llvm-6502/lib/Target/ARM/ARMCodeEmitter.cpp

698 lines
24 KiB
C++

//===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the pass that transforms the ARM machine instructions into
// relocatable machine code.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "jit"
#include "ARM.h"
#include "ARMAddressingModes.h"
#include "ARMConstantPoolValue.h"
#include "ARMInstrInfo.h"
#include "ARMRelocations.h"
#include "ARMSubtarget.h"
#include "ARMTargetMachine.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/PassManager.h"
#include "llvm/CodeGen/MachineCodeEmitter.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
STATISTIC(NumEmitted, "Number of machine instructions emitted");
namespace {
class VISIBILITY_HIDDEN ARMCodeEmitter : public MachineFunctionPass {
ARMJITInfo *JTI;
const ARMInstrInfo *II;
const TargetData *TD;
TargetMachine &TM;
MachineCodeEmitter &MCE;
const std::vector<MachineConstantPoolEntry> *MCPEs;
public:
static char ID;
explicit ARMCodeEmitter(TargetMachine &tm, MachineCodeEmitter &mce)
: MachineFunctionPass(&ID), JTI(0), II(0), TD(0), TM(tm),
MCE(mce), MCPEs(0) {}
ARMCodeEmitter(TargetMachine &tm, MachineCodeEmitter &mce,
const ARMInstrInfo &ii, const TargetData &td)
: MachineFunctionPass(&ID), JTI(0), II(&ii), TD(&td), TM(tm),
MCE(mce), MCPEs(0) {}
bool runOnMachineFunction(MachineFunction &MF);
virtual const char *getPassName() const {
return "ARM Machine Code Emitter";
}
void emitInstruction(const MachineInstr &MI);
private:
void emitConstPoolInstruction(const MachineInstr &MI);
void emitPseudoInstruction(const MachineInstr &MI);
unsigned getMachineSoRegOpValue(const MachineInstr &MI,
const TargetInstrDesc &TID,
const MachineOperand &MO,
unsigned OpIdx);
unsigned getMachineSoImmOpValue(const MachineInstr &MI,
const TargetInstrDesc &TID,
const MachineOperand &MO);
unsigned getAddrModeSBit(const MachineInstr &MI,
const TargetInstrDesc &TID) const;
void emitDataProcessingInstruction(const MachineInstr &MI);
void emitLoadStoreInstruction(const MachineInstr &MI);
void emitMiscLoadStoreInstruction(const MachineInstr &MI);
void emitLoadStoreMultipleInstruction(const MachineInstr &MI);
void emitMulFrm1Instruction(const MachineInstr &MI);
void emitBranchInstruction(const MachineInstr &MI);
void emitMiscBranchInstruction(const MachineInstr &MI);
/// getBinaryCodeForInstr - This function, generated by the
/// CodeEmitterGenerator using TableGen, produces the binary encoding for
/// machine instructions.
///
unsigned getBinaryCodeForInstr(const MachineInstr &MI);
/// getMachineOpValue - Return binary encoding of operand. If the machine
/// operand requires relocation, record the relocation and return zero.
unsigned getMachineOpValue(const MachineInstr &MI,const MachineOperand &MO);
unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) {
return getMachineOpValue(MI, MI.getOperand(OpIdx));
}
/// getBaseOpcodeFor - Return the opcode value.
///
unsigned getBaseOpcodeFor(const TargetInstrDesc &TID) const {
return (TID.TSFlags & ARMII::OpcodeMask) >> ARMII::OpcodeShift;
}
/// getShiftOp - Return the shift opcode (bit[6:5]) of the machine operand.
///
unsigned getShiftOp(const MachineOperand &MO) const ;
/// Routines that handle operands which add machine relocations which are
/// fixed up by the JIT fixup stage.
void emitGlobalAddress(GlobalValue *GV, unsigned Reloc,
bool NeedStub);
void emitExternalSymbolAddress(const char *ES, unsigned Reloc);
void emitConstPoolAddress(unsigned CPI, unsigned Reloc,
int Disp = 0, unsigned PCAdj = 0 );
void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc,
unsigned PCAdj = 0);
void emitGlobalConstant(const Constant *CV);
void emitMachineBasicBlock(MachineBasicBlock *BB);
};
char ARMCodeEmitter::ID = 0;
}
/// createARMCodeEmitterPass - Return a pass that emits the collected ARM code
/// to the specified MCE object.
FunctionPass *llvm::createARMCodeEmitterPass(ARMTargetMachine &TM,
MachineCodeEmitter &MCE) {
return new ARMCodeEmitter(TM, MCE);
}
bool ARMCodeEmitter::runOnMachineFunction(MachineFunction &MF) {
assert((MF.getTarget().getRelocationModel() != Reloc::Default ||
MF.getTarget().getRelocationModel() != Reloc::Static) &&
"JIT relocation model must be set to static or default!");
II = ((ARMTargetMachine&)MF.getTarget()).getInstrInfo();
TD = ((ARMTargetMachine&)MF.getTarget()).getTargetData();
JTI = ((ARMTargetMachine&)MF.getTarget()).getJITInfo();
MCPEs = &MF.getConstantPool()->getConstants();
JTI->Initialize(MCPEs);
do {
DOUT << "JITTing function '" << MF.getFunction()->getName() << "'\n";
MCE.startFunction(MF);
for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
MBB != E; ++MBB) {
MCE.StartMachineBasicBlock(MBB);
for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
I != E; ++I)
emitInstruction(*I);
}
} while (MCE.finishFunction(MF));
return false;
}
/// getShiftOp - Return the shift opcode (bit[6:5]) of the machine operand.
///
unsigned ARMCodeEmitter::getShiftOp(const MachineOperand &MO) const {
switch (ARM_AM::getAM2ShiftOpc(MO.getImm())) {
default: assert(0 && "Unknown shift opc!");
case ARM_AM::asr: return 2;
case ARM_AM::lsl: return 0;
case ARM_AM::lsr: return 1;
case ARM_AM::ror:
case ARM_AM::rrx: return 3;
}
return 0;
}
/// getMachineOpValue - Return binary encoding of operand. If the machine
/// operand requires relocation, record the relocation and return zero.
unsigned ARMCodeEmitter::getMachineOpValue(const MachineInstr &MI,
const MachineOperand &MO) {
if (MO.isReg())
return ARMRegisterInfo::getRegisterNumbering(MO.getReg());
else if (MO.isImm())
return static_cast<unsigned>(MO.getImm());
else if (MO.isGlobal())
emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true);
else if (MO.isSymbol())
emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_relative);
else if (MO.isCPI())
emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
else if (MO.isJTI())
emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative);
else if (MO.isMBB())
emitMachineBasicBlock(MO.getMBB());
else {
cerr << "ERROR: Unknown type of MachineOperand: " << MO << "\n";
abort();
}
return 0;
}
/// emitGlobalAddress - Emit the specified address to the code stream.
///
void ARMCodeEmitter::emitGlobalAddress(GlobalValue *GV,
unsigned Reloc, bool NeedStub) {
MCE.addRelocation(MachineRelocation::getGV(MCE.getCurrentPCOffset(),
Reloc, GV, 0, NeedStub));
}
/// emitExternalSymbolAddress - Arrange for the address of an external symbol to
/// be emitted to the current location in the function, and allow it to be PC
/// relative.
void ARMCodeEmitter::emitExternalSymbolAddress(const char *ES, unsigned Reloc) {
MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
Reloc, ES));
}
/// emitConstPoolAddress - Arrange for the address of an constant pool
/// to be emitted to the current location in the function, and allow it to be PC
/// relative.
void ARMCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc,
int Disp /* = 0 */,
unsigned PCAdj /* = 0 */) {
// Tell JIT emitter we'll resolve the address.
MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
Reloc, CPI, PCAdj, true));
}
/// emitJumpTableAddress - Arrange for the address of a jump table to
/// be emitted to the current location in the function, and allow it to be PC
/// relative.
void ARMCodeEmitter::emitJumpTableAddress(unsigned JTIndex, unsigned Reloc,
unsigned PCAdj /* = 0 */) {
MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
Reloc, JTIndex, PCAdj));
}
/// emitMachineBasicBlock - Emit the specified address basic block.
void ARMCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB) {
MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
ARM::reloc_arm_branch, BB));
}
void ARMCodeEmitter::emitInstruction(const MachineInstr &MI) {
DOUT << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI;
NumEmitted++; // Keep track of the # of mi's emitted
switch (MI.getDesc().TSFlags & ARMII::FormMask) {
default:
assert(0 && "Unhandled instruction encoding format!");
break;
case ARMII::Pseudo:
emitPseudoInstruction(MI);
break;
case ARMII::DPFrm:
case ARMII::DPSoRegFrm:
emitDataProcessingInstruction(MI);
break;
case ARMII::LdFrm:
case ARMII::StFrm:
emitLoadStoreInstruction(MI);
break;
case ARMII::LdMiscFrm:
case ARMII::StMiscFrm:
emitMiscLoadStoreInstruction(MI);
break;
case ARMII::LdMulFrm:
case ARMII::StMulFrm:
emitLoadStoreMultipleInstruction(MI);
break;
case ARMII::MulFrm1:
emitMulFrm1Instruction(MI);
break;
case ARMII::Branch:
emitBranchInstruction(MI);
break;
case ARMII::BranchMisc:
emitMiscBranchInstruction(MI);
break;
}
}
void ARMCodeEmitter::emitConstPoolInstruction(const MachineInstr &MI) {
unsigned CPI = MI.getOperand(0).getImm();
unsigned CPIndex = MI.getOperand(1).getIndex();
const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex];
// Remember the CONSTPOOL_ENTRY address for later relocation.
JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue());
// Emit constpool island entry. In most cases, the actual values will be
// resolved and relocated after code emission.
if (MCPE.isMachineConstantPoolEntry()) {
ARMConstantPoolValue *ACPV =
static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
DOUT << "\t** ARM constant pool #" << CPI << " @ "
<< (void*)MCE.getCurrentPCValue() << " " << *ACPV << "\n";
GlobalValue *GV = ACPV->getGV();
if (GV) {
assert(!ACPV->isStub() && "Don't know how to deal this yet!");
MCE.addRelocation(MachineRelocation::getGV(MCE.getCurrentPCOffset(),
ARM::reloc_arm_machine_cp_entry,
GV, CPIndex, false));
} else {
assert(!ACPV->isNonLazyPointer() && "Don't know how to deal this yet!");
emitExternalSymbolAddress(ACPV->getSymbol(), ARM::reloc_arm_absolute);
}
MCE.emitWordLE(0);
} else {
Constant *CV = MCPE.Val.ConstVal;
DOUT << "\t** Constant pool #" << CPI << " @ "
<< (void*)MCE.getCurrentPCValue() << " " << *CV << "\n";
if (GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
emitGlobalAddress(GV, ARM::reloc_arm_absolute, false);
MCE.emitWordLE(0);
} else {
assert(CV->getType()->isInteger() &&
"Not expecting non-integer constpool entries yet!");
const ConstantInt *CI = dyn_cast<ConstantInt>(CV);
uint32_t Val = *(uint32_t*)CI->getValue().getRawData();
MCE.emitWordLE(Val);
}
}
}
void ARMCodeEmitter::emitPseudoInstruction(const MachineInstr &MI) {
unsigned Opcode = MI.getDesc().Opcode;
switch (Opcode) {
default:
abort(); // FIXME:
case ARM::CONSTPOOL_ENTRY:
emitConstPoolInstruction(MI);
break;
case ARM::PICADD: {
// Remember of the address of the PC label for relocation later.
const MachineOperand &MO2 = MI.getOperand(2);
DOUT << "\t** LPC" << MO2.getImm() << " @ "
<< (void*)MCE.getCurrentPCValue() << '\n';
JTI->addPCLabelAddr(MO2.getImm(), MCE.getCurrentPCValue());
// PICADD is just an add instruction that implicitly read pc.
emitDataProcessingInstruction(MI);
break;
}
}
}
unsigned ARMCodeEmitter::getMachineSoRegOpValue(const MachineInstr &MI,
const TargetInstrDesc &TID,
const MachineOperand &MO,
unsigned OpIdx) {
unsigned Binary = getMachineOpValue(MI, MO);
const MachineOperand &MO1 = MI.getOperand(OpIdx + 1);
const MachineOperand &MO2 = MI.getOperand(OpIdx + 2);
ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm());
// Encode the shift opcode.
unsigned SBits = 0;
unsigned Rs = MO1.getReg();
if (Rs) {
// Set shift operand (bit[7:4]).
// LSL - 0001
// LSR - 0011
// ASR - 0101
// ROR - 0111
// RRX - 0110 and bit[11:8] clear.
switch (SOpc) {
default: assert(0 && "Unknown shift opc!");
case ARM_AM::lsl: SBits = 0x1; break;
case ARM_AM::lsr: SBits = 0x3; break;
case ARM_AM::asr: SBits = 0x5; break;
case ARM_AM::ror: SBits = 0x7; break;
case ARM_AM::rrx: SBits = 0x6; break;
}
} else {
// Set shift operand (bit[6:4]).
// LSL - 000
// LSR - 010
// ASR - 100
// ROR - 110
switch (SOpc) {
default: assert(0 && "Unknown shift opc!");
case ARM_AM::lsl: SBits = 0x0; break;
case ARM_AM::lsr: SBits = 0x2; break;
case ARM_AM::asr: SBits = 0x4; break;
case ARM_AM::ror: SBits = 0x6; break;
}
}
Binary |= SBits << 4;
if (SOpc == ARM_AM::rrx)
return Binary;
// Encode the shift operation Rs or shift_imm (except rrx).
if (Rs) {
// Encode Rs bit[11:8].
assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
return Binary |
(ARMRegisterInfo::getRegisterNumbering(Rs) << ARMII::RegRsShift);
}
// Encode shift_imm bit[11:7].
return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7;
}
unsigned ARMCodeEmitter::getMachineSoImmOpValue(const MachineInstr &MI,
const TargetInstrDesc &TID,
const MachineOperand &MO) {
unsigned SoImm = MO.getImm();
// Encode rotate_imm.
unsigned Binary = ARM_AM::getSOImmValRot(SoImm) << ARMII::RotImmShift;
// Encode immed_8.
Binary |= ARM_AM::getSOImmVal(SoImm);
return Binary;
}
unsigned ARMCodeEmitter::getAddrModeSBit(const MachineInstr &MI,
const TargetInstrDesc &TID) const {
for (unsigned i = MI.getNumOperands(), e = TID.getNumOperands(); i != e; --i){
const MachineOperand &MO = MI.getOperand(i-1);
if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)
return 1 << ARMII::S_BitShift;
}
return 0;
}
void ARMCodeEmitter::emitDataProcessingInstruction(const MachineInstr &MI) {
const TargetInstrDesc &TID = MI.getDesc();
if (TID.getOpcode() == ARM::MOVi2pieces)
abort(); // FIXME
// Part of binary is determined by TableGn.
unsigned Binary = getBinaryCodeForInstr(MI);
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << 28;
// Encode S bit if MI modifies CPSR.
Binary |= getAddrModeSBit(MI, TID);
// Encode register def if there is one.
unsigned NumDefs = TID.getNumDefs();
unsigned OpIdx = 0;
if (NumDefs) {
Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdShift;
++OpIdx;
}
// Encode first non-shifter register operand if there is one.
bool isUnary = TID.TSFlags & ARMII::UnaryDP;
if (!isUnary) {
if (TID.getOpcode() == ARM::PICADD)
// Special handling for PICADD. It implicitly uses PC register.
Binary |= (ARMRegisterInfo::getRegisterNumbering(ARM::PC)
<< ARMII::RegRnShift);
else {
Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift;
++OpIdx;
}
}
// Encode shifter operand.
const MachineOperand &MO = MI.getOperand(OpIdx);
if ((TID.TSFlags & ARMII::FormMask) == ARMII::DPSoRegFrm) {
// Encode SoReg.
MCE.emitWordLE(Binary | getMachineSoRegOpValue(MI, TID, MO, OpIdx));
return;
}
if (MO.isReg()) {
// Encode register Rm.
MCE.emitWordLE(Binary | ARMRegisterInfo::getRegisterNumbering(MO.getReg()));
return;
}
// Encode so_imm.
// Set bit I(25) to identify this is the immediate form of <shifter_op>
Binary |= 1 << ARMII::I_BitShift;
Binary |= getMachineSoImmOpValue(MI, TID, MO);
MCE.emitWordLE(Binary);
}
void ARMCodeEmitter::emitLoadStoreInstruction(const MachineInstr &MI) {
const TargetInstrDesc &TID = MI.getDesc();
// Part of binary is determined by TableGn.
unsigned Binary = getBinaryCodeForInstr(MI);
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << 28;
// Set first operand
Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
// Set second operand
Binary |= getMachineOpValue(MI, 1) << ARMII::RegRnShift;
const MachineOperand &MO2 = MI.getOperand(2);
const MachineOperand &MO3 = MI.getOperand(3);
// Set bit U(23) according to sign of immed value (positive or negative).
Binary |= ((ARM_AM::getAM2Op(MO3.getImm()) == ARM_AM::add ? 1 : 0) <<
ARMII::U_BitShift);
if (!MO2.getReg()) { // is immediate
if (ARM_AM::getAM2Offset(MO3.getImm()))
// Set the value of offset_12 field
Binary |= ARM_AM::getAM2Offset(MO3.getImm());
MCE.emitWordLE(Binary);
return;
}
// Set bit I(25), because this is not in immediate enconding.
Binary |= 1 << ARMII::I_BitShift;
assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg()));
// Set bit[3:0] to the corresponding Rm register
Binary |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg());
// if this instr is in scaled register offset/index instruction, set
// shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
if (unsigned ShImm = ARM_AM::getAM2Offset(MO3.getImm())) {
Binary |= getShiftOp(MO3) << 5; // shift
Binary |= ShImm << 7; // shift_immed
}
MCE.emitWordLE(Binary);
}
void ARMCodeEmitter::emitMiscLoadStoreInstruction(const MachineInstr &MI) {
const TargetInstrDesc &TID = MI.getDesc();
// Part of binary is determined by TableGn.
unsigned Binary = getBinaryCodeForInstr(MI);
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << 28;
// Set first operand
Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
// Set second operand
Binary |= getMachineOpValue(MI, 1) << ARMII::RegRnShift;
const MachineOperand &MO2 = MI.getOperand(2);
const MachineOperand &MO3 = MI.getOperand(3);
// Set bit U(23) according to sign of immed value (positive or negative)
Binary |= ((ARM_AM::getAM2Op(MO3.getImm()) == ARM_AM::add ? 1 : 0) <<
ARMII::U_BitShift);
// If this instr is in register offset/index encoding, set bit[3:0]
// to the corresponding Rm register.
if (MO2.getReg()) {
Binary |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg());
MCE.emitWordLE(Binary);
return;
}
// if this instr is in immediate offset/index encoding, set bit 22 to 1
if (unsigned ImmOffs = ARM_AM::getAM3Offset(MO3.getImm())) {
Binary |= 1 << 22;
// Set operands
Binary |= (ImmOffs >> 4) << 8; // immedH
Binary |= (ImmOffs & ~0xF); // immedL
}
MCE.emitWordLE(Binary);
}
void ARMCodeEmitter::emitLoadStoreMultipleInstruction(const MachineInstr &MI) {
const TargetInstrDesc &TID = MI.getDesc();
// Part of binary is determined by TableGn.
unsigned Binary = getBinaryCodeForInstr(MI);
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << 28;
// Set first operand
Binary |= getMachineOpValue(MI, 0) << ARMII::RegRnShift;
// Set addressing mode by modifying bits U(23) and P(24)
// IA - Increment after - bit U = 1 and bit P = 0
// IB - Increment before - bit U = 1 and bit P = 1
// DA - Decrement after - bit U = 0 and bit P = 0
// DB - Decrement before - bit U = 0 and bit P = 1
const MachineOperand &MO = MI.getOperand(1);
ARM_AM::AMSubMode Mode = ARM_AM::getAM4SubMode(MO.getImm());
switch (Mode) {
default: assert(0 && "Unknown addressing sub-mode!");
case ARM_AM::da: break;
case ARM_AM::db: Binary |= 0x1 << 24; break;
case ARM_AM::ia: Binary |= 0x1 << 23; break;
case ARM_AM::ib: Binary |= 0x3 << 23; break;
}
// Set bit W(21)
if (ARM_AM::getAM4WBFlag(MO.getImm()))
Binary |= 0x1 << 21;
// Set registers
for (unsigned i = 4, e = MI.getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI.getOperand(i);
if (MO.isReg() && MO.isImplicit())
continue;
unsigned RegNum = ARMRegisterInfo::getRegisterNumbering(MO.getReg());
assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
RegNum < 16);
Binary |= 0x1 << RegNum;
}
MCE.emitWordLE(Binary);
}
void ARMCodeEmitter::emitMulFrm1Instruction(const MachineInstr &MI) {
const TargetInstrDesc &TID = MI.getDesc();
// Part of binary is determined by TableGn.
unsigned Binary = getBinaryCodeForInstr(MI);
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << 28;
// Encode S bit if MI modifies CPSR.
Binary |= getAddrModeSBit(MI, TID);
// 32x32->64bit operations have two destination registers. The number
// of register definitions will tell us if that's what we're dealing with.
int OpIdx = 0;
if (TID.getNumDefs() == 2)
Binary |= getMachineOpValue (MI, OpIdx++) << ARMII::RegRdLoShift;
// Encode Rd
Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdHiShift;
// Encode Rm
Binary |= getMachineOpValue(MI, OpIdx++);
// Encode Rs
Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRsShift;
MCE.emitWordLE(Binary);
}
void ARMCodeEmitter::emitBranchInstruction(const MachineInstr &MI) {
const TargetInstrDesc &TID = MI.getDesc();
// Part of binary is determined by TableGn.
unsigned Binary = getBinaryCodeForInstr(MI);
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << 28;
// Set signed_immed_24 field
Binary |= getMachineOpValue(MI, 0);
// if it is a conditional branch, set cond field
if (TID.Opcode == ARM::Bcc) {
Binary &= 0x0FFFFFFF; // clear conditional field
Binary |= getMachineOpValue(MI, 1) << 28; // set conditional field
}
MCE.emitWordLE(Binary);
}
void ARMCodeEmitter::emitMiscBranchInstruction(const MachineInstr &MI) {
const TargetInstrDesc &TID = MI.getDesc();
if (TID.Opcode == ARM::BX)
abort(); // FIXME
// Part of binary is determined by TableGn.
unsigned Binary = getBinaryCodeForInstr(MI);
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << 28;
if (TID.Opcode == ARM::BX_RET)
// The return register is LR.
Binary |= ARMRegisterInfo::getRegisterNumbering(ARM::LR);
else
// otherwise, set the return register
Binary |= getMachineOpValue(MI, 0);
MCE.emitWordLE(Binary);
}
#include "ARMGenCodeEmitter.inc"