mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	Sorry for the massive commit, but I just wanted to knock this one down and it is really straightforward. There are still a couple trivial (i.e. not related to the content) things left to fix: - Use of raw HTML links where :doc:`...` and :ref:`...` could be used instead. If you are a newbie and want to help fix this it would make for some good bite-sized patches; more experienced developers should be focusing on adding new content (to this tutorial or elsewhere, but please _do not_ waste your time on formatting when there is such dire need for documentation (see docs/SphinxQuickstartTemplate.rst to get started writing)). - Highlighting of the kaleidoscope code blocks (currently left as bare `::`). I will be working on writing a custom Pygments highlighter for this, mostly as training for maintaining the `llvm` code-block's lexer in-tree. I want to do this because I am extremely unhappy with how it just "gives up" on the slightest deviation from the expected syntax and leaves the whole code-block un-highlighted. More generally I am looking at writing some Sphinx extensions and keeping them in-tree as well, to support common use cases that currently have no good solution (like "monospace text inside a link"). git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169343 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1729 lines
		
	
	
		
			60 KiB
		
	
	
	
		
			ReStructuredText
		
	
	
	
	
	
			
		
		
	
	
			1729 lines
		
	
	
		
			60 KiB
		
	
	
	
		
			ReStructuredText
		
	
	
	
	
	
| ============================================================
 | |
| Kaleidoscope: Extending the Language: User-defined Operators
 | |
| ============================================================
 | |
| 
 | |
| .. contents::
 | |
|    :local:
 | |
| 
 | |
| Written by `Chris Lattner <mailto:sabre@nondot.org>`_
 | |
| 
 | |
| Chapter 6 Introduction
 | |
| ======================
 | |
| 
 | |
| Welcome to Chapter 6 of the "`Implementing a language with
 | |
| LLVM <index.html>`_" tutorial. At this point in our tutorial, we now
 | |
| have a fully functional language that is fairly minimal, but also
 | |
| useful. There is still one big problem with it, however. Our language
 | |
| doesn't have many useful operators (like division, logical negation, or
 | |
| even any comparisons besides less-than).
 | |
| 
 | |
| This chapter of the tutorial takes a wild digression into adding
 | |
| user-defined operators to the simple and beautiful Kaleidoscope
 | |
| language. This digression now gives us a simple and ugly language in
 | |
| some ways, but also a powerful one at the same time. One of the great
 | |
| things about creating your own language is that you get to decide what
 | |
| is good or bad. In this tutorial we'll assume that it is okay to use
 | |
| this as a way to show some interesting parsing techniques.
 | |
| 
 | |
| At the end of this tutorial, we'll run through an example Kaleidoscope
 | |
| application that `renders the Mandelbrot set <#example>`_. This gives an
 | |
| example of what you can build with Kaleidoscope and its feature set.
 | |
| 
 | |
| User-defined Operators: the Idea
 | |
| ================================
 | |
| 
 | |
| The "operator overloading" that we will add to Kaleidoscope is more
 | |
| general than languages like C++. In C++, you are only allowed to
 | |
| redefine existing operators: you can't programatically change the
 | |
| grammar, introduce new operators, change precedence levels, etc. In this
 | |
| chapter, we will add this capability to Kaleidoscope, which will let the
 | |
| user round out the set of operators that are supported.
 | |
| 
 | |
| The point of going into user-defined operators in a tutorial like this
 | |
| is to show the power and flexibility of using a hand-written parser.
 | |
| Thus far, the parser we have been implementing uses recursive descent
 | |
| for most parts of the grammar and operator precedence parsing for the
 | |
| expressions. See `Chapter 2 <LangImpl2.html>`_ for details. Without
 | |
| using operator precedence parsing, it would be very difficult to allow
 | |
| the programmer to introduce new operators into the grammar: the grammar
 | |
| is dynamically extensible as the JIT runs.
 | |
| 
 | |
| The two specific features we'll add are programmable unary operators
 | |
| (right now, Kaleidoscope has no unary operators at all) as well as
 | |
| binary operators. An example of this is:
 | |
| 
 | |
| ::
 | |
| 
 | |
|     # Logical unary not.
 | |
|     def unary!(v)
 | |
|       if v then
 | |
|         0
 | |
|       else
 | |
|         1;
 | |
| 
 | |
|     # Define > with the same precedence as <.
 | |
|     def binary> 10 (LHS RHS)
 | |
|       RHS < LHS;
 | |
| 
 | |
|     # Binary "logical or", (note that it does not "short circuit")
 | |
|     def binary| 5 (LHS RHS)
 | |
|       if LHS then
 | |
|         1
 | |
|       else if RHS then
 | |
|         1
 | |
|       else
 | |
|         0;
 | |
| 
 | |
|     # Define = with slightly lower precedence than relationals.
 | |
|     def binary= 9 (LHS RHS)
 | |
|       !(LHS < RHS | LHS > RHS);
 | |
| 
 | |
| Many languages aspire to being able to implement their standard runtime
 | |
| library in the language itself. In Kaleidoscope, we can implement
 | |
| significant parts of the language in the library!
 | |
| 
 | |
| We will break down implementation of these features into two parts:
 | |
| implementing support for user-defined binary operators and adding unary
 | |
| operators.
 | |
| 
 | |
| User-defined Binary Operators
 | |
| =============================
 | |
| 
 | |
| Adding support for user-defined binary operators is pretty simple with
 | |
| our current framework. We'll first add support for the unary/binary
 | |
| keywords:
 | |
| 
 | |
| .. code-block:: c++
 | |
| 
 | |
|     enum Token {
 | |
|       ...
 | |
|       // operators
 | |
|       tok_binary = -11, tok_unary = -12
 | |
|     };
 | |
|     ...
 | |
|     static int gettok() {
 | |
|     ...
 | |
|         if (IdentifierStr == "for") return tok_for;
 | |
|         if (IdentifierStr == "in") return tok_in;
 | |
|         if (IdentifierStr == "binary") return tok_binary;
 | |
|         if (IdentifierStr == "unary") return tok_unary;
 | |
|         return tok_identifier;
 | |
| 
 | |
| This just adds lexer support for the unary and binary keywords, like we
 | |
| did in `previous chapters <LangImpl5.html#iflexer>`_. One nice thing
 | |
| about our current AST, is that we represent binary operators with full
 | |
| generalisation by using their ASCII code as the opcode. For our extended
 | |
| operators, we'll use this same representation, so we don't need any new
 | |
| AST or parser support.
 | |
| 
 | |
| On the other hand, we have to be able to represent the definitions of
 | |
| these new operators, in the "def binary\| 5" part of the function
 | |
| definition. In our grammar so far, the "name" for the function
 | |
| definition is parsed as the "prototype" production and into the
 | |
| ``PrototypeAST`` AST node. To represent our new user-defined operators
 | |
| as prototypes, we have to extend the ``PrototypeAST`` AST node like
 | |
| this:
 | |
| 
 | |
| .. code-block:: c++
 | |
| 
 | |
|     /// PrototypeAST - This class represents the "prototype" for a function,
 | |
|     /// which captures its argument names as well as if it is an operator.
 | |
|     class PrototypeAST {
 | |
|       std::string Name;
 | |
|       std::vector<std::string> Args;
 | |
|       bool isOperator;
 | |
|       unsigned Precedence;  // Precedence if a binary op.
 | |
|     public:
 | |
|       PrototypeAST(const std::string &name, const std::vector<std::string> &args,
 | |
|                    bool isoperator = false, unsigned prec = 0)
 | |
|       : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
 | |
| 
 | |
|       bool isUnaryOp() const { return isOperator && Args.size() == 1; }
 | |
|       bool isBinaryOp() const { return isOperator && Args.size() == 2; }
 | |
| 
 | |
|       char getOperatorName() const {
 | |
|         assert(isUnaryOp() || isBinaryOp());
 | |
|         return Name[Name.size()-1];
 | |
|       }
 | |
| 
 | |
|       unsigned getBinaryPrecedence() const { return Precedence; }
 | |
| 
 | |
|       Function *Codegen();
 | |
|     };
 | |
| 
 | |
| Basically, in addition to knowing a name for the prototype, we now keep
 | |
| track of whether it was an operator, and if it was, what precedence
 | |
| level the operator is at. The precedence is only used for binary
 | |
| operators (as you'll see below, it just doesn't apply for unary
 | |
| operators). Now that we have a way to represent the prototype for a
 | |
| user-defined operator, we need to parse it:
 | |
| 
 | |
| .. code-block:: c++
 | |
| 
 | |
|     /// prototype
 | |
|     ///   ::= id '(' id* ')'
 | |
|     ///   ::= binary LETTER number? (id, id)
 | |
|     static PrototypeAST *ParsePrototype() {
 | |
|       std::string FnName;
 | |
| 
 | |
|       unsigned Kind = 0;  // 0 = identifier, 1 = unary, 2 = binary.
 | |
|       unsigned BinaryPrecedence = 30;
 | |
| 
 | |
|       switch (CurTok) {
 | |
|       default:
 | |
|         return ErrorP("Expected function name in prototype");
 | |
|       case tok_identifier:
 | |
|         FnName = IdentifierStr;
 | |
|         Kind = 0;
 | |
|         getNextToken();
 | |
|         break;
 | |
|       case tok_binary:
 | |
|         getNextToken();
 | |
|         if (!isascii(CurTok))
 | |
|           return ErrorP("Expected binary operator");
 | |
|         FnName = "binary";
 | |
|         FnName += (char)CurTok;
 | |
|         Kind = 2;
 | |
|         getNextToken();
 | |
| 
 | |
|         // Read the precedence if present.
 | |
|         if (CurTok == tok_number) {
 | |
|           if (NumVal < 1 || NumVal > 100)
 | |
|             return ErrorP("Invalid precedecnce: must be 1..100");
 | |
|           BinaryPrecedence = (unsigned)NumVal;
 | |
|           getNextToken();
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       if (CurTok != '(')
 | |
|         return ErrorP("Expected '(' in prototype");
 | |
| 
 | |
|       std::vector<std::string> ArgNames;
 | |
|       while (getNextToken() == tok_identifier)
 | |
|         ArgNames.push_back(IdentifierStr);
 | |
|       if (CurTok != ')')
 | |
|         return ErrorP("Expected ')' in prototype");
 | |
| 
 | |
|       // success.
 | |
|       getNextToken();  // eat ')'.
 | |
| 
 | |
|       // Verify right number of names for operator.
 | |
|       if (Kind && ArgNames.size() != Kind)
 | |
|         return ErrorP("Invalid number of operands for operator");
 | |
| 
 | |
|       return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
 | |
|     }
 | |
| 
 | |
| This is all fairly straightforward parsing code, and we have already
 | |
| seen a lot of similar code in the past. One interesting part about the
 | |
| code above is the couple lines that set up ``FnName`` for binary
 | |
| operators. This builds names like "binary@" for a newly defined "@"
 | |
| operator. This then takes advantage of the fact that symbol names in the
 | |
| LLVM symbol table are allowed to have any character in them, including
 | |
| embedded nul characters.
 | |
| 
 | |
| The next interesting thing to add, is codegen support for these binary
 | |
| operators. Given our current structure, this is a simple addition of a
 | |
| default case for our existing binary operator node:
 | |
| 
 | |
| .. code-block:: c++
 | |
| 
 | |
|     Value *BinaryExprAST::Codegen() {
 | |
|       Value *L = LHS->Codegen();
 | |
|       Value *R = RHS->Codegen();
 | |
|       if (L == 0 || R == 0) return 0;
 | |
| 
 | |
|       switch (Op) {
 | |
|       case '+': return Builder.CreateFAdd(L, R, "addtmp");
 | |
|       case '-': return Builder.CreateFSub(L, R, "subtmp");
 | |
|       case '*': return Builder.CreateFMul(L, R, "multmp");
 | |
|       case '<':
 | |
|         L = Builder.CreateFCmpULT(L, R, "cmptmp");
 | |
|         // Convert bool 0/1 to double 0.0 or 1.0
 | |
|         return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
 | |
|                                     "booltmp");
 | |
|       default: break;
 | |
|       }
 | |
| 
 | |
|       // If it wasn't a builtin binary operator, it must be a user defined one. Emit
 | |
|       // a call to it.
 | |
|       Function *F = TheModule->getFunction(std::string("binary")+Op);
 | |
|       assert(F && "binary operator not found!");
 | |
| 
 | |
|       Value *Ops[2] = { L, R };
 | |
|       return Builder.CreateCall(F, Ops, "binop");
 | |
|     }
 | |
| 
 | |
| As you can see above, the new code is actually really simple. It just
 | |
| does a lookup for the appropriate operator in the symbol table and
 | |
| generates a function call to it. Since user-defined operators are just
 | |
| built as normal functions (because the "prototype" boils down to a
 | |
| function with the right name) everything falls into place.
 | |
| 
 | |
| The final piece of code we are missing, is a bit of top-level magic:
 | |
| 
 | |
| .. code-block:: c++
 | |
| 
 | |
|     Function *FunctionAST::Codegen() {
 | |
|       NamedValues.clear();
 | |
| 
 | |
|       Function *TheFunction = Proto->Codegen();
 | |
|       if (TheFunction == 0)
 | |
|         return 0;
 | |
| 
 | |
|       // If this is an operator, install it.
 | |
|       if (Proto->isBinaryOp())
 | |
|         BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
 | |
| 
 | |
|       // Create a new basic block to start insertion into.
 | |
|       BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
 | |
|       Builder.SetInsertPoint(BB);
 | |
| 
 | |
|       if (Value *RetVal = Body->Codegen()) {
 | |
|         ...
 | |
| 
 | |
| Basically, before codegening a function, if it is a user-defined
 | |
| operator, we register it in the precedence table. This allows the binary
 | |
| operator parsing logic we already have in place to handle it. Since we
 | |
| are working on a fully-general operator precedence parser, this is all
 | |
| we need to do to "extend the grammar".
 | |
| 
 | |
| Now we have useful user-defined binary operators. This builds a lot on
 | |
| the previous framework we built for other operators. Adding unary
 | |
| operators is a bit more challenging, because we don't have any framework
 | |
| for it yet - lets see what it takes.
 | |
| 
 | |
| User-defined Unary Operators
 | |
| ============================
 | |
| 
 | |
| Since we don't currently support unary operators in the Kaleidoscope
 | |
| language, we'll need to add everything to support them. Above, we added
 | |
| simple support for the 'unary' keyword to the lexer. In addition to
 | |
| that, we need an AST node:
 | |
| 
 | |
| .. code-block:: c++
 | |
| 
 | |
|     /// UnaryExprAST - Expression class for a unary operator.
 | |
|     class UnaryExprAST : public ExprAST {
 | |
|       char Opcode;
 | |
|       ExprAST *Operand;
 | |
|     public:
 | |
|       UnaryExprAST(char opcode, ExprAST *operand)
 | |
|         : Opcode(opcode), Operand(operand) {}
 | |
|       virtual Value *Codegen();
 | |
|     };
 | |
| 
 | |
| This AST node is very simple and obvious by now. It directly mirrors the
 | |
| binary operator AST node, except that it only has one child. With this,
 | |
| we need to add the parsing logic. Parsing a unary operator is pretty
 | |
| simple: we'll add a new function to do it:
 | |
| 
 | |
| .. code-block:: c++
 | |
| 
 | |
|     /// unary
 | |
|     ///   ::= primary
 | |
|     ///   ::= '!' unary
 | |
|     static ExprAST *ParseUnary() {
 | |
|       // If the current token is not an operator, it must be a primary expr.
 | |
|       if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
 | |
|         return ParsePrimary();
 | |
| 
 | |
|       // If this is a unary operator, read it.
 | |
|       int Opc = CurTok;
 | |
|       getNextToken();
 | |
|       if (ExprAST *Operand = ParseUnary())
 | |
|         return new UnaryExprAST(Opc, Operand);
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
| The grammar we add is pretty straightforward here. If we see a unary
 | |
| operator when parsing a primary operator, we eat the operator as a
 | |
| prefix and parse the remaining piece as another unary operator. This
 | |
| allows us to handle multiple unary operators (e.g. "!!x"). Note that
 | |
| unary operators can't have ambiguous parses like binary operators can,
 | |
| so there is no need for precedence information.
 | |
| 
 | |
| The problem with this function, is that we need to call ParseUnary from
 | |
| somewhere. To do this, we change previous callers of ParsePrimary to
 | |
| call ParseUnary instead:
 | |
| 
 | |
| .. code-block:: c++
 | |
| 
 | |
|     /// binoprhs
 | |
|     ///   ::= ('+' unary)*
 | |
|     static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
 | |
|       ...
 | |
|         // Parse the unary expression after the binary operator.
 | |
|         ExprAST *RHS = ParseUnary();
 | |
|         if (!RHS) return 0;
 | |
|       ...
 | |
|     }
 | |
|     /// expression
 | |
|     ///   ::= unary binoprhs
 | |
|     ///
 | |
|     static ExprAST *ParseExpression() {
 | |
|       ExprAST *LHS = ParseUnary();
 | |
|       if (!LHS) return 0;
 | |
| 
 | |
|       return ParseBinOpRHS(0, LHS);
 | |
|     }
 | |
| 
 | |
| With these two simple changes, we are now able to parse unary operators
 | |
| and build the AST for them. Next up, we need to add parser support for
 | |
| prototypes, to parse the unary operator prototype. We extend the binary
 | |
| operator code above with:
 | |
| 
 | |
| .. code-block:: c++
 | |
| 
 | |
|     /// prototype
 | |
|     ///   ::= id '(' id* ')'
 | |
|     ///   ::= binary LETTER number? (id, id)
 | |
|     ///   ::= unary LETTER (id)
 | |
|     static PrototypeAST *ParsePrototype() {
 | |
|       std::string FnName;
 | |
| 
 | |
|       unsigned Kind = 0;  // 0 = identifier, 1 = unary, 2 = binary.
 | |
|       unsigned BinaryPrecedence = 30;
 | |
| 
 | |
|       switch (CurTok) {
 | |
|       default:
 | |
|         return ErrorP("Expected function name in prototype");
 | |
|       case tok_identifier:
 | |
|         FnName = IdentifierStr;
 | |
|         Kind = 0;
 | |
|         getNextToken();
 | |
|         break;
 | |
|       case tok_unary:
 | |
|         getNextToken();
 | |
|         if (!isascii(CurTok))
 | |
|           return ErrorP("Expected unary operator");
 | |
|         FnName = "unary";
 | |
|         FnName += (char)CurTok;
 | |
|         Kind = 1;
 | |
|         getNextToken();
 | |
|         break;
 | |
|       case tok_binary:
 | |
|         ...
 | |
| 
 | |
| As with binary operators, we name unary operators with a name that
 | |
| includes the operator character. This assists us at code generation
 | |
| time. Speaking of, the final piece we need to add is codegen support for
 | |
| unary operators. It looks like this:
 | |
| 
 | |
| .. code-block:: c++
 | |
| 
 | |
|     Value *UnaryExprAST::Codegen() {
 | |
|       Value *OperandV = Operand->Codegen();
 | |
|       if (OperandV == 0) return 0;
 | |
| 
 | |
|       Function *F = TheModule->getFunction(std::string("unary")+Opcode);
 | |
|       if (F == 0)
 | |
|         return ErrorV("Unknown unary operator");
 | |
| 
 | |
|       return Builder.CreateCall(F, OperandV, "unop");
 | |
|     }
 | |
| 
 | |
| This code is similar to, but simpler than, the code for binary
 | |
| operators. It is simpler primarily because it doesn't need to handle any
 | |
| predefined operators.
 | |
| 
 | |
| Kicking the Tires
 | |
| =================
 | |
| 
 | |
| It is somewhat hard to believe, but with a few simple extensions we've
 | |
| covered in the last chapters, we have grown a real-ish language. With
 | |
| this, we can do a lot of interesting things, including I/O, math, and a
 | |
| bunch of other things. For example, we can now add a nice sequencing
 | |
| operator (printd is defined to print out the specified value and a
 | |
| newline):
 | |
| 
 | |
| ::
 | |
| 
 | |
|     ready> extern printd(x);
 | |
|     Read extern:
 | |
|     declare double @printd(double)
 | |
| 
 | |
|     ready> def binary : 1 (x y) 0;  # Low-precedence operator that ignores operands.
 | |
|     ..
 | |
|     ready> printd(123) : printd(456) : printd(789);
 | |
|     123.000000
 | |
|     456.000000
 | |
|     789.000000
 | |
|     Evaluated to 0.000000
 | |
| 
 | |
| We can also define a bunch of other "primitive" operations, such as:
 | |
| 
 | |
| ::
 | |
| 
 | |
|     # Logical unary not.
 | |
|     def unary!(v)
 | |
|       if v then
 | |
|         0
 | |
|       else
 | |
|         1;
 | |
| 
 | |
|     # Unary negate.
 | |
|     def unary-(v)
 | |
|       0-v;
 | |
| 
 | |
|     # Define > with the same precedence as <.
 | |
|     def binary> 10 (LHS RHS)
 | |
|       RHS < LHS;
 | |
| 
 | |
|     # Binary logical or, which does not short circuit.
 | |
|     def binary| 5 (LHS RHS)
 | |
|       if LHS then
 | |
|         1
 | |
|       else if RHS then
 | |
|         1
 | |
|       else
 | |
|         0;
 | |
| 
 | |
|     # Binary logical and, which does not short circuit.
 | |
|     def binary& 6 (LHS RHS)
 | |
|       if !LHS then
 | |
|         0
 | |
|       else
 | |
|         !!RHS;
 | |
| 
 | |
|     # Define = with slightly lower precedence than relationals.
 | |
|     def binary = 9 (LHS RHS)
 | |
|       !(LHS < RHS | LHS > RHS);
 | |
| 
 | |
|     # Define ':' for sequencing: as a low-precedence operator that ignores operands
 | |
|     # and just returns the RHS.
 | |
|     def binary : 1 (x y) y;
 | |
| 
 | |
| Given the previous if/then/else support, we can also define interesting
 | |
| functions for I/O. For example, the following prints out a character
 | |
| whose "density" reflects the value passed in: the lower the value, the
 | |
| denser the character:
 | |
| 
 | |
| ::
 | |
| 
 | |
|     ready>
 | |
| 
 | |
|     extern putchard(char)
 | |
|     def printdensity(d)
 | |
|       if d > 8 then
 | |
|         putchard(32)  # ' '
 | |
|       else if d > 4 then
 | |
|         putchard(46)  # '.'
 | |
|       else if d > 2 then
 | |
|         putchard(43)  # '+'
 | |
|       else
 | |
|         putchard(42); # '*'
 | |
|     ...
 | |
|     ready> printdensity(1): printdensity(2): printdensity(3):
 | |
|            printdensity(4): printdensity(5): printdensity(9):
 | |
|            putchard(10);
 | |
|     **++.
 | |
|     Evaluated to 0.000000
 | |
| 
 | |
| Based on these simple primitive operations, we can start to define more
 | |
| interesting things. For example, here's a little function that solves
 | |
| for the number of iterations it takes a function in the complex plane to
 | |
| converge:
 | |
| 
 | |
| ::
 | |
| 
 | |
|     # Determine whether the specific location diverges.
 | |
|     # Solve for z = z^2 + c in the complex plane.
 | |
|     def mandleconverger(real imag iters creal cimag)
 | |
|       if iters > 255 | (real*real + imag*imag > 4) then
 | |
|         iters
 | |
|       else
 | |
|         mandleconverger(real*real - imag*imag + creal,
 | |
|                         2*real*imag + cimag,
 | |
|                         iters+1, creal, cimag);
 | |
| 
 | |
|     # Return the number of iterations required for the iteration to escape
 | |
|     def mandleconverge(real imag)
 | |
|       mandleconverger(real, imag, 0, real, imag);
 | |
| 
 | |
| This "``z = z2 + c``" function is a beautiful little creature that is
 | |
| the basis for computation of the `Mandelbrot
 | |
| Set <http://en.wikipedia.org/wiki/Mandelbrot_set>`_. Our
 | |
| ``mandelconverge`` function returns the number of iterations that it
 | |
| takes for a complex orbit to escape, saturating to 255. This is not a
 | |
| very useful function by itself, but if you plot its value over a
 | |
| two-dimensional plane, you can see the Mandelbrot set. Given that we are
 | |
| limited to using putchard here, our amazing graphical output is limited,
 | |
| but we can whip together something using the density plotter above:
 | |
| 
 | |
| ::
 | |
| 
 | |
|     # Compute and plot the mandlebrot set with the specified 2 dimensional range
 | |
|     # info.
 | |
|     def mandelhelp(xmin xmax xstep   ymin ymax ystep)
 | |
|       for y = ymin, y < ymax, ystep in (
 | |
|         (for x = xmin, x < xmax, xstep in
 | |
|            printdensity(mandleconverge(x,y)))
 | |
|         : putchard(10)
 | |
|       )
 | |
| 
 | |
|     # mandel - This is a convenient helper function for plotting the mandelbrot set
 | |
|     # from the specified position with the specified Magnification.
 | |
|     def mandel(realstart imagstart realmag imagmag)
 | |
|       mandelhelp(realstart, realstart+realmag*78, realmag,
 | |
|                  imagstart, imagstart+imagmag*40, imagmag);
 | |
| 
 | |
| Given this, we can try plotting out the mandlebrot set! Lets try it out:
 | |
| 
 | |
| ::
 | |
| 
 | |
|     ready> mandel(-2.3, -1.3, 0.05, 0.07);
 | |
|     *******************************+++++++++++*************************************
 | |
|     *************************+++++++++++++++++++++++*******************************
 | |
|     **********************+++++++++++++++++++++++++++++****************************
 | |
|     *******************+++++++++++++++++++++.. ...++++++++*************************
 | |
|     *****************++++++++++++++++++++++.... ...+++++++++***********************
 | |
|     ***************+++++++++++++++++++++++.....   ...+++++++++*********************
 | |
|     **************+++++++++++++++++++++++....     ....+++++++++********************
 | |
|     *************++++++++++++++++++++++......      .....++++++++*******************
 | |
|     ************+++++++++++++++++++++.......       .......+++++++******************
 | |
|     ***********+++++++++++++++++++....                ... .+++++++*****************
 | |
|     **********+++++++++++++++++.......                     .+++++++****************
 | |
|     *********++++++++++++++...........                    ...+++++++***************
 | |
|     ********++++++++++++............                      ...++++++++**************
 | |
|     ********++++++++++... ..........                        .++++++++**************
 | |
|     *******+++++++++.....                                   .+++++++++*************
 | |
|     *******++++++++......                                  ..+++++++++*************
 | |
|     *******++++++.......                                   ..+++++++++*************
 | |
|     *******+++++......                                     ..+++++++++*************
 | |
|     *******.... ....                                      ...+++++++++*************
 | |
|     *******.... .                                         ...+++++++++*************
 | |
|     *******+++++......                                    ...+++++++++*************
 | |
|     *******++++++.......                                   ..+++++++++*************
 | |
|     *******++++++++......                                   .+++++++++*************
 | |
|     *******+++++++++.....                                  ..+++++++++*************
 | |
|     ********++++++++++... ..........                        .++++++++**************
 | |
|     ********++++++++++++............                      ...++++++++**************
 | |
|     *********++++++++++++++..........                     ...+++++++***************
 | |
|     **********++++++++++++++++........                     .+++++++****************
 | |
|     **********++++++++++++++++++++....                ... ..+++++++****************
 | |
|     ***********++++++++++++++++++++++.......       .......++++++++*****************
 | |
|     ************+++++++++++++++++++++++......      ......++++++++******************
 | |
|     **************+++++++++++++++++++++++....      ....++++++++********************
 | |
|     ***************+++++++++++++++++++++++.....   ...+++++++++*********************
 | |
|     *****************++++++++++++++++++++++....  ...++++++++***********************
 | |
|     *******************+++++++++++++++++++++......++++++++*************************
 | |
|     *********************++++++++++++++++++++++.++++++++***************************
 | |
|     *************************+++++++++++++++++++++++*******************************
 | |
|     ******************************+++++++++++++************************************
 | |
|     *******************************************************************************
 | |
|     *******************************************************************************
 | |
|     *******************************************************************************
 | |
|     Evaluated to 0.000000
 | |
|     ready> mandel(-2, -1, 0.02, 0.04);
 | |
|     **************************+++++++++++++++++++++++++++++++++++++++++++++++++++++
 | |
|     ***********************++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 | |
|     *********************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++.
 | |
|     *******************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++...
 | |
|     *****************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++.....
 | |
|     ***************++++++++++++++++++++++++++++++++++++++++++++++++++++++++........
 | |
|     **************++++++++++++++++++++++++++++++++++++++++++++++++++++++...........
 | |
|     ************+++++++++++++++++++++++++++++++++++++++++++++++++++++..............
 | |
|     ***********++++++++++++++++++++++++++++++++++++++++++++++++++........        .
 | |
|     **********++++++++++++++++++++++++++++++++++++++++++++++.............
 | |
|     ********+++++++++++++++++++++++++++++++++++++++++++..................
 | |
|     *******+++++++++++++++++++++++++++++++++++++++.......................
 | |
|     ******+++++++++++++++++++++++++++++++++++...........................
 | |
|     *****++++++++++++++++++++++++++++++++............................
 | |
|     *****++++++++++++++++++++++++++++...............................
 | |
|     ****++++++++++++++++++++++++++......   .........................
 | |
|     ***++++++++++++++++++++++++.........     ......    ...........
 | |
|     ***++++++++++++++++++++++............
 | |
|     **+++++++++++++++++++++..............
 | |
|     **+++++++++++++++++++................
 | |
|     *++++++++++++++++++.................
 | |
|     *++++++++++++++++............ ...
 | |
|     *++++++++++++++..............
 | |
|     *+++....++++................
 | |
|     *..........  ...........
 | |
|     *
 | |
|     *..........  ...........
 | |
|     *+++....++++................
 | |
|     *++++++++++++++..............
 | |
|     *++++++++++++++++............ ...
 | |
|     *++++++++++++++++++.................
 | |
|     **+++++++++++++++++++................
 | |
|     **+++++++++++++++++++++..............
 | |
|     ***++++++++++++++++++++++............
 | |
|     ***++++++++++++++++++++++++.........     ......    ...........
 | |
|     ****++++++++++++++++++++++++++......   .........................
 | |
|     *****++++++++++++++++++++++++++++...............................
 | |
|     *****++++++++++++++++++++++++++++++++............................
 | |
|     ******+++++++++++++++++++++++++++++++++++...........................
 | |
|     *******+++++++++++++++++++++++++++++++++++++++.......................
 | |
|     ********+++++++++++++++++++++++++++++++++++++++++++..................
 | |
|     Evaluated to 0.000000
 | |
|     ready> mandel(-0.9, -1.4, 0.02, 0.03);
 | |
|     *******************************************************************************
 | |
|     *******************************************************************************
 | |
|     *******************************************************************************
 | |
|     **********+++++++++++++++++++++************************************************
 | |
|     *+++++++++++++++++++++++++++++++++++++++***************************************
 | |
|     +++++++++++++++++++++++++++++++++++++++++++++**********************************
 | |
|     ++++++++++++++++++++++++++++++++++++++++++++++++++*****************************
 | |
|     ++++++++++++++++++++++++++++++++++++++++++++++++++++++*************************
 | |
|     +++++++++++++++++++++++++++++++++++++++++++++++++++++++++**********************
 | |
|     +++++++++++++++++++++++++++++++++.........++++++++++++++++++*******************
 | |
|     +++++++++++++++++++++++++++++++....   ......+++++++++++++++++++****************
 | |
|     +++++++++++++++++++++++++++++.......  ........+++++++++++++++++++**************
 | |
|     ++++++++++++++++++++++++++++........   ........++++++++++++++++++++************
 | |
|     +++++++++++++++++++++++++++.........     ..  ...+++++++++++++++++++++**********
 | |
|     ++++++++++++++++++++++++++...........        ....++++++++++++++++++++++********
 | |
|     ++++++++++++++++++++++++.............       .......++++++++++++++++++++++******
 | |
|     +++++++++++++++++++++++.............        ........+++++++++++++++++++++++****
 | |
|     ++++++++++++++++++++++...........           ..........++++++++++++++++++++++***
 | |
|     ++++++++++++++++++++...........                .........++++++++++++++++++++++*
 | |
|     ++++++++++++++++++............                  ...........++++++++++++++++++++
 | |
|     ++++++++++++++++...............                 .............++++++++++++++++++
 | |
|     ++++++++++++++.................                 ...............++++++++++++++++
 | |
|     ++++++++++++..................                  .................++++++++++++++
 | |
|     +++++++++..................                      .................+++++++++++++
 | |
|     ++++++........        .                               .........  ..++++++++++++
 | |
|     ++............                                         ......    ....++++++++++
 | |
|     ..............                                                    ...++++++++++
 | |
|     ..............                                                    ....+++++++++
 | |
|     ..............                                                    .....++++++++
 | |
|     .............                                                    ......++++++++
 | |
|     ...........                                                     .......++++++++
 | |
|     .........                                                       ........+++++++
 | |
|     .........                                                       ........+++++++
 | |
|     .........                                                           ....+++++++
 | |
|     ........                                                             ...+++++++
 | |
|     .......                                                              ...+++++++
 | |
|                                                                         ....+++++++
 | |
|                                                                        .....+++++++
 | |
|                                                                         ....+++++++
 | |
|                                                                         ....+++++++
 | |
|                                                                         ....+++++++
 | |
|     Evaluated to 0.000000
 | |
|     ready> ^D
 | |
| 
 | |
| At this point, you may be starting to realize that Kaleidoscope is a
 | |
| real and powerful language. It may not be self-similar :), but it can be
 | |
| used to plot things that are!
 | |
| 
 | |
| With this, we conclude the "adding user-defined operators" chapter of
 | |
| the tutorial. We have successfully augmented our language, adding the
 | |
| ability to extend the language in the library, and we have shown how
 | |
| this can be used to build a simple but interesting end-user application
 | |
| in Kaleidoscope. At this point, Kaleidoscope can build a variety of
 | |
| applications that are functional and can call functions with
 | |
| side-effects, but it can't actually define and mutate a variable itself.
 | |
| 
 | |
| Strikingly, variable mutation is an important feature of some languages,
 | |
| and it is not at all obvious how to `add support for mutable
 | |
| variables <LangImpl7.html>`_ without having to add an "SSA construction"
 | |
| phase to your front-end. In the next chapter, we will describe how you
 | |
| can add variable mutation without building SSA in your front-end.
 | |
| 
 | |
| Full Code Listing
 | |
| =================
 | |
| 
 | |
| Here is the complete code listing for our running example, enhanced with
 | |
| the if/then/else and for expressions.. To build this example, use:
 | |
| 
 | |
| .. code-block:: bash
 | |
| 
 | |
|     # Compile
 | |
|     clang++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy
 | |
|     # Run
 | |
|     ./toy
 | |
| 
 | |
| On some platforms, you will need to specify -rdynamic or
 | |
| -Wl,--export-dynamic when linking. This ensures that symbols defined in
 | |
| the main executable are exported to the dynamic linker and so are
 | |
| available for symbol resolution at run time. This is not needed if you
 | |
| compile your support code into a shared library, although doing that
 | |
| will cause problems on Windows.
 | |
| 
 | |
| Here is the code:
 | |
| 
 | |
| .. code-block:: c++
 | |
| 
 | |
|     #include "llvm/DerivedTypes.h"
 | |
|     #include "llvm/ExecutionEngine/ExecutionEngine.h"
 | |
|     #include "llvm/ExecutionEngine/JIT.h"
 | |
|     #include "llvm/IRBuilder.h"
 | |
|     #include "llvm/LLVMContext.h"
 | |
|     #include "llvm/Module.h"
 | |
|     #include "llvm/PassManager.h"
 | |
|     #include "llvm/Analysis/Verifier.h"
 | |
|     #include "llvm/Analysis/Passes.h"
 | |
|     #include "llvm/DataLayout.h"
 | |
|     #include "llvm/Transforms/Scalar.h"
 | |
|     #include "llvm/Support/TargetSelect.h"
 | |
|     #include <cstdio>
 | |
|     #include <string>
 | |
|     #include <map>
 | |
|     #include <vector>
 | |
|     using namespace llvm;
 | |
| 
 | |
|     //===----------------------------------------------------------------------===//
 | |
|     // Lexer
 | |
|     //===----------------------------------------------------------------------===//
 | |
| 
 | |
|     // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
 | |
|     // of these for known things.
 | |
|     enum Token {
 | |
|       tok_eof = -1,
 | |
| 
 | |
|       // commands
 | |
|       tok_def = -2, tok_extern = -3,
 | |
| 
 | |
|       // primary
 | |
|       tok_identifier = -4, tok_number = -5,
 | |
| 
 | |
|       // control
 | |
|       tok_if = -6, tok_then = -7, tok_else = -8,
 | |
|       tok_for = -9, tok_in = -10,
 | |
| 
 | |
|       // operators
 | |
|       tok_binary = -11, tok_unary = -12
 | |
|     };
 | |
| 
 | |
|     static std::string IdentifierStr;  // Filled in if tok_identifier
 | |
|     static double NumVal;              // Filled in if tok_number
 | |
| 
 | |
|     /// gettok - Return the next token from standard input.
 | |
|     static int gettok() {
 | |
|       static int LastChar = ' ';
 | |
| 
 | |
|       // Skip any whitespace.
 | |
|       while (isspace(LastChar))
 | |
|         LastChar = getchar();
 | |
| 
 | |
|       if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
 | |
|         IdentifierStr = LastChar;
 | |
|         while (isalnum((LastChar = getchar())))
 | |
|           IdentifierStr += LastChar;
 | |
| 
 | |
|         if (IdentifierStr == "def") return tok_def;
 | |
|         if (IdentifierStr == "extern") return tok_extern;
 | |
|         if (IdentifierStr == "if") return tok_if;
 | |
|         if (IdentifierStr == "then") return tok_then;
 | |
|         if (IdentifierStr == "else") return tok_else;
 | |
|         if (IdentifierStr == "for") return tok_for;
 | |
|         if (IdentifierStr == "in") return tok_in;
 | |
|         if (IdentifierStr == "binary") return tok_binary;
 | |
|         if (IdentifierStr == "unary") return tok_unary;
 | |
|         return tok_identifier;
 | |
|       }
 | |
| 
 | |
|       if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
 | |
|         std::string NumStr;
 | |
|         do {
 | |
|           NumStr += LastChar;
 | |
|           LastChar = getchar();
 | |
|         } while (isdigit(LastChar) || LastChar == '.');
 | |
| 
 | |
|         NumVal = strtod(NumStr.c_str(), 0);
 | |
|         return tok_number;
 | |
|       }
 | |
| 
 | |
|       if (LastChar == '#') {
 | |
|         // Comment until end of line.
 | |
|         do LastChar = getchar();
 | |
|         while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
 | |
| 
 | |
|         if (LastChar != EOF)
 | |
|           return gettok();
 | |
|       }
 | |
| 
 | |
|       // Check for end of file.  Don't eat the EOF.
 | |
|       if (LastChar == EOF)
 | |
|         return tok_eof;
 | |
| 
 | |
|       // Otherwise, just return the character as its ascii value.
 | |
|       int ThisChar = LastChar;
 | |
|       LastChar = getchar();
 | |
|       return ThisChar;
 | |
|     }
 | |
| 
 | |
|     //===----------------------------------------------------------------------===//
 | |
|     // Abstract Syntax Tree (aka Parse Tree)
 | |
|     //===----------------------------------------------------------------------===//
 | |
| 
 | |
|     /// ExprAST - Base class for all expression nodes.
 | |
|     class ExprAST {
 | |
|     public:
 | |
|       virtual ~ExprAST() {}
 | |
|       virtual Value *Codegen() = 0;
 | |
|     };
 | |
| 
 | |
|     /// NumberExprAST - Expression class for numeric literals like "1.0".
 | |
|     class NumberExprAST : public ExprAST {
 | |
|       double Val;
 | |
|     public:
 | |
|       NumberExprAST(double val) : Val(val) {}
 | |
|       virtual Value *Codegen();
 | |
|     };
 | |
| 
 | |
|     /// VariableExprAST - Expression class for referencing a variable, like "a".
 | |
|     class VariableExprAST : public ExprAST {
 | |
|       std::string Name;
 | |
|     public:
 | |
|       VariableExprAST(const std::string &name) : Name(name) {}
 | |
|       virtual Value *Codegen();
 | |
|     };
 | |
| 
 | |
|     /// UnaryExprAST - Expression class for a unary operator.
 | |
|     class UnaryExprAST : public ExprAST {
 | |
|       char Opcode;
 | |
|       ExprAST *Operand;
 | |
|     public:
 | |
|       UnaryExprAST(char opcode, ExprAST *operand)
 | |
|         : Opcode(opcode), Operand(operand) {}
 | |
|       virtual Value *Codegen();
 | |
|     };
 | |
| 
 | |
|     /// BinaryExprAST - Expression class for a binary operator.
 | |
|     class BinaryExprAST : public ExprAST {
 | |
|       char Op;
 | |
|       ExprAST *LHS, *RHS;
 | |
|     public:
 | |
|       BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
 | |
|         : Op(op), LHS(lhs), RHS(rhs) {}
 | |
|       virtual Value *Codegen();
 | |
|     };
 | |
| 
 | |
|     /// CallExprAST - Expression class for function calls.
 | |
|     class CallExprAST : public ExprAST {
 | |
|       std::string Callee;
 | |
|       std::vector<ExprAST*> Args;
 | |
|     public:
 | |
|       CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
 | |
|         : Callee(callee), Args(args) {}
 | |
|       virtual Value *Codegen();
 | |
|     };
 | |
| 
 | |
|     /// IfExprAST - Expression class for if/then/else.
 | |
|     class IfExprAST : public ExprAST {
 | |
|       ExprAST *Cond, *Then, *Else;
 | |
|     public:
 | |
|       IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
 | |
|       : Cond(cond), Then(then), Else(_else) {}
 | |
|       virtual Value *Codegen();
 | |
|     };
 | |
| 
 | |
|     /// ForExprAST - Expression class for for/in.
 | |
|     class ForExprAST : public ExprAST {
 | |
|       std::string VarName;
 | |
|       ExprAST *Start, *End, *Step, *Body;
 | |
|     public:
 | |
|       ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
 | |
|                  ExprAST *step, ExprAST *body)
 | |
|         : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
 | |
|       virtual Value *Codegen();
 | |
|     };
 | |
| 
 | |
|     /// PrototypeAST - This class represents the "prototype" for a function,
 | |
|     /// which captures its name, and its argument names (thus implicitly the number
 | |
|     /// of arguments the function takes), as well as if it is an operator.
 | |
|     class PrototypeAST {
 | |
|       std::string Name;
 | |
|       std::vector<std::string> Args;
 | |
|       bool isOperator;
 | |
|       unsigned Precedence;  // Precedence if a binary op.
 | |
|     public:
 | |
|       PrototypeAST(const std::string &name, const std::vector<std::string> &args,
 | |
|                    bool isoperator = false, unsigned prec = 0)
 | |
|       : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
 | |
| 
 | |
|       bool isUnaryOp() const { return isOperator && Args.size() == 1; }
 | |
|       bool isBinaryOp() const { return isOperator && Args.size() == 2; }
 | |
| 
 | |
|       char getOperatorName() const {
 | |
|         assert(isUnaryOp() || isBinaryOp());
 | |
|         return Name[Name.size()-1];
 | |
|       }
 | |
| 
 | |
|       unsigned getBinaryPrecedence() const { return Precedence; }
 | |
| 
 | |
|       Function *Codegen();
 | |
|     };
 | |
| 
 | |
|     /// FunctionAST - This class represents a function definition itself.
 | |
|     class FunctionAST {
 | |
|       PrototypeAST *Proto;
 | |
|       ExprAST *Body;
 | |
|     public:
 | |
|       FunctionAST(PrototypeAST *proto, ExprAST *body)
 | |
|         : Proto(proto), Body(body) {}
 | |
| 
 | |
|       Function *Codegen();
 | |
|     };
 | |
| 
 | |
|     //===----------------------------------------------------------------------===//
 | |
|     // Parser
 | |
|     //===----------------------------------------------------------------------===//
 | |
| 
 | |
|     /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
 | |
|     /// token the parser is looking at.  getNextToken reads another token from the
 | |
|     /// lexer and updates CurTok with its results.
 | |
|     static int CurTok;
 | |
|     static int getNextToken() {
 | |
|       return CurTok = gettok();
 | |
|     }
 | |
| 
 | |
|     /// BinopPrecedence - This holds the precedence for each binary operator that is
 | |
|     /// defined.
 | |
|     static std::map<char, int> BinopPrecedence;
 | |
| 
 | |
|     /// GetTokPrecedence - Get the precedence of the pending binary operator token.
 | |
|     static int GetTokPrecedence() {
 | |
|       if (!isascii(CurTok))
 | |
|         return -1;
 | |
| 
 | |
|       // Make sure it's a declared binop.
 | |
|       int TokPrec = BinopPrecedence[CurTok];
 | |
|       if (TokPrec <= 0) return -1;
 | |
|       return TokPrec;
 | |
|     }
 | |
| 
 | |
|     /// Error* - These are little helper functions for error handling.
 | |
|     ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
 | |
|     PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
 | |
|     FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
 | |
| 
 | |
|     static ExprAST *ParseExpression();
 | |
| 
 | |
|     /// identifierexpr
 | |
|     ///   ::= identifier
 | |
|     ///   ::= identifier '(' expression* ')'
 | |
|     static ExprAST *ParseIdentifierExpr() {
 | |
|       std::string IdName = IdentifierStr;
 | |
| 
 | |
|       getNextToken();  // eat identifier.
 | |
| 
 | |
|       if (CurTok != '(') // Simple variable ref.
 | |
|         return new VariableExprAST(IdName);
 | |
| 
 | |
|       // Call.
 | |
|       getNextToken();  // eat (
 | |
|       std::vector<ExprAST*> Args;
 | |
|       if (CurTok != ')') {
 | |
|         while (1) {
 | |
|           ExprAST *Arg = ParseExpression();
 | |
|           if (!Arg) return 0;
 | |
|           Args.push_back(Arg);
 | |
| 
 | |
|           if (CurTok == ')') break;
 | |
| 
 | |
|           if (CurTok != ',')
 | |
|             return Error("Expected ')' or ',' in argument list");
 | |
|           getNextToken();
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Eat the ')'.
 | |
|       getNextToken();
 | |
| 
 | |
|       return new CallExprAST(IdName, Args);
 | |
|     }
 | |
| 
 | |
|     /// numberexpr ::= number
 | |
|     static ExprAST *ParseNumberExpr() {
 | |
|       ExprAST *Result = new NumberExprAST(NumVal);
 | |
|       getNextToken(); // consume the number
 | |
|       return Result;
 | |
|     }
 | |
| 
 | |
|     /// parenexpr ::= '(' expression ')'
 | |
|     static ExprAST *ParseParenExpr() {
 | |
|       getNextToken();  // eat (.
 | |
|       ExprAST *V = ParseExpression();
 | |
|       if (!V) return 0;
 | |
| 
 | |
|       if (CurTok != ')')
 | |
|         return Error("expected ')'");
 | |
|       getNextToken();  // eat ).
 | |
|       return V;
 | |
|     }
 | |
| 
 | |
|     /// ifexpr ::= 'if' expression 'then' expression 'else' expression
 | |
|     static ExprAST *ParseIfExpr() {
 | |
|       getNextToken();  // eat the if.
 | |
| 
 | |
|       // condition.
 | |
|       ExprAST *Cond = ParseExpression();
 | |
|       if (!Cond) return 0;
 | |
| 
 | |
|       if (CurTok != tok_then)
 | |
|         return Error("expected then");
 | |
|       getNextToken();  // eat the then
 | |
| 
 | |
|       ExprAST *Then = ParseExpression();
 | |
|       if (Then == 0) return 0;
 | |
| 
 | |
|       if (CurTok != tok_else)
 | |
|         return Error("expected else");
 | |
| 
 | |
|       getNextToken();
 | |
| 
 | |
|       ExprAST *Else = ParseExpression();
 | |
|       if (!Else) return 0;
 | |
| 
 | |
|       return new IfExprAST(Cond, Then, Else);
 | |
|     }
 | |
| 
 | |
|     /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
 | |
|     static ExprAST *ParseForExpr() {
 | |
|       getNextToken();  // eat the for.
 | |
| 
 | |
|       if (CurTok != tok_identifier)
 | |
|         return Error("expected identifier after for");
 | |
| 
 | |
|       std::string IdName = IdentifierStr;
 | |
|       getNextToken();  // eat identifier.
 | |
| 
 | |
|       if (CurTok != '=')
 | |
|         return Error("expected '=' after for");
 | |
|       getNextToken();  // eat '='.
 | |
| 
 | |
| 
 | |
|       ExprAST *Start = ParseExpression();
 | |
|       if (Start == 0) return 0;
 | |
|       if (CurTok != ',')
 | |
|         return Error("expected ',' after for start value");
 | |
|       getNextToken();
 | |
| 
 | |
|       ExprAST *End = ParseExpression();
 | |
|       if (End == 0) return 0;
 | |
| 
 | |
|       // The step value is optional.
 | |
|       ExprAST *Step = 0;
 | |
|       if (CurTok == ',') {
 | |
|         getNextToken();
 | |
|         Step = ParseExpression();
 | |
|         if (Step == 0) return 0;
 | |
|       }
 | |
| 
 | |
|       if (CurTok != tok_in)
 | |
|         return Error("expected 'in' after for");
 | |
|       getNextToken();  // eat 'in'.
 | |
| 
 | |
|       ExprAST *Body = ParseExpression();
 | |
|       if (Body == 0) return 0;
 | |
| 
 | |
|       return new ForExprAST(IdName, Start, End, Step, Body);
 | |
|     }
 | |
| 
 | |
|     /// primary
 | |
|     ///   ::= identifierexpr
 | |
|     ///   ::= numberexpr
 | |
|     ///   ::= parenexpr
 | |
|     ///   ::= ifexpr
 | |
|     ///   ::= forexpr
 | |
|     static ExprAST *ParsePrimary() {
 | |
|       switch (CurTok) {
 | |
|       default: return Error("unknown token when expecting an expression");
 | |
|       case tok_identifier: return ParseIdentifierExpr();
 | |
|       case tok_number:     return ParseNumberExpr();
 | |
|       case '(':            return ParseParenExpr();
 | |
|       case tok_if:         return ParseIfExpr();
 | |
|       case tok_for:        return ParseForExpr();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /// unary
 | |
|     ///   ::= primary
 | |
|     ///   ::= '!' unary
 | |
|     static ExprAST *ParseUnary() {
 | |
|       // If the current token is not an operator, it must be a primary expr.
 | |
|       if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
 | |
|         return ParsePrimary();
 | |
| 
 | |
|       // If this is a unary operator, read it.
 | |
|       int Opc = CurTok;
 | |
|       getNextToken();
 | |
|       if (ExprAST *Operand = ParseUnary())
 | |
|         return new UnaryExprAST(Opc, Operand);
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     /// binoprhs
 | |
|     ///   ::= ('+' unary)*
 | |
|     static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
 | |
|       // If this is a binop, find its precedence.
 | |
|       while (1) {
 | |
|         int TokPrec = GetTokPrecedence();
 | |
| 
 | |
|         // If this is a binop that binds at least as tightly as the current binop,
 | |
|         // consume it, otherwise we are done.
 | |
|         if (TokPrec < ExprPrec)
 | |
|           return LHS;
 | |
| 
 | |
|         // Okay, we know this is a binop.
 | |
|         int BinOp = CurTok;
 | |
|         getNextToken();  // eat binop
 | |
| 
 | |
|         // Parse the unary expression after the binary operator.
 | |
|         ExprAST *RHS = ParseUnary();
 | |
|         if (!RHS) return 0;
 | |
| 
 | |
|         // If BinOp binds less tightly with RHS than the operator after RHS, let
 | |
|         // the pending operator take RHS as its LHS.
 | |
|         int NextPrec = GetTokPrecedence();
 | |
|         if (TokPrec < NextPrec) {
 | |
|           RHS = ParseBinOpRHS(TokPrec+1, RHS);
 | |
|           if (RHS == 0) return 0;
 | |
|         }
 | |
| 
 | |
|         // Merge LHS/RHS.
 | |
|         LHS = new BinaryExprAST(BinOp, LHS, RHS);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /// expression
 | |
|     ///   ::= unary binoprhs
 | |
|     ///
 | |
|     static ExprAST *ParseExpression() {
 | |
|       ExprAST *LHS = ParseUnary();
 | |
|       if (!LHS) return 0;
 | |
| 
 | |
|       return ParseBinOpRHS(0, LHS);
 | |
|     }
 | |
| 
 | |
|     /// prototype
 | |
|     ///   ::= id '(' id* ')'
 | |
|     ///   ::= binary LETTER number? (id, id)
 | |
|     ///   ::= unary LETTER (id)
 | |
|     static PrototypeAST *ParsePrototype() {
 | |
|       std::string FnName;
 | |
| 
 | |
|       unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
 | |
|       unsigned BinaryPrecedence = 30;
 | |
| 
 | |
|       switch (CurTok) {
 | |
|       default:
 | |
|         return ErrorP("Expected function name in prototype");
 | |
|       case tok_identifier:
 | |
|         FnName = IdentifierStr;
 | |
|         Kind = 0;
 | |
|         getNextToken();
 | |
|         break;
 | |
|       case tok_unary:
 | |
|         getNextToken();
 | |
|         if (!isascii(CurTok))
 | |
|           return ErrorP("Expected unary operator");
 | |
|         FnName = "unary";
 | |
|         FnName += (char)CurTok;
 | |
|         Kind = 1;
 | |
|         getNextToken();
 | |
|         break;
 | |
|       case tok_binary:
 | |
|         getNextToken();
 | |
|         if (!isascii(CurTok))
 | |
|           return ErrorP("Expected binary operator");
 | |
|         FnName = "binary";
 | |
|         FnName += (char)CurTok;
 | |
|         Kind = 2;
 | |
|         getNextToken();
 | |
| 
 | |
|         // Read the precedence if present.
 | |
|         if (CurTok == tok_number) {
 | |
|           if (NumVal < 1 || NumVal > 100)
 | |
|             return ErrorP("Invalid precedecnce: must be 1..100");
 | |
|           BinaryPrecedence = (unsigned)NumVal;
 | |
|           getNextToken();
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       if (CurTok != '(')
 | |
|         return ErrorP("Expected '(' in prototype");
 | |
| 
 | |
|       std::vector<std::string> ArgNames;
 | |
|       while (getNextToken() == tok_identifier)
 | |
|         ArgNames.push_back(IdentifierStr);
 | |
|       if (CurTok != ')')
 | |
|         return ErrorP("Expected ')' in prototype");
 | |
| 
 | |
|       // success.
 | |
|       getNextToken();  // eat ')'.
 | |
| 
 | |
|       // Verify right number of names for operator.
 | |
|       if (Kind && ArgNames.size() != Kind)
 | |
|         return ErrorP("Invalid number of operands for operator");
 | |
| 
 | |
|       return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
 | |
|     }
 | |
| 
 | |
|     /// definition ::= 'def' prototype expression
 | |
|     static FunctionAST *ParseDefinition() {
 | |
|       getNextToken();  // eat def.
 | |
|       PrototypeAST *Proto = ParsePrototype();
 | |
|       if (Proto == 0) return 0;
 | |
| 
 | |
|       if (ExprAST *E = ParseExpression())
 | |
|         return new FunctionAST(Proto, E);
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     /// toplevelexpr ::= expression
 | |
|     static FunctionAST *ParseTopLevelExpr() {
 | |
|       if (ExprAST *E = ParseExpression()) {
 | |
|         // Make an anonymous proto.
 | |
|         PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
 | |
|         return new FunctionAST(Proto, E);
 | |
|       }
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     /// external ::= 'extern' prototype
 | |
|     static PrototypeAST *ParseExtern() {
 | |
|       getNextToken();  // eat extern.
 | |
|       return ParsePrototype();
 | |
|     }
 | |
| 
 | |
|     //===----------------------------------------------------------------------===//
 | |
|     // Code Generation
 | |
|     //===----------------------------------------------------------------------===//
 | |
| 
 | |
|     static Module *TheModule;
 | |
|     static IRBuilder<> Builder(getGlobalContext());
 | |
|     static std::map<std::string, Value*> NamedValues;
 | |
|     static FunctionPassManager *TheFPM;
 | |
| 
 | |
|     Value *ErrorV(const char *Str) { Error(Str); return 0; }
 | |
| 
 | |
|     Value *NumberExprAST::Codegen() {
 | |
|       return ConstantFP::get(getGlobalContext(), APFloat(Val));
 | |
|     }
 | |
| 
 | |
|     Value *VariableExprAST::Codegen() {
 | |
|       // Look this variable up in the function.
 | |
|       Value *V = NamedValues[Name];
 | |
|       return V ? V : ErrorV("Unknown variable name");
 | |
|     }
 | |
| 
 | |
|     Value *UnaryExprAST::Codegen() {
 | |
|       Value *OperandV = Operand->Codegen();
 | |
|       if (OperandV == 0) return 0;
 | |
| 
 | |
|       Function *F = TheModule->getFunction(std::string("unary")+Opcode);
 | |
|       if (F == 0)
 | |
|         return ErrorV("Unknown unary operator");
 | |
| 
 | |
|       return Builder.CreateCall(F, OperandV, "unop");
 | |
|     }
 | |
| 
 | |
|     Value *BinaryExprAST::Codegen() {
 | |
|       Value *L = LHS->Codegen();
 | |
|       Value *R = RHS->Codegen();
 | |
|       if (L == 0 || R == 0) return 0;
 | |
| 
 | |
|       switch (Op) {
 | |
|       case '+': return Builder.CreateFAdd(L, R, "addtmp");
 | |
|       case '-': return Builder.CreateFSub(L, R, "subtmp");
 | |
|       case '*': return Builder.CreateFMul(L, R, "multmp");
 | |
|       case '<':
 | |
|         L = Builder.CreateFCmpULT(L, R, "cmptmp");
 | |
|         // Convert bool 0/1 to double 0.0 or 1.0
 | |
|         return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
 | |
|                                     "booltmp");
 | |
|       default: break;
 | |
|       }
 | |
| 
 | |
|       // If it wasn't a builtin binary operator, it must be a user defined one. Emit
 | |
|       // a call to it.
 | |
|       Function *F = TheModule->getFunction(std::string("binary")+Op);
 | |
|       assert(F && "binary operator not found!");
 | |
| 
 | |
|       Value *Ops[2] = { L, R };
 | |
|       return Builder.CreateCall(F, Ops, "binop");
 | |
|     }
 | |
| 
 | |
|     Value *CallExprAST::Codegen() {
 | |
|       // Look up the name in the global module table.
 | |
|       Function *CalleeF = TheModule->getFunction(Callee);
 | |
|       if (CalleeF == 0)
 | |
|         return ErrorV("Unknown function referenced");
 | |
| 
 | |
|       // If argument mismatch error.
 | |
|       if (CalleeF->arg_size() != Args.size())
 | |
|         return ErrorV("Incorrect # arguments passed");
 | |
| 
 | |
|       std::vector<Value*> ArgsV;
 | |
|       for (unsigned i = 0, e = Args.size(); i != e; ++i) {
 | |
|         ArgsV.push_back(Args[i]->Codegen());
 | |
|         if (ArgsV.back() == 0) return 0;
 | |
|       }
 | |
| 
 | |
|       return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
 | |
|     }
 | |
| 
 | |
|     Value *IfExprAST::Codegen() {
 | |
|       Value *CondV = Cond->Codegen();
 | |
|       if (CondV == 0) return 0;
 | |
| 
 | |
|       // Convert condition to a bool by comparing equal to 0.0.
 | |
|       CondV = Builder.CreateFCmpONE(CondV,
 | |
|                                   ConstantFP::get(getGlobalContext(), APFloat(0.0)),
 | |
|                                     "ifcond");
 | |
| 
 | |
|       Function *TheFunction = Builder.GetInsertBlock()->getParent();
 | |
| 
 | |
|       // Create blocks for the then and else cases.  Insert the 'then' block at the
 | |
|       // end of the function.
 | |
|       BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
 | |
|       BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
 | |
|       BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
 | |
| 
 | |
|       Builder.CreateCondBr(CondV, ThenBB, ElseBB);
 | |
| 
 | |
|       // Emit then value.
 | |
|       Builder.SetInsertPoint(ThenBB);
 | |
| 
 | |
|       Value *ThenV = Then->Codegen();
 | |
|       if (ThenV == 0) return 0;
 | |
| 
 | |
|       Builder.CreateBr(MergeBB);
 | |
|       // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
 | |
|       ThenBB = Builder.GetInsertBlock();
 | |
| 
 | |
|       // Emit else block.
 | |
|       TheFunction->getBasicBlockList().push_back(ElseBB);
 | |
|       Builder.SetInsertPoint(ElseBB);
 | |
| 
 | |
|       Value *ElseV = Else->Codegen();
 | |
|       if (ElseV == 0) return 0;
 | |
| 
 | |
|       Builder.CreateBr(MergeBB);
 | |
|       // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
 | |
|       ElseBB = Builder.GetInsertBlock();
 | |
| 
 | |
|       // Emit merge block.
 | |
|       TheFunction->getBasicBlockList().push_back(MergeBB);
 | |
|       Builder.SetInsertPoint(MergeBB);
 | |
|       PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
 | |
|                                       "iftmp");
 | |
| 
 | |
|       PN->addIncoming(ThenV, ThenBB);
 | |
|       PN->addIncoming(ElseV, ElseBB);
 | |
|       return PN;
 | |
|     }
 | |
| 
 | |
|     Value *ForExprAST::Codegen() {
 | |
|       // Output this as:
 | |
|       //   ...
 | |
|       //   start = startexpr
 | |
|       //   goto loop
 | |
|       // loop:
 | |
|       //   variable = phi [start, loopheader], [nextvariable, loopend]
 | |
|       //   ...
 | |
|       //   bodyexpr
 | |
|       //   ...
 | |
|       // loopend:
 | |
|       //   step = stepexpr
 | |
|       //   nextvariable = variable + step
 | |
|       //   endcond = endexpr
 | |
|       //   br endcond, loop, endloop
 | |
|       // outloop:
 | |
| 
 | |
|       // Emit the start code first, without 'variable' in scope.
 | |
|       Value *StartVal = Start->Codegen();
 | |
|       if (StartVal == 0) return 0;
 | |
| 
 | |
|       // Make the new basic block for the loop header, inserting after current
 | |
|       // block.
 | |
|       Function *TheFunction = Builder.GetInsertBlock()->getParent();
 | |
|       BasicBlock *PreheaderBB = Builder.GetInsertBlock();
 | |
|       BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
 | |
| 
 | |
|       // Insert an explicit fall through from the current block to the LoopBB.
 | |
|       Builder.CreateBr(LoopBB);
 | |
| 
 | |
|       // Start insertion in LoopBB.
 | |
|       Builder.SetInsertPoint(LoopBB);
 | |
| 
 | |
|       // Start the PHI node with an entry for Start.
 | |
|       PHINode *Variable = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, VarName.c_str());
 | |
|       Variable->addIncoming(StartVal, PreheaderBB);
 | |
| 
 | |
|       // Within the loop, the variable is defined equal to the PHI node.  If it
 | |
|       // shadows an existing variable, we have to restore it, so save it now.
 | |
|       Value *OldVal = NamedValues[VarName];
 | |
|       NamedValues[VarName] = Variable;
 | |
| 
 | |
|       // Emit the body of the loop.  This, like any other expr, can change the
 | |
|       // current BB.  Note that we ignore the value computed by the body, but don't
 | |
|       // allow an error.
 | |
|       if (Body->Codegen() == 0)
 | |
|         return 0;
 | |
| 
 | |
|       // Emit the step value.
 | |
|       Value *StepVal;
 | |
|       if (Step) {
 | |
|         StepVal = Step->Codegen();
 | |
|         if (StepVal == 0) return 0;
 | |
|       } else {
 | |
|         // If not specified, use 1.0.
 | |
|         StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
 | |
|       }
 | |
| 
 | |
|       Value *NextVar = Builder.CreateFAdd(Variable, StepVal, "nextvar");
 | |
| 
 | |
|       // Compute the end condition.
 | |
|       Value *EndCond = End->Codegen();
 | |
|       if (EndCond == 0) return EndCond;
 | |
| 
 | |
|       // Convert condition to a bool by comparing equal to 0.0.
 | |
|       EndCond = Builder.CreateFCmpONE(EndCond,
 | |
|                                   ConstantFP::get(getGlobalContext(), APFloat(0.0)),
 | |
|                                       "loopcond");
 | |
| 
 | |
|       // Create the "after loop" block and insert it.
 | |
|       BasicBlock *LoopEndBB = Builder.GetInsertBlock();
 | |
|       BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
 | |
| 
 | |
|       // Insert the conditional branch into the end of LoopEndBB.
 | |
|       Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
 | |
| 
 | |
|       // Any new code will be inserted in AfterBB.
 | |
|       Builder.SetInsertPoint(AfterBB);
 | |
| 
 | |
|       // Add a new entry to the PHI node for the backedge.
 | |
|       Variable->addIncoming(NextVar, LoopEndBB);
 | |
| 
 | |
|       // Restore the unshadowed variable.
 | |
|       if (OldVal)
 | |
|         NamedValues[VarName] = OldVal;
 | |
|       else
 | |
|         NamedValues.erase(VarName);
 | |
| 
 | |
| 
 | |
|       // for expr always returns 0.0.
 | |
|       return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
 | |
|     }
 | |
| 
 | |
|     Function *PrototypeAST::Codegen() {
 | |
|       // Make the function type:  double(double,double) etc.
 | |
|       std::vector<Type*> Doubles(Args.size(),
 | |
|                                  Type::getDoubleTy(getGlobalContext()));
 | |
|       FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
 | |
|                                            Doubles, false);
 | |
| 
 | |
|       Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
 | |
| 
 | |
|       // If F conflicted, there was already something named 'Name'.  If it has a
 | |
|       // body, don't allow redefinition or reextern.
 | |
|       if (F->getName() != Name) {
 | |
|         // Delete the one we just made and get the existing one.
 | |
|         F->eraseFromParent();
 | |
|         F = TheModule->getFunction(Name);
 | |
| 
 | |
|         // If F already has a body, reject this.
 | |
|         if (!F->empty()) {
 | |
|           ErrorF("redefinition of function");
 | |
|           return 0;
 | |
|         }
 | |
| 
 | |
|         // If F took a different number of args, reject.
 | |
|         if (F->arg_size() != Args.size()) {
 | |
|           ErrorF("redefinition of function with different # args");
 | |
|           return 0;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Set names for all arguments.
 | |
|       unsigned Idx = 0;
 | |
|       for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
 | |
|            ++AI, ++Idx) {
 | |
|         AI->setName(Args[Idx]);
 | |
| 
 | |
|         // Add arguments to variable symbol table.
 | |
|         NamedValues[Args[Idx]] = AI;
 | |
|       }
 | |
| 
 | |
|       return F;
 | |
|     }
 | |
| 
 | |
|     Function *FunctionAST::Codegen() {
 | |
|       NamedValues.clear();
 | |
| 
 | |
|       Function *TheFunction = Proto->Codegen();
 | |
|       if (TheFunction == 0)
 | |
|         return 0;
 | |
| 
 | |
|       // If this is an operator, install it.
 | |
|       if (Proto->isBinaryOp())
 | |
|         BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
 | |
| 
 | |
|       // Create a new basic block to start insertion into.
 | |
|       BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
 | |
|       Builder.SetInsertPoint(BB);
 | |
| 
 | |
|       if (Value *RetVal = Body->Codegen()) {
 | |
|         // Finish off the function.
 | |
|         Builder.CreateRet(RetVal);
 | |
| 
 | |
|         // Validate the generated code, checking for consistency.
 | |
|         verifyFunction(*TheFunction);
 | |
| 
 | |
|         // Optimize the function.
 | |
|         TheFPM->run(*TheFunction);
 | |
| 
 | |
|         return TheFunction;
 | |
|       }
 | |
| 
 | |
|       // Error reading body, remove function.
 | |
|       TheFunction->eraseFromParent();
 | |
| 
 | |
|       if (Proto->isBinaryOp())
 | |
|         BinopPrecedence.erase(Proto->getOperatorName());
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     //===----------------------------------------------------------------------===//
 | |
|     // Top-Level parsing and JIT Driver
 | |
|     //===----------------------------------------------------------------------===//
 | |
| 
 | |
|     static ExecutionEngine *TheExecutionEngine;
 | |
| 
 | |
|     static void HandleDefinition() {
 | |
|       if (FunctionAST *F = ParseDefinition()) {
 | |
|         if (Function *LF = F->Codegen()) {
 | |
|           fprintf(stderr, "Read function definition:");
 | |
|           LF->dump();
 | |
|         }
 | |
|       } else {
 | |
|         // Skip token for error recovery.
 | |
|         getNextToken();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     static void HandleExtern() {
 | |
|       if (PrototypeAST *P = ParseExtern()) {
 | |
|         if (Function *F = P->Codegen()) {
 | |
|           fprintf(stderr, "Read extern: ");
 | |
|           F->dump();
 | |
|         }
 | |
|       } else {
 | |
|         // Skip token for error recovery.
 | |
|         getNextToken();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     static void HandleTopLevelExpression() {
 | |
|       // Evaluate a top-level expression into an anonymous function.
 | |
|       if (FunctionAST *F = ParseTopLevelExpr()) {
 | |
|         if (Function *LF = F->Codegen()) {
 | |
|           // JIT the function, returning a function pointer.
 | |
|           void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
 | |
| 
 | |
|           // Cast it to the right type (takes no arguments, returns a double) so we
 | |
|           // can call it as a native function.
 | |
|           double (*FP)() = (double (*)())(intptr_t)FPtr;
 | |
|           fprintf(stderr, "Evaluated to %f\n", FP());
 | |
|         }
 | |
|       } else {
 | |
|         // Skip token for error recovery.
 | |
|         getNextToken();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /// top ::= definition | external | expression | ';'
 | |
|     static void MainLoop() {
 | |
|       while (1) {
 | |
|         fprintf(stderr, "ready> ");
 | |
|         switch (CurTok) {
 | |
|         case tok_eof:    return;
 | |
|         case ';':        getNextToken(); break;  // ignore top-level semicolons.
 | |
|         case tok_def:    HandleDefinition(); break;
 | |
|         case tok_extern: HandleExtern(); break;
 | |
|         default:         HandleTopLevelExpression(); break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     //===----------------------------------------------------------------------===//
 | |
|     // "Library" functions that can be "extern'd" from user code.
 | |
|     //===----------------------------------------------------------------------===//
 | |
| 
 | |
|     /// putchard - putchar that takes a double and returns 0.
 | |
|     extern "C"
 | |
|     double putchard(double X) {
 | |
|       putchar((char)X);
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     /// printd - printf that takes a double prints it as "%f\n", returning 0.
 | |
|     extern "C"
 | |
|     double printd(double X) {
 | |
|       printf("%f\n", X);
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     //===----------------------------------------------------------------------===//
 | |
|     // Main driver code.
 | |
|     //===----------------------------------------------------------------------===//
 | |
| 
 | |
|     int main() {
 | |
|       InitializeNativeTarget();
 | |
|       LLVMContext &Context = getGlobalContext();
 | |
| 
 | |
|       // Install standard binary operators.
 | |
|       // 1 is lowest precedence.
 | |
|       BinopPrecedence['<'] = 10;
 | |
|       BinopPrecedence['+'] = 20;
 | |
|       BinopPrecedence['-'] = 20;
 | |
|       BinopPrecedence['*'] = 40;  // highest.
 | |
| 
 | |
|       // Prime the first token.
 | |
|       fprintf(stderr, "ready> ");
 | |
|       getNextToken();
 | |
| 
 | |
|       // Make the module, which holds all the code.
 | |
|       TheModule = new Module("my cool jit", Context);
 | |
| 
 | |
|       // Create the JIT.  This takes ownership of the module.
 | |
|       std::string ErrStr;
 | |
|       TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create();
 | |
|       if (!TheExecutionEngine) {
 | |
|         fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
 | |
|         exit(1);
 | |
|       }
 | |
| 
 | |
|       FunctionPassManager OurFPM(TheModule);
 | |
| 
 | |
|       // Set up the optimizer pipeline.  Start with registering info about how the
 | |
|       // target lays out data structures.
 | |
|       OurFPM.add(new DataLayout(*TheExecutionEngine->getDataLayout()));
 | |
|       // Provide basic AliasAnalysis support for GVN.
 | |
|       OurFPM.add(createBasicAliasAnalysisPass());
 | |
|       // Do simple "peephole" optimizations and bit-twiddling optzns.
 | |
|       OurFPM.add(createInstructionCombiningPass());
 | |
|       // Reassociate expressions.
 | |
|       OurFPM.add(createReassociatePass());
 | |
|       // Eliminate Common SubExpressions.
 | |
|       OurFPM.add(createGVNPass());
 | |
|       // Simplify the control flow graph (deleting unreachable blocks, etc).
 | |
|       OurFPM.add(createCFGSimplificationPass());
 | |
| 
 | |
|       OurFPM.doInitialization();
 | |
| 
 | |
|       // Set the global so the code gen can use this.
 | |
|       TheFPM = &OurFPM;
 | |
| 
 | |
|       // Run the main "interpreter loop" now.
 | |
|       MainLoop();
 | |
| 
 | |
|       TheFPM = 0;
 | |
| 
 | |
|       // Print out all of the generated code.
 | |
|       TheModule->dump();
 | |
| 
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
| `Next: Extending the language: mutable variables / SSA
 | |
| construction <LangImpl7.html>`_
 | |
| 
 |