     unsigned NewNumEntries = getNumEntries() + 1;
 | |
|     unsigned NumBuckets = getNumBuckets();
 | |
|     if (NewNumEntries*4 >= NumBuckets*3) {
 | |
|       this->grow(NumBuckets * 2);
 | |
|       LookupBucketFor(Key, TheBucket);
 | |
|       NumBuckets = getNumBuckets();
 | |
|     }
 | |
|     if (NumBuckets-(NewNumEntries+getNumTombstones()) <= NumBuckets/8) {
 | |
|       this->grow(NumBuckets * 2);
 | |
|       LookupBucketFor(Key, TheBucket);
 | |
|     }
 | |
|     assert(TheBucket);
 | |
| 
 | |
|     // Only update the state after we've grown our bucket space appropriately
 | |
|     // so that when growing buckets we have self-consistent entry count.
 | |
|     incrementNumEntries();
 | |
| 
 | |
|     // If we are writing over a tombstone, remember this.
 | |
|     if (!KeyInfoT::isEqual(TheBucket->first, getEmptyKey()))
 | |
|       decrementNumTombstones();
 | |
| 
 | |
|     return TheBucket;
 | |
|   }
 | |
| 
 | |
|   /// LookupBucketFor - Lookup the appropriate bucket for Val, returning it in
 | |
|   /// FoundBucket.  If the bucket contains the key and a value, this returns
 | |
|   /// true, otherwise it returns a bucket with an empty marker or tombstone and
 | |
|   /// returns false.
 | |
|   template<typename LookupKeyT>
 | |
|   bool LookupBucketFor(const LookupKeyT &Val,
 | |
|                        const BucketT *&FoundBucket) const {
 | |
|     const BucketT *BucketsPtr = getBuckets();
 | |
|     const unsigned NumBuckets = getNumBuckets();
 | |
| 
 | |
|     if (NumBuckets == 0) {
 | |
|       FoundBucket = 0;
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // FoundTombstone - Keep track of whether we find a tombstone while probing.
 | |
|     const BucketT *FoundTombstone = 0;
 | |
|     const KeyT EmptyKey = getEmptyKey();
 | |
|     const KeyT TombstoneKey = getTombstoneKey();
 | |
|     assert(!KeyInfoT::isEqual(Val, EmptyKey) &&
 | |
|            !KeyInfoT::isEqual(Val, TombstoneKey) &&
 | |
|            "Empty/Tombstone value shouldn't be inserted into map!");
 | |
| 
 | |
|     unsigned BucketNo = getHashValue(Val) & (NumBuckets-1);
 | |
|     unsigned ProbeAmt = 1;
 | |
|     while (1) {
 | |
|       const BucketT *ThisBucket = BucketsPtr + BucketNo;
 | |
|       // Found Val's bucket?  If so, return it.
 | |
|       if (KeyInfoT::isEqual(Val, ThisBucket->first)) {
 | |
|         FoundBucket = ThisBucket;
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|       // If we found an empty bucket, the key doesn't exist in the set.
 | |
|       // Insert it and return the default value.
 | |
|       if (KeyInfoT::isEqual(ThisBucket->first, EmptyKey)) {
 | |
|         // If we've already seen a tombstone while probing, fill it in instead
 | |
|         // of the empty bucket we eventually probed to.
 | |
|         if (FoundTombstone) ThisBucket = FoundTombstone;
 | |
|         FoundBucket = FoundTombstone ? FoundTombstone : ThisBucket;
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       // If this is a tombstone, remember it.  If Val ends up not in the map, we
 | |
|       // prefer to return it than something that would require more probing.
 | |
|       if (KeyInfoT::isEqual(ThisBucket->first, TombstoneKey) && !FoundTombstone)
 | |
|         FoundTombstone = ThisBucket;  // Remember the first tombstone found.
 | |
| 
 | |
|       // Otherwise, it's a hash collision or a tombstone, continue quadratic
 | |
|       // probing.
 | |
|       BucketNo += ProbeAmt++;
 | |
|       BucketNo &= (NumBuckets-1);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   template <typename LookupKeyT>
 | |
|   bool LookupBucketFor(const LookupKeyT &Val, BucketT *&FoundBucket) {
 | |
|     const BucketT *ConstFoundBucket;
 | |
|     bool Result = const_cast<const DenseMapBase *>(this)
 | |
|       ->LookupBucketFor(Val, ConstFoundBucket);
 | |
|     FoundBucket = const_cast<BucketT *>(ConstFoundBucket);
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   /// Return the approximate size (in bytes) of the actual map.
 | |
|   /// This is just the raw memory used by DenseMap.
 | |
|   /// If entries are pointers to objects, the size of the referenced objects
 | |
|   /// are not included.
 | |
|   size_t getMemorySize() const {
 | |
|     return getNumBuckets() * sizeof(BucketT);
 | |
|   }
 | |
| };
 | |
| 
 | |
| template<typename KeyT, typename ValueT,
 | |
|          typename KeyInfoT = DenseMapInfo<KeyT> >
 | |
| class DenseMap
 | |
|     : public DenseMapBase<DenseMap<KeyT, ValueT, KeyInfoT>,
 | |
|                           KeyT, ValueT, KeyInfoT> {
 | |
|   // Lift some types from the dependent base class into this class for
 | |
|   // simplicity of referring to them.
 | |
|   typedef DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT> BaseT;
 | |
|   typedef typename BaseT::BucketT BucketT;
 | |
|   friend class DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT>;
 | |
| 
 | |
|   BucketT *Buckets;
 | |
|   unsigned NumEntries;
 | |
|   unsigned NumTombstones;
 | |
|   unsigned NumBuckets;
 | |
| 
 | |
| public:
 | |
|   explicit DenseMap(unsigned NumInitBuckets = 0) {
 | |
|     init(NumInitBuckets);
 | |
|   }
 | |
| 
 | |
|   DenseMap(const DenseMap &other) {
 | |
|     init(0);
 | |
|     copyFrom(other);
 | |
|   }
 | |
| 
 | |
| #if LLVM_HAS_RVALUE_REFERENCES
 | |
|   DenseMap(DenseMap &&other) {
 | |
|     init(0);
 | |
|     swap(other);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   template<typename InputIt>
 | |
|   DenseMap(const InputIt &I, const InputIt &E) {
 | |
|     init(NextPowerOf2(std::distance(I, E)));
 | |
|     this->insert(I, E);
 | |
|   }
 | |
| 
 | |
|   ~DenseMap() {
 | |
|     this->destroyAll();
 | |
|     operator delete(Buckets);
 | |
|   }
 | |
| 
 | |
|   void swap(DenseMap& RHS) {
 | |
|     std::swap(Buckets, RHS.Buckets);
 | |
|     std::swap(NumEntries, RHS.NumEntries);
 | |
|     std::swap(NumTombstones, RHS.NumTombstones);
 | |
|     std::swap(NumBuckets, RHS.NumBuckets);
 | |
|   }
 | |
| 
 | |
|   DenseMap& operator=(const DenseMap& other) {
 | |
|     copyFrom(other);
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
| #if LLVM_HAS_RVALUE_REFERENCES
 | |
|   DenseMap& operator=(DenseMap &&other) {
 | |
|     this->destroyAll();
 | |
|     operator delete(Buckets);
 | |
|     init(0);
 | |
|     swap(other);
 | |
|     return *this;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   void copyFrom(const DenseMap& other) {
 | |
|     this->destroyAll();
 | |
|     operator delete(Buckets);
 | |
|     if (allocateBuckets(other.NumBuckets)) {
 | |
|       this->BaseT::copyFrom(other);
 | |
|     } else {
 | |
|       NumEntries = 0;
 | |
|       NumTombstones = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void init(unsigned InitBuckets) {
 | |
|     if (allocateBuckets(InitBuckets)) {
 | |
|       this->BaseT::initEmpty();
 | |
|     } else {
 | |
|       NumEntries = 0;
 | |
|       NumTombstones = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void grow(unsigned AtLeast) {
 | |
|     unsigned OldNumBuckets = NumBuckets;
 | |
|     BucketT *OldBuckets = Buckets;
 | |
| 
 | |
|     allocateBuckets(std::max<unsigned>(64, NextPowerOf2(AtLeast-1)));
 | |
|     assert(Buckets);
 | |
|     if (!OldBuckets) {
 | |
|       this->BaseT::initEmpty();
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     this->moveFromOldBuckets(OldBuckets, OldBuckets+OldNumBuckets);
 | |
| 
 | |
|     // Free the old table.
 | |
|     operator delete(OldBuckets);
 | |
|   }
 | |
| 
 | |
|   void shrink_and_clear() {
 | |
|     unsigned OldNumEntries = NumEntries;
 | |
|     this->destroyAll();
 | |
| 
 | |
|     // Reduce the number of buckets.
 | |
|     unsigned NewNumBuckets = 0;
 | |
|     if (OldNumEntries)
 | |
|       NewNumBuckets = std::max(64, 1 << (Log2_32_Ceil(OldNumEntries) + 1));
 | |
|     if (NewNumBuckets == NumBuckets) {
 | |
|       this->BaseT::initEmpty();
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     operator delete(Buckets);
 | |
|     init(NewNumBuckets);
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   unsigned getNumEntries() const {
 | |
|     return NumEntries;
 | |
|   }
 | |
|   void setNumEntries(unsigned Num) {
 | |
|     NumEntries = Num;
 | |
|   }
 | |
| 
 | |
|   unsigned getNumTombstones() const {
 | |
|     return NumTombstones;
 | |
|   }
 | |
|   void setNumTombstones(unsigned Num) {
 | |
|     NumTombstones = Num;
 | |
|   }
 | |
| 
 | |
|   BucketT *getBuckets() const {
 | |
|     return Buckets;
 | |
|   }
 | |
| 
 | |
|   unsigned getNumBuckets() const {
 | |
|     return NumBuckets;
 | |
|   }
 | |
| 
 | |
|   bool allocateBuckets(unsigned Num) {
 | |
|     NumBuckets = Num;
 | |
|     if (NumBuckets == 0) {
 | |
|       Buckets = 0;
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT) * NumBuckets));
 | |
|     return true;
 | |
|   }
 | |
| };
 | |
| 
 | |
| template<typename KeyT, typename ValueT,
 | |
|          unsigned InlineBuckets = 4,
 | |
|          typename KeyInfoT = DenseMapInfo<KeyT> >
 | |
| class SmallDenseMap
 | |
|     : public DenseMapBase<SmallDenseMap<KeyT, ValueT, InlineBuckets, KeyInfoT>,
 | |
|                           KeyT, ValueT, KeyInfoT> {
 | |
|   // Lift some types from the dependent base class into this class for
 | |
|   // simplicity of referring to them.
 | |
|   typedef DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT> BaseT;
 | |
|   typedef typename BaseT::BucketT BucketT;
 | |
|   friend class DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT>;
 | |
| 
 | |
|   unsigned Small : 1;
 | |
|   unsigned NumEntries : 31;
 | |
|   unsigned NumTombstones;
 | |
| 
 | |
|   struct LargeRep {
 | |
|     BucketT *Buckets;
 | |
|     unsigned NumBuckets;
 | |
|   };
 | |
| 
 | |
|   /// A "union" of an inline bucket array and the struct representing
 | |
|   /// a large bucket. This union will be discriminated by the 'Small' bit.
 | |
|   AlignedCharArrayUnion<BucketT[InlineBuckets], LargeRep> storage;
 | |
| 
 | |
| public:
 | |
|   explicit SmallDenseMap(unsigned NumInitBuckets = 0) {
 | |
|     init(NumInitBuckets);
 | |
|   }
 | |
| 
 | |
|   SmallDenseMap(const SmallDenseMap &other) {
 | |
|     init(0);
 | |
|     copyFrom(other);
 | |
|   }
 | |
| 
 | |
| #if LLVM_HAS_RVALUE_REFERENCES
 | |
|   SmallDenseMap(SmallDenseMap &&other) {
 | |
|     init(0);
 | |
|     swap(other);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   template<typename InputIt>
 | |
|   SmallDenseMap(const InputIt &I, const InputIt &E) {
 | |
|     init(NextPowerOf2(std::distance(I, E)));
 | |
|     this->insert(I, E);
 | |
|   }
 | |
| 
 | |
|   ~SmallDenseMap() {
 | |
|     this->destroyAll();
 | |
|     deallocateBuckets();
 | |
|   }
 | |
| 
 | |
|   void swap(SmallDenseMap& RHS) {
 | |
|     unsigned TmpNumEntries = RHS.NumEntries;
 | |
|     RHS.NumEntries = NumEntries;
 | |
|     NumEntries = TmpNumEntries;
 | |
|     std::swap(NumTombstones, RHS.NumTombstones);
 | |
| 
 | |
|     const KeyT EmptyKey = this->getEmptyKey();
 | |
|     const KeyT TombstoneKey = this->getTombstoneKey();
 | |
|     if (Small && RHS.Small) {
 | |
|       // If we're swapping inline bucket arrays, we have to cope with some of
 | |
|       // the tricky bits of DenseMap's storage system: the buckets are not
 | |
|       // fully initialized. Thus we swap every key, but we may have
 | |
|       // a one-directional move of the value.
 | |
|       for (unsigned i = 0, e = InlineBuckets; i != e; ++i) {
 | |
|         BucketT *LHSB = &getInlineBuckets()[i],
 | |
|                 *RHSB = &RHS.getInlineBuckets()[i];
 | |
|         bool hasLHSValue = (!KeyInfoT::isEqual(LHSB->first, EmptyKey) &&
 | |
|                             !KeyInfoT::isEqual(LHSB->first, TombstoneKey));
 | |
|         bool hasRHSValue = (!KeyInfoT::isEqual(RHSB->first, EmptyKey) &&
 | |
|                             !KeyInfoT::isEqual(RHSB->first, TombstoneKey));
 | |
|         if (hasLHSValue && hasRHSValue) {
 | |
|           // Swap together if we can...
 | |
|           std::swap(*LHSB, *RHSB);
 | |
|           continue;
 | |
|         }
 | |
|         // Swap separately and handle any assymetry.
 | |
|         std::swap(LHSB->first, RHSB->first);
 | |
|         if (hasLHSValue) {
 | |
|           new (&RHSB->second) ValueT(llvm_move(LHSB->second));
 | |
|           LHSB->second.~ValueT();
 | |
|         } else if (hasRHSValue) {
 | |
|           new (&LHSB->second) ValueT(llvm_move(RHSB->second));
 | |
|           RHSB->second.~ValueT();
 | |
|         }
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
|     if (!Small && !RHS.Small) {
 | |
|       std::swap(getLargeRep()->Buckets, RHS.getLargeRep()->Buckets);
 | |
|       std::swap(getLargeRep()->NumBuckets, RHS.getLargeRep()->NumBuckets);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     SmallDenseMap &SmallSide = Small ? *this : RHS;
 | |
|     SmallDenseMap &LargeSide = Small ? RHS : *this;
 | |
| 
 | |
|     // First stash the large side's rep and move the small side across.
 | |
|     LargeRep TmpRep = llvm_move(*LargeSide.getLargeRep());
 | |
|     LargeSide.getLargeRep()->~LargeRep();
 | |
|     LargeSide.Small = true;
 | |
|     // This is similar to the standard move-from-old-buckets, but the bucket
 | |
|     // count hasn't actually rotated in this case. So we have to carefully
 | |
|     // move construct the keys and values into their new locations, but there
 | |
|     // is no need to re-hash things.
 | |
|     for (unsigned i = 0, e = InlineBuckets; i != e; ++i) {
 | |
|       BucketT *NewB = &LargeSide.getInlineBuckets()[i],
 | |
|               *OldB = &SmallSide.getInlineBuckets()[i];
 | |
|       new (&NewB->first) KeyT(llvm_move(OldB->first));
 | |
|       OldB->first.~KeyT();
 | |
|       if (!KeyInfoT::isEqual(NewB->first, EmptyKey) &&
 | |
|           !KeyInfoT::isEqual(NewB->first, TombstoneKey)) {
 | |
|         new (&NewB->second) ValueT(llvm_move(OldB->second));
 | |
|         OldB->second.~ValueT();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // The hard part of moving the small buckets across is done, just move
 | |
|     // the TmpRep into its new home.
 | |
|     SmallSide.Small = false;
 | |
|     new (SmallSide.getLargeRep()) LargeRep(llvm_move(TmpRep));
 | |
|   }
 | |
| 
 | |
|   SmallDenseMap& operator=(const SmallDenseMap& other) {
 | |
|     copyFrom(other);
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
| #if LLVM_HAS_RVALUE_REFERENCES
 | |
|   SmallDenseMap& operator=(SmallDenseMap &&other) {
 | |
|     this->destroyAll();
 | |
|     deallocateBuckets();
 | |
|     init(0);
 | |
|     swap(other);
 | |
|     return *this;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   void copyFrom(const SmallDenseMap& other) {
 | |
|     this->destroyAll();
 | |
|     deallocateBuckets();
 | |
|     Small = true;
 | |
|     if (other.getNumBuckets() > InlineBuckets) {
 | |
|       Small = false;
 | |
|       allocateBuckets(other.getNumBuckets());
 | |
|     }
 | |
|     this->BaseT::copyFrom(other);
 | |
|   }
 | |
| 
 | |
|   void init(unsigned InitBuckets) {
 | |
|     Small = true;
 | |
|     if (InitBuckets > InlineBuckets) {
 | |
|       Small = false;
 | |
|       new (getLargeRep()) LargeRep(allocateBuckets(InitBuckets));
 | |
|     }
 | |
|     this->BaseT::initEmpty();
 | |
|   }
 | |
| 
 | |
|   void grow(unsigned AtLeast) {
 | |
|     if (AtLeast >= InlineBuckets)
 | |
|       AtLeast = std::max<unsigned>(64, NextPowerOf2(AtLeast-1));
 | |
| 
 | |
|     if (Small) {
 | |
|       if (AtLeast < InlineBuckets)
 | |
|         return; // Nothing to do.
 | |
| 
 | |
|       // First move the inline buckets into a temporary storage.
 | |
|       AlignedCharArrayUnion<BucketT[InlineBuckets]> TmpStorage;
 | |
|       BucketT *TmpBegin = reinterpret_cast<BucketT *>(TmpStorage.buffer);
 | |
|       BucketT *TmpEnd = TmpBegin;
 | |
| 
 | |
|       // Loop over the buckets, moving non-empty, non-tombstones into the
 | |
|       // temporary storage. Have the loop move the TmpEnd forward as it goes.
 | |
|       const KeyT EmptyKey = this->getEmptyKey();
 | |
|       const KeyT TombstoneKey = this->getTombstoneKey();
 | |
|       for (BucketT *P = getBuckets(), *E = P + InlineBuckets; P != E; ++P) {
 | |
|         if (!KeyInfoT::isEqual(P->first, EmptyKey) &&
 | |
|             !KeyInfoT::isEqual(P->first, TombstoneKey)) {
 | |
|           assert(size_t(TmpEnd - TmpBegin) < InlineBuckets &&
 | |
|                  "Too many inline buckets!");
 | |
|           new (&TmpEnd->first) KeyT(llvm_move(P->first));
 | |
|           new (&TmpEnd->second) ValueT(llvm_move(P->second));
 | |
|           ++TmpEnd;
 | |
|           P->second.~ValueT();
 | |
|         }
 | |
|         P->first.~KeyT();
 | |
|       }
 | |
| 
 | |
|       // Now make this map use the large rep, and move all the entries back
 | |
|       // into it.
 | |
|       Small = false;
 | |
|       new (getLargeRep()) LargeRep(allocateBuckets(AtLeast));
 | |
|       this->moveFromOldBuckets(TmpBegin, TmpEnd);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     LargeRep OldRep = llvm_move(*getLargeRep());
 | |
|     getLargeRep()->~LargeRep();
 | |
|     if (AtLeast <= InlineBuckets) {
 | |
|       Small = true;
 | |
|     } else {
 | |
|       new (getLargeRep()) LargeRep(allocateBuckets(AtLeast));
 | |
|     }
 | |
| 
 | |
|     this->moveFromOldBuckets(OldRep.Buckets, OldRep.Buckets+OldRep.NumBuckets);
 | |
| 
 | |
|     // Free the old table.
 | |
|     operator delete(OldRep.Buckets);
 | |
|   }
 | |
| 
 | |
|   void shrink_and_clear() {
 | |
|     unsigned OldSize = this->size();
 | |
|     this->destroyAll();
 | |
| 
 | |
|     // Reduce the number of buckets.
 | |
|     unsigned NewNumBuckets = 0;
 | |
|     if (OldSize) {
 | |
|       NewNumBuckets = 1 << (Log2_32_Ceil(OldSize) + 1);
 | |
|       if (NewNumBuckets > InlineBuckets && NewNumBuckets < 64u)
 | |
|         NewNumBuckets = 64;
 | |
|     }
 | |
|     if ((Small && NewNumBuckets <= InlineBuckets) ||
 | |
|         (!Small && NewNumBuckets == getLargeRep()->NumBuckets)) {
 | |
|       this->BaseT::initEmpty();
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     deallocateBuckets();
 | |
|     init(NewNumBuckets);
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   unsigned getNumEntries() const {
 | |
|     return NumEntries;
 | |
|   }
 | |
|   void setNumEntries(unsigned Num) {
 | |
|     assert(Num < INT_MAX && "Cannot support more than INT_MAX entries");
 | |
|     NumEntries = Num;
 | |
|   }
 | |
| 
 | |
|   unsigned getNumTombstones() const {
 | |
|     return NumTombstones;
 | |
|   }
 | |
|   void setNumTombstones(unsigned Num) {
 | |
|     NumTombstones = Num;
 | |
|   }
 | |
| 
 | |
|   const BucketT *getInlineBuckets() const {
 | |
|     assert(Small);
 | |
|     // Note that this cast does not violate aliasing rules as we assert that
 | |
|     // the memory's dynamic type is the small, inline bucket buffer, and the
 | |
|     // 'storage.buffer' static type is 'char *'.
 | |
|     return reinterpret_cast<const BucketT *>(storage.buffer);
 | |
|   }
 | |
|   BucketT *getInlineBuckets() {
 | |
|     return const_cast<BucketT *>(
 | |
|       const_cast<const SmallDenseMap *>(this)->getInlineBuckets());
 | |
|   }
 | |
|   const LargeRep *getLargeRep() const {
 | |
|     assert(!Small);
 | |
|     // Note, same rule about aliasing as with getInlineBuckets.
 | |
|     return reinterpret_cast<const LargeRep *>(storage.buffer);
 | |
|   }
 | |
|   LargeRep *getLargeRep() {
 | |
|     return const_cast<LargeRep *>(
 | |
|       const_cast<const SmallDenseMap *>(this)->getLargeRep());
 | |
|   }
 | |
| 
 | |
|   const BucketT *getBuckets() const {
 | |
|     return Small ? getInlineBuckets() : getLargeRep()->Buckets;
 | |
|   }
 | |
|   BucketT *getBuckets() {
 | |
|     return const_cast<BucketT *>(
 | |
|       const_cast<const SmallDenseMap *>(this)->getBuckets());
 | |
|   }
 | |
|   unsigned getNumBuckets() const {
 | |
|     return Small ? InlineBuckets : getLargeRep()->NumBuckets;
 | |
|   }
 | |
| 
 | |
|   void deallocateBuckets() {
 | |
|     if (Small)
 | |
|       return;
 | |
| 
 | |
|     operator delete(getLargeRep()->Buckets);
 | |
|     getLargeRep()->~LargeRep();
 | |
|   }
 | |
| 
 | |
|   LargeRep allocateBuckets(unsigned Num) {
 | |
|     assert(Num > InlineBuckets && "Must allocate more buckets than are inline");
 | |
|     LargeRep Rep = {
 | |
|       static_cast<BucketT*>(operator new(sizeof(BucketT) * Num)), Num
 | |
|     };
 | |
|     return Rep;
 | |
|   }
 | |
| };
 | |
| 
 | |
| template<typename KeyT, typename ValueT,
 | |
|          typename KeyInfoT, bool IsConst>
 | |
| class DenseMapIterator {
 | |
|   typedef std::pair<KeyT, ValueT> Bucket;
 | |
|   typedef DenseMapIterator<KeyT, ValueT,
 | |
|                            KeyInfoT, true> ConstIterator;
 | |
|   friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, true>;
 | |
| public:
 | |
|   typedef ptrdiff_t difference_type;
 | |
|   typedef typename conditional<IsConst, const Bucket, Bucket>::type value_type;
 | |
|   typedef value_type *pointer;
 | |
|   typedef value_type &reference;
 | |
|   typedef std::forward_iterator_tag iterator_category;
 | |
| private:
 | |
|   pointer Ptr, End;
 | |
| public:
 | |
|   DenseMapIterator() : Ptr(0), End(0) {}
 | |
| 
 | |
|   DenseMapIterator(pointer Pos, pointer E, bool NoAdvance = false)
 | |
|     : Ptr(Pos), End(E) {
 | |
|     if (!NoAdvance) AdvancePastEmptyBuckets();
 | |
|   }
 | |
| 
 | |
|   // If IsConst is true this is a converting constructor from iterator to
 | |
|   // const_iterator and the default copy constructor is used.
 | |
|   // Otherwise this is a copy constructor for iterator.
 | |
|   DenseMapIterator(const DenseMapIterator<KeyT, ValueT,
 | |
|                                           KeyInfoT, false>& I)
 | |
|     : Ptr(I.Ptr), End(I.End) {}
 | |
| 
 | |
|   reference operator*() const {
 | |
|     return *Ptr;
 | |
|   }
 | |
|   pointer operator->() const {
 | |
|     return Ptr;
 | |
|   }
 | |
| 
 | |
|   bool operator==(const ConstIterator &RHS) const {
 | |
|     return Ptr == RHS.operator->();
 | |
|   }
 | |
|   bool operator!=(const ConstIterator &RHS) const {
 | |
|     return Ptr != RHS.operator->();
 | |
|   }
 | |
| 
 | |
|   inline DenseMapIterator& operator++() {  // Preincrement
 | |
|     ++Ptr;
 | |
|     AdvancePastEmptyBuckets();
 | |
|     return *this;
 | |
|   }
 | |
|   DenseMapIterator operator++(int) {  // Postincrement
 | |
|     DenseMapIterator tmp = *this; ++*this; return tmp;
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   void AdvancePastEmptyBuckets() {
 | |
|     const KeyT Empty = KeyInfoT::getEmptyKey();
 | |
|     const KeyT Tombstone = KeyInfoT::getTombstoneKey();
 | |
| 
 | |
|     while (Ptr != End &&
 | |
|            (KeyInfoT::isEqual(Ptr->first, Empty) ||
 | |
|             KeyInfoT::isEqual(Ptr->first, Tombstone)))
 | |
|       ++Ptr;
 | |
|   }
 | |
| };
 | |
|   
 | |
| template<typename KeyT, typename ValueT, typename KeyInfoT>
 | |
| static inline size_t
 | |
| capacity_in_bytes(const DenseMap<KeyT, ValueT, KeyInfoT> &X) {
 | |
|   return X.getMemorySize();
 | |
| }
 | |
| 
 | |
| } // end namespace llvm
 | |
| 
 | |
| #endif
 |