mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	No testcase because it is apparently not so trivial to construct. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170595 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1606 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1606 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Pass to verify generated machine code. The following is checked:
 | 
						|
//
 | 
						|
// Operand counts: All explicit operands must be present.
 | 
						|
//
 | 
						|
// Register classes: All physical and virtual register operands must be
 | 
						|
// compatible with the register class required by the instruction descriptor.
 | 
						|
//
 | 
						|
// Register live intervals: Registers must be defined only once, and must be
 | 
						|
// defined before use.
 | 
						|
//
 | 
						|
// The machine code verifier is enabled from LLVMTargetMachine.cpp with the
 | 
						|
// command-line option -verify-machineinstrs, or by defining the environment
 | 
						|
// variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
 | 
						|
// the verifier errors.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/ADT/DenseSet.h"
 | 
						|
#include "llvm/ADT/SetOperations.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/BasicBlock.h"
 | 
						|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | 
						|
#include "llvm/CodeGen/LiveStackAnalysis.h"
 | 
						|
#include "llvm/CodeGen/LiveVariables.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBundle.h"
 | 
						|
#include "llvm/CodeGen/MachineMemOperand.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/InlineAsm.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/MC/MCAsmInfo.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Target/TargetRegisterInfo.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct MachineVerifier {
 | 
						|
 | 
						|
    MachineVerifier(Pass *pass, const char *b) :
 | 
						|
      PASS(pass),
 | 
						|
      Banner(b),
 | 
						|
      OutFileName(getenv("LLVM_VERIFY_MACHINEINSTRS"))
 | 
						|
      {}
 | 
						|
 | 
						|
    bool runOnMachineFunction(MachineFunction &MF);
 | 
						|
 | 
						|
    Pass *const PASS;
 | 
						|
    const char *Banner;
 | 
						|
    const char *const OutFileName;
 | 
						|
    raw_ostream *OS;
 | 
						|
    const MachineFunction *MF;
 | 
						|
    const TargetMachine *TM;
 | 
						|
    const TargetInstrInfo *TII;
 | 
						|
    const TargetRegisterInfo *TRI;
 | 
						|
    const MachineRegisterInfo *MRI;
 | 
						|
 | 
						|
    unsigned foundErrors;
 | 
						|
 | 
						|
    typedef SmallVector<unsigned, 16> RegVector;
 | 
						|
    typedef SmallVector<const uint32_t*, 4> RegMaskVector;
 | 
						|
    typedef DenseSet<unsigned> RegSet;
 | 
						|
    typedef DenseMap<unsigned, const MachineInstr*> RegMap;
 | 
						|
    typedef SmallPtrSet<const MachineBasicBlock*, 8> BlockSet;
 | 
						|
 | 
						|
    const MachineInstr *FirstTerminator;
 | 
						|
    BlockSet FunctionBlocks;
 | 
						|
 | 
						|
    BitVector regsReserved;
 | 
						|
    RegSet regsLive;
 | 
						|
    RegVector regsDefined, regsDead, regsKilled;
 | 
						|
    RegMaskVector regMasks;
 | 
						|
    RegSet regsLiveInButUnused;
 | 
						|
 | 
						|
    SlotIndex lastIndex;
 | 
						|
 | 
						|
    // Add Reg and any sub-registers to RV
 | 
						|
    void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
 | 
						|
      RV.push_back(Reg);
 | 
						|
      if (TargetRegisterInfo::isPhysicalRegister(Reg))
 | 
						|
        for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
 | 
						|
          RV.push_back(*SubRegs);
 | 
						|
    }
 | 
						|
 | 
						|
    struct BBInfo {
 | 
						|
      // Is this MBB reachable from the MF entry point?
 | 
						|
      bool reachable;
 | 
						|
 | 
						|
      // Vregs that must be live in because they are used without being
 | 
						|
      // defined. Map value is the user.
 | 
						|
      RegMap vregsLiveIn;
 | 
						|
 | 
						|
      // Regs killed in MBB. They may be defined again, and will then be in both
 | 
						|
      // regsKilled and regsLiveOut.
 | 
						|
      RegSet regsKilled;
 | 
						|
 | 
						|
      // Regs defined in MBB and live out. Note that vregs passing through may
 | 
						|
      // be live out without being mentioned here.
 | 
						|
      RegSet regsLiveOut;
 | 
						|
 | 
						|
      // Vregs that pass through MBB untouched. This set is disjoint from
 | 
						|
      // regsKilled and regsLiveOut.
 | 
						|
      RegSet vregsPassed;
 | 
						|
 | 
						|
      // Vregs that must pass through MBB because they are needed by a successor
 | 
						|
      // block. This set is disjoint from regsLiveOut.
 | 
						|
      RegSet vregsRequired;
 | 
						|
 | 
						|
      // Set versions of block's predecessor and successor lists.
 | 
						|
      BlockSet Preds, Succs;
 | 
						|
 | 
						|
      BBInfo() : reachable(false) {}
 | 
						|
 | 
						|
      // Add register to vregsPassed if it belongs there. Return true if
 | 
						|
      // anything changed.
 | 
						|
      bool addPassed(unsigned Reg) {
 | 
						|
        if (!TargetRegisterInfo::isVirtualRegister(Reg))
 | 
						|
          return false;
 | 
						|
        if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
 | 
						|
          return false;
 | 
						|
        return vregsPassed.insert(Reg).second;
 | 
						|
      }
 | 
						|
 | 
						|
      // Same for a full set.
 | 
						|
      bool addPassed(const RegSet &RS) {
 | 
						|
        bool changed = false;
 | 
						|
        for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
 | 
						|
          if (addPassed(*I))
 | 
						|
            changed = true;
 | 
						|
        return changed;
 | 
						|
      }
 | 
						|
 | 
						|
      // Add register to vregsRequired if it belongs there. Return true if
 | 
						|
      // anything changed.
 | 
						|
      bool addRequired(unsigned Reg) {
 | 
						|
        if (!TargetRegisterInfo::isVirtualRegister(Reg))
 | 
						|
          return false;
 | 
						|
        if (regsLiveOut.count(Reg))
 | 
						|
          return false;
 | 
						|
        return vregsRequired.insert(Reg).second;
 | 
						|
      }
 | 
						|
 | 
						|
      // Same for a full set.
 | 
						|
      bool addRequired(const RegSet &RS) {
 | 
						|
        bool changed = false;
 | 
						|
        for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
 | 
						|
          if (addRequired(*I))
 | 
						|
            changed = true;
 | 
						|
        return changed;
 | 
						|
      }
 | 
						|
 | 
						|
      // Same for a full map.
 | 
						|
      bool addRequired(const RegMap &RM) {
 | 
						|
        bool changed = false;
 | 
						|
        for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
 | 
						|
          if (addRequired(I->first))
 | 
						|
            changed = true;
 | 
						|
        return changed;
 | 
						|
      }
 | 
						|
 | 
						|
      // Live-out registers are either in regsLiveOut or vregsPassed.
 | 
						|
      bool isLiveOut(unsigned Reg) const {
 | 
						|
        return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
 | 
						|
      }
 | 
						|
    };
 | 
						|
 | 
						|
    // Extra register info per MBB.
 | 
						|
    DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
 | 
						|
 | 
						|
    bool isReserved(unsigned Reg) {
 | 
						|
      return Reg < regsReserved.size() && regsReserved.test(Reg);
 | 
						|
    }
 | 
						|
 | 
						|
    bool isAllocatable(unsigned Reg) {
 | 
						|
      return Reg < TRI->getNumRegs() && MRI->isAllocatable(Reg);
 | 
						|
    }
 | 
						|
 | 
						|
    // Analysis information if available
 | 
						|
    LiveVariables *LiveVars;
 | 
						|
    LiveIntervals *LiveInts;
 | 
						|
    LiveStacks *LiveStks;
 | 
						|
    SlotIndexes *Indexes;
 | 
						|
 | 
						|
    void visitMachineFunctionBefore();
 | 
						|
    void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
 | 
						|
    void visitMachineBundleBefore(const MachineInstr *MI);
 | 
						|
    void visitMachineInstrBefore(const MachineInstr *MI);
 | 
						|
    void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
 | 
						|
    void visitMachineInstrAfter(const MachineInstr *MI);
 | 
						|
    void visitMachineBundleAfter(const MachineInstr *MI);
 | 
						|
    void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
 | 
						|
    void visitMachineFunctionAfter();
 | 
						|
 | 
						|
    void report(const char *msg, const MachineFunction *MF);
 | 
						|
    void report(const char *msg, const MachineBasicBlock *MBB);
 | 
						|
    void report(const char *msg, const MachineInstr *MI);
 | 
						|
    void report(const char *msg, const MachineOperand *MO, unsigned MONum);
 | 
						|
    void report(const char *msg, const MachineFunction *MF,
 | 
						|
                const LiveInterval &LI);
 | 
						|
    void report(const char *msg, const MachineBasicBlock *MBB,
 | 
						|
                const LiveInterval &LI);
 | 
						|
 | 
						|
    void verifyInlineAsm(const MachineInstr *MI);
 | 
						|
 | 
						|
    void checkLiveness(const MachineOperand *MO, unsigned MONum);
 | 
						|
    void markReachable(const MachineBasicBlock *MBB);
 | 
						|
    void calcRegsPassed();
 | 
						|
    void checkPHIOps(const MachineBasicBlock *MBB);
 | 
						|
 | 
						|
    void calcRegsRequired();
 | 
						|
    void verifyLiveVariables();
 | 
						|
    void verifyLiveIntervals();
 | 
						|
    void verifyLiveInterval(const LiveInterval&);
 | 
						|
    void verifyLiveIntervalValue(const LiveInterval&, VNInfo*);
 | 
						|
    void verifyLiveIntervalSegment(const LiveInterval&,
 | 
						|
                                   LiveInterval::const_iterator);
 | 
						|
  };
 | 
						|
 | 
						|
  struct MachineVerifierPass : public MachineFunctionPass {
 | 
						|
    static char ID; // Pass ID, replacement for typeid
 | 
						|
    const char *const Banner;
 | 
						|
 | 
						|
    MachineVerifierPass(const char *b = 0)
 | 
						|
      : MachineFunctionPass(ID), Banner(b) {
 | 
						|
        initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
 | 
						|
      }
 | 
						|
 | 
						|
    void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.setPreservesAll();
 | 
						|
      MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
    }
 | 
						|
 | 
						|
    bool runOnMachineFunction(MachineFunction &MF) {
 | 
						|
      MF.verify(this, Banner);
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
char MachineVerifierPass::ID = 0;
 | 
						|
INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
 | 
						|
                "Verify generated machine code", false, false)
 | 
						|
 | 
						|
FunctionPass *llvm::createMachineVerifierPass(const char *Banner) {
 | 
						|
  return new MachineVerifierPass(Banner);
 | 
						|
}
 | 
						|
 | 
						|
void MachineFunction::verify(Pass *p, const char *Banner) const {
 | 
						|
  MachineVerifier(p, Banner)
 | 
						|
    .runOnMachineFunction(const_cast<MachineFunction&>(*this));
 | 
						|
}
 | 
						|
 | 
						|
bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) {
 | 
						|
  raw_ostream *OutFile = 0;
 | 
						|
  if (OutFileName) {
 | 
						|
    std::string ErrorInfo;
 | 
						|
    OutFile = new raw_fd_ostream(OutFileName, ErrorInfo,
 | 
						|
                                 raw_fd_ostream::F_Append);
 | 
						|
    if (!ErrorInfo.empty()) {
 | 
						|
      errs() << "Error opening '" << OutFileName << "': " << ErrorInfo << '\n';
 | 
						|
      exit(1);
 | 
						|
    }
 | 
						|
 | 
						|
    OS = OutFile;
 | 
						|
  } else {
 | 
						|
    OS = &errs();
 | 
						|
  }
 | 
						|
 | 
						|
  foundErrors = 0;
 | 
						|
 | 
						|
  this->MF = &MF;
 | 
						|
  TM = &MF.getTarget();
 | 
						|
  TII = TM->getInstrInfo();
 | 
						|
  TRI = TM->getRegisterInfo();
 | 
						|
  MRI = &MF.getRegInfo();
 | 
						|
 | 
						|
  LiveVars = NULL;
 | 
						|
  LiveInts = NULL;
 | 
						|
  LiveStks = NULL;
 | 
						|
  Indexes = NULL;
 | 
						|
  if (PASS) {
 | 
						|
    LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
 | 
						|
    // We don't want to verify LiveVariables if LiveIntervals is available.
 | 
						|
    if (!LiveInts)
 | 
						|
      LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
 | 
						|
    LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
 | 
						|
    Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
 | 
						|
  }
 | 
						|
 | 
						|
  visitMachineFunctionBefore();
 | 
						|
  for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
 | 
						|
       MFI!=MFE; ++MFI) {
 | 
						|
    visitMachineBasicBlockBefore(MFI);
 | 
						|
    // Keep track of the current bundle header.
 | 
						|
    const MachineInstr *CurBundle = 0;
 | 
						|
    // Do we expect the next instruction to be part of the same bundle?
 | 
						|
    bool InBundle = false;
 | 
						|
 | 
						|
    for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
 | 
						|
           MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
 | 
						|
      if (MBBI->getParent() != MFI) {
 | 
						|
        report("Bad instruction parent pointer", MFI);
 | 
						|
        *OS << "Instruction: " << *MBBI;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Check for consistent bundle flags.
 | 
						|
      if (InBundle && !MBBI->isBundledWithPred())
 | 
						|
        report("Missing BundledPred flag, "
 | 
						|
               "BundledSucc was set on predecessor", MBBI);
 | 
						|
      if (!InBundle && MBBI->isBundledWithPred())
 | 
						|
        report("BundledPred flag is set, "
 | 
						|
               "but BundledSucc not set on predecessor", MBBI);
 | 
						|
 | 
						|
      // Is this a bundle header?
 | 
						|
      if (!MBBI->isInsideBundle()) {
 | 
						|
        if (CurBundle)
 | 
						|
          visitMachineBundleAfter(CurBundle);
 | 
						|
        CurBundle = MBBI;
 | 
						|
        visitMachineBundleBefore(CurBundle);
 | 
						|
      } else if (!CurBundle)
 | 
						|
        report("No bundle header", MBBI);
 | 
						|
      visitMachineInstrBefore(MBBI);
 | 
						|
      for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I)
 | 
						|
        visitMachineOperand(&MBBI->getOperand(I), I);
 | 
						|
      visitMachineInstrAfter(MBBI);
 | 
						|
 | 
						|
      // Was this the last bundled instruction?
 | 
						|
      InBundle = MBBI->isBundledWithSucc();
 | 
						|
    }
 | 
						|
    if (CurBundle)
 | 
						|
      visitMachineBundleAfter(CurBundle);
 | 
						|
    if (InBundle)
 | 
						|
      report("BundledSucc flag set on last instruction in block", &MFI->back());
 | 
						|
    visitMachineBasicBlockAfter(MFI);
 | 
						|
  }
 | 
						|
  visitMachineFunctionAfter();
 | 
						|
 | 
						|
  if (OutFile)
 | 
						|
    delete OutFile;
 | 
						|
  else if (foundErrors)
 | 
						|
    report_fatal_error("Found "+Twine(foundErrors)+" machine code errors.");
 | 
						|
 | 
						|
  // Clean up.
 | 
						|
  regsLive.clear();
 | 
						|
  regsDefined.clear();
 | 
						|
  regsDead.clear();
 | 
						|
  regsKilled.clear();
 | 
						|
  regMasks.clear();
 | 
						|
  regsLiveInButUnused.clear();
 | 
						|
  MBBInfoMap.clear();
 | 
						|
 | 
						|
  return false;                 // no changes
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
 | 
						|
  assert(MF);
 | 
						|
  *OS << '\n';
 | 
						|
  if (!foundErrors++) {
 | 
						|
    if (Banner)
 | 
						|
      *OS << "# " << Banner << '\n';
 | 
						|
    MF->print(*OS, Indexes);
 | 
						|
  }
 | 
						|
  *OS << "*** Bad machine code: " << msg << " ***\n"
 | 
						|
      << "- function:    " << MF->getName() << "\n";
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
 | 
						|
  assert(MBB);
 | 
						|
  report(msg, MBB->getParent());
 | 
						|
  *OS << "- basic block: BB#" << MBB->getNumber()
 | 
						|
      << ' ' << MBB->getName()
 | 
						|
      << " (" << (const void*)MBB << ')';
 | 
						|
  if (Indexes)
 | 
						|
    *OS << " [" << Indexes->getMBBStartIdx(MBB)
 | 
						|
        << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
 | 
						|
  *OS << '\n';
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
 | 
						|
  assert(MI);
 | 
						|
  report(msg, MI->getParent());
 | 
						|
  *OS << "- instruction: ";
 | 
						|
  if (Indexes && Indexes->hasIndex(MI))
 | 
						|
    *OS << Indexes->getInstructionIndex(MI) << '\t';
 | 
						|
  MI->print(*OS, TM);
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::report(const char *msg,
 | 
						|
                             const MachineOperand *MO, unsigned MONum) {
 | 
						|
  assert(MO);
 | 
						|
  report(msg, MO->getParent());
 | 
						|
  *OS << "- operand " << MONum << ":   ";
 | 
						|
  MO->print(*OS, TM);
 | 
						|
  *OS << "\n";
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::report(const char *msg, const MachineFunction *MF,
 | 
						|
                             const LiveInterval &LI) {
 | 
						|
  report(msg, MF);
 | 
						|
  *OS << "- interval:    ";
 | 
						|
  if (TargetRegisterInfo::isVirtualRegister(LI.reg))
 | 
						|
    *OS << PrintReg(LI.reg, TRI);
 | 
						|
  else
 | 
						|
    *OS << PrintRegUnit(LI.reg, TRI);
 | 
						|
  *OS << ' ' << LI << '\n';
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB,
 | 
						|
                             const LiveInterval &LI) {
 | 
						|
  report(msg, MBB);
 | 
						|
  *OS << "- interval:    ";
 | 
						|
  if (TargetRegisterInfo::isVirtualRegister(LI.reg))
 | 
						|
    *OS << PrintReg(LI.reg, TRI);
 | 
						|
  else
 | 
						|
    *OS << PrintRegUnit(LI.reg, TRI);
 | 
						|
  *OS << ' ' << LI << '\n';
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
 | 
						|
  BBInfo &MInfo = MBBInfoMap[MBB];
 | 
						|
  if (!MInfo.reachable) {
 | 
						|
    MInfo.reachable = true;
 | 
						|
    for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
 | 
						|
           SuE = MBB->succ_end(); SuI != SuE; ++SuI)
 | 
						|
      markReachable(*SuI);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::visitMachineFunctionBefore() {
 | 
						|
  lastIndex = SlotIndex();
 | 
						|
  regsReserved = MRI->getReservedRegs();
 | 
						|
 | 
						|
  // A sub-register of a reserved register is also reserved
 | 
						|
  for (int Reg = regsReserved.find_first(); Reg>=0;
 | 
						|
       Reg = regsReserved.find_next(Reg)) {
 | 
						|
    for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
 | 
						|
      // FIXME: This should probably be:
 | 
						|
      // assert(regsReserved.test(*SubRegs) && "Non-reserved sub-register");
 | 
						|
      regsReserved.set(*SubRegs);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  markReachable(&MF->front());
 | 
						|
 | 
						|
  // Build a set of the basic blocks in the function.
 | 
						|
  FunctionBlocks.clear();
 | 
						|
  for (MachineFunction::const_iterator
 | 
						|
       I = MF->begin(), E = MF->end(); I != E; ++I) {
 | 
						|
    FunctionBlocks.insert(I);
 | 
						|
    BBInfo &MInfo = MBBInfoMap[I];
 | 
						|
 | 
						|
    MInfo.Preds.insert(I->pred_begin(), I->pred_end());
 | 
						|
    if (MInfo.Preds.size() != I->pred_size())
 | 
						|
      report("MBB has duplicate entries in its predecessor list.", I);
 | 
						|
 | 
						|
    MInfo.Succs.insert(I->succ_begin(), I->succ_end());
 | 
						|
    if (MInfo.Succs.size() != I->succ_size())
 | 
						|
      report("MBB has duplicate entries in its successor list.", I);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Does iterator point to a and b as the first two elements?
 | 
						|
static bool matchPair(MachineBasicBlock::const_succ_iterator i,
 | 
						|
                      const MachineBasicBlock *a, const MachineBasicBlock *b) {
 | 
						|
  if (*i == a)
 | 
						|
    return *++i == b;
 | 
						|
  if (*i == b)
 | 
						|
    return *++i == a;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
 | 
						|
  FirstTerminator = 0;
 | 
						|
 | 
						|
  if (MRI->isSSA()) {
 | 
						|
    // If this block has allocatable physical registers live-in, check that
 | 
						|
    // it is an entry block or landing pad.
 | 
						|
    for (MachineBasicBlock::livein_iterator LI = MBB->livein_begin(),
 | 
						|
           LE = MBB->livein_end();
 | 
						|
         LI != LE; ++LI) {
 | 
						|
      unsigned reg = *LI;
 | 
						|
      if (isAllocatable(reg) && !MBB->isLandingPad() &&
 | 
						|
          MBB != MBB->getParent()->begin()) {
 | 
						|
        report("MBB has allocable live-in, but isn't entry or landing-pad.", MBB);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Count the number of landing pad successors.
 | 
						|
  SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
 | 
						|
  for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
 | 
						|
       E = MBB->succ_end(); I != E; ++I) {
 | 
						|
    if ((*I)->isLandingPad())
 | 
						|
      LandingPadSuccs.insert(*I);
 | 
						|
    if (!FunctionBlocks.count(*I))
 | 
						|
      report("MBB has successor that isn't part of the function.", MBB);
 | 
						|
    if (!MBBInfoMap[*I].Preds.count(MBB)) {
 | 
						|
      report("Inconsistent CFG", MBB);
 | 
						|
      *OS << "MBB is not in the predecessor list of the successor BB#"
 | 
						|
          << (*I)->getNumber() << ".\n";
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check the predecessor list.
 | 
						|
  for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
 | 
						|
       E = MBB->pred_end(); I != E; ++I) {
 | 
						|
    if (!FunctionBlocks.count(*I))
 | 
						|
      report("MBB has predecessor that isn't part of the function.", MBB);
 | 
						|
    if (!MBBInfoMap[*I].Succs.count(MBB)) {
 | 
						|
      report("Inconsistent CFG", MBB);
 | 
						|
      *OS << "MBB is not in the successor list of the predecessor BB#"
 | 
						|
          << (*I)->getNumber() << ".\n";
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
 | 
						|
  const BasicBlock *BB = MBB->getBasicBlock();
 | 
						|
  if (LandingPadSuccs.size() > 1 &&
 | 
						|
      !(AsmInfo &&
 | 
						|
        AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
 | 
						|
        BB && isa<SwitchInst>(BB->getTerminator())))
 | 
						|
    report("MBB has more than one landing pad successor", MBB);
 | 
						|
 | 
						|
  // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
 | 
						|
  MachineBasicBlock *TBB = 0, *FBB = 0;
 | 
						|
  SmallVector<MachineOperand, 4> Cond;
 | 
						|
  if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB),
 | 
						|
                          TBB, FBB, Cond)) {
 | 
						|
    // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
 | 
						|
    // check whether its answers match up with reality.
 | 
						|
    if (!TBB && !FBB) {
 | 
						|
      // Block falls through to its successor.
 | 
						|
      MachineFunction::const_iterator MBBI = MBB;
 | 
						|
      ++MBBI;
 | 
						|
      if (MBBI == MF->end()) {
 | 
						|
        // It's possible that the block legitimately ends with a noreturn
 | 
						|
        // call or an unreachable, in which case it won't actually fall
 | 
						|
        // out the bottom of the function.
 | 
						|
      } else if (MBB->succ_size() == LandingPadSuccs.size()) {
 | 
						|
        // It's possible that the block legitimately ends with a noreturn
 | 
						|
        // call or an unreachable, in which case it won't actuall fall
 | 
						|
        // out of the block.
 | 
						|
      } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
 | 
						|
        report("MBB exits via unconditional fall-through but doesn't have "
 | 
						|
               "exactly one CFG successor!", MBB);
 | 
						|
      } else if (!MBB->isSuccessor(MBBI)) {
 | 
						|
        report("MBB exits via unconditional fall-through but its successor "
 | 
						|
               "differs from its CFG successor!", MBB);
 | 
						|
      }
 | 
						|
      if (!MBB->empty() && getBundleStart(&MBB->back())->isBarrier() &&
 | 
						|
          !TII->isPredicated(getBundleStart(&MBB->back()))) {
 | 
						|
        report("MBB exits via unconditional fall-through but ends with a "
 | 
						|
               "barrier instruction!", MBB);
 | 
						|
      }
 | 
						|
      if (!Cond.empty()) {
 | 
						|
        report("MBB exits via unconditional fall-through but has a condition!",
 | 
						|
               MBB);
 | 
						|
      }
 | 
						|
    } else if (TBB && !FBB && Cond.empty()) {
 | 
						|
      // Block unconditionally branches somewhere.
 | 
						|
      if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
 | 
						|
        report("MBB exits via unconditional branch but doesn't have "
 | 
						|
               "exactly one CFG successor!", MBB);
 | 
						|
      } else if (!MBB->isSuccessor(TBB)) {
 | 
						|
        report("MBB exits via unconditional branch but the CFG "
 | 
						|
               "successor doesn't match the actual successor!", MBB);
 | 
						|
      }
 | 
						|
      if (MBB->empty()) {
 | 
						|
        report("MBB exits via unconditional branch but doesn't contain "
 | 
						|
               "any instructions!", MBB);
 | 
						|
      } else if (!getBundleStart(&MBB->back())->isBarrier()) {
 | 
						|
        report("MBB exits via unconditional branch but doesn't end with a "
 | 
						|
               "barrier instruction!", MBB);
 | 
						|
      } else if (!getBundleStart(&MBB->back())->isTerminator()) {
 | 
						|
        report("MBB exits via unconditional branch but the branch isn't a "
 | 
						|
               "terminator instruction!", MBB);
 | 
						|
      }
 | 
						|
    } else if (TBB && !FBB && !Cond.empty()) {
 | 
						|
      // Block conditionally branches somewhere, otherwise falls through.
 | 
						|
      MachineFunction::const_iterator MBBI = MBB;
 | 
						|
      ++MBBI;
 | 
						|
      if (MBBI == MF->end()) {
 | 
						|
        report("MBB conditionally falls through out of function!", MBB);
 | 
						|
      } else if (MBB->succ_size() == 1) {
 | 
						|
        // A conditional branch with only one successor is weird, but allowed.
 | 
						|
        if (&*MBBI != TBB)
 | 
						|
          report("MBB exits via conditional branch/fall-through but only has "
 | 
						|
                 "one CFG successor!", MBB);
 | 
						|
        else if (TBB != *MBB->succ_begin())
 | 
						|
          report("MBB exits via conditional branch/fall-through but the CFG "
 | 
						|
                 "successor don't match the actual successor!", MBB);
 | 
						|
      } else if (MBB->succ_size() != 2) {
 | 
						|
        report("MBB exits via conditional branch/fall-through but doesn't have "
 | 
						|
               "exactly two CFG successors!", MBB);
 | 
						|
      } else if (!matchPair(MBB->succ_begin(), TBB, MBBI)) {
 | 
						|
        report("MBB exits via conditional branch/fall-through but the CFG "
 | 
						|
               "successors don't match the actual successors!", MBB);
 | 
						|
      }
 | 
						|
      if (MBB->empty()) {
 | 
						|
        report("MBB exits via conditional branch/fall-through but doesn't "
 | 
						|
               "contain any instructions!", MBB);
 | 
						|
      } else if (getBundleStart(&MBB->back())->isBarrier()) {
 | 
						|
        report("MBB exits via conditional branch/fall-through but ends with a "
 | 
						|
               "barrier instruction!", MBB);
 | 
						|
      } else if (!getBundleStart(&MBB->back())->isTerminator()) {
 | 
						|
        report("MBB exits via conditional branch/fall-through but the branch "
 | 
						|
               "isn't a terminator instruction!", MBB);
 | 
						|
      }
 | 
						|
    } else if (TBB && FBB) {
 | 
						|
      // Block conditionally branches somewhere, otherwise branches
 | 
						|
      // somewhere else.
 | 
						|
      if (MBB->succ_size() == 1) {
 | 
						|
        // A conditional branch with only one successor is weird, but allowed.
 | 
						|
        if (FBB != TBB)
 | 
						|
          report("MBB exits via conditional branch/branch through but only has "
 | 
						|
                 "one CFG successor!", MBB);
 | 
						|
        else if (TBB != *MBB->succ_begin())
 | 
						|
          report("MBB exits via conditional branch/branch through but the CFG "
 | 
						|
                 "successor don't match the actual successor!", MBB);
 | 
						|
      } else if (MBB->succ_size() != 2) {
 | 
						|
        report("MBB exits via conditional branch/branch but doesn't have "
 | 
						|
               "exactly two CFG successors!", MBB);
 | 
						|
      } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
 | 
						|
        report("MBB exits via conditional branch/branch but the CFG "
 | 
						|
               "successors don't match the actual successors!", MBB);
 | 
						|
      }
 | 
						|
      if (MBB->empty()) {
 | 
						|
        report("MBB exits via conditional branch/branch but doesn't "
 | 
						|
               "contain any instructions!", MBB);
 | 
						|
      } else if (!getBundleStart(&MBB->back())->isBarrier()) {
 | 
						|
        report("MBB exits via conditional branch/branch but doesn't end with a "
 | 
						|
               "barrier instruction!", MBB);
 | 
						|
      } else if (!getBundleStart(&MBB->back())->isTerminator()) {
 | 
						|
        report("MBB exits via conditional branch/branch but the branch "
 | 
						|
               "isn't a terminator instruction!", MBB);
 | 
						|
      }
 | 
						|
      if (Cond.empty()) {
 | 
						|
        report("MBB exits via conditinal branch/branch but there's no "
 | 
						|
               "condition!", MBB);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      report("AnalyzeBranch returned invalid data!", MBB);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  regsLive.clear();
 | 
						|
  for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
 | 
						|
         E = MBB->livein_end(); I != E; ++I) {
 | 
						|
    if (!TargetRegisterInfo::isPhysicalRegister(*I)) {
 | 
						|
      report("MBB live-in list contains non-physical register", MBB);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    regsLive.insert(*I);
 | 
						|
    for (MCSubRegIterator SubRegs(*I, TRI); SubRegs.isValid(); ++SubRegs)
 | 
						|
      regsLive.insert(*SubRegs);
 | 
						|
  }
 | 
						|
  regsLiveInButUnused = regsLive;
 | 
						|
 | 
						|
  const MachineFrameInfo *MFI = MF->getFrameInfo();
 | 
						|
  assert(MFI && "Function has no frame info");
 | 
						|
  BitVector PR = MFI->getPristineRegs(MBB);
 | 
						|
  for (int I = PR.find_first(); I>0; I = PR.find_next(I)) {
 | 
						|
    regsLive.insert(I);
 | 
						|
    for (MCSubRegIterator SubRegs(I, TRI); SubRegs.isValid(); ++SubRegs)
 | 
						|
      regsLive.insert(*SubRegs);
 | 
						|
  }
 | 
						|
 | 
						|
  regsKilled.clear();
 | 
						|
  regsDefined.clear();
 | 
						|
 | 
						|
  if (Indexes)
 | 
						|
    lastIndex = Indexes->getMBBStartIdx(MBB);
 | 
						|
}
 | 
						|
 | 
						|
// This function gets called for all bundle headers, including normal
 | 
						|
// stand-alone unbundled instructions.
 | 
						|
void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
 | 
						|
  if (Indexes && Indexes->hasIndex(MI)) {
 | 
						|
    SlotIndex idx = Indexes->getInstructionIndex(MI);
 | 
						|
    if (!(idx > lastIndex)) {
 | 
						|
      report("Instruction index out of order", MI);
 | 
						|
      *OS << "Last instruction was at " << lastIndex << '\n';
 | 
						|
    }
 | 
						|
    lastIndex = idx;
 | 
						|
  }
 | 
						|
 | 
						|
  // Ensure non-terminators don't follow terminators.
 | 
						|
  // Ignore predicated terminators formed by if conversion.
 | 
						|
  // FIXME: If conversion shouldn't need to violate this rule.
 | 
						|
  if (MI->isTerminator() && !TII->isPredicated(MI)) {
 | 
						|
    if (!FirstTerminator)
 | 
						|
      FirstTerminator = MI;
 | 
						|
  } else if (FirstTerminator) {
 | 
						|
    report("Non-terminator instruction after the first terminator", MI);
 | 
						|
    *OS << "First terminator was:\t" << *FirstTerminator;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// The operands on an INLINEASM instruction must follow a template.
 | 
						|
// Verify that the flag operands make sense.
 | 
						|
void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
 | 
						|
  // The first two operands on INLINEASM are the asm string and global flags.
 | 
						|
  if (MI->getNumOperands() < 2) {
 | 
						|
    report("Too few operands on inline asm", MI);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if (!MI->getOperand(0).isSymbol())
 | 
						|
    report("Asm string must be an external symbol", MI);
 | 
						|
  if (!MI->getOperand(1).isImm())
 | 
						|
    report("Asm flags must be an immediate", MI);
 | 
						|
  // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
 | 
						|
  // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16.
 | 
						|
  if (!isUInt<5>(MI->getOperand(1).getImm()))
 | 
						|
    report("Unknown asm flags", &MI->getOperand(1), 1);
 | 
						|
 | 
						|
  assert(InlineAsm::MIOp_FirstOperand == 2 && "Asm format changed");
 | 
						|
 | 
						|
  unsigned OpNo = InlineAsm::MIOp_FirstOperand;
 | 
						|
  unsigned NumOps;
 | 
						|
  for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
 | 
						|
    const MachineOperand &MO = MI->getOperand(OpNo);
 | 
						|
    // There may be implicit ops after the fixed operands.
 | 
						|
    if (!MO.isImm())
 | 
						|
      break;
 | 
						|
    NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
 | 
						|
  }
 | 
						|
 | 
						|
  if (OpNo > MI->getNumOperands())
 | 
						|
    report("Missing operands in last group", MI);
 | 
						|
 | 
						|
  // An optional MDNode follows the groups.
 | 
						|
  if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
 | 
						|
    ++OpNo;
 | 
						|
 | 
						|
  // All trailing operands must be implicit registers.
 | 
						|
  for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
 | 
						|
    const MachineOperand &MO = MI->getOperand(OpNo);
 | 
						|
    if (!MO.isReg() || !MO.isImplicit())
 | 
						|
      report("Expected implicit register after groups", &MO, OpNo);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
 | 
						|
  const MCInstrDesc &MCID = MI->getDesc();
 | 
						|
  if (MI->getNumOperands() < MCID.getNumOperands()) {
 | 
						|
    report("Too few operands", MI);
 | 
						|
    *OS << MCID.getNumOperands() << " operands expected, but "
 | 
						|
        << MI->getNumExplicitOperands() << " given.\n";
 | 
						|
  }
 | 
						|
 | 
						|
  // Check the tied operands.
 | 
						|
  if (MI->isInlineAsm())
 | 
						|
    verifyInlineAsm(MI);
 | 
						|
 | 
						|
  // Check the MachineMemOperands for basic consistency.
 | 
						|
  for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
 | 
						|
       E = MI->memoperands_end(); I != E; ++I) {
 | 
						|
    if ((*I)->isLoad() && !MI->mayLoad())
 | 
						|
      report("Missing mayLoad flag", MI);
 | 
						|
    if ((*I)->isStore() && !MI->mayStore())
 | 
						|
      report("Missing mayStore flag", MI);
 | 
						|
  }
 | 
						|
 | 
						|
  // Debug values must not have a slot index.
 | 
						|
  // Other instructions must have one, unless they are inside a bundle.
 | 
						|
  if (LiveInts) {
 | 
						|
    bool mapped = !LiveInts->isNotInMIMap(MI);
 | 
						|
    if (MI->isDebugValue()) {
 | 
						|
      if (mapped)
 | 
						|
        report("Debug instruction has a slot index", MI);
 | 
						|
    } else if (MI->isInsideBundle()) {
 | 
						|
      if (mapped)
 | 
						|
        report("Instruction inside bundle has a slot index", MI);
 | 
						|
    } else {
 | 
						|
      if (!mapped)
 | 
						|
        report("Missing slot index", MI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  StringRef ErrorInfo;
 | 
						|
  if (!TII->verifyInstruction(MI, ErrorInfo))
 | 
						|
    report(ErrorInfo.data(), MI);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
 | 
						|
  const MachineInstr *MI = MO->getParent();
 | 
						|
  const MCInstrDesc &MCID = MI->getDesc();
 | 
						|
 | 
						|
  // The first MCID.NumDefs operands must be explicit register defines
 | 
						|
  if (MONum < MCID.getNumDefs()) {
 | 
						|
    const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
 | 
						|
    if (!MO->isReg())
 | 
						|
      report("Explicit definition must be a register", MO, MONum);
 | 
						|
    else if (!MO->isDef() && !MCOI.isOptionalDef())
 | 
						|
      report("Explicit definition marked as use", MO, MONum);
 | 
						|
    else if (MO->isImplicit())
 | 
						|
      report("Explicit definition marked as implicit", MO, MONum);
 | 
						|
  } else if (MONum < MCID.getNumOperands()) {
 | 
						|
    const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
 | 
						|
    // Don't check if it's the last operand in a variadic instruction. See,
 | 
						|
    // e.g., LDM_RET in the arm back end.
 | 
						|
    if (MO->isReg() &&
 | 
						|
        !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
 | 
						|
      if (MO->isDef() && !MCOI.isOptionalDef())
 | 
						|
          report("Explicit operand marked as def", MO, MONum);
 | 
						|
      if (MO->isImplicit())
 | 
						|
        report("Explicit operand marked as implicit", MO, MONum);
 | 
						|
    }
 | 
						|
 | 
						|
    int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
 | 
						|
    if (TiedTo != -1) {
 | 
						|
      if (!MO->isReg())
 | 
						|
        report("Tied use must be a register", MO, MONum);
 | 
						|
      else if (!MO->isTied())
 | 
						|
        report("Operand should be tied", MO, MONum);
 | 
						|
      else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
 | 
						|
        report("Tied def doesn't match MCInstrDesc", MO, MONum);
 | 
						|
    } else if (MO->isReg() && MO->isTied())
 | 
						|
      report("Explicit operand should not be tied", MO, MONum);
 | 
						|
  } else {
 | 
						|
    // ARM adds %reg0 operands to indicate predicates. We'll allow that.
 | 
						|
    if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
 | 
						|
      report("Extra explicit operand on non-variadic instruction", MO, MONum);
 | 
						|
  }
 | 
						|
 | 
						|
  switch (MO->getType()) {
 | 
						|
  case MachineOperand::MO_Register: {
 | 
						|
    const unsigned Reg = MO->getReg();
 | 
						|
    if (!Reg)
 | 
						|
      return;
 | 
						|
    if (MRI->tracksLiveness() && !MI->isDebugValue())
 | 
						|
      checkLiveness(MO, MONum);
 | 
						|
 | 
						|
    // Verify the consistency of tied operands.
 | 
						|
    if (MO->isTied()) {
 | 
						|
      unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
 | 
						|
      const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
 | 
						|
      if (!OtherMO.isReg())
 | 
						|
        report("Must be tied to a register", MO, MONum);
 | 
						|
      if (!OtherMO.isTied())
 | 
						|
        report("Missing tie flags on tied operand", MO, MONum);
 | 
						|
      if (MI->findTiedOperandIdx(OtherIdx) != MONum)
 | 
						|
        report("Inconsistent tie links", MO, MONum);
 | 
						|
      if (MONum < MCID.getNumDefs()) {
 | 
						|
        if (OtherIdx < MCID.getNumOperands()) {
 | 
						|
          if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
 | 
						|
            report("Explicit def tied to explicit use without tie constraint",
 | 
						|
                   MO, MONum);
 | 
						|
        } else {
 | 
						|
          if (!OtherMO.isImplicit())
 | 
						|
            report("Explicit def should be tied to implicit use", MO, MONum);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Verify two-address constraints after leaving SSA form.
 | 
						|
    unsigned DefIdx;
 | 
						|
    if (!MRI->isSSA() && MO->isUse() &&
 | 
						|
        MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
 | 
						|
        Reg != MI->getOperand(DefIdx).getReg())
 | 
						|
      report("Two-address instruction operands must be identical", MO, MONum);
 | 
						|
 | 
						|
    // Check register classes.
 | 
						|
    if (MONum < MCID.getNumOperands() && !MO->isImplicit()) {
 | 
						|
      unsigned SubIdx = MO->getSubReg();
 | 
						|
 | 
						|
      if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
 | 
						|
        if (SubIdx) {
 | 
						|
          report("Illegal subregister index for physical register", MO, MONum);
 | 
						|
          return;
 | 
						|
        }
 | 
						|
        if (const TargetRegisterClass *DRC =
 | 
						|
              TII->getRegClass(MCID, MONum, TRI, *MF)) {
 | 
						|
          if (!DRC->contains(Reg)) {
 | 
						|
            report("Illegal physical register for instruction", MO, MONum);
 | 
						|
            *OS << TRI->getName(Reg) << " is not a "
 | 
						|
                << DRC->getName() << " register.\n";
 | 
						|
          }
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        // Virtual register.
 | 
						|
        const TargetRegisterClass *RC = MRI->getRegClass(Reg);
 | 
						|
        if (SubIdx) {
 | 
						|
          const TargetRegisterClass *SRC =
 | 
						|
            TRI->getSubClassWithSubReg(RC, SubIdx);
 | 
						|
          if (!SRC) {
 | 
						|
            report("Invalid subregister index for virtual register", MO, MONum);
 | 
						|
            *OS << "Register class " << RC->getName()
 | 
						|
                << " does not support subreg index " << SubIdx << "\n";
 | 
						|
            return;
 | 
						|
          }
 | 
						|
          if (RC != SRC) {
 | 
						|
            report("Invalid register class for subregister index", MO, MONum);
 | 
						|
            *OS << "Register class " << RC->getName()
 | 
						|
                << " does not fully support subreg index " << SubIdx << "\n";
 | 
						|
            return;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        if (const TargetRegisterClass *DRC =
 | 
						|
              TII->getRegClass(MCID, MONum, TRI, *MF)) {
 | 
						|
          if (SubIdx) {
 | 
						|
            const TargetRegisterClass *SuperRC =
 | 
						|
              TRI->getLargestLegalSuperClass(RC);
 | 
						|
            if (!SuperRC) {
 | 
						|
              report("No largest legal super class exists.", MO, MONum);
 | 
						|
              return;
 | 
						|
            }
 | 
						|
            DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
 | 
						|
            if (!DRC) {
 | 
						|
              report("No matching super-reg register class.", MO, MONum);
 | 
						|
              return;
 | 
						|
            }
 | 
						|
          }
 | 
						|
          if (!RC->hasSuperClassEq(DRC)) {
 | 
						|
            report("Illegal virtual register for instruction", MO, MONum);
 | 
						|
            *OS << "Expected a " << DRC->getName() << " register, but got a "
 | 
						|
                << RC->getName() << " register\n";
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case MachineOperand::MO_RegisterMask:
 | 
						|
    regMasks.push_back(MO->getRegMask());
 | 
						|
    break;
 | 
						|
 | 
						|
  case MachineOperand::MO_MachineBasicBlock:
 | 
						|
    if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
 | 
						|
      report("PHI operand is not in the CFG", MO, MONum);
 | 
						|
    break;
 | 
						|
 | 
						|
  case MachineOperand::MO_FrameIndex:
 | 
						|
    if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
 | 
						|
        LiveInts && !LiveInts->isNotInMIMap(MI)) {
 | 
						|
      LiveInterval &LI = LiveStks->getInterval(MO->getIndex());
 | 
						|
      SlotIndex Idx = LiveInts->getInstructionIndex(MI);
 | 
						|
      if (MI->mayLoad() && !LI.liveAt(Idx.getRegSlot(true))) {
 | 
						|
        report("Instruction loads from dead spill slot", MO, MONum);
 | 
						|
        *OS << "Live stack: " << LI << '\n';
 | 
						|
      }
 | 
						|
      if (MI->mayStore() && !LI.liveAt(Idx.getRegSlot())) {
 | 
						|
        report("Instruction stores to dead spill slot", MO, MONum);
 | 
						|
        *OS << "Live stack: " << LI << '\n';
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
 | 
						|
  const MachineInstr *MI = MO->getParent();
 | 
						|
  const unsigned Reg = MO->getReg();
 | 
						|
 | 
						|
  // Both use and def operands can read a register.
 | 
						|
  if (MO->readsReg()) {
 | 
						|
    regsLiveInButUnused.erase(Reg);
 | 
						|
 | 
						|
    if (MO->isKill())
 | 
						|
      addRegWithSubRegs(regsKilled, Reg);
 | 
						|
 | 
						|
    // Check that LiveVars knows this kill.
 | 
						|
    if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
 | 
						|
        MO->isKill()) {
 | 
						|
      LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
 | 
						|
      if (std::find(VI.Kills.begin(), VI.Kills.end(), MI) == VI.Kills.end())
 | 
						|
        report("Kill missing from LiveVariables", MO, MONum);
 | 
						|
    }
 | 
						|
 | 
						|
    // Check LiveInts liveness and kill.
 | 
						|
    if (LiveInts && !LiveInts->isNotInMIMap(MI)) {
 | 
						|
      SlotIndex UseIdx = LiveInts->getInstructionIndex(MI);
 | 
						|
      // Check the cached regunit intervals.
 | 
						|
      if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) {
 | 
						|
        for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
 | 
						|
          if (const LiveInterval *LI = LiveInts->getCachedRegUnit(*Units)) {
 | 
						|
            LiveRangeQuery LRQ(*LI, UseIdx);
 | 
						|
            if (!LRQ.valueIn()) {
 | 
						|
              report("No live range at use", MO, MONum);
 | 
						|
              *OS << UseIdx << " is not live in " << PrintRegUnit(*Units, TRI)
 | 
						|
                  << ' ' << *LI << '\n';
 | 
						|
            }
 | 
						|
            if (MO->isKill() && !LRQ.isKill()) {
 | 
						|
              report("Live range continues after kill flag", MO, MONum);
 | 
						|
              *OS << PrintRegUnit(*Units, TRI) << ' ' << *LI << '\n';
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
 | 
						|
        if (LiveInts->hasInterval(Reg)) {
 | 
						|
          // This is a virtual register interval.
 | 
						|
          const LiveInterval &LI = LiveInts->getInterval(Reg);
 | 
						|
          LiveRangeQuery LRQ(LI, UseIdx);
 | 
						|
          if (!LRQ.valueIn()) {
 | 
						|
            report("No live range at use", MO, MONum);
 | 
						|
            *OS << UseIdx << " is not live in " << LI << '\n';
 | 
						|
          }
 | 
						|
          // Check for extra kill flags.
 | 
						|
          // Note that we allow missing kill flags for now.
 | 
						|
          if (MO->isKill() && !LRQ.isKill()) {
 | 
						|
            report("Live range continues after kill flag", MO, MONum);
 | 
						|
            *OS << "Live range: " << LI << '\n';
 | 
						|
          }
 | 
						|
        } else {
 | 
						|
          report("Virtual register has no live interval", MO, MONum);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Use of a dead register.
 | 
						|
    if (!regsLive.count(Reg)) {
 | 
						|
      if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
 | 
						|
        // Reserved registers may be used even when 'dead'.
 | 
						|
        if (!isReserved(Reg))
 | 
						|
          report("Using an undefined physical register", MO, MONum);
 | 
						|
      } else if (MRI->def_empty(Reg)) {
 | 
						|
        report("Reading virtual register without a def", MO, MONum);
 | 
						|
      } else {
 | 
						|
        BBInfo &MInfo = MBBInfoMap[MI->getParent()];
 | 
						|
        // We don't know which virtual registers are live in, so only complain
 | 
						|
        // if vreg was killed in this MBB. Otherwise keep track of vregs that
 | 
						|
        // must be live in. PHI instructions are handled separately.
 | 
						|
        if (MInfo.regsKilled.count(Reg))
 | 
						|
          report("Using a killed virtual register", MO, MONum);
 | 
						|
        else if (!MI->isPHI())
 | 
						|
          MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (MO->isDef()) {
 | 
						|
    // Register defined.
 | 
						|
    // TODO: verify that earlyclobber ops are not used.
 | 
						|
    if (MO->isDead())
 | 
						|
      addRegWithSubRegs(regsDead, Reg);
 | 
						|
    else
 | 
						|
      addRegWithSubRegs(regsDefined, Reg);
 | 
						|
 | 
						|
    // Verify SSA form.
 | 
						|
    if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) &&
 | 
						|
        llvm::next(MRI->def_begin(Reg)) != MRI->def_end())
 | 
						|
      report("Multiple virtual register defs in SSA form", MO, MONum);
 | 
						|
 | 
						|
    // Check LiveInts for a live range, but only for virtual registers.
 | 
						|
    if (LiveInts && TargetRegisterInfo::isVirtualRegister(Reg) &&
 | 
						|
        !LiveInts->isNotInMIMap(MI)) {
 | 
						|
      SlotIndex DefIdx = LiveInts->getInstructionIndex(MI);
 | 
						|
      DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
 | 
						|
      if (LiveInts->hasInterval(Reg)) {
 | 
						|
        const LiveInterval &LI = LiveInts->getInterval(Reg);
 | 
						|
        if (const VNInfo *VNI = LI.getVNInfoAt(DefIdx)) {
 | 
						|
          assert(VNI && "NULL valno is not allowed");
 | 
						|
          if (VNI->def != DefIdx) {
 | 
						|
            report("Inconsistent valno->def", MO, MONum);
 | 
						|
            *OS << "Valno " << VNI->id << " is not defined at "
 | 
						|
              << DefIdx << " in " << LI << '\n';
 | 
						|
          }
 | 
						|
        } else {
 | 
						|
          report("No live range at def", MO, MONum);
 | 
						|
          *OS << DefIdx << " is not live in " << LI << '\n';
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        report("Virtual register has no Live interval", MO, MONum);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {
 | 
						|
}
 | 
						|
 | 
						|
// This function gets called after visiting all instructions in a bundle. The
 | 
						|
// argument points to the bundle header.
 | 
						|
// Normal stand-alone instructions are also considered 'bundles', and this
 | 
						|
// function is called for all of them.
 | 
						|
void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
 | 
						|
  BBInfo &MInfo = MBBInfoMap[MI->getParent()];
 | 
						|
  set_union(MInfo.regsKilled, regsKilled);
 | 
						|
  set_subtract(regsLive, regsKilled); regsKilled.clear();
 | 
						|
  // Kill any masked registers.
 | 
						|
  while (!regMasks.empty()) {
 | 
						|
    const uint32_t *Mask = regMasks.pop_back_val();
 | 
						|
    for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
 | 
						|
      if (TargetRegisterInfo::isPhysicalRegister(*I) &&
 | 
						|
          MachineOperand::clobbersPhysReg(Mask, *I))
 | 
						|
        regsDead.push_back(*I);
 | 
						|
  }
 | 
						|
  set_subtract(regsLive, regsDead);   regsDead.clear();
 | 
						|
  set_union(regsLive, regsDefined);   regsDefined.clear();
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
 | 
						|
  MBBInfoMap[MBB].regsLiveOut = regsLive;
 | 
						|
  regsLive.clear();
 | 
						|
 | 
						|
  if (Indexes) {
 | 
						|
    SlotIndex stop = Indexes->getMBBEndIdx(MBB);
 | 
						|
    if (!(stop > lastIndex)) {
 | 
						|
      report("Block ends before last instruction index", MBB);
 | 
						|
      *OS << "Block ends at " << stop
 | 
						|
          << " last instruction was at " << lastIndex << '\n';
 | 
						|
    }
 | 
						|
    lastIndex = stop;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Calculate the largest possible vregsPassed sets. These are the registers that
 | 
						|
// can pass through an MBB live, but may not be live every time. It is assumed
 | 
						|
// that all vregsPassed sets are empty before the call.
 | 
						|
void MachineVerifier::calcRegsPassed() {
 | 
						|
  // First push live-out regs to successors' vregsPassed. Remember the MBBs that
 | 
						|
  // have any vregsPassed.
 | 
						|
  SmallPtrSet<const MachineBasicBlock*, 8> todo;
 | 
						|
  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
 | 
						|
       MFI != MFE; ++MFI) {
 | 
						|
    const MachineBasicBlock &MBB(*MFI);
 | 
						|
    BBInfo &MInfo = MBBInfoMap[&MBB];
 | 
						|
    if (!MInfo.reachable)
 | 
						|
      continue;
 | 
						|
    for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
 | 
						|
           SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
 | 
						|
      BBInfo &SInfo = MBBInfoMap[*SuI];
 | 
						|
      if (SInfo.addPassed(MInfo.regsLiveOut))
 | 
						|
        todo.insert(*SuI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Iteratively push vregsPassed to successors. This will converge to the same
 | 
						|
  // final state regardless of DenseSet iteration order.
 | 
						|
  while (!todo.empty()) {
 | 
						|
    const MachineBasicBlock *MBB = *todo.begin();
 | 
						|
    todo.erase(MBB);
 | 
						|
    BBInfo &MInfo = MBBInfoMap[MBB];
 | 
						|
    for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
 | 
						|
           SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
 | 
						|
      if (*SuI == MBB)
 | 
						|
        continue;
 | 
						|
      BBInfo &SInfo = MBBInfoMap[*SuI];
 | 
						|
      if (SInfo.addPassed(MInfo.vregsPassed))
 | 
						|
        todo.insert(*SuI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Calculate the set of virtual registers that must be passed through each basic
 | 
						|
// block in order to satisfy the requirements of successor blocks. This is very
 | 
						|
// similar to calcRegsPassed, only backwards.
 | 
						|
void MachineVerifier::calcRegsRequired() {
 | 
						|
  // First push live-in regs to predecessors' vregsRequired.
 | 
						|
  SmallPtrSet<const MachineBasicBlock*, 8> todo;
 | 
						|
  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
 | 
						|
       MFI != MFE; ++MFI) {
 | 
						|
    const MachineBasicBlock &MBB(*MFI);
 | 
						|
    BBInfo &MInfo = MBBInfoMap[&MBB];
 | 
						|
    for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
 | 
						|
           PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
 | 
						|
      BBInfo &PInfo = MBBInfoMap[*PrI];
 | 
						|
      if (PInfo.addRequired(MInfo.vregsLiveIn))
 | 
						|
        todo.insert(*PrI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Iteratively push vregsRequired to predecessors. This will converge to the
 | 
						|
  // same final state regardless of DenseSet iteration order.
 | 
						|
  while (!todo.empty()) {
 | 
						|
    const MachineBasicBlock *MBB = *todo.begin();
 | 
						|
    todo.erase(MBB);
 | 
						|
    BBInfo &MInfo = MBBInfoMap[MBB];
 | 
						|
    for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
 | 
						|
           PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
 | 
						|
      if (*PrI == MBB)
 | 
						|
        continue;
 | 
						|
      BBInfo &SInfo = MBBInfoMap[*PrI];
 | 
						|
      if (SInfo.addRequired(MInfo.vregsRequired))
 | 
						|
        todo.insert(*PrI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Check PHI instructions at the beginning of MBB. It is assumed that
 | 
						|
// calcRegsPassed has been run so BBInfo::isLiveOut is valid.
 | 
						|
void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) {
 | 
						|
  SmallPtrSet<const MachineBasicBlock*, 8> seen;
 | 
						|
  for (MachineBasicBlock::const_iterator BBI = MBB->begin(), BBE = MBB->end();
 | 
						|
       BBI != BBE && BBI->isPHI(); ++BBI) {
 | 
						|
    seen.clear();
 | 
						|
 | 
						|
    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
 | 
						|
      unsigned Reg = BBI->getOperand(i).getReg();
 | 
						|
      const MachineBasicBlock *Pre = BBI->getOperand(i + 1).getMBB();
 | 
						|
      if (!Pre->isSuccessor(MBB))
 | 
						|
        continue;
 | 
						|
      seen.insert(Pre);
 | 
						|
      BBInfo &PrInfo = MBBInfoMap[Pre];
 | 
						|
      if (PrInfo.reachable && !PrInfo.isLiveOut(Reg))
 | 
						|
        report("PHI operand is not live-out from predecessor",
 | 
						|
               &BBI->getOperand(i), i);
 | 
						|
    }
 | 
						|
 | 
						|
    // Did we see all predecessors?
 | 
						|
    for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
 | 
						|
           PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
 | 
						|
      if (!seen.count(*PrI)) {
 | 
						|
        report("Missing PHI operand", BBI);
 | 
						|
        *OS << "BB#" << (*PrI)->getNumber()
 | 
						|
            << " is a predecessor according to the CFG.\n";
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::visitMachineFunctionAfter() {
 | 
						|
  calcRegsPassed();
 | 
						|
 | 
						|
  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
 | 
						|
       MFI != MFE; ++MFI) {
 | 
						|
    BBInfo &MInfo = MBBInfoMap[MFI];
 | 
						|
 | 
						|
    // Skip unreachable MBBs.
 | 
						|
    if (!MInfo.reachable)
 | 
						|
      continue;
 | 
						|
 | 
						|
    checkPHIOps(MFI);
 | 
						|
  }
 | 
						|
 | 
						|
  // Now check liveness info if available
 | 
						|
  calcRegsRequired();
 | 
						|
 | 
						|
  // Check for killed virtual registers that should be live out.
 | 
						|
  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
 | 
						|
       MFI != MFE; ++MFI) {
 | 
						|
    BBInfo &MInfo = MBBInfoMap[MFI];
 | 
						|
    for (RegSet::iterator
 | 
						|
         I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
 | 
						|
         ++I)
 | 
						|
      if (MInfo.regsKilled.count(*I)) {
 | 
						|
        report("Virtual register killed in block, but needed live out.", MFI);
 | 
						|
        *OS << "Virtual register " << PrintReg(*I)
 | 
						|
            << " is used after the block.\n";
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!MF->empty()) {
 | 
						|
    BBInfo &MInfo = MBBInfoMap[&MF->front()];
 | 
						|
    for (RegSet::iterator
 | 
						|
         I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
 | 
						|
         ++I)
 | 
						|
      report("Virtual register def doesn't dominate all uses.",
 | 
						|
             MRI->getVRegDef(*I));
 | 
						|
  }
 | 
						|
 | 
						|
  if (LiveVars)
 | 
						|
    verifyLiveVariables();
 | 
						|
  if (LiveInts)
 | 
						|
    verifyLiveIntervals();
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::verifyLiveVariables() {
 | 
						|
  assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
 | 
						|
  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
 | 
						|
    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
 | 
						|
    LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
 | 
						|
    for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
 | 
						|
         MFI != MFE; ++MFI) {
 | 
						|
      BBInfo &MInfo = MBBInfoMap[MFI];
 | 
						|
 | 
						|
      // Our vregsRequired should be identical to LiveVariables' AliveBlocks
 | 
						|
      if (MInfo.vregsRequired.count(Reg)) {
 | 
						|
        if (!VI.AliveBlocks.test(MFI->getNumber())) {
 | 
						|
          report("LiveVariables: Block missing from AliveBlocks", MFI);
 | 
						|
          *OS << "Virtual register " << PrintReg(Reg)
 | 
						|
              << " must be live through the block.\n";
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        if (VI.AliveBlocks.test(MFI->getNumber())) {
 | 
						|
          report("LiveVariables: Block should not be in AliveBlocks", MFI);
 | 
						|
          *OS << "Virtual register " << PrintReg(Reg)
 | 
						|
              << " is not needed live through the block.\n";
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::verifyLiveIntervals() {
 | 
						|
  assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
 | 
						|
  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
 | 
						|
    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
 | 
						|
 | 
						|
    // Spilling and splitting may leave unused registers around. Skip them.
 | 
						|
    if (MRI->reg_nodbg_empty(Reg))
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (!LiveInts->hasInterval(Reg)) {
 | 
						|
      report("Missing live interval for virtual register", MF);
 | 
						|
      *OS << PrintReg(Reg, TRI) << " still has defs or uses\n";
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    const LiveInterval &LI = LiveInts->getInterval(Reg);
 | 
						|
    assert(Reg == LI.reg && "Invalid reg to interval mapping");
 | 
						|
    verifyLiveInterval(LI);
 | 
						|
  }
 | 
						|
 | 
						|
  // Verify all the cached regunit intervals.
 | 
						|
  for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
 | 
						|
    if (const LiveInterval *LI = LiveInts->getCachedRegUnit(i))
 | 
						|
      verifyLiveInterval(*LI);
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::verifyLiveIntervalValue(const LiveInterval &LI,
 | 
						|
                                              VNInfo *VNI) {
 | 
						|
  if (VNI->isUnused())
 | 
						|
    return;
 | 
						|
 | 
						|
  const VNInfo *DefVNI = LI.getVNInfoAt(VNI->def);
 | 
						|
 | 
						|
  if (!DefVNI) {
 | 
						|
    report("Valno not live at def and not marked unused", MF, LI);
 | 
						|
    *OS << "Valno #" << VNI->id << '\n';
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (DefVNI != VNI) {
 | 
						|
    report("Live range at def has different valno", MF, LI);
 | 
						|
    *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
 | 
						|
        << " where valno #" << DefVNI->id << " is live\n";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
 | 
						|
  if (!MBB) {
 | 
						|
    report("Invalid definition index", MF, LI);
 | 
						|
    *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
 | 
						|
        << " in " << LI << '\n';
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (VNI->isPHIDef()) {
 | 
						|
    if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
 | 
						|
      report("PHIDef value is not defined at MBB start", MBB, LI);
 | 
						|
      *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
 | 
						|
          << ", not at the beginning of BB#" << MBB->getNumber() << '\n';
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Non-PHI def.
 | 
						|
  const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
 | 
						|
  if (!MI) {
 | 
						|
    report("No instruction at def index", MBB, LI);
 | 
						|
    *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n';
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  bool hasDef = false;
 | 
						|
  bool isEarlyClobber = false;
 | 
						|
  for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) {
 | 
						|
    if (!MOI->isReg() || !MOI->isDef())
 | 
						|
      continue;
 | 
						|
    if (TargetRegisterInfo::isVirtualRegister(LI.reg)) {
 | 
						|
      if (MOI->getReg() != LI.reg)
 | 
						|
        continue;
 | 
						|
    } else {
 | 
						|
      if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) ||
 | 
						|
          !TRI->hasRegUnit(MOI->getReg(), LI.reg))
 | 
						|
        continue;
 | 
						|
    }
 | 
						|
    hasDef = true;
 | 
						|
    if (MOI->isEarlyClobber())
 | 
						|
      isEarlyClobber = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!hasDef) {
 | 
						|
    report("Defining instruction does not modify register", MI);
 | 
						|
    *OS << "Valno #" << VNI->id << " in " << LI << '\n';
 | 
						|
  }
 | 
						|
 | 
						|
  // Early clobber defs begin at USE slots, but other defs must begin at
 | 
						|
  // DEF slots.
 | 
						|
  if (isEarlyClobber) {
 | 
						|
    if (!VNI->def.isEarlyClobber()) {
 | 
						|
      report("Early clobber def must be at an early-clobber slot", MBB, LI);
 | 
						|
      *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n';
 | 
						|
    }
 | 
						|
  } else if (!VNI->def.isRegister()) {
 | 
						|
    report("Non-PHI, non-early clobber def must be at a register slot",
 | 
						|
           MBB, LI);
 | 
						|
    *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n';
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
MachineVerifier::verifyLiveIntervalSegment(const LiveInterval &LI,
 | 
						|
                                           LiveInterval::const_iterator I) {
 | 
						|
  const VNInfo *VNI = I->valno;
 | 
						|
  assert(VNI && "Live range has no valno");
 | 
						|
 | 
						|
  if (VNI->id >= LI.getNumValNums() || VNI != LI.getValNumInfo(VNI->id)) {
 | 
						|
    report("Foreign valno in live range", MF, LI);
 | 
						|
    *OS << *I << " has a bad valno\n";
 | 
						|
  }
 | 
						|
 | 
						|
  if (VNI->isUnused()) {
 | 
						|
    report("Live range valno is marked unused", MF, LI);
 | 
						|
    *OS << *I << '\n';
 | 
						|
  }
 | 
						|
 | 
						|
  const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(I->start);
 | 
						|
  if (!MBB) {
 | 
						|
    report("Bad start of live segment, no basic block", MF, LI);
 | 
						|
    *OS << *I << '\n';
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
 | 
						|
  if (I->start != MBBStartIdx && I->start != VNI->def) {
 | 
						|
    report("Live segment must begin at MBB entry or valno def", MBB, LI);
 | 
						|
    *OS << *I << '\n';
 | 
						|
  }
 | 
						|
 | 
						|
  const MachineBasicBlock *EndMBB =
 | 
						|
    LiveInts->getMBBFromIndex(I->end.getPrevSlot());
 | 
						|
  if (!EndMBB) {
 | 
						|
    report("Bad end of live segment, no basic block", MF, LI);
 | 
						|
    *OS << *I << '\n';
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // No more checks for live-out segments.
 | 
						|
  if (I->end == LiveInts->getMBBEndIdx(EndMBB))
 | 
						|
    return;
 | 
						|
 | 
						|
  // RegUnit intervals are allowed dead phis.
 | 
						|
  if (!TargetRegisterInfo::isVirtualRegister(LI.reg) && VNI->isPHIDef() &&
 | 
						|
      I->start == VNI->def && I->end == VNI->def.getDeadSlot())
 | 
						|
    return;
 | 
						|
 | 
						|
  // The live segment is ending inside EndMBB
 | 
						|
  const MachineInstr *MI =
 | 
						|
    LiveInts->getInstructionFromIndex(I->end.getPrevSlot());
 | 
						|
  if (!MI) {
 | 
						|
    report("Live segment doesn't end at a valid instruction", EndMBB, LI);
 | 
						|
    *OS << *I << '\n';
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // The block slot must refer to a basic block boundary.
 | 
						|
  if (I->end.isBlock()) {
 | 
						|
    report("Live segment ends at B slot of an instruction", EndMBB, LI);
 | 
						|
    *OS << *I << '\n';
 | 
						|
  }
 | 
						|
 | 
						|
  if (I->end.isDead()) {
 | 
						|
    // Segment ends on the dead slot.
 | 
						|
    // That means there must be a dead def.
 | 
						|
    if (!SlotIndex::isSameInstr(I->start, I->end)) {
 | 
						|
      report("Live segment ending at dead slot spans instructions", EndMBB, LI);
 | 
						|
      *OS << *I << '\n';
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // A live segment can only end at an early-clobber slot if it is being
 | 
						|
  // redefined by an early-clobber def.
 | 
						|
  if (I->end.isEarlyClobber()) {
 | 
						|
    if (I+1 == LI.end() || (I+1)->start != I->end) {
 | 
						|
      report("Live segment ending at early clobber slot must be "
 | 
						|
             "redefined by an EC def in the same instruction", EndMBB, LI);
 | 
						|
      *OS << *I << '\n';
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // The following checks only apply to virtual registers. Physreg liveness
 | 
						|
  // is too weird to check.
 | 
						|
  if (TargetRegisterInfo::isVirtualRegister(LI.reg)) {
 | 
						|
    // A live range can end with either a redefinition, a kill flag on a
 | 
						|
    // use, or a dead flag on a def.
 | 
						|
    bool hasRead = false;
 | 
						|
    bool hasDeadDef = false;
 | 
						|
    for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) {
 | 
						|
      if (!MOI->isReg() || MOI->getReg() != LI.reg)
 | 
						|
        continue;
 | 
						|
      if (MOI->readsReg())
 | 
						|
        hasRead = true;
 | 
						|
      if (MOI->isDef() && MOI->isDead())
 | 
						|
        hasDeadDef = true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (I->end.isDead()) {
 | 
						|
      if (!hasDeadDef) {
 | 
						|
        report("Instruction doesn't have a dead def operand", MI);
 | 
						|
        I->print(*OS);
 | 
						|
        *OS << " in " << LI << '\n';
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      if (!hasRead) {
 | 
						|
        report("Instruction ending live range doesn't read the register", MI);
 | 
						|
        *OS << *I << " in " << LI << '\n';
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Now check all the basic blocks in this live segment.
 | 
						|
  MachineFunction::const_iterator MFI = MBB;
 | 
						|
  // Is this live range the beginning of a non-PHIDef VN?
 | 
						|
  if (I->start == VNI->def && !VNI->isPHIDef()) {
 | 
						|
    // Not live-in to any blocks.
 | 
						|
    if (MBB == EndMBB)
 | 
						|
      return;
 | 
						|
    // Skip this block.
 | 
						|
    ++MFI;
 | 
						|
  }
 | 
						|
  for (;;) {
 | 
						|
    assert(LiveInts->isLiveInToMBB(LI, MFI));
 | 
						|
    // We don't know how to track physregs into a landing pad.
 | 
						|
    if (!TargetRegisterInfo::isVirtualRegister(LI.reg) &&
 | 
						|
        MFI->isLandingPad()) {
 | 
						|
      if (&*MFI == EndMBB)
 | 
						|
        break;
 | 
						|
      ++MFI;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Is VNI a PHI-def in the current block?
 | 
						|
    bool IsPHI = VNI->isPHIDef() &&
 | 
						|
      VNI->def == LiveInts->getMBBStartIdx(MFI);
 | 
						|
 | 
						|
    // Check that VNI is live-out of all predecessors.
 | 
						|
    for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
 | 
						|
         PE = MFI->pred_end(); PI != PE; ++PI) {
 | 
						|
      SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
 | 
						|
      const VNInfo *PVNI = LI.getVNInfoBefore(PEnd);
 | 
						|
 | 
						|
      // All predecessors must have a live-out value.
 | 
						|
      if (!PVNI) {
 | 
						|
        report("Register not marked live out of predecessor", *PI, LI);
 | 
						|
        *OS << "Valno #" << VNI->id << " live into BB#" << MFI->getNumber()
 | 
						|
            << '@' << LiveInts->getMBBStartIdx(MFI) << ", not live before "
 | 
						|
            << PEnd << '\n';
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Only PHI-defs can take different predecessor values.
 | 
						|
      if (!IsPHI && PVNI != VNI) {
 | 
						|
        report("Different value live out of predecessor", *PI, LI);
 | 
						|
        *OS << "Valno #" << PVNI->id << " live out of BB#"
 | 
						|
            << (*PI)->getNumber() << '@' << PEnd
 | 
						|
            << "\nValno #" << VNI->id << " live into BB#" << MFI->getNumber()
 | 
						|
            << '@' << LiveInts->getMBBStartIdx(MFI) << '\n';
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (&*MFI == EndMBB)
 | 
						|
      break;
 | 
						|
    ++MFI;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
 | 
						|
  for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end();
 | 
						|
       I!=E; ++I)
 | 
						|
    verifyLiveIntervalValue(LI, *I);
 | 
						|
 | 
						|
  for (LiveInterval::const_iterator I = LI.begin(), E = LI.end(); I!=E; ++I)
 | 
						|
    verifyLiveIntervalSegment(LI, I);
 | 
						|
 | 
						|
  // Check the LI only has one connected component.
 | 
						|
  if (TargetRegisterInfo::isVirtualRegister(LI.reg)) {
 | 
						|
    ConnectedVNInfoEqClasses ConEQ(*LiveInts);
 | 
						|
    unsigned NumComp = ConEQ.Classify(&LI);
 | 
						|
    if (NumComp > 1) {
 | 
						|
      report("Multiple connected components in live interval", MF, LI);
 | 
						|
      for (unsigned comp = 0; comp != NumComp; ++comp) {
 | 
						|
        *OS << comp << ": valnos";
 | 
						|
        for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
 | 
						|
             E = LI.vni_end(); I!=E; ++I)
 | 
						|
          if (comp == ConEQ.getEqClass(*I))
 | 
						|
            *OS << ' ' << (*I)->id;
 | 
						|
        *OS << '\n';
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 |