mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-17 21:35:07 +00:00
1572ba716b
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194985 91177308-0d34-0410-b5e6-96231b3b80d8
1164 lines
46 KiB
C++
1164 lines
46 KiB
C++
//===-- llvm/Constants.h - Constant class subclass definitions --*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// @file
|
|
/// This file contains the declarations for the subclasses of Constant,
|
|
/// which represent the different flavors of constant values that live in LLVM.
|
|
/// Note that Constants are immutable (once created they never change) and are
|
|
/// fully shared by structural equivalence. This means that two structurally
|
|
/// equivalent constants will always have the same address. Constant's are
|
|
/// created on demand as needed and never deleted: thus clients don't have to
|
|
/// worry about the lifetime of the objects.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_IR_CONSTANTS_H
|
|
#define LLVM_IR_CONSTANTS_H
|
|
|
|
#include "llvm/ADT/APFloat.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/OperandTraits.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
|
|
namespace llvm {
|
|
|
|
class ArrayType;
|
|
class IntegerType;
|
|
class StructType;
|
|
class PointerType;
|
|
class VectorType;
|
|
class SequentialType;
|
|
|
|
template<class ConstantClass, class TypeClass, class ValType>
|
|
struct ConstantCreator;
|
|
template<class ConstantClass, class TypeClass>
|
|
struct ConstantArrayCreator;
|
|
template<class ConstantClass, class TypeClass>
|
|
struct ConvertConstantType;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// This is the shared class of boolean and integer constants. This class
|
|
/// represents both boolean and integral constants.
|
|
/// @brief Class for constant integers.
|
|
class ConstantInt : public Constant {
|
|
virtual void anchor();
|
|
void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
|
|
ConstantInt(const ConstantInt &) LLVM_DELETED_FUNCTION;
|
|
ConstantInt(IntegerType *Ty, const APInt& V);
|
|
APInt Val;
|
|
protected:
|
|
// allocate space for exactly zero operands
|
|
void *operator new(size_t s) {
|
|
return User::operator new(s, 0);
|
|
}
|
|
public:
|
|
static ConstantInt *getTrue(LLVMContext &Context);
|
|
static ConstantInt *getFalse(LLVMContext &Context);
|
|
static Constant *getTrue(Type *Ty);
|
|
static Constant *getFalse(Type *Ty);
|
|
|
|
/// If Ty is a vector type, return a Constant with a splat of the given
|
|
/// value. Otherwise return a ConstantInt for the given value.
|
|
static Constant *get(Type *Ty, uint64_t V, bool isSigned = false);
|
|
|
|
/// Return a ConstantInt with the specified integer value for the specified
|
|
/// type. If the type is wider than 64 bits, the value will be zero-extended
|
|
/// to fit the type, unless isSigned is true, in which case the value will
|
|
/// be interpreted as a 64-bit signed integer and sign-extended to fit
|
|
/// the type.
|
|
/// @brief Get a ConstantInt for a specific value.
|
|
static ConstantInt *get(IntegerType *Ty, uint64_t V,
|
|
bool isSigned = false);
|
|
|
|
/// Return a ConstantInt with the specified value for the specified type. The
|
|
/// value V will be canonicalized to a an unsigned APInt. Accessing it with
|
|
/// either getSExtValue() or getZExtValue() will yield a correctly sized and
|
|
/// signed value for the type Ty.
|
|
/// @brief Get a ConstantInt for a specific signed value.
|
|
static ConstantInt *getSigned(IntegerType *Ty, int64_t V);
|
|
static Constant *getSigned(Type *Ty, int64_t V);
|
|
|
|
/// Return a ConstantInt with the specified value and an implied Type. The
|
|
/// type is the integer type that corresponds to the bit width of the value.
|
|
static ConstantInt *get(LLVMContext &Context, const APInt &V);
|
|
|
|
/// Return a ConstantInt constructed from the string strStart with the given
|
|
/// radix.
|
|
static ConstantInt *get(IntegerType *Ty, StringRef Str,
|
|
uint8_t radix);
|
|
|
|
/// If Ty is a vector type, return a Constant with a splat of the given
|
|
/// value. Otherwise return a ConstantInt for the given value.
|
|
static Constant *get(Type* Ty, const APInt& V);
|
|
|
|
/// Return the constant as an APInt value reference. This allows clients to
|
|
/// obtain a copy of the value, with all its precision in tact.
|
|
/// @brief Return the constant's value.
|
|
inline const APInt &getValue() const {
|
|
return Val;
|
|
}
|
|
|
|
/// getBitWidth - Return the bitwidth of this constant.
|
|
unsigned getBitWidth() const { return Val.getBitWidth(); }
|
|
|
|
/// Return the constant as a 64-bit unsigned integer value after it
|
|
/// has been zero extended as appropriate for the type of this constant. Note
|
|
/// that this method can assert if the value does not fit in 64 bits.
|
|
/// @brief Return the zero extended value.
|
|
inline uint64_t getZExtValue() const {
|
|
return Val.getZExtValue();
|
|
}
|
|
|
|
/// Return the constant as a 64-bit integer value after it has been sign
|
|
/// extended as appropriate for the type of this constant. Note that
|
|
/// this method can assert if the value does not fit in 64 bits.
|
|
/// @brief Return the sign extended value.
|
|
inline int64_t getSExtValue() const {
|
|
return Val.getSExtValue();
|
|
}
|
|
|
|
/// A helper method that can be used to determine if the constant contained
|
|
/// within is equal to a constant. This only works for very small values,
|
|
/// because this is all that can be represented with all types.
|
|
/// @brief Determine if this constant's value is same as an unsigned char.
|
|
bool equalsInt(uint64_t V) const {
|
|
return Val == V;
|
|
}
|
|
|
|
/// getType - Specialize the getType() method to always return an IntegerType,
|
|
/// which reduces the amount of casting needed in parts of the compiler.
|
|
///
|
|
inline IntegerType *getType() const {
|
|
return cast<IntegerType>(Value::getType());
|
|
}
|
|
|
|
/// This static method returns true if the type Ty is big enough to
|
|
/// represent the value V. This can be used to avoid having the get method
|
|
/// assert when V is larger than Ty can represent. Note that there are two
|
|
/// versions of this method, one for unsigned and one for signed integers.
|
|
/// Although ConstantInt canonicalizes everything to an unsigned integer,
|
|
/// the signed version avoids callers having to convert a signed quantity
|
|
/// to the appropriate unsigned type before calling the method.
|
|
/// @returns true if V is a valid value for type Ty
|
|
/// @brief Determine if the value is in range for the given type.
|
|
static bool isValueValidForType(Type *Ty, uint64_t V);
|
|
static bool isValueValidForType(Type *Ty, int64_t V);
|
|
|
|
bool isNegative() const { return Val.isNegative(); }
|
|
|
|
/// This is just a convenience method to make client code smaller for a
|
|
/// common code. It also correctly performs the comparison without the
|
|
/// potential for an assertion from getZExtValue().
|
|
bool isZero() const {
|
|
return Val == 0;
|
|
}
|
|
|
|
/// This is just a convenience method to make client code smaller for a
|
|
/// common case. It also correctly performs the comparison without the
|
|
/// potential for an assertion from getZExtValue().
|
|
/// @brief Determine if the value is one.
|
|
bool isOne() const {
|
|
return Val == 1;
|
|
}
|
|
|
|
/// This function will return true iff every bit in this constant is set
|
|
/// to true.
|
|
/// @returns true iff this constant's bits are all set to true.
|
|
/// @brief Determine if the value is all ones.
|
|
bool isMinusOne() const {
|
|
return Val.isAllOnesValue();
|
|
}
|
|
|
|
/// This function will return true iff this constant represents the largest
|
|
/// value that may be represented by the constant's type.
|
|
/// @returns true iff this is the largest value that may be represented
|
|
/// by this type.
|
|
/// @brief Determine if the value is maximal.
|
|
bool isMaxValue(bool isSigned) const {
|
|
if (isSigned)
|
|
return Val.isMaxSignedValue();
|
|
else
|
|
return Val.isMaxValue();
|
|
}
|
|
|
|
/// This function will return true iff this constant represents the smallest
|
|
/// value that may be represented by this constant's type.
|
|
/// @returns true if this is the smallest value that may be represented by
|
|
/// this type.
|
|
/// @brief Determine if the value is minimal.
|
|
bool isMinValue(bool isSigned) const {
|
|
if (isSigned)
|
|
return Val.isMinSignedValue();
|
|
else
|
|
return Val.isMinValue();
|
|
}
|
|
|
|
/// This function will return true iff this constant represents a value with
|
|
/// active bits bigger than 64 bits or a value greater than the given uint64_t
|
|
/// value.
|
|
/// @returns true iff this constant is greater or equal to the given number.
|
|
/// @brief Determine if the value is greater or equal to the given number.
|
|
bool uge(uint64_t Num) const {
|
|
return Val.getActiveBits() > 64 || Val.getZExtValue() >= Num;
|
|
}
|
|
|
|
/// getLimitedValue - If the value is smaller than the specified limit,
|
|
/// return it, otherwise return the limit value. This causes the value
|
|
/// to saturate to the limit.
|
|
/// @returns the min of the value of the constant and the specified value
|
|
/// @brief Get the constant's value with a saturation limit
|
|
uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
|
|
return Val.getLimitedValue(Limit);
|
|
}
|
|
|
|
/// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
|
|
static bool classof(const Value *V) {
|
|
return V->getValueID() == ConstantIntVal;
|
|
}
|
|
};
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// ConstantFP - Floating Point Values [float, double]
|
|
///
|
|
class ConstantFP : public Constant {
|
|
APFloat Val;
|
|
virtual void anchor();
|
|
void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
|
|
ConstantFP(const ConstantFP &) LLVM_DELETED_FUNCTION;
|
|
friend class LLVMContextImpl;
|
|
protected:
|
|
ConstantFP(Type *Ty, const APFloat& V);
|
|
protected:
|
|
// allocate space for exactly zero operands
|
|
void *operator new(size_t s) {
|
|
return User::operator new(s, 0);
|
|
}
|
|
public:
|
|
/// Floating point negation must be implemented with f(x) = -0.0 - x. This
|
|
/// method returns the negative zero constant for floating point or vector
|
|
/// floating point types; for all other types, it returns the null value.
|
|
static Constant *getZeroValueForNegation(Type *Ty);
|
|
|
|
/// get() - This returns a ConstantFP, or a vector containing a splat of a
|
|
/// ConstantFP, for the specified value in the specified type. This should
|
|
/// only be used for simple constant values like 2.0/1.0 etc, that are
|
|
/// known-valid both as host double and as the target format.
|
|
static Constant *get(Type* Ty, double V);
|
|
static Constant *get(Type* Ty, StringRef Str);
|
|
static ConstantFP *get(LLVMContext &Context, const APFloat &V);
|
|
static ConstantFP *getNegativeZero(Type* Ty);
|
|
static ConstantFP *getInfinity(Type *Ty, bool Negative = false);
|
|
|
|
/// isValueValidForType - return true if Ty is big enough to represent V.
|
|
static bool isValueValidForType(Type *Ty, const APFloat &V);
|
|
inline const APFloat &getValueAPF() const { return Val; }
|
|
|
|
/// isZero - Return true if the value is positive or negative zero.
|
|
bool isZero() const { return Val.isZero(); }
|
|
|
|
/// isNegative - Return true if the sign bit is set.
|
|
bool isNegative() const { return Val.isNegative(); }
|
|
|
|
/// isNaN - Return true if the value is a NaN.
|
|
bool isNaN() const { return Val.isNaN(); }
|
|
|
|
/// isExactlyValue - We don't rely on operator== working on double values, as
|
|
/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
|
|
/// As such, this method can be used to do an exact bit-for-bit comparison of
|
|
/// two floating point values. The version with a double operand is retained
|
|
/// because it's so convenient to write isExactlyValue(2.0), but please use
|
|
/// it only for simple constants.
|
|
bool isExactlyValue(const APFloat &V) const;
|
|
|
|
bool isExactlyValue(double V) const {
|
|
bool ignored;
|
|
APFloat FV(V);
|
|
FV.convert(Val.getSemantics(), APFloat::rmNearestTiesToEven, &ignored);
|
|
return isExactlyValue(FV);
|
|
}
|
|
/// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Value *V) {
|
|
return V->getValueID() == ConstantFPVal;
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// ConstantAggregateZero - All zero aggregate value
|
|
///
|
|
class ConstantAggregateZero : public Constant {
|
|
void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
|
|
ConstantAggregateZero(const ConstantAggregateZero &) LLVM_DELETED_FUNCTION;
|
|
protected:
|
|
explicit ConstantAggregateZero(Type *ty)
|
|
: Constant(ty, ConstantAggregateZeroVal, 0, 0) {}
|
|
protected:
|
|
// allocate space for exactly zero operands
|
|
void *operator new(size_t s) {
|
|
return User::operator new(s, 0);
|
|
}
|
|
public:
|
|
static ConstantAggregateZero *get(Type *Ty);
|
|
|
|
virtual void destroyConstant();
|
|
|
|
/// getSequentialElement - If this CAZ has array or vector type, return a zero
|
|
/// with the right element type.
|
|
Constant *getSequentialElement() const;
|
|
|
|
/// getStructElement - If this CAZ has struct type, return a zero with the
|
|
/// right element type for the specified element.
|
|
Constant *getStructElement(unsigned Elt) const;
|
|
|
|
/// getElementValue - Return a zero of the right value for the specified GEP
|
|
/// index.
|
|
Constant *getElementValue(Constant *C) const;
|
|
|
|
/// getElementValue - Return a zero of the right value for the specified GEP
|
|
/// index.
|
|
Constant *getElementValue(unsigned Idx) const;
|
|
|
|
/// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
///
|
|
static bool classof(const Value *V) {
|
|
return V->getValueID() == ConstantAggregateZeroVal;
|
|
}
|
|
};
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// ConstantArray - Constant Array Declarations
|
|
///
|
|
class ConstantArray : public Constant {
|
|
friend struct ConstantArrayCreator<ConstantArray, ArrayType>;
|
|
ConstantArray(const ConstantArray &) LLVM_DELETED_FUNCTION;
|
|
protected:
|
|
ConstantArray(ArrayType *T, ArrayRef<Constant *> Val);
|
|
public:
|
|
// ConstantArray accessors
|
|
static Constant *get(ArrayType *T, ArrayRef<Constant*> V);
|
|
|
|
/// Transparently provide more efficient getOperand methods.
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
|
|
|
|
/// getType - Specialize the getType() method to always return an ArrayType,
|
|
/// which reduces the amount of casting needed in parts of the compiler.
|
|
///
|
|
inline ArrayType *getType() const {
|
|
return cast<ArrayType>(Value::getType());
|
|
}
|
|
|
|
virtual void destroyConstant();
|
|
virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U);
|
|
|
|
/// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Value *V) {
|
|
return V->getValueID() == ConstantArrayVal;
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct OperandTraits<ConstantArray> :
|
|
public VariadicOperandTraits<ConstantArray> {
|
|
};
|
|
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantArray, Constant)
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ConstantStruct - Constant Struct Declarations
|
|
//
|
|
class ConstantStruct : public Constant {
|
|
friend struct ConstantArrayCreator<ConstantStruct, StructType>;
|
|
ConstantStruct(const ConstantStruct &) LLVM_DELETED_FUNCTION;
|
|
protected:
|
|
ConstantStruct(StructType *T, ArrayRef<Constant *> Val);
|
|
public:
|
|
// ConstantStruct accessors
|
|
static Constant *get(StructType *T, ArrayRef<Constant*> V);
|
|
static Constant *get(StructType *T, ...) END_WITH_NULL;
|
|
|
|
/// getAnon - Return an anonymous struct that has the specified
|
|
/// elements. If the struct is possibly empty, then you must specify a
|
|
/// context.
|
|
static Constant *getAnon(ArrayRef<Constant*> V, bool Packed = false) {
|
|
return get(getTypeForElements(V, Packed), V);
|
|
}
|
|
static Constant *getAnon(LLVMContext &Ctx,
|
|
ArrayRef<Constant*> V, bool Packed = false) {
|
|
return get(getTypeForElements(Ctx, V, Packed), V);
|
|
}
|
|
|
|
/// getTypeForElements - Return an anonymous struct type to use for a constant
|
|
/// with the specified set of elements. The list must not be empty.
|
|
static StructType *getTypeForElements(ArrayRef<Constant*> V,
|
|
bool Packed = false);
|
|
/// getTypeForElements - This version of the method allows an empty list.
|
|
static StructType *getTypeForElements(LLVMContext &Ctx,
|
|
ArrayRef<Constant*> V,
|
|
bool Packed = false);
|
|
|
|
/// Transparently provide more efficient getOperand methods.
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
|
|
|
|
/// getType() specialization - Reduce amount of casting...
|
|
///
|
|
inline StructType *getType() const {
|
|
return cast<StructType>(Value::getType());
|
|
}
|
|
|
|
virtual void destroyConstant();
|
|
virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U);
|
|
|
|
/// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Value *V) {
|
|
return V->getValueID() == ConstantStructVal;
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct OperandTraits<ConstantStruct> :
|
|
public VariadicOperandTraits<ConstantStruct> {
|
|
};
|
|
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantStruct, Constant)
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// ConstantVector - Constant Vector Declarations
|
|
///
|
|
class ConstantVector : public Constant {
|
|
friend struct ConstantArrayCreator<ConstantVector, VectorType>;
|
|
ConstantVector(const ConstantVector &) LLVM_DELETED_FUNCTION;
|
|
protected:
|
|
ConstantVector(VectorType *T, ArrayRef<Constant *> Val);
|
|
public:
|
|
// ConstantVector accessors
|
|
static Constant *get(ArrayRef<Constant*> V);
|
|
|
|
/// getSplat - Return a ConstantVector with the specified constant in each
|
|
/// element.
|
|
static Constant *getSplat(unsigned NumElts, Constant *Elt);
|
|
|
|
/// Transparently provide more efficient getOperand methods.
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
|
|
|
|
/// getType - Specialize the getType() method to always return a VectorType,
|
|
/// which reduces the amount of casting needed in parts of the compiler.
|
|
///
|
|
inline VectorType *getType() const {
|
|
return cast<VectorType>(Value::getType());
|
|
}
|
|
|
|
/// getSplatValue - If this is a splat constant, meaning that all of the
|
|
/// elements have the same value, return that value. Otherwise return NULL.
|
|
Constant *getSplatValue() const;
|
|
|
|
virtual void destroyConstant();
|
|
virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U);
|
|
|
|
/// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Value *V) {
|
|
return V->getValueID() == ConstantVectorVal;
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct OperandTraits<ConstantVector> :
|
|
public VariadicOperandTraits<ConstantVector> {
|
|
};
|
|
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantVector, Constant)
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// ConstantPointerNull - a constant pointer value that points to null
|
|
///
|
|
class ConstantPointerNull : public Constant {
|
|
void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
|
|
ConstantPointerNull(const ConstantPointerNull &) LLVM_DELETED_FUNCTION;
|
|
protected:
|
|
explicit ConstantPointerNull(PointerType *T)
|
|
: Constant(T,
|
|
Value::ConstantPointerNullVal, 0, 0) {}
|
|
|
|
protected:
|
|
// allocate space for exactly zero operands
|
|
void *operator new(size_t s) {
|
|
return User::operator new(s, 0);
|
|
}
|
|
public:
|
|
/// get() - Static factory methods - Return objects of the specified value
|
|
static ConstantPointerNull *get(PointerType *T);
|
|
|
|
virtual void destroyConstant();
|
|
|
|
/// getType - Specialize the getType() method to always return an PointerType,
|
|
/// which reduces the amount of casting needed in parts of the compiler.
|
|
///
|
|
inline PointerType *getType() const {
|
|
return cast<PointerType>(Value::getType());
|
|
}
|
|
|
|
/// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Value *V) {
|
|
return V->getValueID() == ConstantPointerNullVal;
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// ConstantDataSequential - A vector or array constant whose element type is a
|
|
/// simple 1/2/4/8-byte integer or float/double, and whose elements are just
|
|
/// simple data values (i.e. ConstantInt/ConstantFP). This Constant node has no
|
|
/// operands because it stores all of the elements of the constant as densely
|
|
/// packed data, instead of as Value*'s.
|
|
///
|
|
/// This is the common base class of ConstantDataArray and ConstantDataVector.
|
|
///
|
|
class ConstantDataSequential : public Constant {
|
|
friend class LLVMContextImpl;
|
|
/// DataElements - A pointer to the bytes underlying this constant (which is
|
|
/// owned by the uniquing StringMap).
|
|
const char *DataElements;
|
|
|
|
/// Next - This forms a link list of ConstantDataSequential nodes that have
|
|
/// the same value but different type. For example, 0,0,0,1 could be a 4
|
|
/// element array of i8, or a 1-element array of i32. They'll both end up in
|
|
/// the same StringMap bucket, linked up.
|
|
ConstantDataSequential *Next;
|
|
void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
|
|
ConstantDataSequential(const ConstantDataSequential &) LLVM_DELETED_FUNCTION;
|
|
protected:
|
|
explicit ConstantDataSequential(Type *ty, ValueTy VT, const char *Data)
|
|
: Constant(ty, VT, 0, 0), DataElements(Data), Next(0) {}
|
|
~ConstantDataSequential() { delete Next; }
|
|
|
|
static Constant *getImpl(StringRef Bytes, Type *Ty);
|
|
|
|
protected:
|
|
// allocate space for exactly zero operands.
|
|
void *operator new(size_t s) {
|
|
return User::operator new(s, 0);
|
|
}
|
|
public:
|
|
|
|
/// isElementTypeCompatible - Return true if a ConstantDataSequential can be
|
|
/// formed with a vector or array of the specified element type.
|
|
/// ConstantDataArray only works with normal float and int types that are
|
|
/// stored densely in memory, not with things like i42 or x86_f80.
|
|
static bool isElementTypeCompatible(const Type *Ty);
|
|
|
|
/// getElementAsInteger - If this is a sequential container of integers (of
|
|
/// any size), return the specified element in the low bits of a uint64_t.
|
|
uint64_t getElementAsInteger(unsigned i) const;
|
|
|
|
/// getElementAsAPFloat - If this is a sequential container of floating point
|
|
/// type, return the specified element as an APFloat.
|
|
APFloat getElementAsAPFloat(unsigned i) const;
|
|
|
|
/// getElementAsFloat - If this is an sequential container of floats, return
|
|
/// the specified element as a float.
|
|
float getElementAsFloat(unsigned i) const;
|
|
|
|
/// getElementAsDouble - If this is an sequential container of doubles, return
|
|
/// the specified element as a double.
|
|
double getElementAsDouble(unsigned i) const;
|
|
|
|
/// getElementAsConstant - Return a Constant for a specified index's element.
|
|
/// Note that this has to compute a new constant to return, so it isn't as
|
|
/// efficient as getElementAsInteger/Float/Double.
|
|
Constant *getElementAsConstant(unsigned i) const;
|
|
|
|
/// getType - Specialize the getType() method to always return a
|
|
/// SequentialType, which reduces the amount of casting needed in parts of the
|
|
/// compiler.
|
|
inline SequentialType *getType() const {
|
|
return cast<SequentialType>(Value::getType());
|
|
}
|
|
|
|
/// getElementType - Return the element type of the array/vector.
|
|
Type *getElementType() const;
|
|
|
|
/// getNumElements - Return the number of elements in the array or vector.
|
|
unsigned getNumElements() const;
|
|
|
|
/// getElementByteSize - Return the size (in bytes) of each element in the
|
|
/// array/vector. The size of the elements is known to be a multiple of one
|
|
/// byte.
|
|
uint64_t getElementByteSize() const;
|
|
|
|
|
|
/// isString - This method returns true if this is an array of i8.
|
|
bool isString() const;
|
|
|
|
/// isCString - This method returns true if the array "isString", ends with a
|
|
/// nul byte, and does not contains any other nul bytes.
|
|
bool isCString() const;
|
|
|
|
/// getAsString - If this array is isString(), then this method returns the
|
|
/// array as a StringRef. Otherwise, it asserts out.
|
|
///
|
|
StringRef getAsString() const {
|
|
assert(isString() && "Not a string");
|
|
return getRawDataValues();
|
|
}
|
|
|
|
/// getAsCString - If this array is isCString(), then this method returns the
|
|
/// array (without the trailing null byte) as a StringRef. Otherwise, it
|
|
/// asserts out.
|
|
///
|
|
StringRef getAsCString() const {
|
|
assert(isCString() && "Isn't a C string");
|
|
StringRef Str = getAsString();
|
|
return Str.substr(0, Str.size()-1);
|
|
}
|
|
|
|
/// getRawDataValues - Return the raw, underlying, bytes of this data. Note
|
|
/// that this is an extremely tricky thing to work with, as it exposes the
|
|
/// host endianness of the data elements.
|
|
StringRef getRawDataValues() const;
|
|
|
|
virtual void destroyConstant();
|
|
|
|
/// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
///
|
|
static bool classof(const Value *V) {
|
|
return V->getValueID() == ConstantDataArrayVal ||
|
|
V->getValueID() == ConstantDataVectorVal;
|
|
}
|
|
private:
|
|
const char *getElementPointer(unsigned Elt) const;
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// ConstantDataArray - An array constant whose element type is a simple
|
|
/// 1/2/4/8-byte integer or float/double, and whose elements are just simple
|
|
/// data values (i.e. ConstantInt/ConstantFP). This Constant node has no
|
|
/// operands because it stores all of the elements of the constant as densely
|
|
/// packed data, instead of as Value*'s.
|
|
class ConstantDataArray : public ConstantDataSequential {
|
|
void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
|
|
ConstantDataArray(const ConstantDataArray &) LLVM_DELETED_FUNCTION;
|
|
virtual void anchor();
|
|
friend class ConstantDataSequential;
|
|
explicit ConstantDataArray(Type *ty, const char *Data)
|
|
: ConstantDataSequential(ty, ConstantDataArrayVal, Data) {}
|
|
protected:
|
|
// allocate space for exactly zero operands.
|
|
void *operator new(size_t s) {
|
|
return User::operator new(s, 0);
|
|
}
|
|
public:
|
|
|
|
/// get() constructors - Return a constant with array type with an element
|
|
/// count and element type matching the ArrayRef passed in. Note that this
|
|
/// can return a ConstantAggregateZero object.
|
|
static Constant *get(LLVMContext &Context, ArrayRef<uint8_t> Elts);
|
|
static Constant *get(LLVMContext &Context, ArrayRef<uint16_t> Elts);
|
|
static Constant *get(LLVMContext &Context, ArrayRef<uint32_t> Elts);
|
|
static Constant *get(LLVMContext &Context, ArrayRef<uint64_t> Elts);
|
|
static Constant *get(LLVMContext &Context, ArrayRef<float> Elts);
|
|
static Constant *get(LLVMContext &Context, ArrayRef<double> Elts);
|
|
|
|
/// getString - This method constructs a CDS and initializes it with a text
|
|
/// string. The default behavior (AddNull==true) causes a null terminator to
|
|
/// be placed at the end of the array (increasing the length of the string by
|
|
/// one more than the StringRef would normally indicate. Pass AddNull=false
|
|
/// to disable this behavior.
|
|
static Constant *getString(LLVMContext &Context, StringRef Initializer,
|
|
bool AddNull = true);
|
|
|
|
/// getType - Specialize the getType() method to always return an ArrayType,
|
|
/// which reduces the amount of casting needed in parts of the compiler.
|
|
///
|
|
inline ArrayType *getType() const {
|
|
return cast<ArrayType>(Value::getType());
|
|
}
|
|
|
|
/// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
///
|
|
static bool classof(const Value *V) {
|
|
return V->getValueID() == ConstantDataArrayVal;
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// ConstantDataVector - A vector constant whose element type is a simple
|
|
/// 1/2/4/8-byte integer or float/double, and whose elements are just simple
|
|
/// data values (i.e. ConstantInt/ConstantFP). This Constant node has no
|
|
/// operands because it stores all of the elements of the constant as densely
|
|
/// packed data, instead of as Value*'s.
|
|
class ConstantDataVector : public ConstantDataSequential {
|
|
void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
|
|
ConstantDataVector(const ConstantDataVector &) LLVM_DELETED_FUNCTION;
|
|
virtual void anchor();
|
|
friend class ConstantDataSequential;
|
|
explicit ConstantDataVector(Type *ty, const char *Data)
|
|
: ConstantDataSequential(ty, ConstantDataVectorVal, Data) {}
|
|
protected:
|
|
// allocate space for exactly zero operands.
|
|
void *operator new(size_t s) {
|
|
return User::operator new(s, 0);
|
|
}
|
|
public:
|
|
|
|
/// get() constructors - Return a constant with vector type with an element
|
|
/// count and element type matching the ArrayRef passed in. Note that this
|
|
/// can return a ConstantAggregateZero object.
|
|
static Constant *get(LLVMContext &Context, ArrayRef<uint8_t> Elts);
|
|
static Constant *get(LLVMContext &Context, ArrayRef<uint16_t> Elts);
|
|
static Constant *get(LLVMContext &Context, ArrayRef<uint32_t> Elts);
|
|
static Constant *get(LLVMContext &Context, ArrayRef<uint64_t> Elts);
|
|
static Constant *get(LLVMContext &Context, ArrayRef<float> Elts);
|
|
static Constant *get(LLVMContext &Context, ArrayRef<double> Elts);
|
|
|
|
/// getSplat - Return a ConstantVector with the specified constant in each
|
|
/// element. The specified constant has to be a of a compatible type (i8/i16/
|
|
/// i32/i64/float/double) and must be a ConstantFP or ConstantInt.
|
|
static Constant *getSplat(unsigned NumElts, Constant *Elt);
|
|
|
|
/// getSplatValue - If this is a splat constant, meaning that all of the
|
|
/// elements have the same value, return that value. Otherwise return NULL.
|
|
Constant *getSplatValue() const;
|
|
|
|
/// getType - Specialize the getType() method to always return a VectorType,
|
|
/// which reduces the amount of casting needed in parts of the compiler.
|
|
///
|
|
inline VectorType *getType() const {
|
|
return cast<VectorType>(Value::getType());
|
|
}
|
|
|
|
/// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
///
|
|
static bool classof(const Value *V) {
|
|
return V->getValueID() == ConstantDataVectorVal;
|
|
}
|
|
};
|
|
|
|
|
|
|
|
/// BlockAddress - The address of a basic block.
|
|
///
|
|
class BlockAddress : public Constant {
|
|
void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
|
|
void *operator new(size_t s) { return User::operator new(s, 2); }
|
|
BlockAddress(Function *F, BasicBlock *BB);
|
|
public:
|
|
/// get - Return a BlockAddress for the specified function and basic block.
|
|
static BlockAddress *get(Function *F, BasicBlock *BB);
|
|
|
|
/// get - Return a BlockAddress for the specified basic block. The basic
|
|
/// block must be embedded into a function.
|
|
static BlockAddress *get(BasicBlock *BB);
|
|
|
|
/// Transparently provide more efficient getOperand methods.
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
|
|
Function *getFunction() const { return (Function*)Op<0>().get(); }
|
|
BasicBlock *getBasicBlock() const { return (BasicBlock*)Op<1>().get(); }
|
|
|
|
virtual void destroyConstant();
|
|
virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U);
|
|
|
|
/// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const Value *V) {
|
|
return V->getValueID() == BlockAddressVal;
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct OperandTraits<BlockAddress> :
|
|
public FixedNumOperandTraits<BlockAddress, 2> {
|
|
};
|
|
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BlockAddress, Value)
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// ConstantExpr - a constant value that is initialized with an expression using
|
|
/// other constant values.
|
|
///
|
|
/// This class uses the standard Instruction opcodes to define the various
|
|
/// constant expressions. The Opcode field for the ConstantExpr class is
|
|
/// maintained in the Value::SubclassData field.
|
|
class ConstantExpr : public Constant {
|
|
friend struct ConstantCreator<ConstantExpr,Type,
|
|
std::pair<unsigned, std::vector<Constant*> > >;
|
|
friend struct ConvertConstantType<ConstantExpr, Type>;
|
|
|
|
protected:
|
|
ConstantExpr(Type *ty, unsigned Opcode, Use *Ops, unsigned NumOps)
|
|
: Constant(ty, ConstantExprVal, Ops, NumOps) {
|
|
// Operation type (an Instruction opcode) is stored as the SubclassData.
|
|
setValueSubclassData(Opcode);
|
|
}
|
|
|
|
public:
|
|
// Static methods to construct a ConstantExpr of different kinds. Note that
|
|
// these methods may return a object that is not an instance of the
|
|
// ConstantExpr class, because they will attempt to fold the constant
|
|
// expression into something simpler if possible.
|
|
|
|
/// getAlignOf constant expr - computes the alignment of a type in a target
|
|
/// independent way (Note: the return type is an i64).
|
|
static Constant *getAlignOf(Type *Ty);
|
|
|
|
/// getSizeOf constant expr - computes the (alloc) size of a type (in
|
|
/// address-units, not bits) in a target independent way (Note: the return
|
|
/// type is an i64).
|
|
///
|
|
static Constant *getSizeOf(Type *Ty);
|
|
|
|
/// getOffsetOf constant expr - computes the offset of a struct field in a
|
|
/// target independent way (Note: the return type is an i64).
|
|
///
|
|
static Constant *getOffsetOf(StructType *STy, unsigned FieldNo);
|
|
|
|
/// getOffsetOf constant expr - This is a generalized form of getOffsetOf,
|
|
/// which supports any aggregate type, and any Constant index.
|
|
///
|
|
static Constant *getOffsetOf(Type *Ty, Constant *FieldNo);
|
|
|
|
static Constant *getNeg(Constant *C, bool HasNUW = false, bool HasNSW =false);
|
|
static Constant *getFNeg(Constant *C);
|
|
static Constant *getNot(Constant *C);
|
|
static Constant *getAdd(Constant *C1, Constant *C2,
|
|
bool HasNUW = false, bool HasNSW = false);
|
|
static Constant *getFAdd(Constant *C1, Constant *C2);
|
|
static Constant *getSub(Constant *C1, Constant *C2,
|
|
bool HasNUW = false, bool HasNSW = false);
|
|
static Constant *getFSub(Constant *C1, Constant *C2);
|
|
static Constant *getMul(Constant *C1, Constant *C2,
|
|
bool HasNUW = false, bool HasNSW = false);
|
|
static Constant *getFMul(Constant *C1, Constant *C2);
|
|
static Constant *getUDiv(Constant *C1, Constant *C2, bool isExact = false);
|
|
static Constant *getSDiv(Constant *C1, Constant *C2, bool isExact = false);
|
|
static Constant *getFDiv(Constant *C1, Constant *C2);
|
|
static Constant *getURem(Constant *C1, Constant *C2);
|
|
static Constant *getSRem(Constant *C1, Constant *C2);
|
|
static Constant *getFRem(Constant *C1, Constant *C2);
|
|
static Constant *getAnd(Constant *C1, Constant *C2);
|
|
static Constant *getOr(Constant *C1, Constant *C2);
|
|
static Constant *getXor(Constant *C1, Constant *C2);
|
|
static Constant *getShl(Constant *C1, Constant *C2,
|
|
bool HasNUW = false, bool HasNSW = false);
|
|
static Constant *getLShr(Constant *C1, Constant *C2, bool isExact = false);
|
|
static Constant *getAShr(Constant *C1, Constant *C2, bool isExact = false);
|
|
static Constant *getTrunc (Constant *C, Type *Ty);
|
|
static Constant *getSExt (Constant *C, Type *Ty);
|
|
static Constant *getZExt (Constant *C, Type *Ty);
|
|
static Constant *getFPTrunc (Constant *C, Type *Ty);
|
|
static Constant *getFPExtend(Constant *C, Type *Ty);
|
|
static Constant *getUIToFP (Constant *C, Type *Ty);
|
|
static Constant *getSIToFP (Constant *C, Type *Ty);
|
|
static Constant *getFPToUI (Constant *C, Type *Ty);
|
|
static Constant *getFPToSI (Constant *C, Type *Ty);
|
|
static Constant *getPtrToInt(Constant *C, Type *Ty);
|
|
static Constant *getIntToPtr(Constant *C, Type *Ty);
|
|
static Constant *getBitCast (Constant *C, Type *Ty);
|
|
static Constant *getAddrSpaceCast(Constant *C, Type *Ty);
|
|
|
|
static Constant *getNSWNeg(Constant *C) { return getNeg(C, false, true); }
|
|
static Constant *getNUWNeg(Constant *C) { return getNeg(C, true, false); }
|
|
static Constant *getNSWAdd(Constant *C1, Constant *C2) {
|
|
return getAdd(C1, C2, false, true);
|
|
}
|
|
static Constant *getNUWAdd(Constant *C1, Constant *C2) {
|
|
return getAdd(C1, C2, true, false);
|
|
}
|
|
static Constant *getNSWSub(Constant *C1, Constant *C2) {
|
|
return getSub(C1, C2, false, true);
|
|
}
|
|
static Constant *getNUWSub(Constant *C1, Constant *C2) {
|
|
return getSub(C1, C2, true, false);
|
|
}
|
|
static Constant *getNSWMul(Constant *C1, Constant *C2) {
|
|
return getMul(C1, C2, false, true);
|
|
}
|
|
static Constant *getNUWMul(Constant *C1, Constant *C2) {
|
|
return getMul(C1, C2, true, false);
|
|
}
|
|
static Constant *getNSWShl(Constant *C1, Constant *C2) {
|
|
return getShl(C1, C2, false, true);
|
|
}
|
|
static Constant *getNUWShl(Constant *C1, Constant *C2) {
|
|
return getShl(C1, C2, true, false);
|
|
}
|
|
static Constant *getExactSDiv(Constant *C1, Constant *C2) {
|
|
return getSDiv(C1, C2, true);
|
|
}
|
|
static Constant *getExactUDiv(Constant *C1, Constant *C2) {
|
|
return getUDiv(C1, C2, true);
|
|
}
|
|
static Constant *getExactAShr(Constant *C1, Constant *C2) {
|
|
return getAShr(C1, C2, true);
|
|
}
|
|
static Constant *getExactLShr(Constant *C1, Constant *C2) {
|
|
return getLShr(C1, C2, true);
|
|
}
|
|
|
|
/// getBinOpIdentity - Return the identity for the given binary operation,
|
|
/// i.e. a constant C such that X op C = X and C op X = X for every X. It
|
|
/// returns null if the operator doesn't have an identity.
|
|
static Constant *getBinOpIdentity(unsigned Opcode, Type *Ty);
|
|
|
|
/// getBinOpAbsorber - Return the absorbing element for the given binary
|
|
/// operation, i.e. a constant C such that X op C = C and C op X = C for
|
|
/// every X. For example, this returns zero for integer multiplication.
|
|
/// It returns null if the operator doesn't have an absorbing element.
|
|
static Constant *getBinOpAbsorber(unsigned Opcode, Type *Ty);
|
|
|
|
/// Transparently provide more efficient getOperand methods.
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
|
|
|
|
// @brief Convenience function for getting one of the casting operations
|
|
// using a CastOps opcode.
|
|
static Constant *getCast(
|
|
unsigned ops, ///< The opcode for the conversion
|
|
Constant *C, ///< The constant to be converted
|
|
Type *Ty ///< The type to which the constant is converted
|
|
);
|
|
|
|
// @brief Create a ZExt or BitCast cast constant expression
|
|
static Constant *getZExtOrBitCast(
|
|
Constant *C, ///< The constant to zext or bitcast
|
|
Type *Ty ///< The type to zext or bitcast C to
|
|
);
|
|
|
|
// @brief Create a SExt or BitCast cast constant expression
|
|
static Constant *getSExtOrBitCast(
|
|
Constant *C, ///< The constant to sext or bitcast
|
|
Type *Ty ///< The type to sext or bitcast C to
|
|
);
|
|
|
|
// @brief Create a Trunc or BitCast cast constant expression
|
|
static Constant *getTruncOrBitCast(
|
|
Constant *C, ///< The constant to trunc or bitcast
|
|
Type *Ty ///< The type to trunc or bitcast C to
|
|
);
|
|
|
|
/// @brief Create a BitCast or a PtrToInt cast constant expression
|
|
static Constant *getPointerCast(
|
|
Constant *C, ///< The pointer value to be casted (operand 0)
|
|
Type *Ty ///< The type to which cast should be made
|
|
);
|
|
|
|
/// @brief Create a ZExt, Bitcast or Trunc for integer -> integer casts
|
|
static Constant *getIntegerCast(
|
|
Constant *C, ///< The integer constant to be casted
|
|
Type *Ty, ///< The integer type to cast to
|
|
bool isSigned ///< Whether C should be treated as signed or not
|
|
);
|
|
|
|
/// @brief Create a FPExt, Bitcast or FPTrunc for fp -> fp casts
|
|
static Constant *getFPCast(
|
|
Constant *C, ///< The integer constant to be casted
|
|
Type *Ty ///< The integer type to cast to
|
|
);
|
|
|
|
/// @brief Return true if this is a convert constant expression
|
|
bool isCast() const;
|
|
|
|
/// @brief Return true if this is a compare constant expression
|
|
bool isCompare() const;
|
|
|
|
/// @brief Return true if this is an insertvalue or extractvalue expression,
|
|
/// and the getIndices() method may be used.
|
|
bool hasIndices() const;
|
|
|
|
/// @brief Return true if this is a getelementptr expression and all
|
|
/// the index operands are compile-time known integers within the
|
|
/// corresponding notional static array extents. Note that this is
|
|
/// not equivalant to, a subset of, or a superset of the "inbounds"
|
|
/// property.
|
|
bool isGEPWithNoNotionalOverIndexing() const;
|
|
|
|
/// Select constant expr
|
|
///
|
|
static Constant *getSelect(Constant *C, Constant *V1, Constant *V2);
|
|
|
|
/// get - Return a binary or shift operator constant expression,
|
|
/// folding if possible.
|
|
///
|
|
static Constant *get(unsigned Opcode, Constant *C1, Constant *C2,
|
|
unsigned Flags = 0);
|
|
|
|
/// @brief Return an ICmp or FCmp comparison operator constant expression.
|
|
static Constant *getCompare(unsigned short pred, Constant *C1, Constant *C2);
|
|
|
|
/// get* - Return some common constants without having to
|
|
/// specify the full Instruction::OPCODE identifier.
|
|
///
|
|
static Constant *getICmp(unsigned short pred, Constant *LHS, Constant *RHS);
|
|
static Constant *getFCmp(unsigned short pred, Constant *LHS, Constant *RHS);
|
|
|
|
/// Getelementptr form. Value* is only accepted for convenience;
|
|
/// all elements must be Constant's.
|
|
///
|
|
static Constant *getGetElementPtr(Constant *C,
|
|
ArrayRef<Constant *> IdxList,
|
|
bool InBounds = false) {
|
|
return getGetElementPtr(C, makeArrayRef((Value * const *)IdxList.data(),
|
|
IdxList.size()),
|
|
InBounds);
|
|
}
|
|
static Constant *getGetElementPtr(Constant *C,
|
|
Constant *Idx,
|
|
bool InBounds = false) {
|
|
// This form of the function only exists to avoid ambiguous overload
|
|
// warnings about whether to convert Idx to ArrayRef<Constant *> or
|
|
// ArrayRef<Value *>.
|
|
return getGetElementPtr(C, cast<Value>(Idx), InBounds);
|
|
}
|
|
static Constant *getGetElementPtr(Constant *C,
|
|
ArrayRef<Value *> IdxList,
|
|
bool InBounds = false);
|
|
|
|
/// Create an "inbounds" getelementptr. See the documentation for the
|
|
/// "inbounds" flag in LangRef.html for details.
|
|
static Constant *getInBoundsGetElementPtr(Constant *C,
|
|
ArrayRef<Constant *> IdxList) {
|
|
return getGetElementPtr(C, IdxList, true);
|
|
}
|
|
static Constant *getInBoundsGetElementPtr(Constant *C,
|
|
Constant *Idx) {
|
|
// This form of the function only exists to avoid ambiguous overload
|
|
// warnings about whether to convert Idx to ArrayRef<Constant *> or
|
|
// ArrayRef<Value *>.
|
|
return getGetElementPtr(C, Idx, true);
|
|
}
|
|
static Constant *getInBoundsGetElementPtr(Constant *C,
|
|
ArrayRef<Value *> IdxList) {
|
|
return getGetElementPtr(C, IdxList, true);
|
|
}
|
|
|
|
static Constant *getExtractElement(Constant *Vec, Constant *Idx);
|
|
static Constant *getInsertElement(Constant *Vec, Constant *Elt,Constant *Idx);
|
|
static Constant *getShuffleVector(Constant *V1, Constant *V2, Constant *Mask);
|
|
static Constant *getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs);
|
|
static Constant *getInsertValue(Constant *Agg, Constant *Val,
|
|
ArrayRef<unsigned> Idxs);
|
|
|
|
/// getOpcode - Return the opcode at the root of this constant expression
|
|
unsigned getOpcode() const { return getSubclassDataFromValue(); }
|
|
|
|
/// getPredicate - Return the ICMP or FCMP predicate value. Assert if this is
|
|
/// not an ICMP or FCMP constant expression.
|
|
unsigned getPredicate() const;
|
|
|
|
/// getIndices - Assert that this is an insertvalue or exactvalue
|
|
/// expression and return the list of indices.
|
|
ArrayRef<unsigned> getIndices() const;
|
|
|
|
/// getOpcodeName - Return a string representation for an opcode.
|
|
const char *getOpcodeName() const;
|
|
|
|
/// getWithOperandReplaced - Return a constant expression identical to this
|
|
/// one, but with the specified operand set to the specified value.
|
|
Constant *getWithOperandReplaced(unsigned OpNo, Constant *Op) const;
|
|
|
|
/// getWithOperands - This returns the current constant expression with the
|
|
/// operands replaced with the specified values. The specified array must
|
|
/// have the same number of operands as our current one.
|
|
Constant *getWithOperands(ArrayRef<Constant*> Ops) const {
|
|
return getWithOperands(Ops, getType());
|
|
}
|
|
|
|
/// getWithOperands - This returns the current constant expression with the
|
|
/// operands replaced with the specified values and with the specified result
|
|
/// type. The specified array must have the same number of operands as our
|
|
/// current one.
|
|
Constant *getWithOperands(ArrayRef<Constant*> Ops, Type *Ty) const;
|
|
|
|
/// getAsInstruction - Returns an Instruction which implements the same operation
|
|
/// as this ConstantExpr. The instruction is not linked to any basic block.
|
|
///
|
|
/// A better approach to this could be to have a constructor for Instruction
|
|
/// which would take a ConstantExpr parameter, but that would have spread
|
|
/// implementation details of ConstantExpr outside of Constants.cpp, which
|
|
/// would make it harder to remove ConstantExprs altogether.
|
|
Instruction *getAsInstruction();
|
|
|
|
virtual void destroyConstant();
|
|
virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U);
|
|
|
|
/// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const Value *V) {
|
|
return V->getValueID() == ConstantExprVal;
|
|
}
|
|
|
|
private:
|
|
// Shadow Value::setValueSubclassData with a private forwarding method so that
|
|
// subclasses cannot accidentally use it.
|
|
void setValueSubclassData(unsigned short D) {
|
|
Value::setValueSubclassData(D);
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct OperandTraits<ConstantExpr> :
|
|
public VariadicOperandTraits<ConstantExpr, 1> {
|
|
};
|
|
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantExpr, Constant)
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// UndefValue - 'undef' values are things that do not have specified contents.
|
|
/// These are used for a variety of purposes, including global variable
|
|
/// initializers and operands to instructions. 'undef' values can occur with
|
|
/// any first-class type.
|
|
///
|
|
/// Undef values aren't exactly constants; if they have multiple uses, they
|
|
/// can appear to have different bit patterns at each use. See
|
|
/// LangRef.html#undefvalues for details.
|
|
///
|
|
class UndefValue : public Constant {
|
|
void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
|
|
UndefValue(const UndefValue &) LLVM_DELETED_FUNCTION;
|
|
protected:
|
|
explicit UndefValue(Type *T) : Constant(T, UndefValueVal, 0, 0) {}
|
|
protected:
|
|
// allocate space for exactly zero operands
|
|
void *operator new(size_t s) {
|
|
return User::operator new(s, 0);
|
|
}
|
|
public:
|
|
/// get() - Static factory methods - Return an 'undef' object of the specified
|
|
/// type.
|
|
///
|
|
static UndefValue *get(Type *T);
|
|
|
|
/// getSequentialElement - If this Undef has array or vector type, return a
|
|
/// undef with the right element type.
|
|
UndefValue *getSequentialElement() const;
|
|
|
|
/// getStructElement - If this undef has struct type, return a undef with the
|
|
/// right element type for the specified element.
|
|
UndefValue *getStructElement(unsigned Elt) const;
|
|
|
|
/// getElementValue - Return an undef of the right value for the specified GEP
|
|
/// index.
|
|
UndefValue *getElementValue(Constant *C) const;
|
|
|
|
/// getElementValue - Return an undef of the right value for the specified GEP
|
|
/// index.
|
|
UndefValue *getElementValue(unsigned Idx) const;
|
|
|
|
virtual void destroyConstant();
|
|
|
|
/// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Value *V) {
|
|
return V->getValueID() == UndefValueVal;
|
|
}
|
|
};
|
|
|
|
} // End llvm namespace
|
|
|
|
#endif
|