mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	Add serialization support for function metadata attachments (added in
r235783).  The syntax is:
    define @foo() !attach !0 {
Metadata attachments are only allowed on functions with bodies.  Since
they come before the `{`, they're not really part of the body; since
they require a body, they're not really part of the header.  In
`LLParser` I gave them a separate function called from `ParseDefine()`,
`ParseOptionalFunctionMetadata()`.
In bitcode, I'm using the same `METADATA_ATTACHMENT` record used by
instructions.  Instruction metadata attachments are included in a
special "attachment" block at the end of a `Function`.  The attachment
records are laid out like this:
    InstID (KindID MetadataID)+
Note that these records always have an odd number of fields.  The new
code takes advantage of this to recognize function attachments (which
don't need an instruction ID):
    (KindID MetadataID)+
This means we can use the same attachment block already used for
instructions.
This is part of PR23340.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235785 91177308-0d34-0410-b5e6-96231b3b80d8
		
	
		
			
				
	
	
		
			3264 lines
		
	
	
		
			109 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			3264 lines
		
	
	
		
			109 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This library implements the functionality defined in llvm/IR/Writer.h
 | 
						|
//
 | 
						|
// Note that these routines must be extremely tolerant of various errors in the
 | 
						|
// LLVM code, because it can be used for debugging transformations.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SetVector.h"
 | 
						|
#include "llvm/ADT/SmallString.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include "llvm/IR/AssemblyAnnotationWriter.h"
 | 
						|
#include "llvm/IR/CFG.h"
 | 
						|
#include "llvm/IR/CallingConv.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DebugInfo.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/IRPrintingPasses.h"
 | 
						|
#include "llvm/IR/InlineAsm.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/Operator.h"
 | 
						|
#include "llvm/IR/TypeFinder.h"
 | 
						|
#include "llvm/IR/UseListOrder.h"
 | 
						|
#include "llvm/IR/ValueSymbolTable.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/Dwarf.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/FormattedStream.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cctype>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
// Make virtual table appear in this compilation unit.
 | 
						|
AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Helper Functions
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
struct OrderMap {
 | 
						|
  DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
 | 
						|
 | 
						|
  unsigned size() const { return IDs.size(); }
 | 
						|
  std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
 | 
						|
  std::pair<unsigned, bool> lookup(const Value *V) const {
 | 
						|
    return IDs.lookup(V);
 | 
						|
  }
 | 
						|
  void index(const Value *V) {
 | 
						|
    // Explicitly sequence get-size and insert-value operations to avoid UB.
 | 
						|
    unsigned ID = IDs.size() + 1;
 | 
						|
    IDs[V].first = ID;
 | 
						|
  }
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
static void orderValue(const Value *V, OrderMap &OM) {
 | 
						|
  if (OM.lookup(V).first)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (const Constant *C = dyn_cast<Constant>(V))
 | 
						|
    if (C->getNumOperands() && !isa<GlobalValue>(C))
 | 
						|
      for (const Value *Op : C->operands())
 | 
						|
        if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
 | 
						|
          orderValue(Op, OM);
 | 
						|
 | 
						|
  // Note: we cannot cache this lookup above, since inserting into the map
 | 
						|
  // changes the map's size, and thus affects the other IDs.
 | 
						|
  OM.index(V);
 | 
						|
}
 | 
						|
 | 
						|
static OrderMap orderModule(const Module *M) {
 | 
						|
  // This needs to match the order used by ValueEnumerator::ValueEnumerator()
 | 
						|
  // and ValueEnumerator::incorporateFunction().
 | 
						|
  OrderMap OM;
 | 
						|
 | 
						|
  for (const GlobalVariable &G : M->globals()) {
 | 
						|
    if (G.hasInitializer())
 | 
						|
      if (!isa<GlobalValue>(G.getInitializer()))
 | 
						|
        orderValue(G.getInitializer(), OM);
 | 
						|
    orderValue(&G, OM);
 | 
						|
  }
 | 
						|
  for (const GlobalAlias &A : M->aliases()) {
 | 
						|
    if (!isa<GlobalValue>(A.getAliasee()))
 | 
						|
      orderValue(A.getAliasee(), OM);
 | 
						|
    orderValue(&A, OM);
 | 
						|
  }
 | 
						|
  for (const Function &F : *M) {
 | 
						|
    if (F.hasPrefixData())
 | 
						|
      if (!isa<GlobalValue>(F.getPrefixData()))
 | 
						|
        orderValue(F.getPrefixData(), OM);
 | 
						|
 | 
						|
    if (F.hasPrologueData())
 | 
						|
      if (!isa<GlobalValue>(F.getPrologueData()))
 | 
						|
        orderValue(F.getPrologueData(), OM);
 | 
						|
 | 
						|
    orderValue(&F, OM);
 | 
						|
 | 
						|
    if (F.isDeclaration())
 | 
						|
      continue;
 | 
						|
 | 
						|
    for (const Argument &A : F.args())
 | 
						|
      orderValue(&A, OM);
 | 
						|
    for (const BasicBlock &BB : F) {
 | 
						|
      orderValue(&BB, OM);
 | 
						|
      for (const Instruction &I : BB) {
 | 
						|
        for (const Value *Op : I.operands())
 | 
						|
          if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
 | 
						|
              isa<InlineAsm>(*Op))
 | 
						|
            orderValue(Op, OM);
 | 
						|
        orderValue(&I, OM);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return OM;
 | 
						|
}
 | 
						|
 | 
						|
static void predictValueUseListOrderImpl(const Value *V, const Function *F,
 | 
						|
                                         unsigned ID, const OrderMap &OM,
 | 
						|
                                         UseListOrderStack &Stack) {
 | 
						|
  // Predict use-list order for this one.
 | 
						|
  typedef std::pair<const Use *, unsigned> Entry;
 | 
						|
  SmallVector<Entry, 64> List;
 | 
						|
  for (const Use &U : V->uses())
 | 
						|
    // Check if this user will be serialized.
 | 
						|
    if (OM.lookup(U.getUser()).first)
 | 
						|
      List.push_back(std::make_pair(&U, List.size()));
 | 
						|
 | 
						|
  if (List.size() < 2)
 | 
						|
    // We may have lost some users.
 | 
						|
    return;
 | 
						|
 | 
						|
  bool GetsReversed =
 | 
						|
      !isa<GlobalVariable>(V) && !isa<Function>(V) && !isa<BasicBlock>(V);
 | 
						|
  if (auto *BA = dyn_cast<BlockAddress>(V))
 | 
						|
    ID = OM.lookup(BA->getBasicBlock()).first;
 | 
						|
  std::sort(List.begin(), List.end(), [&](const Entry &L, const Entry &R) {
 | 
						|
    const Use *LU = L.first;
 | 
						|
    const Use *RU = R.first;
 | 
						|
    if (LU == RU)
 | 
						|
      return false;
 | 
						|
 | 
						|
    auto LID = OM.lookup(LU->getUser()).first;
 | 
						|
    auto RID = OM.lookup(RU->getUser()).first;
 | 
						|
 | 
						|
    // If ID is 4, then expect: 7 6 5 1 2 3.
 | 
						|
    if (LID < RID) {
 | 
						|
      if (GetsReversed)
 | 
						|
        if (RID <= ID)
 | 
						|
          return true;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    if (RID < LID) {
 | 
						|
      if (GetsReversed)
 | 
						|
        if (LID <= ID)
 | 
						|
          return false;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // LID and RID are equal, so we have different operands of the same user.
 | 
						|
    // Assume operands are added in order for all instructions.
 | 
						|
    if (GetsReversed)
 | 
						|
      if (LID <= ID)
 | 
						|
        return LU->getOperandNo() < RU->getOperandNo();
 | 
						|
    return LU->getOperandNo() > RU->getOperandNo();
 | 
						|
  });
 | 
						|
 | 
						|
  if (std::is_sorted(
 | 
						|
          List.begin(), List.end(),
 | 
						|
          [](const Entry &L, const Entry &R) { return L.second < R.second; }))
 | 
						|
    // Order is already correct.
 | 
						|
    return;
 | 
						|
 | 
						|
  // Store the shuffle.
 | 
						|
  Stack.emplace_back(V, F, List.size());
 | 
						|
  assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
 | 
						|
  for (size_t I = 0, E = List.size(); I != E; ++I)
 | 
						|
    Stack.back().Shuffle[I] = List[I].second;
 | 
						|
}
 | 
						|
 | 
						|
static void predictValueUseListOrder(const Value *V, const Function *F,
 | 
						|
                                     OrderMap &OM, UseListOrderStack &Stack) {
 | 
						|
  auto &IDPair = OM[V];
 | 
						|
  assert(IDPair.first && "Unmapped value");
 | 
						|
  if (IDPair.second)
 | 
						|
    // Already predicted.
 | 
						|
    return;
 | 
						|
 | 
						|
  // Do the actual prediction.
 | 
						|
  IDPair.second = true;
 | 
						|
  if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
 | 
						|
    predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
 | 
						|
 | 
						|
  // Recursive descent into constants.
 | 
						|
  if (const Constant *C = dyn_cast<Constant>(V))
 | 
						|
    if (C->getNumOperands()) // Visit GlobalValues.
 | 
						|
      for (const Value *Op : C->operands())
 | 
						|
        if (isa<Constant>(Op)) // Visit GlobalValues.
 | 
						|
          predictValueUseListOrder(Op, F, OM, Stack);
 | 
						|
}
 | 
						|
 | 
						|
static UseListOrderStack predictUseListOrder(const Module *M) {
 | 
						|
  OrderMap OM = orderModule(M);
 | 
						|
 | 
						|
  // Use-list orders need to be serialized after all the users have been added
 | 
						|
  // to a value, or else the shuffles will be incomplete.  Store them per
 | 
						|
  // function in a stack.
 | 
						|
  //
 | 
						|
  // Aside from function order, the order of values doesn't matter much here.
 | 
						|
  UseListOrderStack Stack;
 | 
						|
 | 
						|
  // We want to visit the functions backward now so we can list function-local
 | 
						|
  // constants in the last Function they're used in.  Module-level constants
 | 
						|
  // have already been visited above.
 | 
						|
  for (auto I = M->rbegin(), E = M->rend(); I != E; ++I) {
 | 
						|
    const Function &F = *I;
 | 
						|
    if (F.isDeclaration())
 | 
						|
      continue;
 | 
						|
    for (const BasicBlock &BB : F)
 | 
						|
      predictValueUseListOrder(&BB, &F, OM, Stack);
 | 
						|
    for (const Argument &A : F.args())
 | 
						|
      predictValueUseListOrder(&A, &F, OM, Stack);
 | 
						|
    for (const BasicBlock &BB : F)
 | 
						|
      for (const Instruction &I : BB)
 | 
						|
        for (const Value *Op : I.operands())
 | 
						|
          if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
 | 
						|
            predictValueUseListOrder(Op, &F, OM, Stack);
 | 
						|
    for (const BasicBlock &BB : F)
 | 
						|
      for (const Instruction &I : BB)
 | 
						|
        predictValueUseListOrder(&I, &F, OM, Stack);
 | 
						|
  }
 | 
						|
 | 
						|
  // Visit globals last.
 | 
						|
  for (const GlobalVariable &G : M->globals())
 | 
						|
    predictValueUseListOrder(&G, nullptr, OM, Stack);
 | 
						|
  for (const Function &F : *M)
 | 
						|
    predictValueUseListOrder(&F, nullptr, OM, Stack);
 | 
						|
  for (const GlobalAlias &A : M->aliases())
 | 
						|
    predictValueUseListOrder(&A, nullptr, OM, Stack);
 | 
						|
  for (const GlobalVariable &G : M->globals())
 | 
						|
    if (G.hasInitializer())
 | 
						|
      predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
 | 
						|
  for (const GlobalAlias &A : M->aliases())
 | 
						|
    predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
 | 
						|
  for (const Function &F : *M)
 | 
						|
    if (F.hasPrefixData())
 | 
						|
      predictValueUseListOrder(F.getPrefixData(), nullptr, OM, Stack);
 | 
						|
 | 
						|
  return Stack;
 | 
						|
}
 | 
						|
 | 
						|
static const Module *getModuleFromVal(const Value *V) {
 | 
						|
  if (const Argument *MA = dyn_cast<Argument>(V))
 | 
						|
    return MA->getParent() ? MA->getParent()->getParent() : nullptr;
 | 
						|
 | 
						|
  if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
 | 
						|
    return BB->getParent() ? BB->getParent()->getParent() : nullptr;
 | 
						|
 | 
						|
  if (const Instruction *I = dyn_cast<Instruction>(V)) {
 | 
						|
    const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr;
 | 
						|
    return M ? M->getParent() : nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
 | 
						|
    return GV->getParent();
 | 
						|
 | 
						|
  if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
 | 
						|
    for (const User *U : MAV->users())
 | 
						|
      if (isa<Instruction>(U))
 | 
						|
        if (const Module *M = getModuleFromVal(U))
 | 
						|
          return M;
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
 | 
						|
  switch (cc) {
 | 
						|
  default:                         Out << "cc" << cc; break;
 | 
						|
  case CallingConv::Fast:          Out << "fastcc"; break;
 | 
						|
  case CallingConv::Cold:          Out << "coldcc"; break;
 | 
						|
  case CallingConv::WebKit_JS:     Out << "webkit_jscc"; break;
 | 
						|
  case CallingConv::AnyReg:        Out << "anyregcc"; break;
 | 
						|
  case CallingConv::PreserveMost:  Out << "preserve_mostcc"; break;
 | 
						|
  case CallingConv::PreserveAll:   Out << "preserve_allcc"; break;
 | 
						|
  case CallingConv::GHC:           Out << "ghccc"; break;
 | 
						|
  case CallingConv::X86_StdCall:   Out << "x86_stdcallcc"; break;
 | 
						|
  case CallingConv::X86_FastCall:  Out << "x86_fastcallcc"; break;
 | 
						|
  case CallingConv::X86_ThisCall:  Out << "x86_thiscallcc"; break;
 | 
						|
  case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break;
 | 
						|
  case CallingConv::Intel_OCL_BI:  Out << "intel_ocl_bicc"; break;
 | 
						|
  case CallingConv::ARM_APCS:      Out << "arm_apcscc"; break;
 | 
						|
  case CallingConv::ARM_AAPCS:     Out << "arm_aapcscc"; break;
 | 
						|
  case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
 | 
						|
  case CallingConv::MSP430_INTR:   Out << "msp430_intrcc"; break;
 | 
						|
  case CallingConv::PTX_Kernel:    Out << "ptx_kernel"; break;
 | 
						|
  case CallingConv::PTX_Device:    Out << "ptx_device"; break;
 | 
						|
  case CallingConv::X86_64_SysV:   Out << "x86_64_sysvcc"; break;
 | 
						|
  case CallingConv::X86_64_Win64:  Out << "x86_64_win64cc"; break;
 | 
						|
  case CallingConv::SPIR_FUNC:     Out << "spir_func"; break;
 | 
						|
  case CallingConv::SPIR_KERNEL:   Out << "spir_kernel"; break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// PrintEscapedString - Print each character of the specified string, escaping
 | 
						|
// it if it is not printable or if it is an escape char.
 | 
						|
static void PrintEscapedString(StringRef Name, raw_ostream &Out) {
 | 
						|
  for (unsigned i = 0, e = Name.size(); i != e; ++i) {
 | 
						|
    unsigned char C = Name[i];
 | 
						|
    if (isprint(C) && C != '\\' && C != '"')
 | 
						|
      Out << C;
 | 
						|
    else
 | 
						|
      Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
enum PrefixType {
 | 
						|
  GlobalPrefix,
 | 
						|
  ComdatPrefix,
 | 
						|
  LabelPrefix,
 | 
						|
  LocalPrefix,
 | 
						|
  NoPrefix
 | 
						|
};
 | 
						|
 | 
						|
/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
 | 
						|
/// prefixed with % (if the string only contains simple characters) or is
 | 
						|
/// surrounded with ""'s (if it has special chars in it).  Print it out.
 | 
						|
static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
 | 
						|
  assert(!Name.empty() && "Cannot get empty name!");
 | 
						|
  switch (Prefix) {
 | 
						|
  case NoPrefix: break;
 | 
						|
  case GlobalPrefix: OS << '@'; break;
 | 
						|
  case ComdatPrefix: OS << '$'; break;
 | 
						|
  case LabelPrefix:  break;
 | 
						|
  case LocalPrefix:  OS << '%'; break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Scan the name to see if it needs quotes first.
 | 
						|
  bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
 | 
						|
  if (!NeedsQuotes) {
 | 
						|
    for (unsigned i = 0, e = Name.size(); i != e; ++i) {
 | 
						|
      // By making this unsigned, the value passed in to isalnum will always be
 | 
						|
      // in the range 0-255.  This is important when building with MSVC because
 | 
						|
      // its implementation will assert.  This situation can arise when dealing
 | 
						|
      // with UTF-8 multibyte characters.
 | 
						|
      unsigned char C = Name[i];
 | 
						|
      if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
 | 
						|
          C != '_') {
 | 
						|
        NeedsQuotes = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we didn't need any quotes, just write out the name in one blast.
 | 
						|
  if (!NeedsQuotes) {
 | 
						|
    OS << Name;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, we need quotes.  Output the quotes and escape any scary characters as
 | 
						|
  // needed.
 | 
						|
  OS << '"';
 | 
						|
  PrintEscapedString(Name, OS);
 | 
						|
  OS << '"';
 | 
						|
}
 | 
						|
 | 
						|
/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
 | 
						|
/// prefixed with % (if the string only contains simple characters) or is
 | 
						|
/// surrounded with ""'s (if it has special chars in it).  Print it out.
 | 
						|
static void PrintLLVMName(raw_ostream &OS, const Value *V) {
 | 
						|
  PrintLLVMName(OS, V->getName(),
 | 
						|
                isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
namespace {
 | 
						|
class TypePrinting {
 | 
						|
  TypePrinting(const TypePrinting &) = delete;
 | 
						|
  void operator=(const TypePrinting&) = delete;
 | 
						|
public:
 | 
						|
 | 
						|
  /// NamedTypes - The named types that are used by the current module.
 | 
						|
  TypeFinder NamedTypes;
 | 
						|
 | 
						|
  /// NumberedTypes - The numbered types, along with their value.
 | 
						|
  DenseMap<StructType*, unsigned> NumberedTypes;
 | 
						|
 | 
						|
  TypePrinting() = default;
 | 
						|
 | 
						|
  void incorporateTypes(const Module &M);
 | 
						|
 | 
						|
  void print(Type *Ty, raw_ostream &OS);
 | 
						|
 | 
						|
  void printStructBody(StructType *Ty, raw_ostream &OS);
 | 
						|
};
 | 
						|
} // namespace
 | 
						|
 | 
						|
void TypePrinting::incorporateTypes(const Module &M) {
 | 
						|
  NamedTypes.run(M, false);
 | 
						|
 | 
						|
  // The list of struct types we got back includes all the struct types, split
 | 
						|
  // the unnamed ones out to a numbering and remove the anonymous structs.
 | 
						|
  unsigned NextNumber = 0;
 | 
						|
 | 
						|
  std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E;
 | 
						|
  for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) {
 | 
						|
    StructType *STy = *I;
 | 
						|
 | 
						|
    // Ignore anonymous types.
 | 
						|
    if (STy->isLiteral())
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (STy->getName().empty())
 | 
						|
      NumberedTypes[STy] = NextNumber++;
 | 
						|
    else
 | 
						|
      *NextToUse++ = STy;
 | 
						|
  }
 | 
						|
 | 
						|
  NamedTypes.erase(NextToUse, NamedTypes.end());
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// CalcTypeName - Write the specified type to the specified raw_ostream, making
 | 
						|
/// use of type names or up references to shorten the type name where possible.
 | 
						|
void TypePrinting::print(Type *Ty, raw_ostream &OS) {
 | 
						|
  switch (Ty->getTypeID()) {
 | 
						|
  case Type::VoidTyID:      OS << "void"; return;
 | 
						|
  case Type::HalfTyID:      OS << "half"; return;
 | 
						|
  case Type::FloatTyID:     OS << "float"; return;
 | 
						|
  case Type::DoubleTyID:    OS << "double"; return;
 | 
						|
  case Type::X86_FP80TyID:  OS << "x86_fp80"; return;
 | 
						|
  case Type::FP128TyID:     OS << "fp128"; return;
 | 
						|
  case Type::PPC_FP128TyID: OS << "ppc_fp128"; return;
 | 
						|
  case Type::LabelTyID:     OS << "label"; return;
 | 
						|
  case Type::MetadataTyID:  OS << "metadata"; return;
 | 
						|
  case Type::X86_MMXTyID:   OS << "x86_mmx"; return;
 | 
						|
  case Type::IntegerTyID:
 | 
						|
    OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
 | 
						|
    return;
 | 
						|
 | 
						|
  case Type::FunctionTyID: {
 | 
						|
    FunctionType *FTy = cast<FunctionType>(Ty);
 | 
						|
    print(FTy->getReturnType(), OS);
 | 
						|
    OS << " (";
 | 
						|
    for (FunctionType::param_iterator I = FTy->param_begin(),
 | 
						|
         E = FTy->param_end(); I != E; ++I) {
 | 
						|
      if (I != FTy->param_begin())
 | 
						|
        OS << ", ";
 | 
						|
      print(*I, OS);
 | 
						|
    }
 | 
						|
    if (FTy->isVarArg()) {
 | 
						|
      if (FTy->getNumParams()) OS << ", ";
 | 
						|
      OS << "...";
 | 
						|
    }
 | 
						|
    OS << ')';
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case Type::StructTyID: {
 | 
						|
    StructType *STy = cast<StructType>(Ty);
 | 
						|
 | 
						|
    if (STy->isLiteral())
 | 
						|
      return printStructBody(STy, OS);
 | 
						|
 | 
						|
    if (!STy->getName().empty())
 | 
						|
      return PrintLLVMName(OS, STy->getName(), LocalPrefix);
 | 
						|
 | 
						|
    DenseMap<StructType*, unsigned>::iterator I = NumberedTypes.find(STy);
 | 
						|
    if (I != NumberedTypes.end())
 | 
						|
      OS << '%' << I->second;
 | 
						|
    else  // Not enumerated, print the hex address.
 | 
						|
      OS << "%\"type " << STy << '\"';
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case Type::PointerTyID: {
 | 
						|
    PointerType *PTy = cast<PointerType>(Ty);
 | 
						|
    print(PTy->getElementType(), OS);
 | 
						|
    if (unsigned AddressSpace = PTy->getAddressSpace())
 | 
						|
      OS << " addrspace(" << AddressSpace << ')';
 | 
						|
    OS << '*';
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case Type::ArrayTyID: {
 | 
						|
    ArrayType *ATy = cast<ArrayType>(Ty);
 | 
						|
    OS << '[' << ATy->getNumElements() << " x ";
 | 
						|
    print(ATy->getElementType(), OS);
 | 
						|
    OS << ']';
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case Type::VectorTyID: {
 | 
						|
    VectorType *PTy = cast<VectorType>(Ty);
 | 
						|
    OS << "<" << PTy->getNumElements() << " x ";
 | 
						|
    print(PTy->getElementType(), OS);
 | 
						|
    OS << '>';
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  }
 | 
						|
  llvm_unreachable("Invalid TypeID");
 | 
						|
}
 | 
						|
 | 
						|
void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
 | 
						|
  if (STy->isOpaque()) {
 | 
						|
    OS << "opaque";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (STy->isPacked())
 | 
						|
    OS << '<';
 | 
						|
 | 
						|
  if (STy->getNumElements() == 0) {
 | 
						|
    OS << "{}";
 | 
						|
  } else {
 | 
						|
    StructType::element_iterator I = STy->element_begin();
 | 
						|
    OS << "{ ";
 | 
						|
    print(*I++, OS);
 | 
						|
    for (StructType::element_iterator E = STy->element_end(); I != E; ++I) {
 | 
						|
      OS << ", ";
 | 
						|
      print(*I, OS);
 | 
						|
    }
 | 
						|
 | 
						|
    OS << " }";
 | 
						|
  }
 | 
						|
  if (STy->isPacked())
 | 
						|
    OS << '>';
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// SlotTracker Class: Enumerate slot numbers for unnamed values
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// This class provides computation of slot numbers for LLVM Assembly writing.
 | 
						|
///
 | 
						|
class SlotTracker {
 | 
						|
public:
 | 
						|
  /// ValueMap - A mapping of Values to slot numbers.
 | 
						|
  typedef DenseMap<const Value*, unsigned> ValueMap;
 | 
						|
 | 
						|
private:
 | 
						|
  /// TheModule - The module for which we are holding slot numbers.
 | 
						|
  const Module* TheModule;
 | 
						|
 | 
						|
  /// TheFunction - The function for which we are holding slot numbers.
 | 
						|
  const Function* TheFunction;
 | 
						|
  bool FunctionProcessed;
 | 
						|
  bool ShouldInitializeAllMetadata;
 | 
						|
 | 
						|
  /// mMap - The slot map for the module level data.
 | 
						|
  ValueMap mMap;
 | 
						|
  unsigned mNext;
 | 
						|
 | 
						|
  /// fMap - The slot map for the function level data.
 | 
						|
  ValueMap fMap;
 | 
						|
  unsigned fNext;
 | 
						|
 | 
						|
  /// mdnMap - Map for MDNodes.
 | 
						|
  DenseMap<const MDNode*, unsigned> mdnMap;
 | 
						|
  unsigned mdnNext;
 | 
						|
 | 
						|
  /// asMap - The slot map for attribute sets.
 | 
						|
  DenseMap<AttributeSet, unsigned> asMap;
 | 
						|
  unsigned asNext;
 | 
						|
public:
 | 
						|
  /// Construct from a module.
 | 
						|
  ///
 | 
						|
  /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
 | 
						|
  /// functions, giving correct numbering for metadata referenced only from
 | 
						|
  /// within a function (even if no functions have been initialized).
 | 
						|
  explicit SlotTracker(const Module *M,
 | 
						|
                       bool ShouldInitializeAllMetadata = false);
 | 
						|
  /// Construct from a function, starting out in incorp state.
 | 
						|
  ///
 | 
						|
  /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
 | 
						|
  /// functions, giving correct numbering for metadata referenced only from
 | 
						|
  /// within a function (even if no functions have been initialized).
 | 
						|
  explicit SlotTracker(const Function *F,
 | 
						|
                       bool ShouldInitializeAllMetadata = false);
 | 
						|
 | 
						|
  /// Return the slot number of the specified value in it's type
 | 
						|
  /// plane.  If something is not in the SlotTracker, return -1.
 | 
						|
  int getLocalSlot(const Value *V);
 | 
						|
  int getGlobalSlot(const GlobalValue *V);
 | 
						|
  int getMetadataSlot(const MDNode *N);
 | 
						|
  int getAttributeGroupSlot(AttributeSet AS);
 | 
						|
 | 
						|
  /// If you'd like to deal with a function instead of just a module, use
 | 
						|
  /// this method to get its data into the SlotTracker.
 | 
						|
  void incorporateFunction(const Function *F) {
 | 
						|
    TheFunction = F;
 | 
						|
    FunctionProcessed = false;
 | 
						|
  }
 | 
						|
 | 
						|
  const Function *getFunction() const { return TheFunction; }
 | 
						|
 | 
						|
  /// After calling incorporateFunction, use this method to remove the
 | 
						|
  /// most recently incorporated function from the SlotTracker. This
 | 
						|
  /// will reset the state of the machine back to just the module contents.
 | 
						|
  void purgeFunction();
 | 
						|
 | 
						|
  /// MDNode map iterators.
 | 
						|
  typedef DenseMap<const MDNode*, unsigned>::iterator mdn_iterator;
 | 
						|
  mdn_iterator mdn_begin() { return mdnMap.begin(); }
 | 
						|
  mdn_iterator mdn_end() { return mdnMap.end(); }
 | 
						|
  unsigned mdn_size() const { return mdnMap.size(); }
 | 
						|
  bool mdn_empty() const { return mdnMap.empty(); }
 | 
						|
 | 
						|
  /// AttributeSet map iterators.
 | 
						|
  typedef DenseMap<AttributeSet, unsigned>::iterator as_iterator;
 | 
						|
  as_iterator as_begin()   { return asMap.begin(); }
 | 
						|
  as_iterator as_end()     { return asMap.end(); }
 | 
						|
  unsigned as_size() const { return asMap.size(); }
 | 
						|
  bool as_empty() const    { return asMap.empty(); }
 | 
						|
 | 
						|
  /// This function does the actual initialization.
 | 
						|
  inline void initialize();
 | 
						|
 | 
						|
  // Implementation Details
 | 
						|
private:
 | 
						|
  /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
 | 
						|
  void CreateModuleSlot(const GlobalValue *V);
 | 
						|
 | 
						|
  /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
 | 
						|
  void CreateMetadataSlot(const MDNode *N);
 | 
						|
 | 
						|
  /// CreateFunctionSlot - Insert the specified Value* into the slot table.
 | 
						|
  void CreateFunctionSlot(const Value *V);
 | 
						|
 | 
						|
  /// \brief Insert the specified AttributeSet into the slot table.
 | 
						|
  void CreateAttributeSetSlot(AttributeSet AS);
 | 
						|
 | 
						|
  /// Add all of the module level global variables (and their initializers)
 | 
						|
  /// and function declarations, but not the contents of those functions.
 | 
						|
  void processModule();
 | 
						|
 | 
						|
  /// Add all of the functions arguments, basic blocks, and instructions.
 | 
						|
  void processFunction();
 | 
						|
 | 
						|
  /// Add all of the metadata from a function.
 | 
						|
  void processFunctionMetadata(const Function &F);
 | 
						|
 | 
						|
  /// Add all of the metadata from an instruction.
 | 
						|
  void processInstructionMetadata(const Instruction &I);
 | 
						|
 | 
						|
  SlotTracker(const SlotTracker &) = delete;
 | 
						|
  void operator=(const SlotTracker &) = delete;
 | 
						|
};
 | 
						|
} // namespace
 | 
						|
 | 
						|
static SlotTracker *createSlotTracker(const Module *M) {
 | 
						|
  return new SlotTracker(M);
 | 
						|
}
 | 
						|
 | 
						|
static SlotTracker *createSlotTracker(const Value *V) {
 | 
						|
  if (const Argument *FA = dyn_cast<Argument>(V))
 | 
						|
    return new SlotTracker(FA->getParent());
 | 
						|
 | 
						|
  if (const Instruction *I = dyn_cast<Instruction>(V))
 | 
						|
    if (I->getParent())
 | 
						|
      return new SlotTracker(I->getParent()->getParent());
 | 
						|
 | 
						|
  if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
 | 
						|
    return new SlotTracker(BB->getParent());
 | 
						|
 | 
						|
  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
 | 
						|
    return new SlotTracker(GV->getParent());
 | 
						|
 | 
						|
  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
 | 
						|
    return new SlotTracker(GA->getParent());
 | 
						|
 | 
						|
  if (const Function *Func = dyn_cast<Function>(V))
 | 
						|
    return new SlotTracker(Func);
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
#if 0
 | 
						|
#define ST_DEBUG(X) dbgs() << X
 | 
						|
#else
 | 
						|
#define ST_DEBUG(X)
 | 
						|
#endif
 | 
						|
 | 
						|
// Module level constructor. Causes the contents of the Module (sans functions)
 | 
						|
// to be added to the slot table.
 | 
						|
SlotTracker::SlotTracker(const Module *M, bool ShouldInitializeAllMetadata)
 | 
						|
    : TheModule(M), TheFunction(nullptr), FunctionProcessed(false),
 | 
						|
      ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), mNext(0),
 | 
						|
      fNext(0), mdnNext(0), asNext(0) {}
 | 
						|
 | 
						|
// Function level constructor. Causes the contents of the Module and the one
 | 
						|
// function provided to be added to the slot table.
 | 
						|
SlotTracker::SlotTracker(const Function *F, bool ShouldInitializeAllMetadata)
 | 
						|
    : TheModule(F ? F->getParent() : nullptr), TheFunction(F),
 | 
						|
      FunctionProcessed(false),
 | 
						|
      ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), mNext(0),
 | 
						|
      fNext(0), mdnNext(0), asNext(0) {}
 | 
						|
 | 
						|
inline void SlotTracker::initialize() {
 | 
						|
  if (TheModule) {
 | 
						|
    processModule();
 | 
						|
    TheModule = nullptr; ///< Prevent re-processing next time we're called.
 | 
						|
  }
 | 
						|
 | 
						|
  if (TheFunction && !FunctionProcessed)
 | 
						|
    processFunction();
 | 
						|
}
 | 
						|
 | 
						|
// Iterate through all the global variables, functions, and global
 | 
						|
// variable initializers and create slots for them.
 | 
						|
void SlotTracker::processModule() {
 | 
						|
  ST_DEBUG("begin processModule!\n");
 | 
						|
 | 
						|
  // Add all of the unnamed global variables to the value table.
 | 
						|
  for (Module::const_global_iterator I = TheModule->global_begin(),
 | 
						|
         E = TheModule->global_end(); I != E; ++I) {
 | 
						|
    if (!I->hasName())
 | 
						|
      CreateModuleSlot(I);
 | 
						|
  }
 | 
						|
 | 
						|
  // Add metadata used by named metadata.
 | 
						|
  for (Module::const_named_metadata_iterator
 | 
						|
         I = TheModule->named_metadata_begin(),
 | 
						|
         E = TheModule->named_metadata_end(); I != E; ++I) {
 | 
						|
    const NamedMDNode *NMD = I;
 | 
						|
    for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
 | 
						|
      CreateMetadataSlot(NMD->getOperand(i));
 | 
						|
  }
 | 
						|
 | 
						|
  for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
 | 
						|
       I != E; ++I) {
 | 
						|
    if (!I->hasName())
 | 
						|
      // Add all the unnamed functions to the table.
 | 
						|
      CreateModuleSlot(I);
 | 
						|
 | 
						|
    if (ShouldInitializeAllMetadata)
 | 
						|
      processFunctionMetadata(*I);
 | 
						|
 | 
						|
    // Add all the function attributes to the table.
 | 
						|
    // FIXME: Add attributes of other objects?
 | 
						|
    AttributeSet FnAttrs = I->getAttributes().getFnAttributes();
 | 
						|
    if (FnAttrs.hasAttributes(AttributeSet::FunctionIndex))
 | 
						|
      CreateAttributeSetSlot(FnAttrs);
 | 
						|
  }
 | 
						|
 | 
						|
  ST_DEBUG("end processModule!\n");
 | 
						|
}
 | 
						|
 | 
						|
// Process the arguments, basic blocks, and instructions  of a function.
 | 
						|
void SlotTracker::processFunction() {
 | 
						|
  ST_DEBUG("begin processFunction!\n");
 | 
						|
  fNext = 0;
 | 
						|
 | 
						|
  // Add all the function arguments with no names.
 | 
						|
  for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
 | 
						|
      AE = TheFunction->arg_end(); AI != AE; ++AI)
 | 
						|
    if (!AI->hasName())
 | 
						|
      CreateFunctionSlot(AI);
 | 
						|
 | 
						|
  ST_DEBUG("Inserting Instructions:\n");
 | 
						|
 | 
						|
  // Add all of the basic blocks and instructions with no names.
 | 
						|
  for (auto &BB : *TheFunction) {
 | 
						|
    if (!BB.hasName())
 | 
						|
      CreateFunctionSlot(&BB);
 | 
						|
 | 
						|
    processFunctionMetadata(*TheFunction);
 | 
						|
 | 
						|
    for (auto &I : BB) {
 | 
						|
      if (!I.getType()->isVoidTy() && !I.hasName())
 | 
						|
        CreateFunctionSlot(&I);
 | 
						|
 | 
						|
      // We allow direct calls to any llvm.foo function here, because the
 | 
						|
      // target may not be linked into the optimizer.
 | 
						|
      if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
 | 
						|
        // Add all the call attributes to the table.
 | 
						|
        AttributeSet Attrs = CI->getAttributes().getFnAttributes();
 | 
						|
        if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
 | 
						|
          CreateAttributeSetSlot(Attrs);
 | 
						|
      } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
 | 
						|
        // Add all the call attributes to the table.
 | 
						|
        AttributeSet Attrs = II->getAttributes().getFnAttributes();
 | 
						|
        if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
 | 
						|
          CreateAttributeSetSlot(Attrs);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  FunctionProcessed = true;
 | 
						|
 | 
						|
  ST_DEBUG("end processFunction!\n");
 | 
						|
}
 | 
						|
 | 
						|
void SlotTracker::processFunctionMetadata(const Function &F) {
 | 
						|
  SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
 | 
						|
  for (auto &BB : F) {
 | 
						|
    F.getAllMetadata(MDs);
 | 
						|
    for (auto &MD : MDs)
 | 
						|
      CreateMetadataSlot(MD.second);
 | 
						|
 | 
						|
    for (auto &I : BB)
 | 
						|
      processInstructionMetadata(I);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void SlotTracker::processInstructionMetadata(const Instruction &I) {
 | 
						|
  // Process metadata used directly by intrinsics.
 | 
						|
  if (const CallInst *CI = dyn_cast<CallInst>(&I))
 | 
						|
    if (Function *F = CI->getCalledFunction())
 | 
						|
      if (F->isIntrinsic())
 | 
						|
        for (auto &Op : I.operands())
 | 
						|
          if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
 | 
						|
            if (MDNode *N = dyn_cast<MDNode>(V->getMetadata()))
 | 
						|
              CreateMetadataSlot(N);
 | 
						|
 | 
						|
  // Process metadata attached to this instruction.
 | 
						|
  SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
 | 
						|
  I.getAllMetadata(MDs);
 | 
						|
  for (auto &MD : MDs)
 | 
						|
    CreateMetadataSlot(MD.second);
 | 
						|
}
 | 
						|
 | 
						|
/// Clean up after incorporating a function. This is the only way to get out of
 | 
						|
/// the function incorporation state that affects get*Slot/Create*Slot. Function
 | 
						|
/// incorporation state is indicated by TheFunction != 0.
 | 
						|
void SlotTracker::purgeFunction() {
 | 
						|
  ST_DEBUG("begin purgeFunction!\n");
 | 
						|
  fMap.clear(); // Simply discard the function level map
 | 
						|
  TheFunction = nullptr;
 | 
						|
  FunctionProcessed = false;
 | 
						|
  ST_DEBUG("end purgeFunction!\n");
 | 
						|
}
 | 
						|
 | 
						|
/// getGlobalSlot - Get the slot number of a global value.
 | 
						|
int SlotTracker::getGlobalSlot(const GlobalValue *V) {
 | 
						|
  // Check for uninitialized state and do lazy initialization.
 | 
						|
  initialize();
 | 
						|
 | 
						|
  // Find the value in the module map
 | 
						|
  ValueMap::iterator MI = mMap.find(V);
 | 
						|
  return MI == mMap.end() ? -1 : (int)MI->second;
 | 
						|
}
 | 
						|
 | 
						|
/// getMetadataSlot - Get the slot number of a MDNode.
 | 
						|
int SlotTracker::getMetadataSlot(const MDNode *N) {
 | 
						|
  // Check for uninitialized state and do lazy initialization.
 | 
						|
  initialize();
 | 
						|
 | 
						|
  // Find the MDNode in the module map
 | 
						|
  mdn_iterator MI = mdnMap.find(N);
 | 
						|
  return MI == mdnMap.end() ? -1 : (int)MI->second;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// getLocalSlot - Get the slot number for a value that is local to a function.
 | 
						|
int SlotTracker::getLocalSlot(const Value *V) {
 | 
						|
  assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
 | 
						|
 | 
						|
  // Check for uninitialized state and do lazy initialization.
 | 
						|
  initialize();
 | 
						|
 | 
						|
  ValueMap::iterator FI = fMap.find(V);
 | 
						|
  return FI == fMap.end() ? -1 : (int)FI->second;
 | 
						|
}
 | 
						|
 | 
						|
int SlotTracker::getAttributeGroupSlot(AttributeSet AS) {
 | 
						|
  // Check for uninitialized state and do lazy initialization.
 | 
						|
  initialize();
 | 
						|
 | 
						|
  // Find the AttributeSet in the module map.
 | 
						|
  as_iterator AI = asMap.find(AS);
 | 
						|
  return AI == asMap.end() ? -1 : (int)AI->second;
 | 
						|
}
 | 
						|
 | 
						|
/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
 | 
						|
void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
 | 
						|
  assert(V && "Can't insert a null Value into SlotTracker!");
 | 
						|
  assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
 | 
						|
  assert(!V->hasName() && "Doesn't need a slot!");
 | 
						|
 | 
						|
  unsigned DestSlot = mNext++;
 | 
						|
  mMap[V] = DestSlot;
 | 
						|
 | 
						|
  ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
 | 
						|
           DestSlot << " [");
 | 
						|
  // G = Global, F = Function, A = Alias, o = other
 | 
						|
  ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
 | 
						|
            (isa<Function>(V) ? 'F' :
 | 
						|
             (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n");
 | 
						|
}
 | 
						|
 | 
						|
/// CreateSlot - Create a new slot for the specified value if it has no name.
 | 
						|
void SlotTracker::CreateFunctionSlot(const Value *V) {
 | 
						|
  assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
 | 
						|
 | 
						|
  unsigned DestSlot = fNext++;
 | 
						|
  fMap[V] = DestSlot;
 | 
						|
 | 
						|
  // G = Global, F = Function, o = other
 | 
						|
  ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
 | 
						|
           DestSlot << " [o]\n");
 | 
						|
}
 | 
						|
 | 
						|
/// CreateModuleSlot - Insert the specified MDNode* into the slot table.
 | 
						|
void SlotTracker::CreateMetadataSlot(const MDNode *N) {
 | 
						|
  assert(N && "Can't insert a null Value into SlotTracker!");
 | 
						|
 | 
						|
  unsigned DestSlot = mdnNext;
 | 
						|
  if (!mdnMap.insert(std::make_pair(N, DestSlot)).second)
 | 
						|
    return;
 | 
						|
  ++mdnNext;
 | 
						|
 | 
						|
  // Recursively add any MDNodes referenced by operands.
 | 
						|
  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
 | 
						|
    if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
 | 
						|
      CreateMetadataSlot(Op);
 | 
						|
}
 | 
						|
 | 
						|
void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
 | 
						|
  assert(AS.hasAttributes(AttributeSet::FunctionIndex) &&
 | 
						|
         "Doesn't need a slot!");
 | 
						|
 | 
						|
  as_iterator I = asMap.find(AS);
 | 
						|
  if (I != asMap.end())
 | 
						|
    return;
 | 
						|
 | 
						|
  unsigned DestSlot = asNext++;
 | 
						|
  asMap[AS] = DestSlot;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// AsmWriter Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
 | 
						|
                                   TypePrinting *TypePrinter,
 | 
						|
                                   SlotTracker *Machine,
 | 
						|
                                   const Module *Context);
 | 
						|
 | 
						|
static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
 | 
						|
                                   TypePrinting *TypePrinter,
 | 
						|
                                   SlotTracker *Machine, const Module *Context,
 | 
						|
                                   bool FromValue = false);
 | 
						|
 | 
						|
static const char *getPredicateText(unsigned predicate) {
 | 
						|
  const char * pred = "unknown";
 | 
						|
  switch (predicate) {
 | 
						|
  case FCmpInst::FCMP_FALSE: pred = "false"; break;
 | 
						|
  case FCmpInst::FCMP_OEQ:   pred = "oeq"; break;
 | 
						|
  case FCmpInst::FCMP_OGT:   pred = "ogt"; break;
 | 
						|
  case FCmpInst::FCMP_OGE:   pred = "oge"; break;
 | 
						|
  case FCmpInst::FCMP_OLT:   pred = "olt"; break;
 | 
						|
  case FCmpInst::FCMP_OLE:   pred = "ole"; break;
 | 
						|
  case FCmpInst::FCMP_ONE:   pred = "one"; break;
 | 
						|
  case FCmpInst::FCMP_ORD:   pred = "ord"; break;
 | 
						|
  case FCmpInst::FCMP_UNO:   pred = "uno"; break;
 | 
						|
  case FCmpInst::FCMP_UEQ:   pred = "ueq"; break;
 | 
						|
  case FCmpInst::FCMP_UGT:   pred = "ugt"; break;
 | 
						|
  case FCmpInst::FCMP_UGE:   pred = "uge"; break;
 | 
						|
  case FCmpInst::FCMP_ULT:   pred = "ult"; break;
 | 
						|
  case FCmpInst::FCMP_ULE:   pred = "ule"; break;
 | 
						|
  case FCmpInst::FCMP_UNE:   pred = "une"; break;
 | 
						|
  case FCmpInst::FCMP_TRUE:  pred = "true"; break;
 | 
						|
  case ICmpInst::ICMP_EQ:    pred = "eq"; break;
 | 
						|
  case ICmpInst::ICMP_NE:    pred = "ne"; break;
 | 
						|
  case ICmpInst::ICMP_SGT:   pred = "sgt"; break;
 | 
						|
  case ICmpInst::ICMP_SGE:   pred = "sge"; break;
 | 
						|
  case ICmpInst::ICMP_SLT:   pred = "slt"; break;
 | 
						|
  case ICmpInst::ICMP_SLE:   pred = "sle"; break;
 | 
						|
  case ICmpInst::ICMP_UGT:   pred = "ugt"; break;
 | 
						|
  case ICmpInst::ICMP_UGE:   pred = "uge"; break;
 | 
						|
  case ICmpInst::ICMP_ULT:   pred = "ult"; break;
 | 
						|
  case ICmpInst::ICMP_ULE:   pred = "ule"; break;
 | 
						|
  }
 | 
						|
  return pred;
 | 
						|
}
 | 
						|
 | 
						|
static void writeAtomicRMWOperation(raw_ostream &Out,
 | 
						|
                                    AtomicRMWInst::BinOp Op) {
 | 
						|
  switch (Op) {
 | 
						|
  default: Out << " <unknown operation " << Op << ">"; break;
 | 
						|
  case AtomicRMWInst::Xchg: Out << " xchg"; break;
 | 
						|
  case AtomicRMWInst::Add:  Out << " add"; break;
 | 
						|
  case AtomicRMWInst::Sub:  Out << " sub"; break;
 | 
						|
  case AtomicRMWInst::And:  Out << " and"; break;
 | 
						|
  case AtomicRMWInst::Nand: Out << " nand"; break;
 | 
						|
  case AtomicRMWInst::Or:   Out << " or"; break;
 | 
						|
  case AtomicRMWInst::Xor:  Out << " xor"; break;
 | 
						|
  case AtomicRMWInst::Max:  Out << " max"; break;
 | 
						|
  case AtomicRMWInst::Min:  Out << " min"; break;
 | 
						|
  case AtomicRMWInst::UMax: Out << " umax"; break;
 | 
						|
  case AtomicRMWInst::UMin: Out << " umin"; break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
 | 
						|
  if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) {
 | 
						|
    // Unsafe algebra implies all the others, no need to write them all out
 | 
						|
    if (FPO->hasUnsafeAlgebra())
 | 
						|
      Out << " fast";
 | 
						|
    else {
 | 
						|
      if (FPO->hasNoNaNs())
 | 
						|
        Out << " nnan";
 | 
						|
      if (FPO->hasNoInfs())
 | 
						|
        Out << " ninf";
 | 
						|
      if (FPO->hasNoSignedZeros())
 | 
						|
        Out << " nsz";
 | 
						|
      if (FPO->hasAllowReciprocal())
 | 
						|
        Out << " arcp";
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (const OverflowingBinaryOperator *OBO =
 | 
						|
        dyn_cast<OverflowingBinaryOperator>(U)) {
 | 
						|
    if (OBO->hasNoUnsignedWrap())
 | 
						|
      Out << " nuw";
 | 
						|
    if (OBO->hasNoSignedWrap())
 | 
						|
      Out << " nsw";
 | 
						|
  } else if (const PossiblyExactOperator *Div =
 | 
						|
               dyn_cast<PossiblyExactOperator>(U)) {
 | 
						|
    if (Div->isExact())
 | 
						|
      Out << " exact";
 | 
						|
  } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
 | 
						|
    if (GEP->isInBounds())
 | 
						|
      Out << " inbounds";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
 | 
						|
                                  TypePrinting &TypePrinter,
 | 
						|
                                  SlotTracker *Machine,
 | 
						|
                                  const Module *Context) {
 | 
						|
  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
 | 
						|
    if (CI->getType()->isIntegerTy(1)) {
 | 
						|
      Out << (CI->getZExtValue() ? "true" : "false");
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    Out << CI->getValue();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
 | 
						|
    if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle ||
 | 
						|
        &CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble) {
 | 
						|
      // We would like to output the FP constant value in exponential notation,
 | 
						|
      // but we cannot do this if doing so will lose precision.  Check here to
 | 
						|
      // make sure that we only output it in exponential format if we can parse
 | 
						|
      // the value back and get the same value.
 | 
						|
      //
 | 
						|
      bool ignored;
 | 
						|
      bool isHalf = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEhalf;
 | 
						|
      bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
 | 
						|
      bool isInf = CFP->getValueAPF().isInfinity();
 | 
						|
      bool isNaN = CFP->getValueAPF().isNaN();
 | 
						|
      if (!isHalf && !isInf && !isNaN) {
 | 
						|
        double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
 | 
						|
                                CFP->getValueAPF().convertToFloat();
 | 
						|
        SmallString<128> StrVal;
 | 
						|
        raw_svector_ostream(StrVal) << Val;
 | 
						|
 | 
						|
        // Check to make sure that the stringized number is not some string like
 | 
						|
        // "Inf" or NaN, that atof will accept, but the lexer will not.  Check
 | 
						|
        // that the string matches the "[-+]?[0-9]" regex.
 | 
						|
        //
 | 
						|
        if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
 | 
						|
            ((StrVal[0] == '-' || StrVal[0] == '+') &&
 | 
						|
             (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
 | 
						|
          // Reparse stringized version!
 | 
						|
          if (APFloat(APFloat::IEEEdouble, StrVal).convertToDouble() == Val) {
 | 
						|
            Out << StrVal;
 | 
						|
            return;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      // Otherwise we could not reparse it to exactly the same value, so we must
 | 
						|
      // output the string in hexadecimal format!  Note that loading and storing
 | 
						|
      // floating point types changes the bits of NaNs on some hosts, notably
 | 
						|
      // x86, so we must not use these types.
 | 
						|
      static_assert(sizeof(double) == sizeof(uint64_t),
 | 
						|
                    "assuming that double is 64 bits!");
 | 
						|
      char Buffer[40];
 | 
						|
      APFloat apf = CFP->getValueAPF();
 | 
						|
      // Halves and floats are represented in ASCII IR as double, convert.
 | 
						|
      if (!isDouble)
 | 
						|
        apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
 | 
						|
                          &ignored);
 | 
						|
      Out << "0x" <<
 | 
						|
              utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()),
 | 
						|
                            Buffer+40);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Either half, or some form of long double.
 | 
						|
    // These appear as a magic letter identifying the type, then a
 | 
						|
    // fixed number of hex digits.
 | 
						|
    Out << "0x";
 | 
						|
    // Bit position, in the current word, of the next nibble to print.
 | 
						|
    int shiftcount;
 | 
						|
 | 
						|
    if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) {
 | 
						|
      Out << 'K';
 | 
						|
      // api needed to prevent premature destruction
 | 
						|
      APInt api = CFP->getValueAPF().bitcastToAPInt();
 | 
						|
      const uint64_t* p = api.getRawData();
 | 
						|
      uint64_t word = p[1];
 | 
						|
      shiftcount = 12;
 | 
						|
      int width = api.getBitWidth();
 | 
						|
      for (int j=0; j<width; j+=4, shiftcount-=4) {
 | 
						|
        unsigned int nibble = (word>>shiftcount) & 15;
 | 
						|
        if (nibble < 10)
 | 
						|
          Out << (unsigned char)(nibble + '0');
 | 
						|
        else
 | 
						|
          Out << (unsigned char)(nibble - 10 + 'A');
 | 
						|
        if (shiftcount == 0 && j+4 < width) {
 | 
						|
          word = *p;
 | 
						|
          shiftcount = 64;
 | 
						|
          if (width-j-4 < 64)
 | 
						|
            shiftcount = width-j-4;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      return;
 | 
						|
    } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad) {
 | 
						|
      shiftcount = 60;
 | 
						|
      Out << 'L';
 | 
						|
    } else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble) {
 | 
						|
      shiftcount = 60;
 | 
						|
      Out << 'M';
 | 
						|
    } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEhalf) {
 | 
						|
      shiftcount = 12;
 | 
						|
      Out << 'H';
 | 
						|
    } else
 | 
						|
      llvm_unreachable("Unsupported floating point type");
 | 
						|
    // api needed to prevent premature destruction
 | 
						|
    APInt api = CFP->getValueAPF().bitcastToAPInt();
 | 
						|
    const uint64_t* p = api.getRawData();
 | 
						|
    uint64_t word = *p;
 | 
						|
    int width = api.getBitWidth();
 | 
						|
    for (int j=0; j<width; j+=4, shiftcount-=4) {
 | 
						|
      unsigned int nibble = (word>>shiftcount) & 15;
 | 
						|
      if (nibble < 10)
 | 
						|
        Out << (unsigned char)(nibble + '0');
 | 
						|
      else
 | 
						|
        Out << (unsigned char)(nibble - 10 + 'A');
 | 
						|
      if (shiftcount == 0 && j+4 < width) {
 | 
						|
        word = *(++p);
 | 
						|
        shiftcount = 64;
 | 
						|
        if (width-j-4 < 64)
 | 
						|
          shiftcount = width-j-4;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<ConstantAggregateZero>(CV)) {
 | 
						|
    Out << "zeroinitializer";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
 | 
						|
    Out << "blockaddress(";
 | 
						|
    WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine,
 | 
						|
                           Context);
 | 
						|
    Out << ", ";
 | 
						|
    WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine,
 | 
						|
                           Context);
 | 
						|
    Out << ")";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
 | 
						|
    Type *ETy = CA->getType()->getElementType();
 | 
						|
    Out << '[';
 | 
						|
    TypePrinter.print(ETy, Out);
 | 
						|
    Out << ' ';
 | 
						|
    WriteAsOperandInternal(Out, CA->getOperand(0),
 | 
						|
                           &TypePrinter, Machine,
 | 
						|
                           Context);
 | 
						|
    for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
 | 
						|
      Out << ", ";
 | 
						|
      TypePrinter.print(ETy, Out);
 | 
						|
      Out << ' ';
 | 
						|
      WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine,
 | 
						|
                             Context);
 | 
						|
    }
 | 
						|
    Out << ']';
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
 | 
						|
    // As a special case, print the array as a string if it is an array of
 | 
						|
    // i8 with ConstantInt values.
 | 
						|
    if (CA->isString()) {
 | 
						|
      Out << "c\"";
 | 
						|
      PrintEscapedString(CA->getAsString(), Out);
 | 
						|
      Out << '"';
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    Type *ETy = CA->getType()->getElementType();
 | 
						|
    Out << '[';
 | 
						|
    TypePrinter.print(ETy, Out);
 | 
						|
    Out << ' ';
 | 
						|
    WriteAsOperandInternal(Out, CA->getElementAsConstant(0),
 | 
						|
                           &TypePrinter, Machine,
 | 
						|
                           Context);
 | 
						|
    for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
 | 
						|
      Out << ", ";
 | 
						|
      TypePrinter.print(ETy, Out);
 | 
						|
      Out << ' ';
 | 
						|
      WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter,
 | 
						|
                             Machine, Context);
 | 
						|
    }
 | 
						|
    Out << ']';
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
 | 
						|
    if (CS->getType()->isPacked())
 | 
						|
      Out << '<';
 | 
						|
    Out << '{';
 | 
						|
    unsigned N = CS->getNumOperands();
 | 
						|
    if (N) {
 | 
						|
      Out << ' ';
 | 
						|
      TypePrinter.print(CS->getOperand(0)->getType(), Out);
 | 
						|
      Out << ' ';
 | 
						|
 | 
						|
      WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine,
 | 
						|
                             Context);
 | 
						|
 | 
						|
      for (unsigned i = 1; i < N; i++) {
 | 
						|
        Out << ", ";
 | 
						|
        TypePrinter.print(CS->getOperand(i)->getType(), Out);
 | 
						|
        Out << ' ';
 | 
						|
 | 
						|
        WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine,
 | 
						|
                               Context);
 | 
						|
      }
 | 
						|
      Out << ' ';
 | 
						|
    }
 | 
						|
 | 
						|
    Out << '}';
 | 
						|
    if (CS->getType()->isPacked())
 | 
						|
      Out << '>';
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
 | 
						|
    Type *ETy = CV->getType()->getVectorElementType();
 | 
						|
    Out << '<';
 | 
						|
    TypePrinter.print(ETy, Out);
 | 
						|
    Out << ' ';
 | 
						|
    WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter,
 | 
						|
                           Machine, Context);
 | 
						|
    for (unsigned i = 1, e = CV->getType()->getVectorNumElements(); i != e;++i){
 | 
						|
      Out << ", ";
 | 
						|
      TypePrinter.print(ETy, Out);
 | 
						|
      Out << ' ';
 | 
						|
      WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter,
 | 
						|
                             Machine, Context);
 | 
						|
    }
 | 
						|
    Out << '>';
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<ConstantPointerNull>(CV)) {
 | 
						|
    Out << "null";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<UndefValue>(CV)) {
 | 
						|
    Out << "undef";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
 | 
						|
    Out << CE->getOpcodeName();
 | 
						|
    WriteOptimizationInfo(Out, CE);
 | 
						|
    if (CE->isCompare())
 | 
						|
      Out << ' ' << getPredicateText(CE->getPredicate());
 | 
						|
    Out << " (";
 | 
						|
 | 
						|
    if (const GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) {
 | 
						|
      TypePrinter.print(
 | 
						|
          cast<PointerType>(GEP->getPointerOperandType()->getScalarType())
 | 
						|
              ->getElementType(),
 | 
						|
          Out);
 | 
						|
      Out << ", ";
 | 
						|
    }
 | 
						|
 | 
						|
    for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
 | 
						|
      TypePrinter.print((*OI)->getType(), Out);
 | 
						|
      Out << ' ';
 | 
						|
      WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context);
 | 
						|
      if (OI+1 != CE->op_end())
 | 
						|
        Out << ", ";
 | 
						|
    }
 | 
						|
 | 
						|
    if (CE->hasIndices()) {
 | 
						|
      ArrayRef<unsigned> Indices = CE->getIndices();
 | 
						|
      for (unsigned i = 0, e = Indices.size(); i != e; ++i)
 | 
						|
        Out << ", " << Indices[i];
 | 
						|
    }
 | 
						|
 | 
						|
    if (CE->isCast()) {
 | 
						|
      Out << " to ";
 | 
						|
      TypePrinter.print(CE->getType(), Out);
 | 
						|
    }
 | 
						|
 | 
						|
    Out << ')';
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  Out << "<placeholder or erroneous Constant>";
 | 
						|
}
 | 
						|
 | 
						|
static void writeMDTuple(raw_ostream &Out, const MDTuple *Node,
 | 
						|
                         TypePrinting *TypePrinter, SlotTracker *Machine,
 | 
						|
                         const Module *Context) {
 | 
						|
  Out << "!{";
 | 
						|
  for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
 | 
						|
    const Metadata *MD = Node->getOperand(mi);
 | 
						|
    if (!MD)
 | 
						|
      Out << "null";
 | 
						|
    else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) {
 | 
						|
      Value *V = MDV->getValue();
 | 
						|
      TypePrinter->print(V->getType(), Out);
 | 
						|
      Out << ' ';
 | 
						|
      WriteAsOperandInternal(Out, V, TypePrinter, Machine, Context);
 | 
						|
    } else {
 | 
						|
      WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
 | 
						|
    }
 | 
						|
    if (mi + 1 != me)
 | 
						|
      Out << ", ";
 | 
						|
  }
 | 
						|
 | 
						|
  Out << "}";
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
struct FieldSeparator {
 | 
						|
  bool Skip;
 | 
						|
  const char *Sep;
 | 
						|
  FieldSeparator(const char *Sep = ", ") : Skip(true), Sep(Sep) {}
 | 
						|
};
 | 
						|
raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) {
 | 
						|
  if (FS.Skip) {
 | 
						|
    FS.Skip = false;
 | 
						|
    return OS;
 | 
						|
  }
 | 
						|
  return OS << FS.Sep;
 | 
						|
}
 | 
						|
struct MDFieldPrinter {
 | 
						|
  raw_ostream &Out;
 | 
						|
  FieldSeparator FS;
 | 
						|
  TypePrinting *TypePrinter;
 | 
						|
  SlotTracker *Machine;
 | 
						|
  const Module *Context;
 | 
						|
 | 
						|
  explicit MDFieldPrinter(raw_ostream &Out)
 | 
						|
      : Out(Out), TypePrinter(nullptr), Machine(nullptr), Context(nullptr) {}
 | 
						|
  MDFieldPrinter(raw_ostream &Out, TypePrinting *TypePrinter,
 | 
						|
                 SlotTracker *Machine, const Module *Context)
 | 
						|
      : Out(Out), TypePrinter(TypePrinter), Machine(Machine), Context(Context) {
 | 
						|
  }
 | 
						|
  void printTag(const DebugNode *N);
 | 
						|
  void printString(StringRef Name, StringRef Value,
 | 
						|
                   bool ShouldSkipEmpty = true);
 | 
						|
  void printMetadata(StringRef Name, const Metadata *MD,
 | 
						|
                     bool ShouldSkipNull = true);
 | 
						|
  template <class IntTy>
 | 
						|
  void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true);
 | 
						|
  void printBool(StringRef Name, bool Value);
 | 
						|
  void printDIFlags(StringRef Name, unsigned Flags);
 | 
						|
  template <class IntTy, class Stringifier>
 | 
						|
  void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString,
 | 
						|
                      bool ShouldSkipZero = true);
 | 
						|
};
 | 
						|
} // end namespace
 | 
						|
 | 
						|
void MDFieldPrinter::printTag(const DebugNode *N) {
 | 
						|
  Out << FS << "tag: ";
 | 
						|
  if (const char *Tag = dwarf::TagString(N->getTag()))
 | 
						|
    Out << Tag;
 | 
						|
  else
 | 
						|
    Out << N->getTag();
 | 
						|
}
 | 
						|
 | 
						|
void MDFieldPrinter::printString(StringRef Name, StringRef Value,
 | 
						|
                                 bool ShouldSkipEmpty) {
 | 
						|
  if (ShouldSkipEmpty && Value.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  Out << FS << Name << ": \"";
 | 
						|
  PrintEscapedString(Value, Out);
 | 
						|
  Out << "\"";
 | 
						|
}
 | 
						|
 | 
						|
static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD,
 | 
						|
                                   TypePrinting *TypePrinter,
 | 
						|
                                   SlotTracker *Machine,
 | 
						|
                                   const Module *Context) {
 | 
						|
  if (!MD) {
 | 
						|
    Out << "null";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
 | 
						|
}
 | 
						|
 | 
						|
void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD,
 | 
						|
                                   bool ShouldSkipNull) {
 | 
						|
  if (ShouldSkipNull && !MD)
 | 
						|
    return;
 | 
						|
 | 
						|
  Out << FS << Name << ": ";
 | 
						|
  writeMetadataAsOperand(Out, MD, TypePrinter, Machine, Context);
 | 
						|
}
 | 
						|
 | 
						|
template <class IntTy>
 | 
						|
void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) {
 | 
						|
  if (ShouldSkipZero && !Int)
 | 
						|
    return;
 | 
						|
 | 
						|
  Out << FS << Name << ": " << Int;
 | 
						|
}
 | 
						|
 | 
						|
void MDFieldPrinter::printBool(StringRef Name, bool Value) {
 | 
						|
  Out << FS << Name << ": " << (Value ? "true" : "false");
 | 
						|
}
 | 
						|
 | 
						|
void MDFieldPrinter::printDIFlags(StringRef Name, unsigned Flags) {
 | 
						|
  if (!Flags)
 | 
						|
    return;
 | 
						|
 | 
						|
  Out << FS << Name << ": ";
 | 
						|
 | 
						|
  SmallVector<unsigned, 8> SplitFlags;
 | 
						|
  unsigned Extra = DebugNode::splitFlags(Flags, SplitFlags);
 | 
						|
 | 
						|
  FieldSeparator FlagsFS(" | ");
 | 
						|
  for (unsigned F : SplitFlags) {
 | 
						|
    const char *StringF = DebugNode::getFlagString(F);
 | 
						|
    assert(StringF && "Expected valid flag");
 | 
						|
    Out << FlagsFS << StringF;
 | 
						|
  }
 | 
						|
  if (Extra || SplitFlags.empty())
 | 
						|
    Out << FlagsFS << Extra;
 | 
						|
}
 | 
						|
 | 
						|
template <class IntTy, class Stringifier>
 | 
						|
void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value,
 | 
						|
                                    Stringifier toString, bool ShouldSkipZero) {
 | 
						|
  if (!Value)
 | 
						|
    return;
 | 
						|
 | 
						|
  Out << FS << Name << ": ";
 | 
						|
  if (const char *S = toString(Value))
 | 
						|
    Out << S;
 | 
						|
  else
 | 
						|
    Out << Value;
 | 
						|
}
 | 
						|
 | 
						|
static void writeGenericDebugNode(raw_ostream &Out, const GenericDebugNode *N,
 | 
						|
                                  TypePrinting *TypePrinter,
 | 
						|
                                  SlotTracker *Machine, const Module *Context) {
 | 
						|
  Out << "!GenericDebugNode(";
 | 
						|
  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
 | 
						|
  Printer.printTag(N);
 | 
						|
  Printer.printString("header", N->getHeader());
 | 
						|
  if (N->getNumDwarfOperands()) {
 | 
						|
    Out << Printer.FS << "operands: {";
 | 
						|
    FieldSeparator IFS;
 | 
						|
    for (auto &I : N->dwarf_operands()) {
 | 
						|
      Out << IFS;
 | 
						|
      writeMetadataAsOperand(Out, I, TypePrinter, Machine, Context);
 | 
						|
    }
 | 
						|
    Out << "}";
 | 
						|
  }
 | 
						|
  Out << ")";
 | 
						|
}
 | 
						|
 | 
						|
static void writeMDLocation(raw_ostream &Out, const MDLocation *DL,
 | 
						|
                            TypePrinting *TypePrinter, SlotTracker *Machine,
 | 
						|
                            const Module *Context) {
 | 
						|
  Out << "!MDLocation(";
 | 
						|
  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
 | 
						|
  // Always output the line, since 0 is a relevant and important value for it.
 | 
						|
  Printer.printInt("line", DL->getLine(), /* ShouldSkipZero */ false);
 | 
						|
  Printer.printInt("column", DL->getColumn());
 | 
						|
  Printer.printMetadata("scope", DL->getRawScope(), /* ShouldSkipNull */ false);
 | 
						|
  Printer.printMetadata("inlinedAt", DL->getRawInlinedAt());
 | 
						|
  Out << ")";
 | 
						|
}
 | 
						|
 | 
						|
static void writeMDSubrange(raw_ostream &Out, const MDSubrange *N,
 | 
						|
                            TypePrinting *, SlotTracker *, const Module *) {
 | 
						|
  Out << "!MDSubrange(";
 | 
						|
  MDFieldPrinter Printer(Out);
 | 
						|
  Printer.printInt("count", N->getCount(), /* ShouldSkipZero */ false);
 | 
						|
  Printer.printInt("lowerBound", N->getLowerBound());
 | 
						|
  Out << ")";
 | 
						|
}
 | 
						|
 | 
						|
static void writeMDEnumerator(raw_ostream &Out, const MDEnumerator *N,
 | 
						|
                              TypePrinting *, SlotTracker *, const Module *) {
 | 
						|
  Out << "!MDEnumerator(";
 | 
						|
  MDFieldPrinter Printer(Out);
 | 
						|
  Printer.printString("name", N->getName(), /* ShouldSkipEmpty */ false);
 | 
						|
  Printer.printInt("value", N->getValue(), /* ShouldSkipZero */ false);
 | 
						|
  Out << ")";
 | 
						|
}
 | 
						|
 | 
						|
static void writeMDBasicType(raw_ostream &Out, const MDBasicType *N,
 | 
						|
                             TypePrinting *, SlotTracker *, const Module *) {
 | 
						|
  Out << "!MDBasicType(";
 | 
						|
  MDFieldPrinter Printer(Out);
 | 
						|
  if (N->getTag() != dwarf::DW_TAG_base_type)
 | 
						|
    Printer.printTag(N);
 | 
						|
  Printer.printString("name", N->getName());
 | 
						|
  Printer.printInt("size", N->getSizeInBits());
 | 
						|
  Printer.printInt("align", N->getAlignInBits());
 | 
						|
  Printer.printDwarfEnum("encoding", N->getEncoding(),
 | 
						|
                         dwarf::AttributeEncodingString);
 | 
						|
  Out << ")";
 | 
						|
}
 | 
						|
 | 
						|
static void writeMDDerivedType(raw_ostream &Out, const MDDerivedType *N,
 | 
						|
                               TypePrinting *TypePrinter, SlotTracker *Machine,
 | 
						|
                               const Module *Context) {
 | 
						|
  Out << "!MDDerivedType(";
 | 
						|
  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
 | 
						|
  Printer.printTag(N);
 | 
						|
  Printer.printString("name", N->getName());
 | 
						|
  Printer.printMetadata("scope", N->getRawScope());
 | 
						|
  Printer.printMetadata("file", N->getRawFile());
 | 
						|
  Printer.printInt("line", N->getLine());
 | 
						|
  Printer.printMetadata("baseType", N->getRawBaseType(),
 | 
						|
                        /* ShouldSkipNull */ false);
 | 
						|
  Printer.printInt("size", N->getSizeInBits());
 | 
						|
  Printer.printInt("align", N->getAlignInBits());
 | 
						|
  Printer.printInt("offset", N->getOffsetInBits());
 | 
						|
  Printer.printDIFlags("flags", N->getFlags());
 | 
						|
  Printer.printMetadata("extraData", N->getRawExtraData());
 | 
						|
  Out << ")";
 | 
						|
}
 | 
						|
 | 
						|
static void writeMDCompositeType(raw_ostream &Out, const MDCompositeType *N,
 | 
						|
                                 TypePrinting *TypePrinter,
 | 
						|
                                 SlotTracker *Machine, const Module *Context) {
 | 
						|
  Out << "!MDCompositeType(";
 | 
						|
  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
 | 
						|
  Printer.printTag(N);
 | 
						|
  Printer.printString("name", N->getName());
 | 
						|
  Printer.printMetadata("scope", N->getRawScope());
 | 
						|
  Printer.printMetadata("file", N->getRawFile());
 | 
						|
  Printer.printInt("line", N->getLine());
 | 
						|
  Printer.printMetadata("baseType", N->getRawBaseType());
 | 
						|
  Printer.printInt("size", N->getSizeInBits());
 | 
						|
  Printer.printInt("align", N->getAlignInBits());
 | 
						|
  Printer.printInt("offset", N->getOffsetInBits());
 | 
						|
  Printer.printDIFlags("flags", N->getFlags());
 | 
						|
  Printer.printMetadata("elements", N->getRawElements());
 | 
						|
  Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(),
 | 
						|
                         dwarf::LanguageString);
 | 
						|
  Printer.printMetadata("vtableHolder", N->getRawVTableHolder());
 | 
						|
  Printer.printMetadata("templateParams", N->getRawTemplateParams());
 | 
						|
  Printer.printString("identifier", N->getIdentifier());
 | 
						|
  Out << ")";
 | 
						|
}
 | 
						|
 | 
						|
static void writeMDSubroutineType(raw_ostream &Out, const MDSubroutineType *N,
 | 
						|
                                  TypePrinting *TypePrinter,
 | 
						|
                                  SlotTracker *Machine, const Module *Context) {
 | 
						|
  Out << "!MDSubroutineType(";
 | 
						|
  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
 | 
						|
  Printer.printDIFlags("flags", N->getFlags());
 | 
						|
  Printer.printMetadata("types", N->getRawTypeArray(),
 | 
						|
                        /* ShouldSkipNull */ false);
 | 
						|
  Out << ")";
 | 
						|
}
 | 
						|
 | 
						|
static void writeMDFile(raw_ostream &Out, const MDFile *N, TypePrinting *,
 | 
						|
                        SlotTracker *, const Module *) {
 | 
						|
  Out << "!MDFile(";
 | 
						|
  MDFieldPrinter Printer(Out);
 | 
						|
  Printer.printString("filename", N->getFilename(),
 | 
						|
                      /* ShouldSkipEmpty */ false);
 | 
						|
  Printer.printString("directory", N->getDirectory(),
 | 
						|
                      /* ShouldSkipEmpty */ false);
 | 
						|
  Out << ")";
 | 
						|
}
 | 
						|
 | 
						|
static void writeMDCompileUnit(raw_ostream &Out, const MDCompileUnit *N,
 | 
						|
                               TypePrinting *TypePrinter, SlotTracker *Machine,
 | 
						|
                               const Module *Context) {
 | 
						|
  Out << "!MDCompileUnit(";
 | 
						|
  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
 | 
						|
  Printer.printDwarfEnum("language", N->getSourceLanguage(),
 | 
						|
                         dwarf::LanguageString, /* ShouldSkipZero */ false);
 | 
						|
  Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
 | 
						|
  Printer.printString("producer", N->getProducer());
 | 
						|
  Printer.printBool("isOptimized", N->isOptimized());
 | 
						|
  Printer.printString("flags", N->getFlags());
 | 
						|
  Printer.printInt("runtimeVersion", N->getRuntimeVersion(),
 | 
						|
                   /* ShouldSkipZero */ false);
 | 
						|
  Printer.printString("splitDebugFilename", N->getSplitDebugFilename());
 | 
						|
  Printer.printInt("emissionKind", N->getEmissionKind(),
 | 
						|
                   /* ShouldSkipZero */ false);
 | 
						|
  Printer.printMetadata("enums", N->getRawEnumTypes());
 | 
						|
  Printer.printMetadata("retainedTypes", N->getRawRetainedTypes());
 | 
						|
  Printer.printMetadata("subprograms", N->getRawSubprograms());
 | 
						|
  Printer.printMetadata("globals", N->getRawGlobalVariables());
 | 
						|
  Printer.printMetadata("imports", N->getRawImportedEntities());
 | 
						|
  Out << ")";
 | 
						|
}
 | 
						|
 | 
						|
static void writeMDSubprogram(raw_ostream &Out, const MDSubprogram *N,
 | 
						|
                              TypePrinting *TypePrinter, SlotTracker *Machine,
 | 
						|
                              const Module *Context) {
 | 
						|
  Out << "!MDSubprogram(";
 | 
						|
  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
 | 
						|
  Printer.printString("name", N->getName());
 | 
						|
  Printer.printString("linkageName", N->getLinkageName());
 | 
						|
  Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
 | 
						|
  Printer.printMetadata("file", N->getRawFile());
 | 
						|
  Printer.printInt("line", N->getLine());
 | 
						|
  Printer.printMetadata("type", N->getRawType());
 | 
						|
  Printer.printBool("isLocal", N->isLocalToUnit());
 | 
						|
  Printer.printBool("isDefinition", N->isDefinition());
 | 
						|
  Printer.printInt("scopeLine", N->getScopeLine());
 | 
						|
  Printer.printMetadata("containingType", N->getRawContainingType());
 | 
						|
  Printer.printDwarfEnum("virtuality", N->getVirtuality(),
 | 
						|
                         dwarf::VirtualityString);
 | 
						|
  Printer.printInt("virtualIndex", N->getVirtualIndex());
 | 
						|
  Printer.printDIFlags("flags", N->getFlags());
 | 
						|
  Printer.printBool("isOptimized", N->isOptimized());
 | 
						|
  Printer.printMetadata("function", N->getRawFunction());
 | 
						|
  Printer.printMetadata("templateParams", N->getRawTemplateParams());
 | 
						|
  Printer.printMetadata("declaration", N->getRawDeclaration());
 | 
						|
  Printer.printMetadata("variables", N->getRawVariables());
 | 
						|
  Out << ")";
 | 
						|
}
 | 
						|
 | 
						|
static void writeMDLexicalBlock(raw_ostream &Out, const MDLexicalBlock *N,
 | 
						|
                              TypePrinting *TypePrinter, SlotTracker *Machine,
 | 
						|
                              const Module *Context) {
 | 
						|
  Out << "!MDLexicalBlock(";
 | 
						|
  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
 | 
						|
  Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
 | 
						|
  Printer.printMetadata("file", N->getRawFile());
 | 
						|
  Printer.printInt("line", N->getLine());
 | 
						|
  Printer.printInt("column", N->getColumn());
 | 
						|
  Out << ")";
 | 
						|
}
 | 
						|
 | 
						|
static void writeMDLexicalBlockFile(raw_ostream &Out,
 | 
						|
                                    const MDLexicalBlockFile *N,
 | 
						|
                                    TypePrinting *TypePrinter,
 | 
						|
                                    SlotTracker *Machine,
 | 
						|
                                    const Module *Context) {
 | 
						|
  Out << "!MDLexicalBlockFile(";
 | 
						|
  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
 | 
						|
  Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
 | 
						|
  Printer.printMetadata("file", N->getRawFile());
 | 
						|
  Printer.printInt("discriminator", N->getDiscriminator(),
 | 
						|
                   /* ShouldSkipZero */ false);
 | 
						|
  Out << ")";
 | 
						|
}
 | 
						|
 | 
						|
static void writeMDNamespace(raw_ostream &Out, const MDNamespace *N,
 | 
						|
                             TypePrinting *TypePrinter, SlotTracker *Machine,
 | 
						|
                             const Module *Context) {
 | 
						|
  Out << "!MDNamespace(";
 | 
						|
  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
 | 
						|
  Printer.printString("name", N->getName());
 | 
						|
  Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
 | 
						|
  Printer.printMetadata("file", N->getRawFile());
 | 
						|
  Printer.printInt("line", N->getLine());
 | 
						|
  Out << ")";
 | 
						|
}
 | 
						|
 | 
						|
static void writeMDTemplateTypeParameter(raw_ostream &Out,
 | 
						|
                                         const MDTemplateTypeParameter *N,
 | 
						|
                                         TypePrinting *TypePrinter,
 | 
						|
                                         SlotTracker *Machine,
 | 
						|
                                         const Module *Context) {
 | 
						|
  Out << "!MDTemplateTypeParameter(";
 | 
						|
  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
 | 
						|
  Printer.printString("name", N->getName());
 | 
						|
  Printer.printMetadata("type", N->getRawType(), /* ShouldSkipNull */ false);
 | 
						|
  Out << ")";
 | 
						|
}
 | 
						|
 | 
						|
static void writeMDTemplateValueParameter(raw_ostream &Out,
 | 
						|
                                          const MDTemplateValueParameter *N,
 | 
						|
                                          TypePrinting *TypePrinter,
 | 
						|
                                          SlotTracker *Machine,
 | 
						|
                                          const Module *Context) {
 | 
						|
  Out << "!MDTemplateValueParameter(";
 | 
						|
  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
 | 
						|
  if (N->getTag() != dwarf::DW_TAG_template_value_parameter)
 | 
						|
    Printer.printTag(N);
 | 
						|
  Printer.printString("name", N->getName());
 | 
						|
  Printer.printMetadata("type", N->getRawType());
 | 
						|
  Printer.printMetadata("value", N->getValue(), /* ShouldSkipNull */ false);
 | 
						|
  Out << ")";
 | 
						|
}
 | 
						|
 | 
						|
static void writeMDGlobalVariable(raw_ostream &Out, const MDGlobalVariable *N,
 | 
						|
                                  TypePrinting *TypePrinter,
 | 
						|
                                  SlotTracker *Machine, const Module *Context) {
 | 
						|
  Out << "!MDGlobalVariable(";
 | 
						|
  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
 | 
						|
  Printer.printString("name", N->getName());
 | 
						|
  Printer.printString("linkageName", N->getLinkageName());
 | 
						|
  Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
 | 
						|
  Printer.printMetadata("file", N->getRawFile());
 | 
						|
  Printer.printInt("line", N->getLine());
 | 
						|
  Printer.printMetadata("type", N->getRawType());
 | 
						|
  Printer.printBool("isLocal", N->isLocalToUnit());
 | 
						|
  Printer.printBool("isDefinition", N->isDefinition());
 | 
						|
  Printer.printMetadata("variable", N->getRawVariable());
 | 
						|
  Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration());
 | 
						|
  Out << ")";
 | 
						|
}
 | 
						|
 | 
						|
static void writeMDLocalVariable(raw_ostream &Out, const MDLocalVariable *N,
 | 
						|
                                 TypePrinting *TypePrinter,
 | 
						|
                                 SlotTracker *Machine, const Module *Context) {
 | 
						|
  Out << "!MDLocalVariable(";
 | 
						|
  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
 | 
						|
  Printer.printTag(N);
 | 
						|
  Printer.printString("name", N->getName());
 | 
						|
  Printer.printInt("arg", N->getArg(),
 | 
						|
                   /* ShouldSkipZero */
 | 
						|
                   N->getTag() == dwarf::DW_TAG_auto_variable);
 | 
						|
  Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
 | 
						|
  Printer.printMetadata("file", N->getRawFile());
 | 
						|
  Printer.printInt("line", N->getLine());
 | 
						|
  Printer.printMetadata("type", N->getRawType());
 | 
						|
  Printer.printDIFlags("flags", N->getFlags());
 | 
						|
  Out << ")";
 | 
						|
}
 | 
						|
 | 
						|
static void writeMDExpression(raw_ostream &Out, const MDExpression *N,
 | 
						|
                              TypePrinting *TypePrinter, SlotTracker *Machine,
 | 
						|
                              const Module *Context) {
 | 
						|
  Out << "!MDExpression(";
 | 
						|
  FieldSeparator FS;
 | 
						|
  if (N->isValid()) {
 | 
						|
    for (auto I = N->expr_op_begin(), E = N->expr_op_end(); I != E; ++I) {
 | 
						|
      const char *OpStr = dwarf::OperationEncodingString(I->getOp());
 | 
						|
      assert(OpStr && "Expected valid opcode");
 | 
						|
 | 
						|
      Out << FS << OpStr;
 | 
						|
      for (unsigned A = 0, AE = I->getNumArgs(); A != AE; ++A)
 | 
						|
        Out << FS << I->getArg(A);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    for (const auto &I : N->getElements())
 | 
						|
      Out << FS << I;
 | 
						|
  }
 | 
						|
  Out << ")";
 | 
						|
}
 | 
						|
 | 
						|
static void writeMDObjCProperty(raw_ostream &Out, const MDObjCProperty *N,
 | 
						|
                                TypePrinting *TypePrinter, SlotTracker *Machine,
 | 
						|
                                const Module *Context) {
 | 
						|
  Out << "!MDObjCProperty(";
 | 
						|
  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
 | 
						|
  Printer.printString("name", N->getName());
 | 
						|
  Printer.printMetadata("file", N->getRawFile());
 | 
						|
  Printer.printInt("line", N->getLine());
 | 
						|
  Printer.printString("setter", N->getSetterName());
 | 
						|
  Printer.printString("getter", N->getGetterName());
 | 
						|
  Printer.printInt("attributes", N->getAttributes());
 | 
						|
  Printer.printMetadata("type", N->getRawType());
 | 
						|
  Out << ")";
 | 
						|
}
 | 
						|
 | 
						|
static void writeMDImportedEntity(raw_ostream &Out, const MDImportedEntity *N,
 | 
						|
                                  TypePrinting *TypePrinter,
 | 
						|
                                  SlotTracker *Machine, const Module *Context) {
 | 
						|
  Out << "!MDImportedEntity(";
 | 
						|
  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
 | 
						|
  Printer.printTag(N);
 | 
						|
  Printer.printString("name", N->getName());
 | 
						|
  Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
 | 
						|
  Printer.printMetadata("entity", N->getRawEntity());
 | 
						|
  Printer.printInt("line", N->getLine());
 | 
						|
  Out << ")";
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
 | 
						|
                                    TypePrinting *TypePrinter,
 | 
						|
                                    SlotTracker *Machine,
 | 
						|
                                    const Module *Context) {
 | 
						|
  if (Node->isDistinct())
 | 
						|
    Out << "distinct ";
 | 
						|
  else if (Node->isTemporary())
 | 
						|
    Out << "<temporary!> "; // Handle broken code.
 | 
						|
 | 
						|
  switch (Node->getMetadataID()) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Expected uniquable MDNode");
 | 
						|
#define HANDLE_MDNODE_LEAF(CLASS)                                              \
 | 
						|
  case Metadata::CLASS##Kind:                                                  \
 | 
						|
    write##CLASS(Out, cast<CLASS>(Node), TypePrinter, Machine, Context);       \
 | 
						|
    break;
 | 
						|
#include "llvm/IR/Metadata.def"
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Full implementation of printing a Value as an operand with support for
 | 
						|
// TypePrinting, etc.
 | 
						|
static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
 | 
						|
                                   TypePrinting *TypePrinter,
 | 
						|
                                   SlotTracker *Machine,
 | 
						|
                                   const Module *Context) {
 | 
						|
  if (V->hasName()) {
 | 
						|
    PrintLLVMName(Out, V);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  const Constant *CV = dyn_cast<Constant>(V);
 | 
						|
  if (CV && !isa<GlobalValue>(CV)) {
 | 
						|
    assert(TypePrinter && "Constants require TypePrinting!");
 | 
						|
    WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
 | 
						|
    Out << "asm ";
 | 
						|
    if (IA->hasSideEffects())
 | 
						|
      Out << "sideeffect ";
 | 
						|
    if (IA->isAlignStack())
 | 
						|
      Out << "alignstack ";
 | 
						|
    // We don't emit the AD_ATT dialect as it's the assumed default.
 | 
						|
    if (IA->getDialect() == InlineAsm::AD_Intel)
 | 
						|
      Out << "inteldialect ";
 | 
						|
    Out << '"';
 | 
						|
    PrintEscapedString(IA->getAsmString(), Out);
 | 
						|
    Out << "\", \"";
 | 
						|
    PrintEscapedString(IA->getConstraintString(), Out);
 | 
						|
    Out << '"';
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (auto *MD = dyn_cast<MetadataAsValue>(V)) {
 | 
						|
    WriteAsOperandInternal(Out, MD->getMetadata(), TypePrinter, Machine,
 | 
						|
                           Context, /* FromValue */ true);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  char Prefix = '%';
 | 
						|
  int Slot;
 | 
						|
  // If we have a SlotTracker, use it.
 | 
						|
  if (Machine) {
 | 
						|
    if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
 | 
						|
      Slot = Machine->getGlobalSlot(GV);
 | 
						|
      Prefix = '@';
 | 
						|
    } else {
 | 
						|
      Slot = Machine->getLocalSlot(V);
 | 
						|
 | 
						|
      // If the local value didn't succeed, then we may be referring to a value
 | 
						|
      // from a different function.  Translate it, as this can happen when using
 | 
						|
      // address of blocks.
 | 
						|
      if (Slot == -1)
 | 
						|
        if ((Machine = createSlotTracker(V))) {
 | 
						|
          Slot = Machine->getLocalSlot(V);
 | 
						|
          delete Machine;
 | 
						|
        }
 | 
						|
    }
 | 
						|
  } else if ((Machine = createSlotTracker(V))) {
 | 
						|
    // Otherwise, create one to get the # and then destroy it.
 | 
						|
    if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
 | 
						|
      Slot = Machine->getGlobalSlot(GV);
 | 
						|
      Prefix = '@';
 | 
						|
    } else {
 | 
						|
      Slot = Machine->getLocalSlot(V);
 | 
						|
    }
 | 
						|
    delete Machine;
 | 
						|
    Machine = nullptr;
 | 
						|
  } else {
 | 
						|
    Slot = -1;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Slot != -1)
 | 
						|
    Out << Prefix << Slot;
 | 
						|
  else
 | 
						|
    Out << "<badref>";
 | 
						|
}
 | 
						|
 | 
						|
static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
 | 
						|
                                   TypePrinting *TypePrinter,
 | 
						|
                                   SlotTracker *Machine, const Module *Context,
 | 
						|
                                   bool FromValue) {
 | 
						|
  if (const MDNode *N = dyn_cast<MDNode>(MD)) {
 | 
						|
    if (!Machine)
 | 
						|
      Machine = new SlotTracker(Context);
 | 
						|
    int Slot = Machine->getMetadataSlot(N);
 | 
						|
    if (Slot == -1)
 | 
						|
      // Give the pointer value instead of "badref", since this comes up all
 | 
						|
      // the time when debugging.
 | 
						|
      Out << "<" << N << ">";
 | 
						|
    else
 | 
						|
      Out << '!' << Slot;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const MDString *MDS = dyn_cast<MDString>(MD)) {
 | 
						|
    Out << "!\"";
 | 
						|
    PrintEscapedString(MDS->getString(), Out);
 | 
						|
    Out << '"';
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  auto *V = cast<ValueAsMetadata>(MD);
 | 
						|
  assert(TypePrinter && "TypePrinter required for metadata values");
 | 
						|
  assert((FromValue || !isa<LocalAsMetadata>(V)) &&
 | 
						|
         "Unexpected function-local metadata outside of value argument");
 | 
						|
 | 
						|
  TypePrinter->print(V->getValue()->getType(), Out);
 | 
						|
  Out << ' ';
 | 
						|
  WriteAsOperandInternal(Out, V->getValue(), TypePrinter, Machine, Context);
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
class AssemblyWriter {
 | 
						|
  formatted_raw_ostream &Out;
 | 
						|
  const Module *TheModule;
 | 
						|
  std::unique_ptr<SlotTracker> ModuleSlotTracker;
 | 
						|
  SlotTracker &Machine;
 | 
						|
  TypePrinting TypePrinter;
 | 
						|
  AssemblyAnnotationWriter *AnnotationWriter;
 | 
						|
  SetVector<const Comdat *> Comdats;
 | 
						|
  bool ShouldPreserveUseListOrder;
 | 
						|
  UseListOrderStack UseListOrders;
 | 
						|
  SmallVector<StringRef, 8> MDNames;
 | 
						|
 | 
						|
public:
 | 
						|
  /// Construct an AssemblyWriter with an external SlotTracker
 | 
						|
  AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M,
 | 
						|
                 AssemblyAnnotationWriter *AAW,
 | 
						|
                 bool ShouldPreserveUseListOrder = false);
 | 
						|
 | 
						|
  /// Construct an AssemblyWriter with an internally allocated SlotTracker
 | 
						|
  AssemblyWriter(formatted_raw_ostream &o, const Module *M,
 | 
						|
                 AssemblyAnnotationWriter *AAW,
 | 
						|
                 bool ShouldPreserveUseListOrder = false);
 | 
						|
 | 
						|
  void printMDNodeBody(const MDNode *MD);
 | 
						|
  void printNamedMDNode(const NamedMDNode *NMD);
 | 
						|
 | 
						|
  void printModule(const Module *M);
 | 
						|
 | 
						|
  void writeOperand(const Value *Op, bool PrintType);
 | 
						|
  void writeParamOperand(const Value *Operand, AttributeSet Attrs,unsigned Idx);
 | 
						|
  void writeAtomic(AtomicOrdering Ordering, SynchronizationScope SynchScope);
 | 
						|
  void writeAtomicCmpXchg(AtomicOrdering SuccessOrdering,
 | 
						|
                          AtomicOrdering FailureOrdering,
 | 
						|
                          SynchronizationScope SynchScope);
 | 
						|
 | 
						|
  void writeAllMDNodes();
 | 
						|
  void writeMDNode(unsigned Slot, const MDNode *Node);
 | 
						|
  void writeAllAttributeGroups();
 | 
						|
 | 
						|
  void printTypeIdentities();
 | 
						|
  void printGlobal(const GlobalVariable *GV);
 | 
						|
  void printAlias(const GlobalAlias *GV);
 | 
						|
  void printComdat(const Comdat *C);
 | 
						|
  void printFunction(const Function *F);
 | 
						|
  void printArgument(const Argument *FA, AttributeSet Attrs, unsigned Idx);
 | 
						|
  void printBasicBlock(const BasicBlock *BB);
 | 
						|
  void printInstructionLine(const Instruction &I);
 | 
						|
  void printInstruction(const Instruction &I);
 | 
						|
 | 
						|
  void printUseListOrder(const UseListOrder &Order);
 | 
						|
  void printUseLists(const Function *F);
 | 
						|
 | 
						|
private:
 | 
						|
  void init();
 | 
						|
 | 
						|
  /// \brief Print out metadata attachments.
 | 
						|
  void printMetadataAttachments(
 | 
						|
      const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
 | 
						|
      StringRef Separator);
 | 
						|
 | 
						|
  // printInfoComment - Print a little comment after the instruction indicating
 | 
						|
  // which slot it occupies.
 | 
						|
  void printInfoComment(const Value &V);
 | 
						|
};
 | 
						|
} // namespace
 | 
						|
 | 
						|
void AssemblyWriter::init() {
 | 
						|
  if (!TheModule)
 | 
						|
    return;
 | 
						|
  TypePrinter.incorporateTypes(*TheModule);
 | 
						|
  for (const Function &F : *TheModule)
 | 
						|
    if (const Comdat *C = F.getComdat())
 | 
						|
      Comdats.insert(C);
 | 
						|
  for (const GlobalVariable &GV : TheModule->globals())
 | 
						|
    if (const Comdat *C = GV.getComdat())
 | 
						|
      Comdats.insert(C);
 | 
						|
}
 | 
						|
 | 
						|
AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
 | 
						|
                               const Module *M, AssemblyAnnotationWriter *AAW,
 | 
						|
                               bool ShouldPreserveUseListOrder)
 | 
						|
    : Out(o), TheModule(M), Machine(Mac), AnnotationWriter(AAW),
 | 
						|
      ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
 | 
						|
  init();
 | 
						|
}
 | 
						|
 | 
						|
AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, const Module *M,
 | 
						|
                               AssemblyAnnotationWriter *AAW,
 | 
						|
                               bool ShouldPreserveUseListOrder)
 | 
						|
    : Out(o), TheModule(M), ModuleSlotTracker(createSlotTracker(M)),
 | 
						|
      Machine(*ModuleSlotTracker), AnnotationWriter(AAW),
 | 
						|
      ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
 | 
						|
  init();
 | 
						|
}
 | 
						|
 | 
						|
void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
 | 
						|
  if (!Operand) {
 | 
						|
    Out << "<null operand!>";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if (PrintType) {
 | 
						|
    TypePrinter.print(Operand->getType(), Out);
 | 
						|
    Out << ' ';
 | 
						|
  }
 | 
						|
  WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
 | 
						|
}
 | 
						|
 | 
						|
void AssemblyWriter::writeAtomic(AtomicOrdering Ordering,
 | 
						|
                                 SynchronizationScope SynchScope) {
 | 
						|
  if (Ordering == NotAtomic)
 | 
						|
    return;
 | 
						|
 | 
						|
  switch (SynchScope) {
 | 
						|
  case SingleThread: Out << " singlethread"; break;
 | 
						|
  case CrossThread: break;
 | 
						|
  }
 | 
						|
 | 
						|
  switch (Ordering) {
 | 
						|
  default: Out << " <bad ordering " << int(Ordering) << ">"; break;
 | 
						|
  case Unordered: Out << " unordered"; break;
 | 
						|
  case Monotonic: Out << " monotonic"; break;
 | 
						|
  case Acquire: Out << " acquire"; break;
 | 
						|
  case Release: Out << " release"; break;
 | 
						|
  case AcquireRelease: Out << " acq_rel"; break;
 | 
						|
  case SequentiallyConsistent: Out << " seq_cst"; break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void AssemblyWriter::writeAtomicCmpXchg(AtomicOrdering SuccessOrdering,
 | 
						|
                                        AtomicOrdering FailureOrdering,
 | 
						|
                                        SynchronizationScope SynchScope) {
 | 
						|
  assert(SuccessOrdering != NotAtomic && FailureOrdering != NotAtomic);
 | 
						|
 | 
						|
  switch (SynchScope) {
 | 
						|
  case SingleThread: Out << " singlethread"; break;
 | 
						|
  case CrossThread: break;
 | 
						|
  }
 | 
						|
 | 
						|
  switch (SuccessOrdering) {
 | 
						|
  default: Out << " <bad ordering " << int(SuccessOrdering) << ">"; break;
 | 
						|
  case Unordered: Out << " unordered"; break;
 | 
						|
  case Monotonic: Out << " monotonic"; break;
 | 
						|
  case Acquire: Out << " acquire"; break;
 | 
						|
  case Release: Out << " release"; break;
 | 
						|
  case AcquireRelease: Out << " acq_rel"; break;
 | 
						|
  case SequentiallyConsistent: Out << " seq_cst"; break;
 | 
						|
  }
 | 
						|
 | 
						|
  switch (FailureOrdering) {
 | 
						|
  default: Out << " <bad ordering " << int(FailureOrdering) << ">"; break;
 | 
						|
  case Unordered: Out << " unordered"; break;
 | 
						|
  case Monotonic: Out << " monotonic"; break;
 | 
						|
  case Acquire: Out << " acquire"; break;
 | 
						|
  case Release: Out << " release"; break;
 | 
						|
  case AcquireRelease: Out << " acq_rel"; break;
 | 
						|
  case SequentiallyConsistent: Out << " seq_cst"; break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void AssemblyWriter::writeParamOperand(const Value *Operand,
 | 
						|
                                       AttributeSet Attrs, unsigned Idx) {
 | 
						|
  if (!Operand) {
 | 
						|
    Out << "<null operand!>";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Print the type
 | 
						|
  TypePrinter.print(Operand->getType(), Out);
 | 
						|
  // Print parameter attributes list
 | 
						|
  if (Attrs.hasAttributes(Idx))
 | 
						|
    Out << ' ' << Attrs.getAsString(Idx);
 | 
						|
  Out << ' ';
 | 
						|
  // Print the operand
 | 
						|
  WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
 | 
						|
}
 | 
						|
 | 
						|
void AssemblyWriter::printModule(const Module *M) {
 | 
						|
  Machine.initialize();
 | 
						|
 | 
						|
  if (ShouldPreserveUseListOrder)
 | 
						|
    UseListOrders = predictUseListOrder(M);
 | 
						|
 | 
						|
  if (!M->getModuleIdentifier().empty() &&
 | 
						|
      // Don't print the ID if it will start a new line (which would
 | 
						|
      // require a comment char before it).
 | 
						|
      M->getModuleIdentifier().find('\n') == std::string::npos)
 | 
						|
    Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
 | 
						|
 | 
						|
  const std::string &DL = M->getDataLayoutStr();
 | 
						|
  if (!DL.empty())
 | 
						|
    Out << "target datalayout = \"" << DL << "\"\n";
 | 
						|
  if (!M->getTargetTriple().empty())
 | 
						|
    Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
 | 
						|
 | 
						|
  if (!M->getModuleInlineAsm().empty()) {
 | 
						|
    // Split the string into lines, to make it easier to read the .ll file.
 | 
						|
    std::string Asm = M->getModuleInlineAsm();
 | 
						|
    size_t CurPos = 0;
 | 
						|
    size_t NewLine = Asm.find_first_of('\n', CurPos);
 | 
						|
    Out << '\n';
 | 
						|
    while (NewLine != std::string::npos) {
 | 
						|
      // We found a newline, print the portion of the asm string from the
 | 
						|
      // last newline up to this newline.
 | 
						|
      Out << "module asm \"";
 | 
						|
      PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
 | 
						|
                         Out);
 | 
						|
      Out << "\"\n";
 | 
						|
      CurPos = NewLine+1;
 | 
						|
      NewLine = Asm.find_first_of('\n', CurPos);
 | 
						|
    }
 | 
						|
    std::string rest(Asm.begin()+CurPos, Asm.end());
 | 
						|
    if (!rest.empty()) {
 | 
						|
      Out << "module asm \"";
 | 
						|
      PrintEscapedString(rest, Out);
 | 
						|
      Out << "\"\n";
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  printTypeIdentities();
 | 
						|
 | 
						|
  // Output all comdats.
 | 
						|
  if (!Comdats.empty())
 | 
						|
    Out << '\n';
 | 
						|
  for (const Comdat *C : Comdats) {
 | 
						|
    printComdat(C);
 | 
						|
    if (C != Comdats.back())
 | 
						|
      Out << '\n';
 | 
						|
  }
 | 
						|
 | 
						|
  // Output all globals.
 | 
						|
  if (!M->global_empty()) Out << '\n';
 | 
						|
  for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
 | 
						|
       I != E; ++I) {
 | 
						|
    printGlobal(I); Out << '\n';
 | 
						|
  }
 | 
						|
 | 
						|
  // Output all aliases.
 | 
						|
  if (!M->alias_empty()) Out << "\n";
 | 
						|
  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
 | 
						|
       I != E; ++I)
 | 
						|
    printAlias(I);
 | 
						|
 | 
						|
  // Output global use-lists.
 | 
						|
  printUseLists(nullptr);
 | 
						|
 | 
						|
  // Output all of the functions.
 | 
						|
  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
 | 
						|
    printFunction(I);
 | 
						|
  assert(UseListOrders.empty() && "All use-lists should have been consumed");
 | 
						|
 | 
						|
  // Output all attribute groups.
 | 
						|
  if (!Machine.as_empty()) {
 | 
						|
    Out << '\n';
 | 
						|
    writeAllAttributeGroups();
 | 
						|
  }
 | 
						|
 | 
						|
  // Output named metadata.
 | 
						|
  if (!M->named_metadata_empty()) Out << '\n';
 | 
						|
 | 
						|
  for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
 | 
						|
       E = M->named_metadata_end(); I != E; ++I)
 | 
						|
    printNamedMDNode(I);
 | 
						|
 | 
						|
  // Output metadata.
 | 
						|
  if (!Machine.mdn_empty()) {
 | 
						|
    Out << '\n';
 | 
						|
    writeAllMDNodes();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
 | 
						|
  Out << '!';
 | 
						|
  StringRef Name = NMD->getName();
 | 
						|
  if (Name.empty()) {
 | 
						|
    Out << "<empty name> ";
 | 
						|
  } else {
 | 
						|
    if (isalpha(static_cast<unsigned char>(Name[0])) ||
 | 
						|
        Name[0] == '-' || Name[0] == '$' ||
 | 
						|
        Name[0] == '.' || Name[0] == '_')
 | 
						|
      Out << Name[0];
 | 
						|
    else
 | 
						|
      Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
 | 
						|
    for (unsigned i = 1, e = Name.size(); i != e; ++i) {
 | 
						|
      unsigned char C = Name[i];
 | 
						|
      if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' ||
 | 
						|
          C == '.' || C == '_')
 | 
						|
        Out << C;
 | 
						|
      else
 | 
						|
        Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  Out << " = !{";
 | 
						|
  for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
 | 
						|
    if (i) Out << ", ";
 | 
						|
    int Slot = Machine.getMetadataSlot(NMD->getOperand(i));
 | 
						|
    if (Slot == -1)
 | 
						|
      Out << "<badref>";
 | 
						|
    else
 | 
						|
      Out << '!' << Slot;
 | 
						|
  }
 | 
						|
  Out << "}\n";
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void PrintLinkage(GlobalValue::LinkageTypes LT,
 | 
						|
                         formatted_raw_ostream &Out) {
 | 
						|
  switch (LT) {
 | 
						|
  case GlobalValue::ExternalLinkage: break;
 | 
						|
  case GlobalValue::PrivateLinkage:       Out << "private ";        break;
 | 
						|
  case GlobalValue::InternalLinkage:      Out << "internal ";       break;
 | 
						|
  case GlobalValue::LinkOnceAnyLinkage:   Out << "linkonce ";       break;
 | 
						|
  case GlobalValue::LinkOnceODRLinkage:   Out << "linkonce_odr ";   break;
 | 
						|
  case GlobalValue::WeakAnyLinkage:       Out << "weak ";           break;
 | 
						|
  case GlobalValue::WeakODRLinkage:       Out << "weak_odr ";       break;
 | 
						|
  case GlobalValue::CommonLinkage:        Out << "common ";         break;
 | 
						|
  case GlobalValue::AppendingLinkage:     Out << "appending ";      break;
 | 
						|
  case GlobalValue::ExternalWeakLinkage:  Out << "extern_weak ";    break;
 | 
						|
  case GlobalValue::AvailableExternallyLinkage:
 | 
						|
    Out << "available_externally ";
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
 | 
						|
                            formatted_raw_ostream &Out) {
 | 
						|
  switch (Vis) {
 | 
						|
  case GlobalValue::DefaultVisibility: break;
 | 
						|
  case GlobalValue::HiddenVisibility:    Out << "hidden "; break;
 | 
						|
  case GlobalValue::ProtectedVisibility: Out << "protected "; break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT,
 | 
						|
                                 formatted_raw_ostream &Out) {
 | 
						|
  switch (SCT) {
 | 
						|
  case GlobalValue::DefaultStorageClass: break;
 | 
						|
  case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break;
 | 
						|
  case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
 | 
						|
                                  formatted_raw_ostream &Out) {
 | 
						|
  switch (TLM) {
 | 
						|
    case GlobalVariable::NotThreadLocal:
 | 
						|
      break;
 | 
						|
    case GlobalVariable::GeneralDynamicTLSModel:
 | 
						|
      Out << "thread_local ";
 | 
						|
      break;
 | 
						|
    case GlobalVariable::LocalDynamicTLSModel:
 | 
						|
      Out << "thread_local(localdynamic) ";
 | 
						|
      break;
 | 
						|
    case GlobalVariable::InitialExecTLSModel:
 | 
						|
      Out << "thread_local(initialexec) ";
 | 
						|
      break;
 | 
						|
    case GlobalVariable::LocalExecTLSModel:
 | 
						|
      Out << "thread_local(localexec) ";
 | 
						|
      break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void maybePrintComdat(formatted_raw_ostream &Out,
 | 
						|
                             const GlobalObject &GO) {
 | 
						|
  const Comdat *C = GO.getComdat();
 | 
						|
  if (!C)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (isa<GlobalVariable>(GO))
 | 
						|
    Out << ',';
 | 
						|
  Out << " comdat";
 | 
						|
 | 
						|
  if (GO.getName() == C->getName())
 | 
						|
    return;
 | 
						|
 | 
						|
  Out << '(';
 | 
						|
  PrintLLVMName(Out, C->getName(), ComdatPrefix);
 | 
						|
  Out << ')';
 | 
						|
}
 | 
						|
 | 
						|
void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
 | 
						|
  if (GV->isMaterializable())
 | 
						|
    Out << "; Materializable\n";
 | 
						|
 | 
						|
  WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent());
 | 
						|
  Out << " = ";
 | 
						|
 | 
						|
  if (!GV->hasInitializer() && GV->hasExternalLinkage())
 | 
						|
    Out << "external ";
 | 
						|
 | 
						|
  PrintLinkage(GV->getLinkage(), Out);
 | 
						|
  PrintVisibility(GV->getVisibility(), Out);
 | 
						|
  PrintDLLStorageClass(GV->getDLLStorageClass(), Out);
 | 
						|
  PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
 | 
						|
  if (GV->hasUnnamedAddr())
 | 
						|
    Out << "unnamed_addr ";
 | 
						|
 | 
						|
  if (unsigned AddressSpace = GV->getType()->getAddressSpace())
 | 
						|
    Out << "addrspace(" << AddressSpace << ") ";
 | 
						|
  if (GV->isExternallyInitialized()) Out << "externally_initialized ";
 | 
						|
  Out << (GV->isConstant() ? "constant " : "global ");
 | 
						|
  TypePrinter.print(GV->getType()->getElementType(), Out);
 | 
						|
 | 
						|
  if (GV->hasInitializer()) {
 | 
						|
    Out << ' ';
 | 
						|
    writeOperand(GV->getInitializer(), false);
 | 
						|
  }
 | 
						|
 | 
						|
  if (GV->hasSection()) {
 | 
						|
    Out << ", section \"";
 | 
						|
    PrintEscapedString(GV->getSection(), Out);
 | 
						|
    Out << '"';
 | 
						|
  }
 | 
						|
  maybePrintComdat(Out, *GV);
 | 
						|
  if (GV->getAlignment())
 | 
						|
    Out << ", align " << GV->getAlignment();
 | 
						|
 | 
						|
  printInfoComment(*GV);
 | 
						|
}
 | 
						|
 | 
						|
void AssemblyWriter::printAlias(const GlobalAlias *GA) {
 | 
						|
  if (GA->isMaterializable())
 | 
						|
    Out << "; Materializable\n";
 | 
						|
 | 
						|
  // Don't crash when dumping partially built GA
 | 
						|
  if (!GA->hasName())
 | 
						|
    Out << "<<nameless>> = ";
 | 
						|
  else {
 | 
						|
    PrintLLVMName(Out, GA);
 | 
						|
    Out << " = ";
 | 
						|
  }
 | 
						|
  PrintLinkage(GA->getLinkage(), Out);
 | 
						|
  PrintVisibility(GA->getVisibility(), Out);
 | 
						|
  PrintDLLStorageClass(GA->getDLLStorageClass(), Out);
 | 
						|
  PrintThreadLocalModel(GA->getThreadLocalMode(), Out);
 | 
						|
  if (GA->hasUnnamedAddr())
 | 
						|
    Out << "unnamed_addr ";
 | 
						|
 | 
						|
  Out << "alias ";
 | 
						|
 | 
						|
  const Constant *Aliasee = GA->getAliasee();
 | 
						|
 | 
						|
  if (!Aliasee) {
 | 
						|
    TypePrinter.print(GA->getType(), Out);
 | 
						|
    Out << " <<NULL ALIASEE>>";
 | 
						|
  } else {
 | 
						|
    writeOperand(Aliasee, !isa<ConstantExpr>(Aliasee));
 | 
						|
  }
 | 
						|
 | 
						|
  printInfoComment(*GA);
 | 
						|
  Out << '\n';
 | 
						|
}
 | 
						|
 | 
						|
void AssemblyWriter::printComdat(const Comdat *C) {
 | 
						|
  C->print(Out);
 | 
						|
}
 | 
						|
 | 
						|
void AssemblyWriter::printTypeIdentities() {
 | 
						|
  if (TypePrinter.NumberedTypes.empty() &&
 | 
						|
      TypePrinter.NamedTypes.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  Out << '\n';
 | 
						|
 | 
						|
  // We know all the numbers that each type is used and we know that it is a
 | 
						|
  // dense assignment.  Convert the map to an index table.
 | 
						|
  std::vector<StructType*> NumberedTypes(TypePrinter.NumberedTypes.size());
 | 
						|
  for (DenseMap<StructType*, unsigned>::iterator I =
 | 
						|
       TypePrinter.NumberedTypes.begin(), E = TypePrinter.NumberedTypes.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    assert(I->second < NumberedTypes.size() && "Didn't get a dense numbering?");
 | 
						|
    NumberedTypes[I->second] = I->first;
 | 
						|
  }
 | 
						|
 | 
						|
  // Emit all numbered types.
 | 
						|
  for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) {
 | 
						|
    Out << '%' << i << " = type ";
 | 
						|
 | 
						|
    // Make sure we print out at least one level of the type structure, so
 | 
						|
    // that we do not get %2 = type %2
 | 
						|
    TypePrinter.printStructBody(NumberedTypes[i], Out);
 | 
						|
    Out << '\n';
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned i = 0, e = TypePrinter.NamedTypes.size(); i != e; ++i) {
 | 
						|
    PrintLLVMName(Out, TypePrinter.NamedTypes[i]->getName(), LocalPrefix);
 | 
						|
    Out << " = type ";
 | 
						|
 | 
						|
    // Make sure we print out at least one level of the type structure, so
 | 
						|
    // that we do not get %FILE = type %FILE
 | 
						|
    TypePrinter.printStructBody(TypePrinter.NamedTypes[i], Out);
 | 
						|
    Out << '\n';
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// printFunction - Print all aspects of a function.
 | 
						|
///
 | 
						|
void AssemblyWriter::printFunction(const Function *F) {
 | 
						|
  // Print out the return type and name.
 | 
						|
  Out << '\n';
 | 
						|
 | 
						|
  if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
 | 
						|
 | 
						|
  if (F->isMaterializable())
 | 
						|
    Out << "; Materializable\n";
 | 
						|
 | 
						|
  const AttributeSet &Attrs = F->getAttributes();
 | 
						|
  if (Attrs.hasAttributes(AttributeSet::FunctionIndex)) {
 | 
						|
    AttributeSet AS = Attrs.getFnAttributes();
 | 
						|
    std::string AttrStr;
 | 
						|
 | 
						|
    unsigned Idx = 0;
 | 
						|
    for (unsigned E = AS.getNumSlots(); Idx != E; ++Idx)
 | 
						|
      if (AS.getSlotIndex(Idx) == AttributeSet::FunctionIndex)
 | 
						|
        break;
 | 
						|
 | 
						|
    for (AttributeSet::iterator I = AS.begin(Idx), E = AS.end(Idx);
 | 
						|
         I != E; ++I) {
 | 
						|
      Attribute Attr = *I;
 | 
						|
      if (!Attr.isStringAttribute()) {
 | 
						|
        if (!AttrStr.empty()) AttrStr += ' ';
 | 
						|
        AttrStr += Attr.getAsString();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!AttrStr.empty())
 | 
						|
      Out << "; Function Attrs: " << AttrStr << '\n';
 | 
						|
  }
 | 
						|
 | 
						|
  if (F->isDeclaration())
 | 
						|
    Out << "declare ";
 | 
						|
  else
 | 
						|
    Out << "define ";
 | 
						|
 | 
						|
  PrintLinkage(F->getLinkage(), Out);
 | 
						|
  PrintVisibility(F->getVisibility(), Out);
 | 
						|
  PrintDLLStorageClass(F->getDLLStorageClass(), Out);
 | 
						|
 | 
						|
  // Print the calling convention.
 | 
						|
  if (F->getCallingConv() != CallingConv::C) {
 | 
						|
    PrintCallingConv(F->getCallingConv(), Out);
 | 
						|
    Out << " ";
 | 
						|
  }
 | 
						|
 | 
						|
  FunctionType *FT = F->getFunctionType();
 | 
						|
  if (Attrs.hasAttributes(AttributeSet::ReturnIndex))
 | 
						|
    Out <<  Attrs.getAsString(AttributeSet::ReturnIndex) << ' ';
 | 
						|
  TypePrinter.print(F->getReturnType(), Out);
 | 
						|
  Out << ' ';
 | 
						|
  WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
 | 
						|
  Out << '(';
 | 
						|
  Machine.incorporateFunction(F);
 | 
						|
 | 
						|
  // Loop over the arguments, printing them...
 | 
						|
 | 
						|
  unsigned Idx = 1;
 | 
						|
  if (!F->isDeclaration()) {
 | 
						|
    // If this isn't a declaration, print the argument names as well.
 | 
						|
    for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
 | 
						|
         I != E; ++I) {
 | 
						|
      // Insert commas as we go... the first arg doesn't get a comma
 | 
						|
      if (I != F->arg_begin()) Out << ", ";
 | 
						|
      printArgument(I, Attrs, Idx);
 | 
						|
      Idx++;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // Otherwise, print the types from the function type.
 | 
						|
    for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
 | 
						|
      // Insert commas as we go... the first arg doesn't get a comma
 | 
						|
      if (i) Out << ", ";
 | 
						|
 | 
						|
      // Output type...
 | 
						|
      TypePrinter.print(FT->getParamType(i), Out);
 | 
						|
 | 
						|
      if (Attrs.hasAttributes(i+1))
 | 
						|
        Out << ' ' << Attrs.getAsString(i+1);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Finish printing arguments...
 | 
						|
  if (FT->isVarArg()) {
 | 
						|
    if (FT->getNumParams()) Out << ", ";
 | 
						|
    Out << "...";  // Output varargs portion of signature!
 | 
						|
  }
 | 
						|
  Out << ')';
 | 
						|
  if (F->hasUnnamedAddr())
 | 
						|
    Out << " unnamed_addr";
 | 
						|
  if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
 | 
						|
    Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttributes());
 | 
						|
  if (F->hasSection()) {
 | 
						|
    Out << " section \"";
 | 
						|
    PrintEscapedString(F->getSection(), Out);
 | 
						|
    Out << '"';
 | 
						|
  }
 | 
						|
  maybePrintComdat(Out, *F);
 | 
						|
  if (F->getAlignment())
 | 
						|
    Out << " align " << F->getAlignment();
 | 
						|
  if (F->hasGC())
 | 
						|
    Out << " gc \"" << F->getGC() << '"';
 | 
						|
  if (F->hasPrefixData()) {
 | 
						|
    Out << " prefix ";
 | 
						|
    writeOperand(F->getPrefixData(), true);
 | 
						|
  }
 | 
						|
  if (F->hasPrologueData()) {
 | 
						|
    Out << " prologue ";
 | 
						|
    writeOperand(F->getPrologueData(), true);
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
 | 
						|
  F->getAllMetadata(MDs);
 | 
						|
  printMetadataAttachments(MDs, " ");
 | 
						|
 | 
						|
  if (F->isDeclaration()) {
 | 
						|
    Out << '\n';
 | 
						|
  } else {
 | 
						|
    Out << " {";
 | 
						|
    // Output all of the function's basic blocks.
 | 
						|
    for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
 | 
						|
      printBasicBlock(I);
 | 
						|
 | 
						|
    // Output the function's use-lists.
 | 
						|
    printUseLists(F);
 | 
						|
 | 
						|
    Out << "}\n";
 | 
						|
  }
 | 
						|
 | 
						|
  Machine.purgeFunction();
 | 
						|
}
 | 
						|
 | 
						|
/// printArgument - This member is called for every argument that is passed into
 | 
						|
/// the function.  Simply print it out
 | 
						|
///
 | 
						|
void AssemblyWriter::printArgument(const Argument *Arg,
 | 
						|
                                   AttributeSet Attrs, unsigned Idx) {
 | 
						|
  // Output type...
 | 
						|
  TypePrinter.print(Arg->getType(), Out);
 | 
						|
 | 
						|
  // Output parameter attributes list
 | 
						|
  if (Attrs.hasAttributes(Idx))
 | 
						|
    Out << ' ' << Attrs.getAsString(Idx);
 | 
						|
 | 
						|
  // Output name, if available...
 | 
						|
  if (Arg->hasName()) {
 | 
						|
    Out << ' ';
 | 
						|
    PrintLLVMName(Out, Arg);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// printBasicBlock - This member is called for each basic block in a method.
 | 
						|
///
 | 
						|
void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
 | 
						|
  if (BB->hasName()) {              // Print out the label if it exists...
 | 
						|
    Out << "\n";
 | 
						|
    PrintLLVMName(Out, BB->getName(), LabelPrefix);
 | 
						|
    Out << ':';
 | 
						|
  } else if (!BB->use_empty()) {      // Don't print block # of no uses...
 | 
						|
    Out << "\n; <label>:";
 | 
						|
    int Slot = Machine.getLocalSlot(BB);
 | 
						|
    if (Slot != -1)
 | 
						|
      Out << Slot;
 | 
						|
    else
 | 
						|
      Out << "<badref>";
 | 
						|
  }
 | 
						|
 | 
						|
  if (!BB->getParent()) {
 | 
						|
    Out.PadToColumn(50);
 | 
						|
    Out << "; Error: Block without parent!";
 | 
						|
  } else if (BB != &BB->getParent()->getEntryBlock()) {  // Not the entry block?
 | 
						|
    // Output predecessors for the block.
 | 
						|
    Out.PadToColumn(50);
 | 
						|
    Out << ";";
 | 
						|
    const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
 | 
						|
 | 
						|
    if (PI == PE) {
 | 
						|
      Out << " No predecessors!";
 | 
						|
    } else {
 | 
						|
      Out << " preds = ";
 | 
						|
      writeOperand(*PI, false);
 | 
						|
      for (++PI; PI != PE; ++PI) {
 | 
						|
        Out << ", ";
 | 
						|
        writeOperand(*PI, false);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Out << "\n";
 | 
						|
 | 
						|
  if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
 | 
						|
 | 
						|
  // Output all of the instructions in the basic block...
 | 
						|
  for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
 | 
						|
    printInstructionLine(*I);
 | 
						|
  }
 | 
						|
 | 
						|
  if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
 | 
						|
}
 | 
						|
 | 
						|
/// printInstructionLine - Print an instruction and a newline character.
 | 
						|
void AssemblyWriter::printInstructionLine(const Instruction &I) {
 | 
						|
  printInstruction(I);
 | 
						|
  Out << '\n';
 | 
						|
}
 | 
						|
 | 
						|
/// printInfoComment - Print a little comment after the instruction indicating
 | 
						|
/// which slot it occupies.
 | 
						|
///
 | 
						|
void AssemblyWriter::printInfoComment(const Value &V) {
 | 
						|
  if (AnnotationWriter)
 | 
						|
    AnnotationWriter->printInfoComment(V, Out);
 | 
						|
}
 | 
						|
 | 
						|
// This member is called for each Instruction in a function..
 | 
						|
void AssemblyWriter::printInstruction(const Instruction &I) {
 | 
						|
  if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
 | 
						|
 | 
						|
  // Print out indentation for an instruction.
 | 
						|
  Out << "  ";
 | 
						|
 | 
						|
  // Print out name if it exists...
 | 
						|
  if (I.hasName()) {
 | 
						|
    PrintLLVMName(Out, &I);
 | 
						|
    Out << " = ";
 | 
						|
  } else if (!I.getType()->isVoidTy()) {
 | 
						|
    // Print out the def slot taken.
 | 
						|
    int SlotNum = Machine.getLocalSlot(&I);
 | 
						|
    if (SlotNum == -1)
 | 
						|
      Out << "<badref> = ";
 | 
						|
    else
 | 
						|
      Out << '%' << SlotNum << " = ";
 | 
						|
  }
 | 
						|
 | 
						|
  if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
 | 
						|
    if (CI->isMustTailCall())
 | 
						|
      Out << "musttail ";
 | 
						|
    else if (CI->isTailCall())
 | 
						|
      Out << "tail ";
 | 
						|
  }
 | 
						|
 | 
						|
  // Print out the opcode...
 | 
						|
  Out << I.getOpcodeName();
 | 
						|
 | 
						|
  // If this is an atomic load or store, print out the atomic marker.
 | 
						|
  if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isAtomic()) ||
 | 
						|
      (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
 | 
						|
    Out << " atomic";
 | 
						|
 | 
						|
  if (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isWeak())
 | 
						|
    Out << " weak";
 | 
						|
 | 
						|
  // If this is a volatile operation, print out the volatile marker.
 | 
						|
  if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
 | 
						|
      (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
 | 
						|
      (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
 | 
						|
      (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
 | 
						|
    Out << " volatile";
 | 
						|
 | 
						|
  // Print out optimization information.
 | 
						|
  WriteOptimizationInfo(Out, &I);
 | 
						|
 | 
						|
  // Print out the compare instruction predicates
 | 
						|
  if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
 | 
						|
    Out << ' ' << getPredicateText(CI->getPredicate());
 | 
						|
 | 
						|
  // Print out the atomicrmw operation
 | 
						|
  if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
 | 
						|
    writeAtomicRMWOperation(Out, RMWI->getOperation());
 | 
						|
 | 
						|
  // Print out the type of the operands...
 | 
						|
  const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr;
 | 
						|
 | 
						|
  // Special case conditional branches to swizzle the condition out to the front
 | 
						|
  if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
 | 
						|
    const BranchInst &BI(cast<BranchInst>(I));
 | 
						|
    Out << ' ';
 | 
						|
    writeOperand(BI.getCondition(), true);
 | 
						|
    Out << ", ";
 | 
						|
    writeOperand(BI.getSuccessor(0), true);
 | 
						|
    Out << ", ";
 | 
						|
    writeOperand(BI.getSuccessor(1), true);
 | 
						|
 | 
						|
  } else if (isa<SwitchInst>(I)) {
 | 
						|
    const SwitchInst& SI(cast<SwitchInst>(I));
 | 
						|
    // Special case switch instruction to get formatting nice and correct.
 | 
						|
    Out << ' ';
 | 
						|
    writeOperand(SI.getCondition(), true);
 | 
						|
    Out << ", ";
 | 
						|
    writeOperand(SI.getDefaultDest(), true);
 | 
						|
    Out << " [";
 | 
						|
    for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
 | 
						|
         i != e; ++i) {
 | 
						|
      Out << "\n    ";
 | 
						|
      writeOperand(i.getCaseValue(), true);
 | 
						|
      Out << ", ";
 | 
						|
      writeOperand(i.getCaseSuccessor(), true);
 | 
						|
    }
 | 
						|
    Out << "\n  ]";
 | 
						|
  } else if (isa<IndirectBrInst>(I)) {
 | 
						|
    // Special case indirectbr instruction to get formatting nice and correct.
 | 
						|
    Out << ' ';
 | 
						|
    writeOperand(Operand, true);
 | 
						|
    Out << ", [";
 | 
						|
 | 
						|
    for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
 | 
						|
      if (i != 1)
 | 
						|
        Out << ", ";
 | 
						|
      writeOperand(I.getOperand(i), true);
 | 
						|
    }
 | 
						|
    Out << ']';
 | 
						|
  } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
 | 
						|
    Out << ' ';
 | 
						|
    TypePrinter.print(I.getType(), Out);
 | 
						|
    Out << ' ';
 | 
						|
 | 
						|
    for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
 | 
						|
      if (op) Out << ", ";
 | 
						|
      Out << "[ ";
 | 
						|
      writeOperand(PN->getIncomingValue(op), false); Out << ", ";
 | 
						|
      writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
 | 
						|
    }
 | 
						|
  } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
 | 
						|
    Out << ' ';
 | 
						|
    writeOperand(I.getOperand(0), true);
 | 
						|
    for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
 | 
						|
      Out << ", " << *i;
 | 
						|
  } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
 | 
						|
    Out << ' ';
 | 
						|
    writeOperand(I.getOperand(0), true); Out << ", ";
 | 
						|
    writeOperand(I.getOperand(1), true);
 | 
						|
    for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
 | 
						|
      Out << ", " << *i;
 | 
						|
  } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
 | 
						|
    Out << ' ';
 | 
						|
    TypePrinter.print(I.getType(), Out);
 | 
						|
    Out << " personality ";
 | 
						|
    writeOperand(I.getOperand(0), true); Out << '\n';
 | 
						|
 | 
						|
    if (LPI->isCleanup())
 | 
						|
      Out << "          cleanup";
 | 
						|
 | 
						|
    for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
 | 
						|
      if (i != 0 || LPI->isCleanup()) Out << "\n";
 | 
						|
      if (LPI->isCatch(i))
 | 
						|
        Out << "          catch ";
 | 
						|
      else
 | 
						|
        Out << "          filter ";
 | 
						|
 | 
						|
      writeOperand(LPI->getClause(i), true);
 | 
						|
    }
 | 
						|
  } else if (isa<ReturnInst>(I) && !Operand) {
 | 
						|
    Out << " void";
 | 
						|
  } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
 | 
						|
    // Print the calling convention being used.
 | 
						|
    if (CI->getCallingConv() != CallingConv::C) {
 | 
						|
      Out << " ";
 | 
						|
      PrintCallingConv(CI->getCallingConv(), Out);
 | 
						|
    }
 | 
						|
 | 
						|
    Operand = CI->getCalledValue();
 | 
						|
    FunctionType *FTy = cast<FunctionType>(CI->getFunctionType());
 | 
						|
    Type *RetTy = FTy->getReturnType();
 | 
						|
    const AttributeSet &PAL = CI->getAttributes();
 | 
						|
 | 
						|
    if (PAL.hasAttributes(AttributeSet::ReturnIndex))
 | 
						|
      Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex);
 | 
						|
 | 
						|
    // If possible, print out the short form of the call instruction.  We can
 | 
						|
    // only do this if the first argument is a pointer to a nonvararg function,
 | 
						|
    // and if the return type is not a pointer to a function.
 | 
						|
    //
 | 
						|
    Out << ' ';
 | 
						|
    TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
 | 
						|
    Out << ' ';
 | 
						|
    writeOperand(Operand, false);
 | 
						|
    Out << '(';
 | 
						|
    for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) {
 | 
						|
      if (op > 0)
 | 
						|
        Out << ", ";
 | 
						|
      writeParamOperand(CI->getArgOperand(op), PAL, op + 1);
 | 
						|
    }
 | 
						|
 | 
						|
    // Emit an ellipsis if this is a musttail call in a vararg function.  This
 | 
						|
    // is only to aid readability, musttail calls forward varargs by default.
 | 
						|
    if (CI->isMustTailCall() && CI->getParent() &&
 | 
						|
        CI->getParent()->getParent() &&
 | 
						|
        CI->getParent()->getParent()->isVarArg())
 | 
						|
      Out << ", ...";
 | 
						|
 | 
						|
    Out << ')';
 | 
						|
    if (PAL.hasAttributes(AttributeSet::FunctionIndex))
 | 
						|
      Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
 | 
						|
  } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
 | 
						|
    Operand = II->getCalledValue();
 | 
						|
    FunctionType *FTy = cast<FunctionType>(II->getFunctionType());
 | 
						|
    Type *RetTy = FTy->getReturnType();
 | 
						|
    const AttributeSet &PAL = II->getAttributes();
 | 
						|
 | 
						|
    // Print the calling convention being used.
 | 
						|
    if (II->getCallingConv() != CallingConv::C) {
 | 
						|
      Out << " ";
 | 
						|
      PrintCallingConv(II->getCallingConv(), Out);
 | 
						|
    }
 | 
						|
 | 
						|
    if (PAL.hasAttributes(AttributeSet::ReturnIndex))
 | 
						|
      Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex);
 | 
						|
 | 
						|
    // If possible, print out the short form of the invoke instruction. We can
 | 
						|
    // only do this if the first argument is a pointer to a nonvararg function,
 | 
						|
    // and if the return type is not a pointer to a function.
 | 
						|
    //
 | 
						|
    Out << ' ';
 | 
						|
    TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
 | 
						|
    Out << ' ';
 | 
						|
    writeOperand(Operand, false);
 | 
						|
    Out << '(';
 | 
						|
    for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) {
 | 
						|
      if (op)
 | 
						|
        Out << ", ";
 | 
						|
      writeParamOperand(II->getArgOperand(op), PAL, op + 1);
 | 
						|
    }
 | 
						|
 | 
						|
    Out << ')';
 | 
						|
    if (PAL.hasAttributes(AttributeSet::FunctionIndex))
 | 
						|
      Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
 | 
						|
 | 
						|
    Out << "\n          to ";
 | 
						|
    writeOperand(II->getNormalDest(), true);
 | 
						|
    Out << " unwind ";
 | 
						|
    writeOperand(II->getUnwindDest(), true);
 | 
						|
 | 
						|
  } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
 | 
						|
    Out << ' ';
 | 
						|
    if (AI->isUsedWithInAlloca())
 | 
						|
      Out << "inalloca ";
 | 
						|
    TypePrinter.print(AI->getAllocatedType(), Out);
 | 
						|
 | 
						|
    // Explicitly write the array size if the code is broken, if it's an array
 | 
						|
    // allocation, or if the type is not canonical for scalar allocations.  The
 | 
						|
    // latter case prevents the type from mutating when round-tripping through
 | 
						|
    // assembly.
 | 
						|
    if (!AI->getArraySize() || AI->isArrayAllocation() ||
 | 
						|
        !AI->getArraySize()->getType()->isIntegerTy(32)) {
 | 
						|
      Out << ", ";
 | 
						|
      writeOperand(AI->getArraySize(), true);
 | 
						|
    }
 | 
						|
    if (AI->getAlignment()) {
 | 
						|
      Out << ", align " << AI->getAlignment();
 | 
						|
    }
 | 
						|
  } else if (isa<CastInst>(I)) {
 | 
						|
    if (Operand) {
 | 
						|
      Out << ' ';
 | 
						|
      writeOperand(Operand, true);   // Work with broken code
 | 
						|
    }
 | 
						|
    Out << " to ";
 | 
						|
    TypePrinter.print(I.getType(), Out);
 | 
						|
  } else if (isa<VAArgInst>(I)) {
 | 
						|
    if (Operand) {
 | 
						|
      Out << ' ';
 | 
						|
      writeOperand(Operand, true);   // Work with broken code
 | 
						|
    }
 | 
						|
    Out << ", ";
 | 
						|
    TypePrinter.print(I.getType(), Out);
 | 
						|
  } else if (Operand) {   // Print the normal way.
 | 
						|
    if (const auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
 | 
						|
      Out << ' ';
 | 
						|
      TypePrinter.print(GEP->getSourceElementType(), Out);
 | 
						|
      Out << ',';
 | 
						|
    } else if (const auto *LI = dyn_cast<LoadInst>(&I)) {
 | 
						|
      Out << ' ';
 | 
						|
      TypePrinter.print(LI->getType(), Out);
 | 
						|
      Out << ',';
 | 
						|
    }
 | 
						|
 | 
						|
    // PrintAllTypes - Instructions who have operands of all the same type
 | 
						|
    // omit the type from all but the first operand.  If the instruction has
 | 
						|
    // different type operands (for example br), then they are all printed.
 | 
						|
    bool PrintAllTypes = false;
 | 
						|
    Type *TheType = Operand->getType();
 | 
						|
 | 
						|
    // Select, Store and ShuffleVector always print all types.
 | 
						|
    if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
 | 
						|
        || isa<ReturnInst>(I)) {
 | 
						|
      PrintAllTypes = true;
 | 
						|
    } else {
 | 
						|
      for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
 | 
						|
        Operand = I.getOperand(i);
 | 
						|
        // note that Operand shouldn't be null, but the test helps make dump()
 | 
						|
        // more tolerant of malformed IR
 | 
						|
        if (Operand && Operand->getType() != TheType) {
 | 
						|
          PrintAllTypes = true;    // We have differing types!  Print them all!
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!PrintAllTypes) {
 | 
						|
      Out << ' ';
 | 
						|
      TypePrinter.print(TheType, Out);
 | 
						|
    }
 | 
						|
 | 
						|
    Out << ' ';
 | 
						|
    for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
 | 
						|
      if (i) Out << ", ";
 | 
						|
      writeOperand(I.getOperand(i), PrintAllTypes);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Print atomic ordering/alignment for memory operations
 | 
						|
  if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
 | 
						|
    if (LI->isAtomic())
 | 
						|
      writeAtomic(LI->getOrdering(), LI->getSynchScope());
 | 
						|
    if (LI->getAlignment())
 | 
						|
      Out << ", align " << LI->getAlignment();
 | 
						|
  } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
 | 
						|
    if (SI->isAtomic())
 | 
						|
      writeAtomic(SI->getOrdering(), SI->getSynchScope());
 | 
						|
    if (SI->getAlignment())
 | 
						|
      Out << ", align " << SI->getAlignment();
 | 
						|
  } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
 | 
						|
    writeAtomicCmpXchg(CXI->getSuccessOrdering(), CXI->getFailureOrdering(),
 | 
						|
                       CXI->getSynchScope());
 | 
						|
  } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
 | 
						|
    writeAtomic(RMWI->getOrdering(), RMWI->getSynchScope());
 | 
						|
  } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
 | 
						|
    writeAtomic(FI->getOrdering(), FI->getSynchScope());
 | 
						|
  }
 | 
						|
 | 
						|
  // Print Metadata info.
 | 
						|
  SmallVector<std::pair<unsigned, MDNode *>, 4> InstMD;
 | 
						|
  I.getAllMetadata(InstMD);
 | 
						|
  printMetadataAttachments(InstMD, ", ");
 | 
						|
 | 
						|
  // Print a nice comment.
 | 
						|
  printInfoComment(I);
 | 
						|
}
 | 
						|
 | 
						|
void AssemblyWriter::printMetadataAttachments(
 | 
						|
    const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
 | 
						|
    StringRef Separator) {
 | 
						|
  if (MDs.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  if (MDNames.empty())
 | 
						|
    TheModule->getMDKindNames(MDNames);
 | 
						|
 | 
						|
  for (const auto &I : MDs) {
 | 
						|
    unsigned Kind = I.first;
 | 
						|
    Out << Separator;
 | 
						|
    if (Kind < MDNames.size())
 | 
						|
      Out << "!" << MDNames[Kind];
 | 
						|
    else
 | 
						|
      Out << "!<unknown kind #" << Kind << ">";
 | 
						|
    Out << ' ';
 | 
						|
    WriteAsOperandInternal(Out, I.second, &TypePrinter, &Machine, TheModule);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
 | 
						|
  Out << '!' << Slot << " = ";
 | 
						|
  printMDNodeBody(Node);
 | 
						|
  Out << "\n";
 | 
						|
}
 | 
						|
 | 
						|
void AssemblyWriter::writeAllMDNodes() {
 | 
						|
  SmallVector<const MDNode *, 16> Nodes;
 | 
						|
  Nodes.resize(Machine.mdn_size());
 | 
						|
  for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end();
 | 
						|
       I != E; ++I)
 | 
						|
    Nodes[I->second] = cast<MDNode>(I->first);
 | 
						|
 | 
						|
  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
 | 
						|
    writeMDNode(i, Nodes[i]);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
 | 
						|
  WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule);
 | 
						|
}
 | 
						|
 | 
						|
void AssemblyWriter::writeAllAttributeGroups() {
 | 
						|
  std::vector<std::pair<AttributeSet, unsigned> > asVec;
 | 
						|
  asVec.resize(Machine.as_size());
 | 
						|
 | 
						|
  for (SlotTracker::as_iterator I = Machine.as_begin(), E = Machine.as_end();
 | 
						|
       I != E; ++I)
 | 
						|
    asVec[I->second] = *I;
 | 
						|
 | 
						|
  for (std::vector<std::pair<AttributeSet, unsigned> >::iterator
 | 
						|
         I = asVec.begin(), E = asVec.end(); I != E; ++I)
 | 
						|
    Out << "attributes #" << I->second << " = { "
 | 
						|
        << I->first.getAsString(AttributeSet::FunctionIndex, true) << " }\n";
 | 
						|
}
 | 
						|
 | 
						|
void AssemblyWriter::printUseListOrder(const UseListOrder &Order) {
 | 
						|
  bool IsInFunction = Machine.getFunction();
 | 
						|
  if (IsInFunction)
 | 
						|
    Out << "  ";
 | 
						|
 | 
						|
  Out << "uselistorder";
 | 
						|
  if (const BasicBlock *BB =
 | 
						|
          IsInFunction ? nullptr : dyn_cast<BasicBlock>(Order.V)) {
 | 
						|
    Out << "_bb ";
 | 
						|
    writeOperand(BB->getParent(), false);
 | 
						|
    Out << ", ";
 | 
						|
    writeOperand(BB, false);
 | 
						|
  } else {
 | 
						|
    Out << " ";
 | 
						|
    writeOperand(Order.V, true);
 | 
						|
  }
 | 
						|
  Out << ", { ";
 | 
						|
 | 
						|
  assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
 | 
						|
  Out << Order.Shuffle[0];
 | 
						|
  for (unsigned I = 1, E = Order.Shuffle.size(); I != E; ++I)
 | 
						|
    Out << ", " << Order.Shuffle[I];
 | 
						|
  Out << " }\n";
 | 
						|
}
 | 
						|
 | 
						|
void AssemblyWriter::printUseLists(const Function *F) {
 | 
						|
  auto hasMore =
 | 
						|
      [&]() { return !UseListOrders.empty() && UseListOrders.back().F == F; };
 | 
						|
  if (!hasMore())
 | 
						|
    // Nothing to do.
 | 
						|
    return;
 | 
						|
 | 
						|
  Out << "\n; uselistorder directives\n";
 | 
						|
  while (hasMore()) {
 | 
						|
    printUseListOrder(UseListOrders.back());
 | 
						|
    UseListOrders.pop_back();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                       External Interface declarations
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void Function::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
 | 
						|
  SlotTracker SlotTable(this->getParent());
 | 
						|
  formatted_raw_ostream OS(ROS);
 | 
						|
  AssemblyWriter W(OS, SlotTable, this->getParent(), AAW);
 | 
						|
  W.printFunction(this);
 | 
						|
}
 | 
						|
 | 
						|
void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
 | 
						|
                   bool ShouldPreserveUseListOrder) const {
 | 
						|
  SlotTracker SlotTable(this);
 | 
						|
  formatted_raw_ostream OS(ROS);
 | 
						|
  AssemblyWriter W(OS, SlotTable, this, AAW, ShouldPreserveUseListOrder);
 | 
						|
  W.printModule(this);
 | 
						|
}
 | 
						|
 | 
						|
void NamedMDNode::print(raw_ostream &ROS) const {
 | 
						|
  SlotTracker SlotTable(getParent());
 | 
						|
  formatted_raw_ostream OS(ROS);
 | 
						|
  AssemblyWriter W(OS, SlotTable, getParent(), nullptr);
 | 
						|
  W.printNamedMDNode(this);
 | 
						|
}
 | 
						|
 | 
						|
void Comdat::print(raw_ostream &ROS) const {
 | 
						|
  PrintLLVMName(ROS, getName(), ComdatPrefix);
 | 
						|
  ROS << " = comdat ";
 | 
						|
 | 
						|
  switch (getSelectionKind()) {
 | 
						|
  case Comdat::Any:
 | 
						|
    ROS << "any";
 | 
						|
    break;
 | 
						|
  case Comdat::ExactMatch:
 | 
						|
    ROS << "exactmatch";
 | 
						|
    break;
 | 
						|
  case Comdat::Largest:
 | 
						|
    ROS << "largest";
 | 
						|
    break;
 | 
						|
  case Comdat::NoDuplicates:
 | 
						|
    ROS << "noduplicates";
 | 
						|
    break;
 | 
						|
  case Comdat::SameSize:
 | 
						|
    ROS << "samesize";
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  ROS << '\n';
 | 
						|
}
 | 
						|
 | 
						|
void Type::print(raw_ostream &OS) const {
 | 
						|
  TypePrinting TP;
 | 
						|
  TP.print(const_cast<Type*>(this), OS);
 | 
						|
 | 
						|
  // If the type is a named struct type, print the body as well.
 | 
						|
  if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
 | 
						|
    if (!STy->isLiteral()) {
 | 
						|
      OS << " = type ";
 | 
						|
      TP.printStructBody(STy, OS);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static bool isReferencingMDNode(const Instruction &I) {
 | 
						|
  if (const auto *CI = dyn_cast<CallInst>(&I))
 | 
						|
    if (Function *F = CI->getCalledFunction())
 | 
						|
      if (F->isIntrinsic())
 | 
						|
        for (auto &Op : I.operands())
 | 
						|
          if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
 | 
						|
            if (isa<MDNode>(V->getMetadata()))
 | 
						|
              return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void Value::print(raw_ostream &ROS) const {
 | 
						|
  formatted_raw_ostream OS(ROS);
 | 
						|
  if (const Instruction *I = dyn_cast<Instruction>(this)) {
 | 
						|
    const Function *F = I->getParent() ? I->getParent()->getParent() : nullptr;
 | 
						|
    SlotTracker SlotTable(
 | 
						|
        F,
 | 
						|
        /* ShouldInitializeAllMetadata */ isReferencingMDNode(*I));
 | 
						|
    AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr);
 | 
						|
    W.printInstruction(*I);
 | 
						|
  } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
 | 
						|
    SlotTracker SlotTable(BB->getParent());
 | 
						|
    AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr);
 | 
						|
    W.printBasicBlock(BB);
 | 
						|
  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
 | 
						|
    SlotTracker SlotTable(GV->getParent(),
 | 
						|
                          /* ShouldInitializeAllMetadata */ isa<Function>(GV));
 | 
						|
    AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr);
 | 
						|
    if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
 | 
						|
      W.printGlobal(V);
 | 
						|
    else if (const Function *F = dyn_cast<Function>(GV))
 | 
						|
      W.printFunction(F);
 | 
						|
    else
 | 
						|
      W.printAlias(cast<GlobalAlias>(GV));
 | 
						|
  } else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) {
 | 
						|
    V->getMetadata()->print(ROS, getModuleFromVal(V));
 | 
						|
  } else if (const Constant *C = dyn_cast<Constant>(this)) {
 | 
						|
    TypePrinting TypePrinter;
 | 
						|
    TypePrinter.print(C->getType(), OS);
 | 
						|
    OS << ' ';
 | 
						|
    WriteConstantInternal(OS, C, TypePrinter, nullptr, nullptr);
 | 
						|
  } else if (isa<InlineAsm>(this) || isa<Argument>(this)) {
 | 
						|
    this->printAsOperand(OS);
 | 
						|
  } else {
 | 
						|
    llvm_unreachable("Unknown value to print out!");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Value::printAsOperand(raw_ostream &O, bool PrintType, const Module *M) const {
 | 
						|
  // Fast path: Don't construct and populate a TypePrinting object if we
 | 
						|
  // won't be needing any types printed.
 | 
						|
  bool IsMetadata = isa<MetadataAsValue>(this);
 | 
						|
  if (!PrintType && ((!isa<Constant>(this) && !IsMetadata) || hasName() ||
 | 
						|
                     isa<GlobalValue>(this))) {
 | 
						|
    WriteAsOperandInternal(O, this, nullptr, nullptr, M);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!M)
 | 
						|
    M = getModuleFromVal(this);
 | 
						|
 | 
						|
  TypePrinting TypePrinter;
 | 
						|
  if (M)
 | 
						|
    TypePrinter.incorporateTypes(*M);
 | 
						|
  if (PrintType) {
 | 
						|
    TypePrinter.print(getType(), O);
 | 
						|
    O << ' ';
 | 
						|
  }
 | 
						|
 | 
						|
  SlotTracker Machine(M, /* ShouldInitializeAllMetadata */ IsMetadata);
 | 
						|
  WriteAsOperandInternal(O, this, &TypePrinter, &Machine, M);
 | 
						|
}
 | 
						|
 | 
						|
static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD,
 | 
						|
                              const Module *M, bool OnlyAsOperand) {
 | 
						|
  formatted_raw_ostream OS(ROS);
 | 
						|
 | 
						|
  auto *N = dyn_cast<MDNode>(&MD);
 | 
						|
  TypePrinting TypePrinter;
 | 
						|
  SlotTracker Machine(M, /* ShouldInitializeAllMetadata */ N);
 | 
						|
  if (M)
 | 
						|
    TypePrinter.incorporateTypes(*M);
 | 
						|
 | 
						|
  WriteAsOperandInternal(OS, &MD, &TypePrinter, &Machine, M,
 | 
						|
                         /* FromValue */ true);
 | 
						|
  if (OnlyAsOperand || !N)
 | 
						|
    return;
 | 
						|
 | 
						|
  OS << " = ";
 | 
						|
  WriteMDNodeBodyInternal(OS, N, &TypePrinter, &Machine, M);
 | 
						|
}
 | 
						|
 | 
						|
void Metadata::printAsOperand(raw_ostream &OS, const Module *M) const {
 | 
						|
  printMetadataImpl(OS, *this, M, /* OnlyAsOperand */ true);
 | 
						|
}
 | 
						|
 | 
						|
void Metadata::print(raw_ostream &OS, const Module *M) const {
 | 
						|
  printMetadataImpl(OS, *this, M, /* OnlyAsOperand */ false);
 | 
						|
}
 | 
						|
 | 
						|
// Value::dump - allow easy printing of Values from the debugger.
 | 
						|
LLVM_DUMP_METHOD
 | 
						|
void Value::dump() const { print(dbgs()); dbgs() << '\n'; }
 | 
						|
 | 
						|
// Type::dump - allow easy printing of Types from the debugger.
 | 
						|
LLVM_DUMP_METHOD
 | 
						|
void Type::dump() const { print(dbgs()); dbgs() << '\n'; }
 | 
						|
 | 
						|
// Module::dump() - Allow printing of Modules from the debugger.
 | 
						|
LLVM_DUMP_METHOD
 | 
						|
void Module::dump() const { print(dbgs(), nullptr); }
 | 
						|
 | 
						|
// \brief Allow printing of Comdats from the debugger.
 | 
						|
LLVM_DUMP_METHOD
 | 
						|
void Comdat::dump() const { print(dbgs()); }
 | 
						|
 | 
						|
// NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
 | 
						|
LLVM_DUMP_METHOD
 | 
						|
void NamedMDNode::dump() const { print(dbgs()); }
 | 
						|
 | 
						|
LLVM_DUMP_METHOD
 | 
						|
void Metadata::dump() const { dump(nullptr); }
 | 
						|
 | 
						|
LLVM_DUMP_METHOD
 | 
						|
void Metadata::dump(const Module *M) const {
 | 
						|
  print(dbgs(), M);
 | 
						|
  dbgs() << '\n';
 | 
						|
}
 |