mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-17 21:35:07 +00:00
edd2b49134
it is completely optional, and sink the logic for handling the preserved analysis set into it. This allows us to implement the delegation logic desired in the proxy module analysis for the function analysis manager where if the proxy itself is preserved we assume the set of functions hasn't changed and we do a fine grained invalidation by walking the functions in the module and running the invalidate for them all at the manager level and letting it try to invalidate any passes. This in turn makes it blindingly obvious why we should hoist the invalidate trait and have two collections of results. That allows handling invalidation for almost all analyses without indirect calls and it allows short circuiting when the preserved set is all. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195338 91177308-0d34-0410-b5e6-96231b3b80d8
673 lines
25 KiB
C++
673 lines
25 KiB
C++
//===- PassManager.h - Pass management infrastructure -----------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
///
|
|
/// This header defines various interfaces for pass management in LLVM. There
|
|
/// is no "pass" interface in LLVM per se. Instead, an instance of any class
|
|
/// which supports a method to 'run' it over a unit of IR can be used as
|
|
/// a pass. A pass manager is generally a tool to collect a sequence of passes
|
|
/// which run over a particular IR construct, and run each of them in sequence
|
|
/// over each such construct in the containing IR construct. As there is no
|
|
/// containing IR construct for a Module, a manager for passes over modules
|
|
/// forms the base case which runs its managed passes in sequence over the
|
|
/// single module provided.
|
|
///
|
|
/// The core IR library provides managers for running passes over
|
|
/// modules and functions.
|
|
///
|
|
/// * FunctionPassManager can run over a Module, runs each pass over
|
|
/// a Function.
|
|
/// * ModulePassManager must be directly run, runs each pass over the Module.
|
|
///
|
|
/// Note that the implementations of the pass managers use concept-based
|
|
/// polymorphism as outlined in the "Value Semantics and Concept-based
|
|
/// Polymorphism" talk (or its abbreviated sibling "Inheritance Is The Base
|
|
/// Class of Evil") by Sean Parent:
|
|
/// * http://github.com/sean-parent/sean-parent.github.com/wiki/Papers-and-Presentations
|
|
/// * http://www.youtube.com/watch?v=_BpMYeUFXv8
|
|
/// * http://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/polymorphic_ptr.h"
|
|
#include "llvm/Support/type_traits.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include <list>
|
|
#include <vector>
|
|
|
|
namespace llvm {
|
|
|
|
class Module;
|
|
class Function;
|
|
|
|
/// \brief An abstract set of preserved analyses following a transformation pass
|
|
/// run.
|
|
///
|
|
/// When a transformation pass is run, it can return a set of analyses whose
|
|
/// results were preserved by that transformation. The default set is "none",
|
|
/// and preserving analyses must be done explicitly.
|
|
///
|
|
/// There is also an explicit all state which can be used (for example) when
|
|
/// the IR is not mutated at all.
|
|
class PreservedAnalyses {
|
|
public:
|
|
/// \brief Convenience factory function for the empty preserved set.
|
|
static PreservedAnalyses none() { return PreservedAnalyses(); }
|
|
|
|
/// \brief Construct a special preserved set that preserves all passes.
|
|
static PreservedAnalyses all() {
|
|
PreservedAnalyses PA;
|
|
PA.PreservedPassIDs.insert((void *)AllPassesID);
|
|
return PA;
|
|
}
|
|
|
|
PreservedAnalyses &operator=(PreservedAnalyses Arg) {
|
|
swap(Arg);
|
|
return *this;
|
|
}
|
|
|
|
void swap(PreservedAnalyses &Arg) {
|
|
PreservedPassIDs.swap(Arg.PreservedPassIDs);
|
|
}
|
|
|
|
/// \brief Mark a particular pass as preserved, adding it to the set.
|
|
template <typename PassT> void preserve() {
|
|
if (!areAllPreserved())
|
|
PreservedPassIDs.insert(PassT::ID());
|
|
}
|
|
|
|
/// \brief Intersect this set with another in place.
|
|
///
|
|
/// This is a mutating operation on this preserved set, removing all
|
|
/// preserved passes which are not also preserved in the argument.
|
|
void intersect(const PreservedAnalyses &Arg) {
|
|
if (Arg.areAllPreserved())
|
|
return;
|
|
if (areAllPreserved()) {
|
|
PreservedPassIDs = Arg.PreservedPassIDs;
|
|
return;
|
|
}
|
|
for (SmallPtrSet<void *, 2>::const_iterator I = PreservedPassIDs.begin(),
|
|
E = PreservedPassIDs.end();
|
|
I != E; ++I)
|
|
if (!Arg.PreservedPassIDs.count(*I))
|
|
PreservedPassIDs.erase(*I);
|
|
}
|
|
|
|
#if LLVM_HAS_RVALUE_REFERENCES
|
|
/// \brief Intersect this set with a temporary other set in place.
|
|
///
|
|
/// This is a mutating operation on this preserved set, removing all
|
|
/// preserved passes which are not also preserved in the argument.
|
|
void intersect(PreservedAnalyses &&Arg) {
|
|
if (Arg.areAllPreserved())
|
|
return;
|
|
if (areAllPreserved()) {
|
|
PreservedPassIDs = std::move(Arg.PreservedPassIDs);
|
|
return;
|
|
}
|
|
for (SmallPtrSet<void *, 2>::const_iterator I = PreservedPassIDs.begin(),
|
|
E = PreservedPassIDs.end();
|
|
I != E; ++I)
|
|
if (!Arg.PreservedPassIDs.count(*I))
|
|
PreservedPassIDs.erase(*I);
|
|
}
|
|
#endif
|
|
|
|
/// \brief Query whether a pass is marked as preserved by this set.
|
|
template <typename PassT> bool preserved() const {
|
|
return preserved(PassT::ID());
|
|
}
|
|
|
|
/// \brief Query whether an abstract pass ID is marked as preserved by this
|
|
/// set.
|
|
bool preserved(void *PassID) const {
|
|
return PreservedPassIDs.count((void *)AllPassesID) ||
|
|
PreservedPassIDs.count(PassID);
|
|
}
|
|
|
|
private:
|
|
// Note that this must not be -1 or -2 as those are already used by the
|
|
// SmallPtrSet.
|
|
static const uintptr_t AllPassesID = (intptr_t)-3;
|
|
|
|
bool areAllPreserved() const { return PreservedPassIDs.count((void *)AllPassesID); }
|
|
|
|
SmallPtrSet<void *, 2> PreservedPassIDs;
|
|
};
|
|
|
|
inline void swap(PreservedAnalyses &LHS, PreservedAnalyses &RHS) {
|
|
LHS.swap(RHS);
|
|
}
|
|
|
|
/// \brief Implementation details of the pass manager interfaces.
|
|
namespace detail {
|
|
|
|
/// \brief Template for the abstract base class used to dispatch
|
|
/// polymorphically over pass objects.
|
|
template <typename T> struct PassConcept {
|
|
// Boiler plate necessary for the container of derived classes.
|
|
virtual ~PassConcept() {}
|
|
virtual PassConcept *clone() = 0;
|
|
|
|
/// \brief The polymorphic API which runs the pass over a given IR entity.
|
|
virtual PreservedAnalyses run(T Arg) = 0;
|
|
};
|
|
|
|
/// \brief A template wrapper used to implement the polymorphic API.
|
|
///
|
|
/// Can be instantiated for any object which provides a \c run method
|
|
/// accepting a \c T. It requires the pass to be a copyable
|
|
/// object.
|
|
template <typename T, typename PassT> struct PassModel : PassConcept<T> {
|
|
PassModel(PassT Pass) : Pass(llvm_move(Pass)) {}
|
|
virtual PassModel *clone() { return new PassModel(Pass); }
|
|
virtual PreservedAnalyses run(T Arg) { return Pass.run(Arg); }
|
|
PassT Pass;
|
|
};
|
|
|
|
/// \brief Abstract concept of an analysis result.
|
|
///
|
|
/// This concept is parameterized over the IR unit that this result pertains
|
|
/// to.
|
|
template <typename IRUnitT> struct AnalysisResultConcept {
|
|
virtual ~AnalysisResultConcept() {}
|
|
virtual AnalysisResultConcept *clone() = 0;
|
|
|
|
/// \brief Method to try and mark a result as invalid.
|
|
///
|
|
/// When the outer analysis manager detects a change in some underlying
|
|
/// unit of the IR, it will call this method on all of the results cached.
|
|
///
|
|
/// This method also receives a set of preserved analyses which can be used
|
|
/// to avoid invalidation because the pass which changed the underlying IR
|
|
/// took care to update or preserve the analysis result in some way.
|
|
///
|
|
/// \returns true if the result is indeed invalid (the default).
|
|
virtual bool invalidate(IRUnitT *IR, const PreservedAnalyses &PA) = 0;
|
|
};
|
|
|
|
/// \brief Wrapper to model the analysis result concept.
|
|
///
|
|
/// By default, this will implement the invalidate method with a trivial
|
|
/// implementation so that the actual analysis result doesn't need to provide
|
|
/// an invalidation handler. It is only selected when the invalidation handler
|
|
/// is not part of the ResultT's interface.
|
|
template <typename IRUnitT, typename PassT, typename ResultT,
|
|
bool HasInvalidateHandler = false>
|
|
struct AnalysisResultModel : AnalysisResultConcept<IRUnitT> {
|
|
AnalysisResultModel(ResultT Result) : Result(llvm_move(Result)) {}
|
|
virtual AnalysisResultModel *clone() {
|
|
return new AnalysisResultModel(Result);
|
|
}
|
|
|
|
/// \brief The model bases invalidation soley on being in the preserved set.
|
|
//
|
|
// FIXME: We should actually use two different concepts for analysis results
|
|
// rather than two different models, and avoid the indirect function call for
|
|
// ones that use the trivial behavior.
|
|
virtual bool invalidate(IRUnitT *, const PreservedAnalyses &PA) {
|
|
return !PA.preserved(PassT::ID());
|
|
}
|
|
|
|
ResultT Result;
|
|
};
|
|
|
|
/// \brief Wrapper to model the analysis result concept.
|
|
///
|
|
/// Can wrap any type which implements a suitable invalidate member and model
|
|
/// the AnalysisResultConcept for the AnalysisManager.
|
|
template <typename IRUnitT, typename PassT, typename ResultT>
|
|
struct AnalysisResultModel<IRUnitT, PassT, ResultT,
|
|
true> : AnalysisResultConcept<IRUnitT> {
|
|
AnalysisResultModel(ResultT Result) : Result(llvm_move(Result)) {}
|
|
virtual AnalysisResultModel *clone() {
|
|
return new AnalysisResultModel(Result);
|
|
}
|
|
|
|
/// \brief The model delegates to the \c ResultT method.
|
|
virtual bool invalidate(IRUnitT *IR, const PreservedAnalyses &PA) {
|
|
return Result.invalidate(IR, PA);
|
|
}
|
|
|
|
ResultT Result;
|
|
};
|
|
|
|
/// \brief SFINAE metafunction for computing whether \c ResultT provides an
|
|
/// \c invalidate member function.
|
|
template <typename IRUnitT, typename ResultT> class ResultHasInvalidateMethod {
|
|
typedef char SmallType;
|
|
struct BigType { char a, b; };
|
|
|
|
template <typename T, bool (T::*)(IRUnitT *, const PreservedAnalyses &)>
|
|
struct Checker;
|
|
|
|
template <typename T> static SmallType f(Checker<T, &T::invalidate> *);
|
|
template <typename T> static BigType f(...);
|
|
|
|
public:
|
|
enum { Value = sizeof(f<ResultT>(0)) == sizeof(SmallType) };
|
|
};
|
|
|
|
/// \brief Abstract concept of an analysis pass.
|
|
///
|
|
/// This concept is parameterized over the IR unit that it can run over and
|
|
/// produce an analysis result.
|
|
template <typename IRUnitT> struct AnalysisPassConcept {
|
|
virtual ~AnalysisPassConcept() {}
|
|
virtual AnalysisPassConcept *clone() = 0;
|
|
|
|
/// \brief Method to run this analysis over a unit of IR.
|
|
/// \returns The analysis result object to be queried by users, the caller
|
|
/// takes ownership.
|
|
virtual AnalysisResultConcept<IRUnitT> *run(IRUnitT *IR) = 0;
|
|
};
|
|
|
|
/// \brief Wrapper to model the analysis pass concept.
|
|
///
|
|
/// Can wrap any type which implements a suitable \c run method. The method
|
|
/// must accept the IRUnitT as an argument and produce an object which can be
|
|
/// wrapped in a \c AnalysisResultModel.
|
|
template <typename PassT>
|
|
struct AnalysisPassModel : AnalysisPassConcept<typename PassT::IRUnitT> {
|
|
AnalysisPassModel(PassT Pass) : Pass(llvm_move(Pass)) {}
|
|
virtual AnalysisPassModel *clone() { return new AnalysisPassModel(Pass); }
|
|
|
|
// FIXME: Replace PassT::IRUnitT with type traits when we use C++11.
|
|
typedef typename PassT::IRUnitT IRUnitT;
|
|
|
|
// FIXME: Replace PassT::Result with type traits when we use C++11.
|
|
typedef AnalysisResultModel<
|
|
IRUnitT, PassT, typename PassT::Result,
|
|
ResultHasInvalidateMethod<IRUnitT, typename PassT::Result>::Value>
|
|
ResultModelT;
|
|
|
|
/// \brief The model delegates to the \c PassT::run method.
|
|
///
|
|
/// The return is wrapped in an \c AnalysisResultModel.
|
|
virtual ResultModelT *run(IRUnitT *IR) {
|
|
return new ResultModelT(Pass.run(IR));
|
|
}
|
|
|
|
PassT Pass;
|
|
};
|
|
|
|
}
|
|
|
|
class ModuleAnalysisManager;
|
|
|
|
class ModulePassManager {
|
|
public:
|
|
explicit ModulePassManager(ModuleAnalysisManager *AM = 0) : AM(AM) {}
|
|
|
|
/// \brief Run all of the module passes in this module pass manager over
|
|
/// a module.
|
|
///
|
|
/// This method should only be called for a single module as there is the
|
|
/// expectation that the lifetime of a pass is bounded to that of a module.
|
|
PreservedAnalyses run(Module *M);
|
|
|
|
template <typename ModulePassT> void addPass(ModulePassT Pass) {
|
|
Passes.push_back(new ModulePassModel<ModulePassT>(llvm_move(Pass)));
|
|
}
|
|
|
|
private:
|
|
// Pull in the concept type and model template specialized for modules.
|
|
typedef detail::PassConcept<Module *> ModulePassConcept;
|
|
template <typename PassT>
|
|
struct ModulePassModel : detail::PassModel<Module *, PassT> {
|
|
ModulePassModel(PassT Pass) : detail::PassModel<Module *, PassT>(Pass) {}
|
|
};
|
|
|
|
ModuleAnalysisManager *AM;
|
|
std::vector<polymorphic_ptr<ModulePassConcept> > Passes;
|
|
};
|
|
|
|
class FunctionAnalysisManager;
|
|
|
|
class FunctionPassManager {
|
|
public:
|
|
explicit FunctionPassManager(FunctionAnalysisManager *AM = 0) : AM(AM) {}
|
|
|
|
template <typename FunctionPassT> void addPass(FunctionPassT Pass) {
|
|
Passes.push_back(new FunctionPassModel<FunctionPassT>(llvm_move(Pass)));
|
|
}
|
|
|
|
PreservedAnalyses run(Function *F);
|
|
|
|
private:
|
|
// Pull in the concept type and model template specialized for functions.
|
|
typedef detail::PassConcept<Function *> FunctionPassConcept;
|
|
template <typename PassT>
|
|
struct FunctionPassModel : detail::PassModel<Function *, PassT> {
|
|
FunctionPassModel(PassT Pass)
|
|
: detail::PassModel<Function *, PassT>(Pass) {}
|
|
};
|
|
|
|
FunctionAnalysisManager *AM;
|
|
std::vector<polymorphic_ptr<FunctionPassConcept> > Passes;
|
|
};
|
|
|
|
/// \brief A module analysis pass manager with lazy running and caching of
|
|
/// results.
|
|
class ModuleAnalysisManager {
|
|
public:
|
|
ModuleAnalysisManager() {}
|
|
|
|
/// \brief Get the result of an analysis pass for this module.
|
|
///
|
|
/// If there is not a valid cached result in the manager already, this will
|
|
/// re-run the analysis to produce a valid result.
|
|
template <typename PassT> const typename PassT::Result &getResult(Module *M) {
|
|
LLVM_STATIC_ASSERT((is_same<typename PassT::IRUnitT, Module>::value),
|
|
"The analysis pass must be over a Module.");
|
|
assert(ModuleAnalysisPasses.count(PassT::ID()) &&
|
|
"This analysis pass was not registered prior to being queried");
|
|
|
|
const detail::AnalysisResultConcept<Module> &ResultConcept =
|
|
getResultImpl(PassT::ID(), M);
|
|
typedef detail::AnalysisResultModel<
|
|
Module, PassT, typename PassT::Result,
|
|
detail::ResultHasInvalidateMethod<
|
|
Module, typename PassT::Result>::Value> ResultModelT;
|
|
return static_cast<const ResultModelT &>(ResultConcept).Result;
|
|
}
|
|
|
|
/// \brief Register an analysis pass with the manager.
|
|
///
|
|
/// This provides an initialized and set-up analysis pass to the
|
|
/// analysis
|
|
/// manager. Whomever is setting up analysis passes must use this to
|
|
/// populate
|
|
/// the manager with all of the analysis passes available.
|
|
template <typename PassT> void registerPass(PassT Pass) {
|
|
LLVM_STATIC_ASSERT((is_same<typename PassT::IRUnitT, Module>::value),
|
|
"The analysis pass must be over a Module.");
|
|
assert(!ModuleAnalysisPasses.count(PassT::ID()) &&
|
|
"Registered the same analysis pass twice!");
|
|
ModuleAnalysisPasses[PassT::ID()] =
|
|
new detail::AnalysisPassModel<PassT>(llvm_move(Pass));
|
|
}
|
|
|
|
/// \brief Invalidate a specific analysis pass for an IR module.
|
|
///
|
|
/// Note that the analysis result can disregard invalidation.
|
|
template <typename PassT> void invalidate(Module *M) {
|
|
LLVM_STATIC_ASSERT((is_same<typename PassT::IRUnitT, Module>::value),
|
|
"The analysis pass must be over a Module.");
|
|
assert(ModuleAnalysisPasses.count(PassT::ID()) &&
|
|
"This analysis pass was not registered prior to being invalidated");
|
|
invalidateImpl(PassT::ID(), M);
|
|
}
|
|
|
|
/// \brief Invalidate analyses cached for an IR Module.
|
|
///
|
|
/// Walk through all of the analyses pertaining to this module and invalidate
|
|
/// them unless they are preserved by the PreservedAnalyses set.
|
|
void invalidate(Module *M, const PreservedAnalyses &PA);
|
|
|
|
private:
|
|
/// \brief Get a module pass result, running the pass if necessary.
|
|
const detail::AnalysisResultConcept<Module> &getResultImpl(void *PassID,
|
|
Module *M);
|
|
|
|
/// \brief Invalidate a module pass result.
|
|
void invalidateImpl(void *PassID, Module *M);
|
|
|
|
/// \brief Map type from module analysis pass ID to pass concept pointer.
|
|
typedef DenseMap<void *,
|
|
polymorphic_ptr<detail::AnalysisPassConcept<Module> > >
|
|
ModuleAnalysisPassMapT;
|
|
|
|
/// \brief Collection of module analysis passes, indexed by ID.
|
|
ModuleAnalysisPassMapT ModuleAnalysisPasses;
|
|
|
|
/// \brief Map type from module analysis pass ID to pass result concept pointer.
|
|
typedef DenseMap<void *,
|
|
polymorphic_ptr<detail::AnalysisResultConcept<Module> > >
|
|
ModuleAnalysisResultMapT;
|
|
|
|
/// \brief Cache of computed module analysis results for this module.
|
|
ModuleAnalysisResultMapT ModuleAnalysisResults;
|
|
};
|
|
|
|
/// \brief A function analysis manager to coordinate and cache analyses run over
|
|
/// a module.
|
|
class FunctionAnalysisManager {
|
|
public:
|
|
FunctionAnalysisManager() {}
|
|
|
|
/// \brief Get the result of an analysis pass for a function.
|
|
///
|
|
/// If there is not a valid cached result in the manager already, this will
|
|
/// re-run the analysis to produce a valid result.
|
|
template <typename PassT>
|
|
const typename PassT::Result &getResult(Function *F) {
|
|
LLVM_STATIC_ASSERT((is_same<typename PassT::IRUnitT, Function>::value),
|
|
"The analysis pass must be over a Function.");
|
|
assert(FunctionAnalysisPasses.count(PassT::ID()) &&
|
|
"This analysis pass was not registered prior to being queried");
|
|
|
|
const detail::AnalysisResultConcept<Function> &ResultConcept =
|
|
getResultImpl(PassT::ID(), F);
|
|
typedef detail::AnalysisResultModel<
|
|
Function, PassT, typename PassT::Result,
|
|
detail::ResultHasInvalidateMethod<
|
|
Function, typename PassT::Result>::Value> ResultModelT;
|
|
return static_cast<const ResultModelT &>(ResultConcept).Result;
|
|
}
|
|
|
|
/// \brief Register an analysis pass with the manager.
|
|
///
|
|
/// This provides an initialized and set-up analysis pass to the
|
|
/// analysis
|
|
/// manager. Whomever is setting up analysis passes must use this to
|
|
/// populate
|
|
/// the manager with all of the analysis passes available.
|
|
template <typename PassT> void registerPass(PassT Pass) {
|
|
LLVM_STATIC_ASSERT((is_same<typename PassT::IRUnitT, Function>::value),
|
|
"The analysis pass must be over a Function.");
|
|
assert(!FunctionAnalysisPasses.count(PassT::ID()) &&
|
|
"Registered the same analysis pass twice!");
|
|
FunctionAnalysisPasses[PassT::ID()] =
|
|
new detail::AnalysisPassModel<PassT>(llvm_move(Pass));
|
|
}
|
|
|
|
/// \brief Invalidate a specific analysis pass for an IR module.
|
|
///
|
|
/// Note that the analysis result can disregard invalidation.
|
|
template <typename PassT> void invalidate(Function *F) {
|
|
LLVM_STATIC_ASSERT((is_same<typename PassT::IRUnitT, Function>::value),
|
|
"The analysis pass must be over a Function.");
|
|
assert(FunctionAnalysisPasses.count(PassT::ID()) &&
|
|
"This analysis pass was not registered prior to being invalidated");
|
|
invalidateImpl(PassT::ID(), F);
|
|
}
|
|
|
|
/// \brief Invalidate analyses cached for an IR Function.
|
|
///
|
|
/// Walk through all of the analyses cache for this IR function and
|
|
/// invalidate them unless they are preserved by the provided
|
|
/// PreservedAnalyses set.
|
|
void invalidate(Function *F, const PreservedAnalyses &PA);
|
|
|
|
/// \brief Returns true if the analysis manager has an empty results cache.
|
|
bool empty() const;
|
|
|
|
/// \brief Clear the function analysis result cache.
|
|
///
|
|
/// This routine allows cleaning up when the set of functions itself has
|
|
/// potentially changed, and thus we can't even look up a a result and
|
|
/// invalidate it directly. Notably, this does *not* call invalidate
|
|
/// functions as there is nothing to be done for them.
|
|
void clear();
|
|
|
|
private:
|
|
/// \brief Get a function pass result, running the pass if necessary.
|
|
const detail::AnalysisResultConcept<Function> &getResultImpl(void *PassID,
|
|
Function *F);
|
|
|
|
/// \brief Invalidate a function pass result.
|
|
void invalidateImpl(void *PassID, Function *F);
|
|
|
|
/// \brief Map type from function analysis pass ID to pass concept pointer.
|
|
typedef DenseMap<void *,
|
|
polymorphic_ptr<detail::AnalysisPassConcept<Function> > >
|
|
FunctionAnalysisPassMapT;
|
|
|
|
/// \brief Collection of function analysis passes, indexed by ID.
|
|
FunctionAnalysisPassMapT FunctionAnalysisPasses;
|
|
|
|
/// \brief List of function analysis pass IDs and associated concept pointers.
|
|
///
|
|
/// Requires iterators to be valid across appending new entries and arbitrary
|
|
/// erases. Provides both the pass ID and concept pointer such that it is
|
|
/// half of a bijection and provides storage for the actual result concept.
|
|
typedef std::list<std::pair<
|
|
void *, polymorphic_ptr<detail::AnalysisResultConcept<Function> > > >
|
|
FunctionAnalysisResultListT;
|
|
|
|
/// \brief Map type from function pointer to our custom list type.
|
|
typedef DenseMap<Function *, FunctionAnalysisResultListT>
|
|
FunctionAnalysisResultListMapT;
|
|
|
|
/// \brief Map from function to a list of function analysis results.
|
|
///
|
|
/// Provides linear time removal of all analysis results for a function and
|
|
/// the ultimate storage for a particular cached analysis result.
|
|
FunctionAnalysisResultListMapT FunctionAnalysisResultLists;
|
|
|
|
/// \brief Map type from a pair of analysis ID and function pointer to an
|
|
/// iterator into a particular result list.
|
|
typedef DenseMap<std::pair<void *, Function *>,
|
|
FunctionAnalysisResultListT::iterator>
|
|
FunctionAnalysisResultMapT;
|
|
|
|
/// \brief Map from an analysis ID and function to a particular cached
|
|
/// analysis result.
|
|
FunctionAnalysisResultMapT FunctionAnalysisResults;
|
|
};
|
|
|
|
/// \brief A module analysis which acts as a proxy for a function analysis
|
|
/// manager.
|
|
///
|
|
/// This primarily proxies invalidation information from the module analysis
|
|
/// manager and module pass manager to a function analysis manager. You should
|
|
/// never use a function analysis manager from within (transitively) a module
|
|
/// pass manager unless your parent module pass has received a proxy result
|
|
/// object for it.
|
|
///
|
|
/// FIXME: It might be really nice to "enforce" this (softly) by making this
|
|
/// proxy the API path to access a function analysis manager within a module
|
|
/// pass.
|
|
class FunctionAnalysisModuleProxy {
|
|
public:
|
|
typedef Module IRUnitT;
|
|
class Result;
|
|
|
|
static void *ID() { return (void *)&PassID; }
|
|
|
|
FunctionAnalysisModuleProxy(FunctionAnalysisManager &FAM) : FAM(FAM) {}
|
|
|
|
/// \brief Run the analysis pass and create our proxy result object.
|
|
///
|
|
/// This doesn't do any interesting work, it is primarily used to insert our
|
|
/// proxy result object into the module analysis cache so that we can proxy
|
|
/// invalidation to the function analysis manager.
|
|
///
|
|
/// In debug builds, it will also assert that the analysis manager is empty
|
|
/// as no queries should arrive at the function analysis manager prior to
|
|
/// this analysis being requested.
|
|
Result run(Module *M);
|
|
|
|
private:
|
|
static char PassID;
|
|
|
|
FunctionAnalysisManager &FAM;
|
|
};
|
|
|
|
/// \brief The result proxy object for the \c FunctionAnalysisModuleProxy.
|
|
///
|
|
/// See its documentation for more information.
|
|
class FunctionAnalysisModuleProxy::Result {
|
|
public:
|
|
Result(FunctionAnalysisManager &FAM) : FAM(FAM) {}
|
|
~Result();
|
|
|
|
/// \brief Handler for invalidation of the module.
|
|
///
|
|
/// If this analysis itself is preserved, then we assume that the set of \c
|
|
/// Function objects in the \c Module hasn't changed and thus we don't need
|
|
/// to invalidate *all* cached data associated with a \c Function* in the \c
|
|
/// FunctionAnalysisManager.
|
|
///
|
|
/// Regardless of whether this analysis is marked as preserved, all of the
|
|
/// analyses in the \c FunctionAnalysisManager are potentially invalidated
|
|
/// based on the set of preserved analyses.
|
|
bool invalidate(Module *M, const PreservedAnalyses &PA);
|
|
|
|
private:
|
|
FunctionAnalysisManager &FAM;
|
|
};
|
|
|
|
/// \brief Trivial adaptor that maps from a module to its functions.
|
|
///
|
|
/// Designed to allow composition of a FunctionPass(Manager) and a
|
|
/// ModulePassManager. Note that if this pass is constructed with a pointer to
|
|
/// a \c ModuleAnalysisManager it will run the \c FunctionAnalysisModuleProxy
|
|
/// analysis prior to running the function pass over the module to enable a \c
|
|
/// FunctionAnalysisManager to be used within this run safely.
|
|
template <typename FunctionPassT>
|
|
class ModuleToFunctionPassAdaptor {
|
|
public:
|
|
explicit ModuleToFunctionPassAdaptor(FunctionPassT Pass,
|
|
ModuleAnalysisManager *MAM = 0)
|
|
: Pass(llvm_move(Pass)), MAM(MAM) {}
|
|
|
|
/// \brief Runs the function pass across every function in the module.
|
|
PreservedAnalyses run(Module *M) {
|
|
if (MAM)
|
|
// Pull in the analysis proxy so that the function analysis manager is
|
|
// appropriately set up.
|
|
(void)MAM->getResult<FunctionAnalysisModuleProxy>(M);
|
|
|
|
PreservedAnalyses PA = PreservedAnalyses::all();
|
|
for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I) {
|
|
PreservedAnalyses PassPA = Pass.run(I);
|
|
PA.intersect(llvm_move(PassPA));
|
|
}
|
|
|
|
// By definition we preserve the proxy.
|
|
PA.preserve<FunctionAnalysisModuleProxy>();
|
|
return PA;
|
|
}
|
|
|
|
private:
|
|
FunctionPassT Pass;
|
|
ModuleAnalysisManager *MAM;
|
|
};
|
|
|
|
/// \brief A function to deduce a function pass type and wrap it in the
|
|
/// templated adaptor.
|
|
///
|
|
/// \param MAM is an optional \c ModuleAnalysisManager which (if provided) will
|
|
/// be queried for a \c FunctionAnalysisModuleProxy to enable the function
|
|
/// pass(es) to safely interact with a \c FunctionAnalysisManager.
|
|
template <typename FunctionPassT>
|
|
ModuleToFunctionPassAdaptor<FunctionPassT>
|
|
createModuleToFunctionPassAdaptor(FunctionPassT Pass,
|
|
ModuleAnalysisManager *MAM = 0) {
|
|
return ModuleToFunctionPassAdaptor<FunctionPassT>(llvm_move(Pass), MAM);
|
|
}
|
|
|
|
}
|