mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	The newly added function returns the size of the specified floating point semantics in bits. Differential revision: http://reviews.llvm.org/D8413 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241793 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			681 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			681 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- llvm/ADT/APFloat.h - Arbitrary Precision Floating Point ---*- C++ -*-==//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
///
 | 
						|
/// \file
 | 
						|
/// \brief
 | 
						|
/// This file declares a class to represent arbitrary precision floating point
 | 
						|
/// values and provide a variety of arithmetic operations on them.
 | 
						|
///
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef LLVM_ADT_APFLOAT_H
 | 
						|
#define LLVM_ADT_APFLOAT_H
 | 
						|
 | 
						|
#include "llvm/ADT/APInt.h"
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
struct fltSemantics;
 | 
						|
class APSInt;
 | 
						|
class StringRef;
 | 
						|
 | 
						|
/// Enum that represents what fraction of the LSB truncated bits of an fp number
 | 
						|
/// represent.
 | 
						|
///
 | 
						|
/// This essentially combines the roles of guard and sticky bits.
 | 
						|
enum lostFraction { // Example of truncated bits:
 | 
						|
  lfExactlyZero,    // 000000
 | 
						|
  lfLessThanHalf,   // 0xxxxx  x's not all zero
 | 
						|
  lfExactlyHalf,    // 100000
 | 
						|
  lfMoreThanHalf    // 1xxxxx  x's not all zero
 | 
						|
};
 | 
						|
 | 
						|
/// \brief A self-contained host- and target-independent arbitrary-precision
 | 
						|
/// floating-point software implementation.
 | 
						|
///
 | 
						|
/// APFloat uses bignum integer arithmetic as provided by static functions in
 | 
						|
/// the APInt class.  The library will work with bignum integers whose parts are
 | 
						|
/// any unsigned type at least 16 bits wide, but 64 bits is recommended.
 | 
						|
///
 | 
						|
/// Written for clarity rather than speed, in particular with a view to use in
 | 
						|
/// the front-end of a cross compiler so that target arithmetic can be correctly
 | 
						|
/// performed on the host.  Performance should nonetheless be reasonable,
 | 
						|
/// particularly for its intended use.  It may be useful as a base
 | 
						|
/// implementation for a run-time library during development of a faster
 | 
						|
/// target-specific one.
 | 
						|
///
 | 
						|
/// All 5 rounding modes in the IEEE-754R draft are handled correctly for all
 | 
						|
/// implemented operations.  Currently implemented operations are add, subtract,
 | 
						|
/// multiply, divide, fused-multiply-add, conversion-to-float,
 | 
						|
/// conversion-to-integer and conversion-from-integer.  New rounding modes
 | 
						|
/// (e.g. away from zero) can be added with three or four lines of code.
 | 
						|
///
 | 
						|
/// Four formats are built-in: IEEE single precision, double precision,
 | 
						|
/// quadruple precision, and x87 80-bit extended double (when operating with
 | 
						|
/// full extended precision).  Adding a new format that obeys IEEE semantics
 | 
						|
/// only requires adding two lines of code: a declaration and definition of the
 | 
						|
/// format.
 | 
						|
///
 | 
						|
/// All operations return the status of that operation as an exception bit-mask,
 | 
						|
/// so multiple operations can be done consecutively with their results or-ed
 | 
						|
/// together.  The returned status can be useful for compiler diagnostics; e.g.,
 | 
						|
/// inexact, underflow and overflow can be easily diagnosed on constant folding,
 | 
						|
/// and compiler optimizers can determine what exceptions would be raised by
 | 
						|
/// folding operations and optimize, or perhaps not optimize, accordingly.
 | 
						|
///
 | 
						|
/// At present, underflow tininess is detected after rounding; it should be
 | 
						|
/// straight forward to add support for the before-rounding case too.
 | 
						|
///
 | 
						|
/// The library reads hexadecimal floating point numbers as per C99, and
 | 
						|
/// correctly rounds if necessary according to the specified rounding mode.
 | 
						|
/// Syntax is required to have been validated by the caller.  It also converts
 | 
						|
/// floating point numbers to hexadecimal text as per the C99 %a and %A
 | 
						|
/// conversions.  The output precision (or alternatively the natural minimal
 | 
						|
/// precision) can be specified; if the requested precision is less than the
 | 
						|
/// natural precision the output is correctly rounded for the specified rounding
 | 
						|
/// mode.
 | 
						|
///
 | 
						|
/// It also reads decimal floating point numbers and correctly rounds according
 | 
						|
/// to the specified rounding mode.
 | 
						|
///
 | 
						|
/// Conversion to decimal text is not currently implemented.
 | 
						|
///
 | 
						|
/// Non-zero finite numbers are represented internally as a sign bit, a 16-bit
 | 
						|
/// signed exponent, and the significand as an array of integer parts.  After
 | 
						|
/// normalization of a number of precision P the exponent is within the range of
 | 
						|
/// the format, and if the number is not denormal the P-th bit of the
 | 
						|
/// significand is set as an explicit integer bit.  For denormals the most
 | 
						|
/// significant bit is shifted right so that the exponent is maintained at the
 | 
						|
/// format's minimum, so that the smallest denormal has just the least
 | 
						|
/// significant bit of the significand set.  The sign of zeroes and infinities
 | 
						|
/// is significant; the exponent and significand of such numbers is not stored,
 | 
						|
/// but has a known implicit (deterministic) value: 0 for the significands, 0
 | 
						|
/// for zero exponent, all 1 bits for infinity exponent.  For NaNs the sign and
 | 
						|
/// significand are deterministic, although not really meaningful, and preserved
 | 
						|
/// in non-conversion operations.  The exponent is implicitly all 1 bits.
 | 
						|
///
 | 
						|
/// APFloat does not provide any exception handling beyond default exception
 | 
						|
/// handling. We represent Signaling NaNs via IEEE-754R 2008 6.2.1 should clause
 | 
						|
/// by encoding Signaling NaNs with the first bit of its trailing significand as
 | 
						|
/// 0.
 | 
						|
///
 | 
						|
/// TODO
 | 
						|
/// ====
 | 
						|
///
 | 
						|
/// Some features that may or may not be worth adding:
 | 
						|
///
 | 
						|
/// Binary to decimal conversion (hard).
 | 
						|
///
 | 
						|
/// Optional ability to detect underflow tininess before rounding.
 | 
						|
///
 | 
						|
/// New formats: x87 in single and double precision mode (IEEE apart from
 | 
						|
/// extended exponent range) (hard).
 | 
						|
///
 | 
						|
/// New operations: sqrt, IEEE remainder, C90 fmod, nexttoward.
 | 
						|
///
 | 
						|
class APFloat {
 | 
						|
public:
 | 
						|
 | 
						|
  /// A signed type to represent a floating point numbers unbiased exponent.
 | 
						|
  typedef signed short ExponentType;
 | 
						|
 | 
						|
  /// \name Floating Point Semantics.
 | 
						|
  /// @{
 | 
						|
 | 
						|
  static const fltSemantics IEEEhalf;
 | 
						|
  static const fltSemantics IEEEsingle;
 | 
						|
  static const fltSemantics IEEEdouble;
 | 
						|
  static const fltSemantics IEEEquad;
 | 
						|
  static const fltSemantics PPCDoubleDouble;
 | 
						|
  static const fltSemantics x87DoubleExtended;
 | 
						|
 | 
						|
  /// A Pseudo fltsemantic used to construct APFloats that cannot conflict with
 | 
						|
  /// anything real.
 | 
						|
  static const fltSemantics Bogus;
 | 
						|
 | 
						|
  /// @}
 | 
						|
 | 
						|
  static unsigned int semanticsPrecision(const fltSemantics &);
 | 
						|
 | 
						|
  /// IEEE-754R 5.11: Floating Point Comparison Relations.
 | 
						|
  enum cmpResult {
 | 
						|
    cmpLessThan,
 | 
						|
    cmpEqual,
 | 
						|
    cmpGreaterThan,
 | 
						|
    cmpUnordered
 | 
						|
  };
 | 
						|
 | 
						|
  /// IEEE-754R 4.3: Rounding-direction attributes.
 | 
						|
  enum roundingMode {
 | 
						|
    rmNearestTiesToEven,
 | 
						|
    rmTowardPositive,
 | 
						|
    rmTowardNegative,
 | 
						|
    rmTowardZero,
 | 
						|
    rmNearestTiesToAway
 | 
						|
  };
 | 
						|
 | 
						|
  /// IEEE-754R 7: Default exception handling.
 | 
						|
  ///
 | 
						|
  /// opUnderflow or opOverflow are always returned or-ed with opInexact.
 | 
						|
  enum opStatus {
 | 
						|
    opOK = 0x00,
 | 
						|
    opInvalidOp = 0x01,
 | 
						|
    opDivByZero = 0x02,
 | 
						|
    opOverflow = 0x04,
 | 
						|
    opUnderflow = 0x08,
 | 
						|
    opInexact = 0x10
 | 
						|
  };
 | 
						|
 | 
						|
  /// Category of internally-represented number.
 | 
						|
  enum fltCategory {
 | 
						|
    fcInfinity,
 | 
						|
    fcNaN,
 | 
						|
    fcNormal,
 | 
						|
    fcZero
 | 
						|
  };
 | 
						|
 | 
						|
  /// Convenience enum used to construct an uninitialized APFloat.
 | 
						|
  enum uninitializedTag {
 | 
						|
    uninitialized
 | 
						|
  };
 | 
						|
 | 
						|
  /// \name Constructors
 | 
						|
  /// @{
 | 
						|
 | 
						|
  APFloat(const fltSemantics &); // Default construct to 0.0
 | 
						|
  APFloat(const fltSemantics &, StringRef);
 | 
						|
  APFloat(const fltSemantics &, integerPart);
 | 
						|
  APFloat(const fltSemantics &, uninitializedTag);
 | 
						|
  APFloat(const fltSemantics &, const APInt &);
 | 
						|
  explicit APFloat(double d);
 | 
						|
  explicit APFloat(float f);
 | 
						|
  APFloat(const APFloat &);
 | 
						|
  APFloat(APFloat &&);
 | 
						|
  ~APFloat();
 | 
						|
 | 
						|
  /// @}
 | 
						|
 | 
						|
  /// \brief Returns whether this instance allocated memory.
 | 
						|
  bool needsCleanup() const { return partCount() > 1; }
 | 
						|
 | 
						|
  /// \name Convenience "constructors"
 | 
						|
  /// @{
 | 
						|
 | 
						|
  /// Factory for Positive and Negative Zero.
 | 
						|
  ///
 | 
						|
  /// \param Negative True iff the number should be negative.
 | 
						|
  static APFloat getZero(const fltSemantics &Sem, bool Negative = false) {
 | 
						|
    APFloat Val(Sem, uninitialized);
 | 
						|
    Val.makeZero(Negative);
 | 
						|
    return Val;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Factory for Positive and Negative Infinity.
 | 
						|
  ///
 | 
						|
  /// \param Negative True iff the number should be negative.
 | 
						|
  static APFloat getInf(const fltSemantics &Sem, bool Negative = false) {
 | 
						|
    APFloat Val(Sem, uninitialized);
 | 
						|
    Val.makeInf(Negative);
 | 
						|
    return Val;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Factory for QNaN values.
 | 
						|
  ///
 | 
						|
  /// \param Negative - True iff the NaN generated should be negative.
 | 
						|
  /// \param type - The unspecified fill bits for creating the NaN, 0 by
 | 
						|
  /// default.  The value is truncated as necessary.
 | 
						|
  static APFloat getNaN(const fltSemantics &Sem, bool Negative = false,
 | 
						|
                        unsigned type = 0) {
 | 
						|
    if (type) {
 | 
						|
      APInt fill(64, type);
 | 
						|
      return getQNaN(Sem, Negative, &fill);
 | 
						|
    } else {
 | 
						|
      return getQNaN(Sem, Negative, nullptr);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /// Factory for QNaN values.
 | 
						|
  static APFloat getQNaN(const fltSemantics &Sem, bool Negative = false,
 | 
						|
                         const APInt *payload = nullptr) {
 | 
						|
    return makeNaN(Sem, false, Negative, payload);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Factory for SNaN values.
 | 
						|
  static APFloat getSNaN(const fltSemantics &Sem, bool Negative = false,
 | 
						|
                         const APInt *payload = nullptr) {
 | 
						|
    return makeNaN(Sem, true, Negative, payload);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Returns the largest finite number in the given semantics.
 | 
						|
  ///
 | 
						|
  /// \param Negative - True iff the number should be negative
 | 
						|
  static APFloat getLargest(const fltSemantics &Sem, bool Negative = false);
 | 
						|
 | 
						|
  /// Returns the smallest (by magnitude) finite number in the given semantics.
 | 
						|
  /// Might be denormalized, which implies a relative loss of precision.
 | 
						|
  ///
 | 
						|
  /// \param Negative - True iff the number should be negative
 | 
						|
  static APFloat getSmallest(const fltSemantics &Sem, bool Negative = false);
 | 
						|
 | 
						|
  /// Returns the smallest (by magnitude) normalized finite number in the given
 | 
						|
  /// semantics.
 | 
						|
  ///
 | 
						|
  /// \param Negative - True iff the number should be negative
 | 
						|
  static APFloat getSmallestNormalized(const fltSemantics &Sem,
 | 
						|
                                       bool Negative = false);
 | 
						|
 | 
						|
  /// Returns a float which is bitcasted from an all one value int.
 | 
						|
  ///
 | 
						|
  /// \param BitWidth - Select float type
 | 
						|
  /// \param isIEEE   - If 128 bit number, select between PPC and IEEE
 | 
						|
  static APFloat getAllOnesValue(unsigned BitWidth, bool isIEEE = false);
 | 
						|
 | 
						|
  /// Returns the size of the floating point number (in bits) in the given
 | 
						|
  /// semantics.
 | 
						|
  static unsigned getSizeInBits(const fltSemantics &Sem);
 | 
						|
 | 
						|
  /// @}
 | 
						|
 | 
						|
  /// Used to insert APFloat objects, or objects that contain APFloat objects,
 | 
						|
  /// into FoldingSets.
 | 
						|
  void Profile(FoldingSetNodeID &NID) const;
 | 
						|
 | 
						|
  /// \name Arithmetic
 | 
						|
  /// @{
 | 
						|
 | 
						|
  opStatus add(const APFloat &, roundingMode);
 | 
						|
  opStatus subtract(const APFloat &, roundingMode);
 | 
						|
  opStatus multiply(const APFloat &, roundingMode);
 | 
						|
  opStatus divide(const APFloat &, roundingMode);
 | 
						|
  /// IEEE remainder.
 | 
						|
  opStatus remainder(const APFloat &);
 | 
						|
  /// C fmod, or llvm frem.
 | 
						|
  opStatus mod(const APFloat &, roundingMode);
 | 
						|
  opStatus fusedMultiplyAdd(const APFloat &, const APFloat &, roundingMode);
 | 
						|
  opStatus roundToIntegral(roundingMode);
 | 
						|
  /// IEEE-754R 5.3.1: nextUp/nextDown.
 | 
						|
  opStatus next(bool nextDown);
 | 
						|
 | 
						|
  /// \brief Operator+ overload which provides the default
 | 
						|
  /// \c nmNearestTiesToEven rounding mode and *no* error checking.
 | 
						|
  APFloat operator+(const APFloat &RHS) const {
 | 
						|
    APFloat Result = *this;
 | 
						|
    Result.add(RHS, rmNearestTiesToEven);
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Operator- overload which provides the default
 | 
						|
  /// \c nmNearestTiesToEven rounding mode and *no* error checking.
 | 
						|
  APFloat operator-(const APFloat &RHS) const {
 | 
						|
    APFloat Result = *this;
 | 
						|
    Result.subtract(RHS, rmNearestTiesToEven);
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Operator* overload which provides the default
 | 
						|
  /// \c nmNearestTiesToEven rounding mode and *no* error checking.
 | 
						|
  APFloat operator*(const APFloat &RHS) const {
 | 
						|
    APFloat Result = *this;
 | 
						|
    Result.multiply(RHS, rmNearestTiesToEven);
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Operator/ overload which provides the default
 | 
						|
  /// \c nmNearestTiesToEven rounding mode and *no* error checking.
 | 
						|
  APFloat operator/(const APFloat &RHS) const {
 | 
						|
    APFloat Result = *this;
 | 
						|
    Result.divide(RHS, rmNearestTiesToEven);
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  /// @}
 | 
						|
 | 
						|
  /// \name Sign operations.
 | 
						|
  /// @{
 | 
						|
 | 
						|
  void changeSign();
 | 
						|
  void clearSign();
 | 
						|
  void copySign(const APFloat &);
 | 
						|
 | 
						|
  /// \brief A static helper to produce a copy of an APFloat value with its sign
 | 
						|
  /// copied from some other APFloat.
 | 
						|
  static APFloat copySign(APFloat Value, const APFloat &Sign) {
 | 
						|
    Value.copySign(Sign);
 | 
						|
    return Value;
 | 
						|
  }
 | 
						|
 | 
						|
  /// @}
 | 
						|
 | 
						|
  /// \name Conversions
 | 
						|
  /// @{
 | 
						|
 | 
						|
  opStatus convert(const fltSemantics &, roundingMode, bool *);
 | 
						|
  opStatus convertToInteger(integerPart *, unsigned int, bool, roundingMode,
 | 
						|
                            bool *) const;
 | 
						|
  opStatus convertToInteger(APSInt &, roundingMode, bool *) const;
 | 
						|
  opStatus convertFromAPInt(const APInt &, bool, roundingMode);
 | 
						|
  opStatus convertFromSignExtendedInteger(const integerPart *, unsigned int,
 | 
						|
                                          bool, roundingMode);
 | 
						|
  opStatus convertFromZeroExtendedInteger(const integerPart *, unsigned int,
 | 
						|
                                          bool, roundingMode);
 | 
						|
  opStatus convertFromString(StringRef, roundingMode);
 | 
						|
  APInt bitcastToAPInt() const;
 | 
						|
  double convertToDouble() const;
 | 
						|
  float convertToFloat() const;
 | 
						|
 | 
						|
  /// @}
 | 
						|
 | 
						|
  /// The definition of equality is not straightforward for floating point, so
 | 
						|
  /// we won't use operator==.  Use one of the following, or write whatever it
 | 
						|
  /// is you really mean.
 | 
						|
  bool operator==(const APFloat &) const = delete;
 | 
						|
 | 
						|
  /// IEEE comparison with another floating point number (NaNs compare
 | 
						|
  /// unordered, 0==-0).
 | 
						|
  cmpResult compare(const APFloat &) const;
 | 
						|
 | 
						|
  /// Bitwise comparison for equality (QNaNs compare equal, 0!=-0).
 | 
						|
  bool bitwiseIsEqual(const APFloat &) const;
 | 
						|
 | 
						|
  /// Write out a hexadecimal representation of the floating point value to DST,
 | 
						|
  /// which must be of sufficient size, in the C99 form [-]0xh.hhhhp[+-]d.
 | 
						|
  /// Return the number of characters written, excluding the terminating NUL.
 | 
						|
  unsigned int convertToHexString(char *dst, unsigned int hexDigits,
 | 
						|
                                  bool upperCase, roundingMode) const;
 | 
						|
 | 
						|
  /// \name IEEE-754R 5.7.2 General operations.
 | 
						|
  /// @{
 | 
						|
 | 
						|
  /// IEEE-754R isSignMinus: Returns true if and only if the current value is
 | 
						|
  /// negative.
 | 
						|
  ///
 | 
						|
  /// This applies to zeros and NaNs as well.
 | 
						|
  bool isNegative() const { return sign; }
 | 
						|
 | 
						|
  /// IEEE-754R isNormal: Returns true if and only if the current value is normal.
 | 
						|
  ///
 | 
						|
  /// This implies that the current value of the float is not zero, subnormal,
 | 
						|
  /// infinite, or NaN following the definition of normality from IEEE-754R.
 | 
						|
  bool isNormal() const { return !isDenormal() && isFiniteNonZero(); }
 | 
						|
 | 
						|
  /// Returns true if and only if the current value is zero, subnormal, or
 | 
						|
  /// normal.
 | 
						|
  ///
 | 
						|
  /// This means that the value is not infinite or NaN.
 | 
						|
  bool isFinite() const { return !isNaN() && !isInfinity(); }
 | 
						|
 | 
						|
  /// Returns true if and only if the float is plus or minus zero.
 | 
						|
  bool isZero() const { return category == fcZero; }
 | 
						|
 | 
						|
  /// IEEE-754R isSubnormal(): Returns true if and only if the float is a
 | 
						|
  /// denormal.
 | 
						|
  bool isDenormal() const;
 | 
						|
 | 
						|
  /// IEEE-754R isInfinite(): Returns true if and only if the float is infinity.
 | 
						|
  bool isInfinity() const { return category == fcInfinity; }
 | 
						|
 | 
						|
  /// Returns true if and only if the float is a quiet or signaling NaN.
 | 
						|
  bool isNaN() const { return category == fcNaN; }
 | 
						|
 | 
						|
  /// Returns true if and only if the float is a signaling NaN.
 | 
						|
  bool isSignaling() const;
 | 
						|
 | 
						|
  /// @}
 | 
						|
 | 
						|
  /// \name Simple Queries
 | 
						|
  /// @{
 | 
						|
 | 
						|
  fltCategory getCategory() const { return category; }
 | 
						|
  const fltSemantics &getSemantics() const { return *semantics; }
 | 
						|
  bool isNonZero() const { return category != fcZero; }
 | 
						|
  bool isFiniteNonZero() const { return isFinite() && !isZero(); }
 | 
						|
  bool isPosZero() const { return isZero() && !isNegative(); }
 | 
						|
  bool isNegZero() const { return isZero() && isNegative(); }
 | 
						|
 | 
						|
  /// Returns true if and only if the number has the smallest possible non-zero
 | 
						|
  /// magnitude in the current semantics.
 | 
						|
  bool isSmallest() const;
 | 
						|
 | 
						|
  /// Returns true if and only if the number has the largest possible finite
 | 
						|
  /// magnitude in the current semantics.
 | 
						|
  bool isLargest() const;
 | 
						|
 | 
						|
  /// @}
 | 
						|
 | 
						|
  APFloat &operator=(const APFloat &);
 | 
						|
  APFloat &operator=(APFloat &&);
 | 
						|
 | 
						|
  /// \brief Overload to compute a hash code for an APFloat value.
 | 
						|
  ///
 | 
						|
  /// Note that the use of hash codes for floating point values is in general
 | 
						|
  /// frought with peril. Equality is hard to define for these values. For
 | 
						|
  /// example, should negative and positive zero hash to different codes? Are
 | 
						|
  /// they equal or not? This hash value implementation specifically
 | 
						|
  /// emphasizes producing different codes for different inputs in order to
 | 
						|
  /// be used in canonicalization and memoization. As such, equality is
 | 
						|
  /// bitwiseIsEqual, and 0 != -0.
 | 
						|
  friend hash_code hash_value(const APFloat &Arg);
 | 
						|
 | 
						|
  /// Converts this value into a decimal string.
 | 
						|
  ///
 | 
						|
  /// \param FormatPrecision The maximum number of digits of
 | 
						|
  ///   precision to output.  If there are fewer digits available,
 | 
						|
  ///   zero padding will not be used unless the value is
 | 
						|
  ///   integral and small enough to be expressed in
 | 
						|
  ///   FormatPrecision digits.  0 means to use the natural
 | 
						|
  ///   precision of the number.
 | 
						|
  /// \param FormatMaxPadding The maximum number of zeros to
 | 
						|
  ///   consider inserting before falling back to scientific
 | 
						|
  ///   notation.  0 means to always use scientific notation.
 | 
						|
  ///
 | 
						|
  /// Number       Precision    MaxPadding      Result
 | 
						|
  /// ------       ---------    ----------      ------
 | 
						|
  /// 1.01E+4              5             2       10100
 | 
						|
  /// 1.01E+4              4             2       1.01E+4
 | 
						|
  /// 1.01E+4              5             1       1.01E+4
 | 
						|
  /// 1.01E-2              5             2       0.0101
 | 
						|
  /// 1.01E-2              4             2       0.0101
 | 
						|
  /// 1.01E-2              4             1       1.01E-2
 | 
						|
  void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
 | 
						|
                unsigned FormatMaxPadding = 3) const;
 | 
						|
 | 
						|
  /// If this value has an exact multiplicative inverse, store it in inv and
 | 
						|
  /// return true.
 | 
						|
  bool getExactInverse(APFloat *inv) const;
 | 
						|
 | 
						|
  /// \brief Enumeration of \c ilogb error results.
 | 
						|
  enum IlogbErrorKinds {
 | 
						|
    IEK_Zero = INT_MIN+1,
 | 
						|
    IEK_NaN = INT_MIN,
 | 
						|
    IEK_Inf = INT_MAX
 | 
						|
  };
 | 
						|
 | 
						|
  /// \brief Returns the exponent of the internal representation of the APFloat.
 | 
						|
  ///
 | 
						|
  /// Because the radix of APFloat is 2, this is equivalent to floor(log2(x)).
 | 
						|
  /// For special APFloat values, this returns special error codes:
 | 
						|
  ///
 | 
						|
  ///   NaN -> \c IEK_NaN
 | 
						|
  ///   0   -> \c IEK_Zero
 | 
						|
  ///   Inf -> \c IEK_Inf
 | 
						|
  ///
 | 
						|
  friend int ilogb(const APFloat &Arg) {
 | 
						|
    if (Arg.isNaN())
 | 
						|
      return IEK_NaN;
 | 
						|
    if (Arg.isZero())
 | 
						|
      return IEK_Zero;
 | 
						|
    if (Arg.isInfinity())
 | 
						|
      return IEK_Inf;
 | 
						|
 | 
						|
    return Arg.exponent;
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Returns: X * 2^Exp for integral exponents.
 | 
						|
  friend APFloat scalbn(APFloat X, int Exp);
 | 
						|
 | 
						|
private:
 | 
						|
 | 
						|
  /// \name Simple Queries
 | 
						|
  /// @{
 | 
						|
 | 
						|
  integerPart *significandParts();
 | 
						|
  const integerPart *significandParts() const;
 | 
						|
  unsigned int partCount() const;
 | 
						|
 | 
						|
  /// @}
 | 
						|
 | 
						|
  /// \name Significand operations.
 | 
						|
  /// @{
 | 
						|
 | 
						|
  integerPart addSignificand(const APFloat &);
 | 
						|
  integerPart subtractSignificand(const APFloat &, integerPart);
 | 
						|
  lostFraction addOrSubtractSignificand(const APFloat &, bool subtract);
 | 
						|
  lostFraction multiplySignificand(const APFloat &, const APFloat *);
 | 
						|
  lostFraction divideSignificand(const APFloat &);
 | 
						|
  void incrementSignificand();
 | 
						|
  void initialize(const fltSemantics *);
 | 
						|
  void shiftSignificandLeft(unsigned int);
 | 
						|
  lostFraction shiftSignificandRight(unsigned int);
 | 
						|
  unsigned int significandLSB() const;
 | 
						|
  unsigned int significandMSB() const;
 | 
						|
  void zeroSignificand();
 | 
						|
  /// Return true if the significand excluding the integral bit is all ones.
 | 
						|
  bool isSignificandAllOnes() const;
 | 
						|
  /// Return true if the significand excluding the integral bit is all zeros.
 | 
						|
  bool isSignificandAllZeros() const;
 | 
						|
 | 
						|
  /// @}
 | 
						|
 | 
						|
  /// \name Arithmetic on special values.
 | 
						|
  /// @{
 | 
						|
 | 
						|
  opStatus addOrSubtractSpecials(const APFloat &, bool subtract);
 | 
						|
  opStatus divideSpecials(const APFloat &);
 | 
						|
  opStatus multiplySpecials(const APFloat &);
 | 
						|
  opStatus modSpecials(const APFloat &);
 | 
						|
 | 
						|
  /// @}
 | 
						|
 | 
						|
  /// \name Special value setters.
 | 
						|
  /// @{
 | 
						|
 | 
						|
  void makeLargest(bool Neg = false);
 | 
						|
  void makeSmallest(bool Neg = false);
 | 
						|
  void makeNaN(bool SNaN = false, bool Neg = false,
 | 
						|
               const APInt *fill = nullptr);
 | 
						|
  static APFloat makeNaN(const fltSemantics &Sem, bool SNaN, bool Negative,
 | 
						|
                         const APInt *fill);
 | 
						|
  void makeInf(bool Neg = false);
 | 
						|
  void makeZero(bool Neg = false);
 | 
						|
 | 
						|
  /// @}
 | 
						|
 | 
						|
  /// \name Miscellany
 | 
						|
  /// @{
 | 
						|
 | 
						|
  bool convertFromStringSpecials(StringRef str);
 | 
						|
  opStatus normalize(roundingMode, lostFraction);
 | 
						|
  opStatus addOrSubtract(const APFloat &, roundingMode, bool subtract);
 | 
						|
  cmpResult compareAbsoluteValue(const APFloat &) const;
 | 
						|
  opStatus handleOverflow(roundingMode);
 | 
						|
  bool roundAwayFromZero(roundingMode, lostFraction, unsigned int) const;
 | 
						|
  opStatus convertToSignExtendedInteger(integerPart *, unsigned int, bool,
 | 
						|
                                        roundingMode, bool *) const;
 | 
						|
  opStatus convertFromUnsignedParts(const integerPart *, unsigned int,
 | 
						|
                                    roundingMode);
 | 
						|
  opStatus convertFromHexadecimalString(StringRef, roundingMode);
 | 
						|
  opStatus convertFromDecimalString(StringRef, roundingMode);
 | 
						|
  char *convertNormalToHexString(char *, unsigned int, bool,
 | 
						|
                                 roundingMode) const;
 | 
						|
  opStatus roundSignificandWithExponent(const integerPart *, unsigned int, int,
 | 
						|
                                        roundingMode);
 | 
						|
 | 
						|
  /// @}
 | 
						|
 | 
						|
  APInt convertHalfAPFloatToAPInt() const;
 | 
						|
  APInt convertFloatAPFloatToAPInt() const;
 | 
						|
  APInt convertDoubleAPFloatToAPInt() const;
 | 
						|
  APInt convertQuadrupleAPFloatToAPInt() const;
 | 
						|
  APInt convertF80LongDoubleAPFloatToAPInt() const;
 | 
						|
  APInt convertPPCDoubleDoubleAPFloatToAPInt() const;
 | 
						|
  void initFromAPInt(const fltSemantics *Sem, const APInt &api);
 | 
						|
  void initFromHalfAPInt(const APInt &api);
 | 
						|
  void initFromFloatAPInt(const APInt &api);
 | 
						|
  void initFromDoubleAPInt(const APInt &api);
 | 
						|
  void initFromQuadrupleAPInt(const APInt &api);
 | 
						|
  void initFromF80LongDoubleAPInt(const APInt &api);
 | 
						|
  void initFromPPCDoubleDoubleAPInt(const APInt &api);
 | 
						|
 | 
						|
  void assign(const APFloat &);
 | 
						|
  void copySignificand(const APFloat &);
 | 
						|
  void freeSignificand();
 | 
						|
 | 
						|
  /// The semantics that this value obeys.
 | 
						|
  const fltSemantics *semantics;
 | 
						|
 | 
						|
  /// A binary fraction with an explicit integer bit.
 | 
						|
  ///
 | 
						|
  /// The significand must be at least one bit wider than the target precision.
 | 
						|
  union Significand {
 | 
						|
    integerPart part;
 | 
						|
    integerPart *parts;
 | 
						|
  } significand;
 | 
						|
 | 
						|
  /// The signed unbiased exponent of the value.
 | 
						|
  ExponentType exponent;
 | 
						|
 | 
						|
  /// What kind of floating point number this is.
 | 
						|
  ///
 | 
						|
  /// Only 2 bits are required, but VisualStudio incorrectly sign extends it.
 | 
						|
  /// Using the extra bit keeps it from failing under VisualStudio.
 | 
						|
  fltCategory category : 3;
 | 
						|
 | 
						|
  /// Sign bit of the number.
 | 
						|
  unsigned int sign : 1;
 | 
						|
};
 | 
						|
 | 
						|
/// See friend declarations above.
 | 
						|
///
 | 
						|
/// These additional declarations are required in order to compile LLVM with IBM
 | 
						|
/// xlC compiler.
 | 
						|
hash_code hash_value(const APFloat &Arg);
 | 
						|
APFloat scalbn(APFloat X, int Exp);
 | 
						|
 | 
						|
/// \brief Returns the absolute value of the argument.
 | 
						|
inline APFloat abs(APFloat X) {
 | 
						|
  X.clearSign();
 | 
						|
  return X;
 | 
						|
}
 | 
						|
 | 
						|
/// Implements IEEE minNum semantics. Returns the smaller of the 2 arguments if
 | 
						|
/// both are not NaN. If either argument is a NaN, returns the other argument.
 | 
						|
LLVM_READONLY
 | 
						|
inline APFloat minnum(const APFloat &A, const APFloat &B) {
 | 
						|
  if (A.isNaN())
 | 
						|
    return B;
 | 
						|
  if (B.isNaN())
 | 
						|
    return A;
 | 
						|
  return (B.compare(A) == APFloat::cmpLessThan) ? B : A;
 | 
						|
}
 | 
						|
 | 
						|
/// Implements IEEE maxNum semantics. Returns the larger of the 2 arguments if
 | 
						|
/// both are not NaN. If either argument is a NaN, returns the other argument.
 | 
						|
LLVM_READONLY
 | 
						|
inline APFloat maxnum(const APFloat &A, const APFloat &B) {
 | 
						|
  if (A.isNaN())
 | 
						|
    return B;
 | 
						|
  if (B.isNaN())
 | 
						|
    return A;
 | 
						|
  return (A.compare(B) == APFloat::cmpLessThan) ? B : A;
 | 
						|
}
 | 
						|
 | 
						|
} // namespace llvm
 | 
						|
 | 
						|
#endif // LLVM_ADT_APFLOAT_H
 |