mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	We should skip vector types which are not SCEVable. test/CodeGen/NVPTX/sched2.ll passes git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235695 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			254 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			254 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- NaryReassociate.cpp - Reassociate n-ary expressions ----------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass reassociates n-ary add expressions and eliminates the redundancy
 | 
						|
// exposed by the reassociation.
 | 
						|
//
 | 
						|
// A motivating example:
 | 
						|
//
 | 
						|
//   void foo(int a, int b) {
 | 
						|
//     bar(a + b);
 | 
						|
//     bar((a + 2) + b);
 | 
						|
//   }
 | 
						|
//
 | 
						|
// An ideal compiler should reassociate (a + 2) + b to (a + b) + 2 and simplify
 | 
						|
// the above code to
 | 
						|
//
 | 
						|
//   int t = a + b;
 | 
						|
//   bar(t);
 | 
						|
//   bar(t + 2);
 | 
						|
//
 | 
						|
// However, the Reassociate pass is unable to do that because it processes each
 | 
						|
// instruction individually and believes (a + 2) + b is the best form according
 | 
						|
// to its rank system.
 | 
						|
//
 | 
						|
// To address this limitation, NaryReassociate reassociates an expression in a
 | 
						|
// form that reuses existing instructions. As a result, NaryReassociate can
 | 
						|
// reassociate (a + 2) + b in the example to (a + b) + 2 because it detects that
 | 
						|
// (a + b) is computed before.
 | 
						|
//
 | 
						|
// NaryReassociate works as follows. For every instruction in the form of (a +
 | 
						|
// b) + c, it checks whether a + c or b + c is already computed by a dominating
 | 
						|
// instruction. If so, it then reassociates (a + b) + c into (a + c) + b or (b +
 | 
						|
// c) + a and removes the redundancy accordingly. To efficiently look up whether
 | 
						|
// an expression is computed before, we store each instruction seen and its SCEV
 | 
						|
// into an SCEV-to-instruction map.
 | 
						|
//
 | 
						|
// Although the algorithm pattern-matches only ternary additions, it
 | 
						|
// automatically handles many >3-ary expressions by walking through the function
 | 
						|
// in the depth-first order. For example, given
 | 
						|
//
 | 
						|
//   (a + c) + d
 | 
						|
//   ((a + b) + c) + d
 | 
						|
//
 | 
						|
// NaryReassociate first rewrites (a + b) + c to (a + c) + b, and then rewrites
 | 
						|
// ((a + c) + b) + d into ((a + c) + d) + b.
 | 
						|
//
 | 
						|
// Finally, the above dominator-based algorithm may need to be run multiple
 | 
						|
// iterations before emitting optimal code. One source of this need is that we
 | 
						|
// only split an operand when it is used only once. The above algorithm can
 | 
						|
// eliminate an instruction and decrease the usage count of its operands. As a
 | 
						|
// result, an instruction that previously had multiple uses may become a
 | 
						|
// single-use instruction and thus eligible for split consideration. For
 | 
						|
// example,
 | 
						|
//
 | 
						|
//   ac = a + c
 | 
						|
//   ab = a + b
 | 
						|
//   abc = ab + c
 | 
						|
//   ab2 = ab + b
 | 
						|
//   ab2c = ab2 + c
 | 
						|
//
 | 
						|
// In the first iteration, we cannot reassociate abc to ac+b because ab is used
 | 
						|
// twice. However, we can reassociate ab2c to abc+b in the first iteration. As a
 | 
						|
// result, ab2 becomes dead and ab will be used only once in the second
 | 
						|
// iteration.
 | 
						|
//
 | 
						|
// Limitations and TODO items:
 | 
						|
//
 | 
						|
// 1) We only considers n-ary adds for now. This should be extended and
 | 
						|
// generalized.
 | 
						|
//
 | 
						|
// 2) Besides arithmetic operations, similar reassociation can be applied to
 | 
						|
// GEPs. For example, if
 | 
						|
//   X = &arr[a]
 | 
						|
// dominates
 | 
						|
//   Y = &arr[a + b]
 | 
						|
// we may rewrite Y into X + b.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Analysis/ScalarEvolution.h"
 | 
						|
#include "llvm/Analysis/TargetLibraryInfo.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/PatternMatch.h"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
using namespace llvm;
 | 
						|
using namespace PatternMatch;
 | 
						|
 | 
						|
#define DEBUG_TYPE "nary-reassociate"
 | 
						|
 | 
						|
namespace {
 | 
						|
class NaryReassociate : public FunctionPass {
 | 
						|
public:
 | 
						|
  static char ID;
 | 
						|
 | 
						|
  NaryReassociate(): FunctionPass(ID) {
 | 
						|
    initializeNaryReassociatePass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
  bool runOnFunction(Function &F) override;
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    AU.addPreserved<DominatorTreeWrapperPass>();
 | 
						|
    AU.addPreserved<ScalarEvolution>();
 | 
						|
    AU.addPreserved<TargetLibraryInfoWrapperPass>();
 | 
						|
    AU.addRequired<DominatorTreeWrapperPass>();
 | 
						|
    AU.addRequired<ScalarEvolution>();
 | 
						|
    AU.addRequired<TargetLibraryInfoWrapperPass>();
 | 
						|
    AU.setPreservesCFG();
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  // Runs only one iteration of the dominator-based algorithm. See the header
 | 
						|
  // comments for why we need multiple iterations.
 | 
						|
  bool doOneIteration(Function &F);
 | 
						|
  // Reasssociates I to a better form.
 | 
						|
  Instruction *tryReassociateAdd(Instruction *I);
 | 
						|
  // A helper function for tryReassociateAdd. LHS and RHS are explicitly passed.
 | 
						|
  Instruction *tryReassociateAdd(Value *LHS, Value *RHS, Instruction *I);
 | 
						|
  // Rewrites I to LHS + RHS if LHS is computed already.
 | 
						|
  Instruction *tryReassociatedAdd(const SCEV *LHS, Value *RHS, Instruction *I);
 | 
						|
 | 
						|
  DominatorTree *DT;
 | 
						|
  ScalarEvolution *SE;
 | 
						|
  TargetLibraryInfo *TLI;
 | 
						|
  // A lookup table quickly telling which instructions compute the given SCEV.
 | 
						|
  // Note that there can be multiple instructions at different locations
 | 
						|
  // computing to the same SCEV, so we map a SCEV to an instruction list.  For
 | 
						|
  // example,
 | 
						|
  //
 | 
						|
  //   if (p1)
 | 
						|
  //     foo(a + b);
 | 
						|
  //   if (p2)
 | 
						|
  //     bar(a + b);
 | 
						|
  DenseMap<const SCEV *, SmallVector<Instruction *, 2>> SeenExprs;
 | 
						|
};
 | 
						|
} // anonymous namespace
 | 
						|
 | 
						|
char NaryReassociate::ID = 0;
 | 
						|
INITIALIZE_PASS_BEGIN(NaryReassociate, "nary-reassociate", "Nary reassociation",
 | 
						|
                      false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_END(NaryReassociate, "nary-reassociate", "Nary reassociation",
 | 
						|
                    false, false)
 | 
						|
 | 
						|
FunctionPass *llvm::createNaryReassociatePass() {
 | 
						|
  return new NaryReassociate();
 | 
						|
}
 | 
						|
 | 
						|
bool NaryReassociate::runOnFunction(Function &F) {
 | 
						|
  if (skipOptnoneFunction(F))
 | 
						|
    return false;
 | 
						|
 | 
						|
  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | 
						|
  SE = &getAnalysis<ScalarEvolution>();
 | 
						|
  TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
 | 
						|
 | 
						|
  bool Changed = false, ChangedInThisIteration;
 | 
						|
  do {
 | 
						|
    ChangedInThisIteration = doOneIteration(F);
 | 
						|
    Changed |= ChangedInThisIteration;
 | 
						|
  } while (ChangedInThisIteration);
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
bool NaryReassociate::doOneIteration(Function &F) {
 | 
						|
  bool Changed = false;
 | 
						|
  SeenExprs.clear();
 | 
						|
  // Traverse the dominator tree in the depth-first order. This order makes sure
 | 
						|
  // all bases of a candidate are in Candidates when we process it.
 | 
						|
  for (auto Node = GraphTraits<DominatorTree *>::nodes_begin(DT);
 | 
						|
       Node != GraphTraits<DominatorTree *>::nodes_end(DT); ++Node) {
 | 
						|
    BasicBlock *BB = Node->getBlock();
 | 
						|
    for (auto I = BB->begin(); I != BB->end(); ++I) {
 | 
						|
      // Skip vector types which are not SCEVable.
 | 
						|
      if (I->getOpcode() == Instruction::Add && !I->getType()->isVectorTy()) {
 | 
						|
        if (Instruction *NewI = tryReassociateAdd(I)) {
 | 
						|
          Changed = true;
 | 
						|
          SE->forgetValue(I);
 | 
						|
          I->replaceAllUsesWith(NewI);
 | 
						|
          RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
 | 
						|
          I = NewI;
 | 
						|
        }
 | 
						|
        // We should add the rewritten instruction because tryReassociateAdd may
 | 
						|
        // have invalidated the original one.
 | 
						|
        SeenExprs[SE->getSCEV(I)].push_back(I);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *NaryReassociate::tryReassociateAdd(Instruction *I) {
 | 
						|
  Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
 | 
						|
  if (auto *NewI = tryReassociateAdd(LHS, RHS, I))
 | 
						|
    return NewI;
 | 
						|
  if (auto *NewI = tryReassociateAdd(RHS, LHS, I))
 | 
						|
    return NewI;
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *NaryReassociate::tryReassociateAdd(Value *LHS, Value *RHS,
 | 
						|
                                                Instruction *I) {
 | 
						|
  Value *A = nullptr, *B = nullptr;
 | 
						|
  // To be conservative, we reassociate I only when it is the only user of A+B.
 | 
						|
  if (LHS->hasOneUse() && match(LHS, m_Add(m_Value(A), m_Value(B)))) {
 | 
						|
    // I = (A + B) + RHS
 | 
						|
    //   = (A + RHS) + B or (B + RHS) + A
 | 
						|
    const SCEV *AExpr = SE->getSCEV(A), *BExpr = SE->getSCEV(B);
 | 
						|
    const SCEV *RHSExpr = SE->getSCEV(RHS);
 | 
						|
    if (auto *NewI = tryReassociatedAdd(SE->getAddExpr(AExpr, RHSExpr), B, I))
 | 
						|
      return NewI;
 | 
						|
    if (auto *NewI = tryReassociatedAdd(SE->getAddExpr(BExpr, RHSExpr), A, I))
 | 
						|
      return NewI;
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *NaryReassociate::tryReassociatedAdd(const SCEV *LHSExpr,
 | 
						|
                                                 Value *RHS, Instruction *I) {
 | 
						|
  auto Pos = SeenExprs.find(LHSExpr);
 | 
						|
  // Bail out if LHSExpr is not previously seen.
 | 
						|
  if (Pos == SeenExprs.end())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  auto &LHSCandidates = Pos->second;
 | 
						|
  // Look for the closest dominator LHS of I that computes LHSExpr, and replace
 | 
						|
  // I with LHS + RHS.
 | 
						|
  //
 | 
						|
  // Because we traverse the dominator tree in the pre-order, a
 | 
						|
  // candidate that doesn't dominate the current instruction won't dominate any
 | 
						|
  // future instruction either. Therefore, we pop it out of the stack. This
 | 
						|
  // optimization makes the algorithm O(n).
 | 
						|
  while (!LHSCandidates.empty()) {
 | 
						|
    Instruction *LHS = LHSCandidates.back();
 | 
						|
    if (DT->dominates(LHS, I)) {
 | 
						|
      Instruction *NewI = BinaryOperator::CreateAdd(LHS, RHS, "", I);
 | 
						|
      NewI->takeName(I);
 | 
						|
      return NewI;
 | 
						|
    }
 | 
						|
    LHSCandidates.pop_back();
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 |