mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	This commit fixes the code which adds lifetime markers in InlineFunction to skip zero-sized allocas instead of asserting on them. rdar://problem/20531155 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235312 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1451 lines
		
	
	
		
			59 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1451 lines
		
	
	
		
			59 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- InlineFunction.cpp - Code to perform function inlining -------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements inlining of a function into a call site, resolving
 | |
| // parameters and the return value as appropriate.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Utils/Cloning.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/AssumptionCache.h"
 | |
| #include "llvm/Analysis/CallGraph.h"
 | |
| #include "llvm/Analysis/CaptureTracking.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/Attributes.h"
 | |
| #include "llvm/IR/CallSite.h"
 | |
| #include "llvm/IR/CFG.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DebugInfo.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/DIBuilder.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/MDBuilder.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| static cl::opt<bool>
 | |
| EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true),
 | |
|   cl::Hidden,
 | |
|   cl::desc("Convert noalias attributes to metadata during inlining."));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining",
 | |
|   cl::init(true), cl::Hidden,
 | |
|   cl::desc("Convert align attributes to assumptions during inlining."));
 | |
| 
 | |
| bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI,
 | |
|                           bool InsertLifetime) {
 | |
|   return InlineFunction(CallSite(CI), IFI, InsertLifetime);
 | |
| }
 | |
| bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI,
 | |
|                           bool InsertLifetime) {
 | |
|   return InlineFunction(CallSite(II), IFI, InsertLifetime);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   /// A class for recording information about inlining through an invoke.
 | |
|   class InvokeInliningInfo {
 | |
|     BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind.
 | |
|     BasicBlock *InnerResumeDest; ///< Destination for the callee's resume.
 | |
|     LandingPadInst *CallerLPad;  ///< LandingPadInst associated with the invoke.
 | |
|     PHINode *InnerEHValuesPHI;   ///< PHI for EH values from landingpad insts.
 | |
|     SmallVector<Value*, 8> UnwindDestPHIValues;
 | |
| 
 | |
|   public:
 | |
|     InvokeInliningInfo(InvokeInst *II)
 | |
|       : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(nullptr),
 | |
|         CallerLPad(nullptr), InnerEHValuesPHI(nullptr) {
 | |
|       // If there are PHI nodes in the unwind destination block, we need to keep
 | |
|       // track of which values came into them from the invoke before removing
 | |
|       // the edge from this block.
 | |
|       llvm::BasicBlock *InvokeBB = II->getParent();
 | |
|       BasicBlock::iterator I = OuterResumeDest->begin();
 | |
|       for (; isa<PHINode>(I); ++I) {
 | |
|         // Save the value to use for this edge.
 | |
|         PHINode *PHI = cast<PHINode>(I);
 | |
|         UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
 | |
|       }
 | |
| 
 | |
|       CallerLPad = cast<LandingPadInst>(I);
 | |
|     }
 | |
| 
 | |
|     /// The outer unwind destination is the target of
 | |
|     /// unwind edges introduced for calls within the inlined function.
 | |
|     BasicBlock *getOuterResumeDest() const {
 | |
|       return OuterResumeDest;
 | |
|     }
 | |
| 
 | |
|     BasicBlock *getInnerResumeDest();
 | |
| 
 | |
|     LandingPadInst *getLandingPadInst() const { return CallerLPad; }
 | |
| 
 | |
|     /// Forward the 'resume' instruction to the caller's landing pad block.
 | |
|     /// When the landing pad block has only one predecessor, this is
 | |
|     /// a simple branch. When there is more than one predecessor, we need to
 | |
|     /// split the landing pad block after the landingpad instruction and jump
 | |
|     /// to there.
 | |
|     void forwardResume(ResumeInst *RI,
 | |
|                        SmallPtrSetImpl<LandingPadInst*> &InlinedLPads);
 | |
| 
 | |
|     /// Add incoming-PHI values to the unwind destination block for the given
 | |
|     /// basic block, using the values for the original invoke's source block.
 | |
|     void addIncomingPHIValuesFor(BasicBlock *BB) const {
 | |
|       addIncomingPHIValuesForInto(BB, OuterResumeDest);
 | |
|     }
 | |
| 
 | |
|     void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
 | |
|       BasicBlock::iterator I = dest->begin();
 | |
|       for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
 | |
|         PHINode *phi = cast<PHINode>(I);
 | |
|         phi->addIncoming(UnwindDestPHIValues[i], src);
 | |
|       }
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// Get or create a target for the branch from ResumeInsts.
 | |
| BasicBlock *InvokeInliningInfo::getInnerResumeDest() {
 | |
|   if (InnerResumeDest) return InnerResumeDest;
 | |
| 
 | |
|   // Split the landing pad.
 | |
|   BasicBlock::iterator SplitPoint = CallerLPad; ++SplitPoint;
 | |
|   InnerResumeDest =
 | |
|     OuterResumeDest->splitBasicBlock(SplitPoint,
 | |
|                                      OuterResumeDest->getName() + ".body");
 | |
| 
 | |
|   // The number of incoming edges we expect to the inner landing pad.
 | |
|   const unsigned PHICapacity = 2;
 | |
| 
 | |
|   // Create corresponding new PHIs for all the PHIs in the outer landing pad.
 | |
|   BasicBlock::iterator InsertPoint = InnerResumeDest->begin();
 | |
|   BasicBlock::iterator I = OuterResumeDest->begin();
 | |
|   for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
 | |
|     PHINode *OuterPHI = cast<PHINode>(I);
 | |
|     PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
 | |
|                                         OuterPHI->getName() + ".lpad-body",
 | |
|                                         InsertPoint);
 | |
|     OuterPHI->replaceAllUsesWith(InnerPHI);
 | |
|     InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
 | |
|   }
 | |
| 
 | |
|   // Create a PHI for the exception values.
 | |
|   InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
 | |
|                                      "eh.lpad-body", InsertPoint);
 | |
|   CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
 | |
|   InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
 | |
| 
 | |
|   // All done.
 | |
|   return InnerResumeDest;
 | |
| }
 | |
| 
 | |
| /// Forward the 'resume' instruction to the caller's landing pad block.
 | |
| /// When the landing pad block has only one predecessor, this is a simple
 | |
| /// branch. When there is more than one predecessor, we need to split the
 | |
| /// landing pad block after the landingpad instruction and jump to there.
 | |
| void InvokeInliningInfo::forwardResume(ResumeInst *RI,
 | |
|                                SmallPtrSetImpl<LandingPadInst*> &InlinedLPads) {
 | |
|   BasicBlock *Dest = getInnerResumeDest();
 | |
|   BasicBlock *Src = RI->getParent();
 | |
| 
 | |
|   BranchInst::Create(Dest, Src);
 | |
| 
 | |
|   // Update the PHIs in the destination. They were inserted in an order which
 | |
|   // makes this work.
 | |
|   addIncomingPHIValuesForInto(Src, Dest);
 | |
| 
 | |
|   InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
 | |
|   RI->eraseFromParent();
 | |
| }
 | |
| 
 | |
| /// When we inline a basic block into an invoke,
 | |
| /// we have to turn all of the calls that can throw into invokes.
 | |
| /// This function analyze BB to see if there are any calls, and if so,
 | |
| /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
 | |
| /// nodes in that block with the values specified in InvokeDestPHIValues.
 | |
| static void HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB,
 | |
|                                                    InvokeInliningInfo &Invoke) {
 | |
|   for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
 | |
|     Instruction *I = BBI++;
 | |
| 
 | |
|     // We only need to check for function calls: inlined invoke
 | |
|     // instructions require no special handling.
 | |
|     CallInst *CI = dyn_cast<CallInst>(I);
 | |
| 
 | |
|     // If this call cannot unwind, don't convert it to an invoke.
 | |
|     // Inline asm calls cannot throw.
 | |
|     if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue()))
 | |
|       continue;
 | |
| 
 | |
|     // Convert this function call into an invoke instruction.  First, split the
 | |
|     // basic block.
 | |
|     BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
 | |
| 
 | |
|     // Delete the unconditional branch inserted by splitBasicBlock
 | |
|     BB->getInstList().pop_back();
 | |
| 
 | |
|     // Create the new invoke instruction.
 | |
|     ImmutableCallSite CS(CI);
 | |
|     SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end());
 | |
|     InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split,
 | |
|                                         Invoke.getOuterResumeDest(),
 | |
|                                         InvokeArgs, CI->getName(), BB);
 | |
|     II->setDebugLoc(CI->getDebugLoc());
 | |
|     II->setCallingConv(CI->getCallingConv());
 | |
|     II->setAttributes(CI->getAttributes());
 | |
|     
 | |
|     // Make sure that anything using the call now uses the invoke!  This also
 | |
|     // updates the CallGraph if present, because it uses a WeakVH.
 | |
|     CI->replaceAllUsesWith(II);
 | |
| 
 | |
|     // Delete the original call
 | |
|     Split->getInstList().pop_front();
 | |
| 
 | |
|     // Update any PHI nodes in the exceptional block to indicate that there is
 | |
|     // now a new entry in them.
 | |
|     Invoke.addIncomingPHIValuesFor(BB);
 | |
|     return;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// If we inlined an invoke site, we need to convert calls
 | |
| /// in the body of the inlined function into invokes.
 | |
| ///
 | |
| /// II is the invoke instruction being inlined.  FirstNewBlock is the first
 | |
| /// block of the inlined code (the last block is the end of the function),
 | |
| /// and InlineCodeInfo is information about the code that got inlined.
 | |
| static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
 | |
|                                 ClonedCodeInfo &InlinedCodeInfo) {
 | |
|   BasicBlock *InvokeDest = II->getUnwindDest();
 | |
| 
 | |
|   Function *Caller = FirstNewBlock->getParent();
 | |
| 
 | |
|   // The inlined code is currently at the end of the function, scan from the
 | |
|   // start of the inlined code to its end, checking for stuff we need to
 | |
|   // rewrite.
 | |
|   InvokeInliningInfo Invoke(II);
 | |
| 
 | |
|   // Get all of the inlined landing pad instructions.
 | |
|   SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
 | |
|   for (Function::iterator I = FirstNewBlock, E = Caller->end(); I != E; ++I)
 | |
|     if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
 | |
|       InlinedLPads.insert(II->getLandingPadInst());
 | |
| 
 | |
|   // Append the clauses from the outer landing pad instruction into the inlined
 | |
|   // landing pad instructions.
 | |
|   LandingPadInst *OuterLPad = Invoke.getLandingPadInst();
 | |
|   for (LandingPadInst *InlinedLPad : InlinedLPads) {
 | |
|     unsigned OuterNum = OuterLPad->getNumClauses();
 | |
|     InlinedLPad->reserveClauses(OuterNum);
 | |
|     for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx)
 | |
|       InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
 | |
|     if (OuterLPad->isCleanup())
 | |
|       InlinedLPad->setCleanup(true);
 | |
|   }
 | |
| 
 | |
|   for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){
 | |
|     if (InlinedCodeInfo.ContainsCalls)
 | |
|       HandleCallsInBlockInlinedThroughInvoke(BB, Invoke);
 | |
| 
 | |
|     // Forward any resumes that are remaining here.
 | |
|     if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
 | |
|       Invoke.forwardResume(RI, InlinedLPads);
 | |
|   }
 | |
| 
 | |
|   // Now that everything is happy, we have one final detail.  The PHI nodes in
 | |
|   // the exception destination block still have entries due to the original
 | |
|   // invoke instruction. Eliminate these entries (which might even delete the
 | |
|   // PHI node) now.
 | |
|   InvokeDest->removePredecessor(II->getParent());
 | |
| }
 | |
| 
 | |
| /// When inlining a function that contains noalias scope metadata,
 | |
| /// this metadata needs to be cloned so that the inlined blocks
 | |
| /// have different "unqiue scopes" at every call site. Were this not done, then
 | |
| /// aliasing scopes from a function inlined into a caller multiple times could
 | |
| /// not be differentiated (and this would lead to miscompiles because the
 | |
| /// non-aliasing property communicated by the metadata could have
 | |
| /// call-site-specific control dependencies).
 | |
| static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) {
 | |
|   const Function *CalledFunc = CS.getCalledFunction();
 | |
|   SetVector<const MDNode *> MD;
 | |
| 
 | |
|   // Note: We could only clone the metadata if it is already used in the
 | |
|   // caller. I'm omitting that check here because it might confuse
 | |
|   // inter-procedural alias analysis passes. We can revisit this if it becomes
 | |
|   // an efficiency or overhead problem.
 | |
| 
 | |
|   for (Function::const_iterator I = CalledFunc->begin(), IE = CalledFunc->end();
 | |
|        I != IE; ++I)
 | |
|     for (BasicBlock::const_iterator J = I->begin(), JE = I->end(); J != JE; ++J) {
 | |
|       if (const MDNode *M = J->getMetadata(LLVMContext::MD_alias_scope))
 | |
|         MD.insert(M);
 | |
|       if (const MDNode *M = J->getMetadata(LLVMContext::MD_noalias))
 | |
|         MD.insert(M);
 | |
|     }
 | |
| 
 | |
|   if (MD.empty())
 | |
|     return;
 | |
| 
 | |
|   // Walk the existing metadata, adding the complete (perhaps cyclic) chain to
 | |
|   // the set.
 | |
|   SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end());
 | |
|   while (!Queue.empty()) {
 | |
|     const MDNode *M = cast<MDNode>(Queue.pop_back_val());
 | |
|     for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i)
 | |
|       if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i)))
 | |
|         if (MD.insert(M1))
 | |
|           Queue.push_back(M1);
 | |
|   }
 | |
| 
 | |
|   // Now we have a complete set of all metadata in the chains used to specify
 | |
|   // the noalias scopes and the lists of those scopes.
 | |
|   SmallVector<TempMDTuple, 16> DummyNodes;
 | |
|   DenseMap<const MDNode *, TrackingMDNodeRef> MDMap;
 | |
|   for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end();
 | |
|        I != IE; ++I) {
 | |
|     DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None));
 | |
|     MDMap[*I].reset(DummyNodes.back().get());
 | |
|   }
 | |
| 
 | |
|   // Create new metadata nodes to replace the dummy nodes, replacing old
 | |
|   // metadata references with either a dummy node or an already-created new
 | |
|   // node.
 | |
|   for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end();
 | |
|        I != IE; ++I) {
 | |
|     SmallVector<Metadata *, 4> NewOps;
 | |
|     for (unsigned i = 0, ie = (*I)->getNumOperands(); i != ie; ++i) {
 | |
|       const Metadata *V = (*I)->getOperand(i);
 | |
|       if (const MDNode *M = dyn_cast<MDNode>(V))
 | |
|         NewOps.push_back(MDMap[M]);
 | |
|       else
 | |
|         NewOps.push_back(const_cast<Metadata *>(V));
 | |
|     }
 | |
| 
 | |
|     MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps);
 | |
|     MDTuple *TempM = cast<MDTuple>(MDMap[*I]);
 | |
|     assert(TempM->isTemporary() && "Expected temporary node");
 | |
| 
 | |
|     TempM->replaceAllUsesWith(NewM);
 | |
|   }
 | |
| 
 | |
|   // Now replace the metadata in the new inlined instructions with the
 | |
|   // repacements from the map.
 | |
|   for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
 | |
|        VMI != VMIE; ++VMI) {
 | |
|     if (!VMI->second)
 | |
|       continue;
 | |
| 
 | |
|     Instruction *NI = dyn_cast<Instruction>(VMI->second);
 | |
|     if (!NI)
 | |
|       continue;
 | |
| 
 | |
|     if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) {
 | |
|       MDNode *NewMD = MDMap[M];
 | |
|       // If the call site also had alias scope metadata (a list of scopes to
 | |
|       // which instructions inside it might belong), propagate those scopes to
 | |
|       // the inlined instructions.
 | |
|       if (MDNode *CSM =
 | |
|               CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope))
 | |
|         NewMD = MDNode::concatenate(NewMD, CSM);
 | |
|       NI->setMetadata(LLVMContext::MD_alias_scope, NewMD);
 | |
|     } else if (NI->mayReadOrWriteMemory()) {
 | |
|       if (MDNode *M =
 | |
|               CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope))
 | |
|         NI->setMetadata(LLVMContext::MD_alias_scope, M);
 | |
|     }
 | |
| 
 | |
|     if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) {
 | |
|       MDNode *NewMD = MDMap[M];
 | |
|       // If the call site also had noalias metadata (a list of scopes with
 | |
|       // which instructions inside it don't alias), propagate those scopes to
 | |
|       // the inlined instructions.
 | |
|       if (MDNode *CSM =
 | |
|               CS.getInstruction()->getMetadata(LLVMContext::MD_noalias))
 | |
|         NewMD = MDNode::concatenate(NewMD, CSM);
 | |
|       NI->setMetadata(LLVMContext::MD_noalias, NewMD);
 | |
|     } else if (NI->mayReadOrWriteMemory()) {
 | |
|       if (MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_noalias))
 | |
|         NI->setMetadata(LLVMContext::MD_noalias, M);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// If the inlined function has noalias arguments,
 | |
| /// then add new alias scopes for each noalias argument, tag the mapped noalias
 | |
| /// parameters with noalias metadata specifying the new scope, and tag all
 | |
| /// non-derived loads, stores and memory intrinsics with the new alias scopes.
 | |
| static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap,
 | |
|                                   const DataLayout &DL, AliasAnalysis *AA) {
 | |
|   if (!EnableNoAliasConversion)
 | |
|     return;
 | |
| 
 | |
|   const Function *CalledFunc = CS.getCalledFunction();
 | |
|   SmallVector<const Argument *, 4> NoAliasArgs;
 | |
| 
 | |
|   for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
 | |
|        E = CalledFunc->arg_end(); I != E; ++I) {
 | |
|     if (I->hasNoAliasAttr() && !I->hasNUses(0))
 | |
|       NoAliasArgs.push_back(I);
 | |
|   }
 | |
| 
 | |
|   if (NoAliasArgs.empty())
 | |
|     return;
 | |
| 
 | |
|   // To do a good job, if a noalias variable is captured, we need to know if
 | |
|   // the capture point dominates the particular use we're considering.
 | |
|   DominatorTree DT;
 | |
|   DT.recalculate(const_cast<Function&>(*CalledFunc));
 | |
| 
 | |
|   // noalias indicates that pointer values based on the argument do not alias
 | |
|   // pointer values which are not based on it. So we add a new "scope" for each
 | |
|   // noalias function argument. Accesses using pointers based on that argument
 | |
|   // become part of that alias scope, accesses using pointers not based on that
 | |
|   // argument are tagged as noalias with that scope.
 | |
| 
 | |
|   DenseMap<const Argument *, MDNode *> NewScopes;
 | |
|   MDBuilder MDB(CalledFunc->getContext());
 | |
| 
 | |
|   // Create a new scope domain for this function.
 | |
|   MDNode *NewDomain =
 | |
|     MDB.createAnonymousAliasScopeDomain(CalledFunc->getName());
 | |
|   for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) {
 | |
|     const Argument *A = NoAliasArgs[i];
 | |
| 
 | |
|     std::string Name = CalledFunc->getName();
 | |
|     if (A->hasName()) {
 | |
|       Name += ": %";
 | |
|       Name += A->getName();
 | |
|     } else {
 | |
|       Name += ": argument ";
 | |
|       Name += utostr(i);
 | |
|     }
 | |
| 
 | |
|     // Note: We always create a new anonymous root here. This is true regardless
 | |
|     // of the linkage of the callee because the aliasing "scope" is not just a
 | |
|     // property of the callee, but also all control dependencies in the caller.
 | |
|     MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
 | |
|     NewScopes.insert(std::make_pair(A, NewScope));
 | |
|   }
 | |
| 
 | |
|   // Iterate over all new instructions in the map; for all memory-access
 | |
|   // instructions, add the alias scope metadata.
 | |
|   for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
 | |
|        VMI != VMIE; ++VMI) {
 | |
|     if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) {
 | |
|       if (!VMI->second)
 | |
|         continue;
 | |
| 
 | |
|       Instruction *NI = dyn_cast<Instruction>(VMI->second);
 | |
|       if (!NI)
 | |
|         continue;
 | |
| 
 | |
|       bool IsArgMemOnlyCall = false, IsFuncCall = false;
 | |
|       SmallVector<const Value *, 2> PtrArgs;
 | |
| 
 | |
|       if (const LoadInst *LI = dyn_cast<LoadInst>(I))
 | |
|         PtrArgs.push_back(LI->getPointerOperand());
 | |
|       else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
 | |
|         PtrArgs.push_back(SI->getPointerOperand());
 | |
|       else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I))
 | |
|         PtrArgs.push_back(VAAI->getPointerOperand());
 | |
|       else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
 | |
|         PtrArgs.push_back(CXI->getPointerOperand());
 | |
|       else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
 | |
|         PtrArgs.push_back(RMWI->getPointerOperand());
 | |
|       else if (ImmutableCallSite ICS = ImmutableCallSite(I)) {
 | |
|         // If we know that the call does not access memory, then we'll still
 | |
|         // know that about the inlined clone of this call site, and we don't
 | |
|         // need to add metadata.
 | |
|         if (ICS.doesNotAccessMemory())
 | |
|           continue;
 | |
| 
 | |
|         IsFuncCall = true;
 | |
|         if (AA) {
 | |
|           AliasAnalysis::ModRefBehavior MRB = AA->getModRefBehavior(ICS);
 | |
|           if (MRB == AliasAnalysis::OnlyAccessesArgumentPointees ||
 | |
|               MRB == AliasAnalysis::OnlyReadsArgumentPointees)
 | |
|             IsArgMemOnlyCall = true;
 | |
|         }
 | |
| 
 | |
|         for (ImmutableCallSite::arg_iterator AI = ICS.arg_begin(),
 | |
|              AE = ICS.arg_end(); AI != AE; ++AI) {
 | |
|           // We need to check the underlying objects of all arguments, not just
 | |
|           // the pointer arguments, because we might be passing pointers as
 | |
|           // integers, etc.
 | |
|           // However, if we know that the call only accesses pointer arguments,
 | |
|           // then we only need to check the pointer arguments.
 | |
|           if (IsArgMemOnlyCall && !(*AI)->getType()->isPointerTy())
 | |
|             continue;
 | |
| 
 | |
|           PtrArgs.push_back(*AI);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // If we found no pointers, then this instruction is not suitable for
 | |
|       // pairing with an instruction to receive aliasing metadata.
 | |
|       // However, if this is a call, this we might just alias with none of the
 | |
|       // noalias arguments.
 | |
|       if (PtrArgs.empty() && !IsFuncCall)
 | |
|         continue;
 | |
| 
 | |
|       // It is possible that there is only one underlying object, but you
 | |
|       // need to go through several PHIs to see it, and thus could be
 | |
|       // repeated in the Objects list.
 | |
|       SmallPtrSet<const Value *, 4> ObjSet;
 | |
|       SmallVector<Metadata *, 4> Scopes, NoAliases;
 | |
| 
 | |
|       SmallSetVector<const Argument *, 4> NAPtrArgs;
 | |
|       for (unsigned i = 0, ie = PtrArgs.size(); i != ie; ++i) {
 | |
|         SmallVector<Value *, 4> Objects;
 | |
|         GetUnderlyingObjects(const_cast<Value*>(PtrArgs[i]),
 | |
|                              Objects, DL, /* MaxLookup = */ 0);
 | |
| 
 | |
|         for (Value *O : Objects)
 | |
|           ObjSet.insert(O);
 | |
|       }
 | |
| 
 | |
|       // Figure out if we're derived from anything that is not a noalias
 | |
|       // argument.
 | |
|       bool CanDeriveViaCapture = false, UsesAliasingPtr = false;
 | |
|       for (const Value *V : ObjSet) {
 | |
|         // Is this value a constant that cannot be derived from any pointer
 | |
|         // value (we need to exclude constant expressions, for example, that
 | |
|         // are formed from arithmetic on global symbols).
 | |
|         bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) ||
 | |
|                              isa<ConstantPointerNull>(V) ||
 | |
|                              isa<ConstantDataVector>(V) || isa<UndefValue>(V);
 | |
|         if (IsNonPtrConst)
 | |
|           continue;
 | |
| 
 | |
|         // If this is anything other than a noalias argument, then we cannot
 | |
|         // completely describe the aliasing properties using alias.scope
 | |
|         // metadata (and, thus, won't add any).
 | |
|         if (const Argument *A = dyn_cast<Argument>(V)) {
 | |
|           if (!A->hasNoAliasAttr())
 | |
|             UsesAliasingPtr = true;
 | |
|         } else {
 | |
|           UsesAliasingPtr = true;
 | |
|         }
 | |
| 
 | |
|         // If this is not some identified function-local object (which cannot
 | |
|         // directly alias a noalias argument), or some other argument (which,
 | |
|         // by definition, also cannot alias a noalias argument), then we could
 | |
|         // alias a noalias argument that has been captured).
 | |
|         if (!isa<Argument>(V) &&
 | |
|             !isIdentifiedFunctionLocal(const_cast<Value*>(V)))
 | |
|           CanDeriveViaCapture = true;
 | |
|       }
 | |
| 
 | |
|       // A function call can always get captured noalias pointers (via other
 | |
|       // parameters, globals, etc.).
 | |
|       if (IsFuncCall && !IsArgMemOnlyCall)
 | |
|         CanDeriveViaCapture = true;
 | |
| 
 | |
|       // First, we want to figure out all of the sets with which we definitely
 | |
|       // don't alias. Iterate over all noalias set, and add those for which:
 | |
|       //   1. The noalias argument is not in the set of objects from which we
 | |
|       //      definitely derive.
 | |
|       //   2. The noalias argument has not yet been captured.
 | |
|       // An arbitrary function that might load pointers could see captured
 | |
|       // noalias arguments via other noalias arguments or globals, and so we
 | |
|       // must always check for prior capture.
 | |
|       for (const Argument *A : NoAliasArgs) {
 | |
|         if (!ObjSet.count(A) && (!CanDeriveViaCapture ||
 | |
|                                  // It might be tempting to skip the
 | |
|                                  // PointerMayBeCapturedBefore check if
 | |
|                                  // A->hasNoCaptureAttr() is true, but this is
 | |
|                                  // incorrect because nocapture only guarantees
 | |
|                                  // that no copies outlive the function, not
 | |
|                                  // that the value cannot be locally captured.
 | |
|                                  !PointerMayBeCapturedBefore(A,
 | |
|                                    /* ReturnCaptures */ false,
 | |
|                                    /* StoreCaptures */ false, I, &DT)))
 | |
|           NoAliases.push_back(NewScopes[A]);
 | |
|       }
 | |
| 
 | |
|       if (!NoAliases.empty())
 | |
|         NI->setMetadata(LLVMContext::MD_noalias,
 | |
|                         MDNode::concatenate(
 | |
|                             NI->getMetadata(LLVMContext::MD_noalias),
 | |
|                             MDNode::get(CalledFunc->getContext(), NoAliases)));
 | |
| 
 | |
|       // Next, we want to figure out all of the sets to which we might belong.
 | |
|       // We might belong to a set if the noalias argument is in the set of
 | |
|       // underlying objects. If there is some non-noalias argument in our list
 | |
|       // of underlying objects, then we cannot add a scope because the fact
 | |
|       // that some access does not alias with any set of our noalias arguments
 | |
|       // cannot itself guarantee that it does not alias with this access
 | |
|       // (because there is some pointer of unknown origin involved and the
 | |
|       // other access might also depend on this pointer). We also cannot add
 | |
|       // scopes to arbitrary functions unless we know they don't access any
 | |
|       // non-parameter pointer-values.
 | |
|       bool CanAddScopes = !UsesAliasingPtr;
 | |
|       if (CanAddScopes && IsFuncCall)
 | |
|         CanAddScopes = IsArgMemOnlyCall;
 | |
| 
 | |
|       if (CanAddScopes)
 | |
|         for (const Argument *A : NoAliasArgs) {
 | |
|           if (ObjSet.count(A))
 | |
|             Scopes.push_back(NewScopes[A]);
 | |
|         }
 | |
| 
 | |
|       if (!Scopes.empty())
 | |
|         NI->setMetadata(
 | |
|             LLVMContext::MD_alias_scope,
 | |
|             MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope),
 | |
|                                 MDNode::get(CalledFunc->getContext(), Scopes)));
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// If the inlined function has non-byval align arguments, then
 | |
| /// add @llvm.assume-based alignment assumptions to preserve this information.
 | |
| static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) {
 | |
|   if (!PreserveAlignmentAssumptions)
 | |
|     return;
 | |
|   auto &DL = CS.getCaller()->getParent()->getDataLayout();
 | |
| 
 | |
|   // To avoid inserting redundant assumptions, we should check for assumptions
 | |
|   // already in the caller. To do this, we might need a DT of the caller.
 | |
|   DominatorTree DT;
 | |
|   bool DTCalculated = false;
 | |
| 
 | |
|   Function *CalledFunc = CS.getCalledFunction();
 | |
|   for (Function::arg_iterator I = CalledFunc->arg_begin(),
 | |
|                               E = CalledFunc->arg_end();
 | |
|        I != E; ++I) {
 | |
|     unsigned Align = I->getType()->isPointerTy() ? I->getParamAlignment() : 0;
 | |
|     if (Align && !I->hasByValOrInAllocaAttr() && !I->hasNUses(0)) {
 | |
|       if (!DTCalculated) {
 | |
|         DT.recalculate(const_cast<Function&>(*CS.getInstruction()->getParent()
 | |
|                                                ->getParent()));
 | |
|         DTCalculated = true;
 | |
|       }
 | |
| 
 | |
|       // If we can already prove the asserted alignment in the context of the
 | |
|       // caller, then don't bother inserting the assumption.
 | |
|       Value *Arg = CS.getArgument(I->getArgNo());
 | |
|       if (getKnownAlignment(Arg, DL, CS.getInstruction(),
 | |
|                             &IFI.ACT->getAssumptionCache(*CalledFunc),
 | |
|                             &DT) >= Align)
 | |
|         continue;
 | |
| 
 | |
|       IRBuilder<>(CS.getInstruction())
 | |
|           .CreateAlignmentAssumption(DL, Arg, Align);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Once we have cloned code over from a callee into the caller,
 | |
| /// update the specified callgraph to reflect the changes we made.
 | |
| /// Note that it's possible that not all code was copied over, so only
 | |
| /// some edges of the callgraph may remain.
 | |
| static void UpdateCallGraphAfterInlining(CallSite CS,
 | |
|                                          Function::iterator FirstNewBlock,
 | |
|                                          ValueToValueMapTy &VMap,
 | |
|                                          InlineFunctionInfo &IFI) {
 | |
|   CallGraph &CG = *IFI.CG;
 | |
|   const Function *Caller = CS.getInstruction()->getParent()->getParent();
 | |
|   const Function *Callee = CS.getCalledFunction();
 | |
|   CallGraphNode *CalleeNode = CG[Callee];
 | |
|   CallGraphNode *CallerNode = CG[Caller];
 | |
| 
 | |
|   // Since we inlined some uninlined call sites in the callee into the caller,
 | |
|   // add edges from the caller to all of the callees of the callee.
 | |
|   CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
 | |
| 
 | |
|   // Consider the case where CalleeNode == CallerNode.
 | |
|   CallGraphNode::CalledFunctionsVector CallCache;
 | |
|   if (CalleeNode == CallerNode) {
 | |
|     CallCache.assign(I, E);
 | |
|     I = CallCache.begin();
 | |
|     E = CallCache.end();
 | |
|   }
 | |
| 
 | |
|   for (; I != E; ++I) {
 | |
|     const Value *OrigCall = I->first;
 | |
| 
 | |
|     ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
 | |
|     // Only copy the edge if the call was inlined!
 | |
|     if (VMI == VMap.end() || VMI->second == nullptr)
 | |
|       continue;
 | |
|     
 | |
|     // If the call was inlined, but then constant folded, there is no edge to
 | |
|     // add.  Check for this case.
 | |
|     Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
 | |
|     if (!NewCall)
 | |
|       continue;
 | |
| 
 | |
|     // We do not treat intrinsic calls like real function calls because we
 | |
|     // expect them to become inline code; do not add an edge for an intrinsic.
 | |
|     CallSite CS = CallSite(NewCall);
 | |
|     if (CS && CS.getCalledFunction() && CS.getCalledFunction()->isIntrinsic())
 | |
|       continue;
 | |
|     
 | |
|     // Remember that this call site got inlined for the client of
 | |
|     // InlineFunction.
 | |
|     IFI.InlinedCalls.push_back(NewCall);
 | |
| 
 | |
|     // It's possible that inlining the callsite will cause it to go from an
 | |
|     // indirect to a direct call by resolving a function pointer.  If this
 | |
|     // happens, set the callee of the new call site to a more precise
 | |
|     // destination.  This can also happen if the call graph node of the caller
 | |
|     // was just unnecessarily imprecise.
 | |
|     if (!I->second->getFunction())
 | |
|       if (Function *F = CallSite(NewCall).getCalledFunction()) {
 | |
|         // Indirect call site resolved to direct call.
 | |
|         CallerNode->addCalledFunction(CallSite(NewCall), CG[F]);
 | |
| 
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|     CallerNode->addCalledFunction(CallSite(NewCall), I->second);
 | |
|   }
 | |
|   
 | |
|   // Update the call graph by deleting the edge from Callee to Caller.  We must
 | |
|   // do this after the loop above in case Caller and Callee are the same.
 | |
|   CallerNode->removeCallEdgeFor(CS);
 | |
| }
 | |
| 
 | |
| static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M,
 | |
|                                     BasicBlock *InsertBlock,
 | |
|                                     InlineFunctionInfo &IFI) {
 | |
|   Type *AggTy = cast<PointerType>(Src->getType())->getElementType();
 | |
|   IRBuilder<> Builder(InsertBlock->begin());
 | |
| 
 | |
|   Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy));
 | |
| 
 | |
|   // Always generate a memcpy of alignment 1 here because we don't know
 | |
|   // the alignment of the src pointer.  Other optimizations can infer
 | |
|   // better alignment.
 | |
|   Builder.CreateMemCpy(Dst, Src, Size, /*Align=*/1);
 | |
| }
 | |
| 
 | |
| /// When inlining a call site that has a byval argument,
 | |
| /// we have to make the implicit memcpy explicit by adding it.
 | |
| static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
 | |
|                                   const Function *CalledFunc,
 | |
|                                   InlineFunctionInfo &IFI,
 | |
|                                   unsigned ByValAlignment) {
 | |
|   PointerType *ArgTy = cast<PointerType>(Arg->getType());
 | |
|   Type *AggTy = ArgTy->getElementType();
 | |
| 
 | |
|   Function *Caller = TheCall->getParent()->getParent();
 | |
| 
 | |
|   // If the called function is readonly, then it could not mutate the caller's
 | |
|   // copy of the byval'd memory.  In this case, it is safe to elide the copy and
 | |
|   // temporary.
 | |
|   if (CalledFunc->onlyReadsMemory()) {
 | |
|     // If the byval argument has a specified alignment that is greater than the
 | |
|     // passed in pointer, then we either have to round up the input pointer or
 | |
|     // give up on this transformation.
 | |
|     if (ByValAlignment <= 1)  // 0 = unspecified, 1 = no particular alignment.
 | |
|       return Arg;
 | |
| 
 | |
|     const DataLayout &DL = Caller->getParent()->getDataLayout();
 | |
| 
 | |
|     // If the pointer is already known to be sufficiently aligned, or if we can
 | |
|     // round it up to a larger alignment, then we don't need a temporary.
 | |
|     if (getOrEnforceKnownAlignment(Arg, ByValAlignment, DL, TheCall,
 | |
|                                    &IFI.ACT->getAssumptionCache(*Caller)) >=
 | |
|         ByValAlignment)
 | |
|       return Arg;
 | |
|     
 | |
|     // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad
 | |
|     // for code quality, but rarely happens and is required for correctness.
 | |
|   }
 | |
| 
 | |
|   // Create the alloca.  If we have DataLayout, use nice alignment.
 | |
|   unsigned Align =
 | |
|       Caller->getParent()->getDataLayout().getPrefTypeAlignment(AggTy);
 | |
| 
 | |
|   // If the byval had an alignment specified, we *must* use at least that
 | |
|   // alignment, as it is required by the byval argument (and uses of the
 | |
|   // pointer inside the callee).
 | |
|   Align = std::max(Align, ByValAlignment);
 | |
|   
 | |
|   Value *NewAlloca = new AllocaInst(AggTy, nullptr, Align, Arg->getName(), 
 | |
|                                     &*Caller->begin()->begin());
 | |
|   IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca));
 | |
|   
 | |
|   // Uses of the argument in the function should use our new alloca
 | |
|   // instead.
 | |
|   return NewAlloca;
 | |
| }
 | |
| 
 | |
| // Check whether this Value is used by a lifetime intrinsic.
 | |
| static bool isUsedByLifetimeMarker(Value *V) {
 | |
|   for (User *U : V->users()) {
 | |
|     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
 | |
|       switch (II->getIntrinsicID()) {
 | |
|       default: break;
 | |
|       case Intrinsic::lifetime_start:
 | |
|       case Intrinsic::lifetime_end:
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Check whether the given alloca already has
 | |
| // lifetime.start or lifetime.end intrinsics.
 | |
| static bool hasLifetimeMarkers(AllocaInst *AI) {
 | |
|   Type *Ty = AI->getType();
 | |
|   Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(),
 | |
|                                        Ty->getPointerAddressSpace());
 | |
|   if (Ty == Int8PtrTy)
 | |
|     return isUsedByLifetimeMarker(AI);
 | |
| 
 | |
|   // Do a scan to find all the casts to i8*.
 | |
|   for (User *U : AI->users()) {
 | |
|     if (U->getType() != Int8PtrTy) continue;
 | |
|     if (U->stripPointerCasts() != AI) continue;
 | |
|     if (isUsedByLifetimeMarker(U))
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Rebuild the entire inlined-at chain for this instruction so that the top of
 | |
| /// the chain now is inlined-at the new call site.
 | |
| static DebugLoc
 | |
| updateInlinedAtInfo(DebugLoc DL, MDLocation *InlinedAtNode,
 | |
|                     LLVMContext &Ctx,
 | |
|                     DenseMap<const MDLocation *, MDLocation *> &IANodes) {
 | |
|   SmallVector<MDLocation*, 3> InlinedAtLocations;
 | |
|   MDLocation *Last = InlinedAtNode;
 | |
|   MDLocation *CurInlinedAt = DL;
 | |
| 
 | |
|   // Gather all the inlined-at nodes
 | |
|   while (MDLocation *IA = CurInlinedAt->getInlinedAt()) {
 | |
|     // Skip any we've already built nodes for
 | |
|     if (MDLocation *Found = IANodes[IA]) {
 | |
|       Last = Found;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     InlinedAtLocations.push_back(IA);
 | |
|     CurInlinedAt = IA;
 | |
|   }
 | |
| 
 | |
|   // Starting from the top, rebuild the nodes to point to the new inlined-at
 | |
|   // location (then rebuilding the rest of the chain behind it) and update the
 | |
|   // map of already-constructed inlined-at nodes.
 | |
|   for (auto I = InlinedAtLocations.rbegin(), E = InlinedAtLocations.rend();
 | |
|        I != E; ++I) {
 | |
|     const MDLocation *MD = *I;
 | |
|     Last = IANodes[MD] = MDLocation::getDistinct(
 | |
|         Ctx, MD->getLine(), MD->getColumn(), MD->getScope(), Last);
 | |
|   }
 | |
| 
 | |
|   // And finally create the normal location for this instruction, referring to
 | |
|   // the new inlined-at chain.
 | |
|   return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(), Last);
 | |
| }
 | |
| 
 | |
| /// Update inlined instructions' line numbers to
 | |
| /// to encode location where these instructions are inlined.
 | |
| static void fixupLineNumbers(Function *Fn, Function::iterator FI,
 | |
|                              Instruction *TheCall) {
 | |
|   DebugLoc TheCallDL = TheCall->getDebugLoc();
 | |
|   if (!TheCallDL)
 | |
|     return;
 | |
| 
 | |
|   auto &Ctx = Fn->getContext();
 | |
|   MDLocation *InlinedAtNode = TheCallDL;
 | |
| 
 | |
|   // Create a unique call site, not to be confused with any other call from the
 | |
|   // same location.
 | |
|   InlinedAtNode = MDLocation::getDistinct(
 | |
|       Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(),
 | |
|       InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt());
 | |
| 
 | |
|   // Cache the inlined-at nodes as they're built so they are reused, without
 | |
|   // this every instruction's inlined-at chain would become distinct from each
 | |
|   // other.
 | |
|   DenseMap<const MDLocation *, MDLocation *> IANodes;
 | |
| 
 | |
|   for (; FI != Fn->end(); ++FI) {
 | |
|     for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
 | |
|          BI != BE; ++BI) {
 | |
|       DebugLoc DL = BI->getDebugLoc();
 | |
|       if (!DL) {
 | |
|         // If the inlined instruction has no line number, make it look as if it
 | |
|         // originates from the call location. This is important for
 | |
|         // ((__always_inline__, __nodebug__)) functions which must use caller
 | |
|         // location for all instructions in their function body.
 | |
| 
 | |
|         // Don't update static allocas, as they may get moved later.
 | |
|         if (auto *AI = dyn_cast<AllocaInst>(BI))
 | |
|           if (isa<Constant>(AI->getArraySize()))
 | |
|             continue;
 | |
| 
 | |
|         BI->setDebugLoc(TheCallDL);
 | |
|       } else {
 | |
|         BI->setDebugLoc(updateInlinedAtInfo(DL, InlinedAtNode, BI->getContext(), IANodes));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// This function inlines the called function into the basic block of the
 | |
| /// caller. This returns false if it is not possible to inline this call.
 | |
| /// The program is still in a well defined state if this occurs though.
 | |
| ///
 | |
| /// Note that this only does one level of inlining.  For example, if the
 | |
| /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
 | |
| /// exists in the instruction stream.  Similarly this will inline a recursive
 | |
| /// function by one level.
 | |
| bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
 | |
|                           bool InsertLifetime) {
 | |
|   Instruction *TheCall = CS.getInstruction();
 | |
|   assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
 | |
|          "Instruction not in function!");
 | |
| 
 | |
|   // If IFI has any state in it, zap it before we fill it in.
 | |
|   IFI.reset();
 | |
|   
 | |
|   const Function *CalledFunc = CS.getCalledFunction();
 | |
|   if (!CalledFunc ||              // Can't inline external function or indirect
 | |
|       CalledFunc->isDeclaration() || // call, or call to a vararg function!
 | |
|       CalledFunc->getFunctionType()->isVarArg()) return false;
 | |
| 
 | |
|   // If the call to the callee cannot throw, set the 'nounwind' flag on any
 | |
|   // calls that we inline.
 | |
|   bool MarkNoUnwind = CS.doesNotThrow();
 | |
| 
 | |
|   BasicBlock *OrigBB = TheCall->getParent();
 | |
|   Function *Caller = OrigBB->getParent();
 | |
| 
 | |
|   // GC poses two hazards to inlining, which only occur when the callee has GC:
 | |
|   //  1. If the caller has no GC, then the callee's GC must be propagated to the
 | |
|   //     caller.
 | |
|   //  2. If the caller has a differing GC, it is invalid to inline.
 | |
|   if (CalledFunc->hasGC()) {
 | |
|     if (!Caller->hasGC())
 | |
|       Caller->setGC(CalledFunc->getGC());
 | |
|     else if (CalledFunc->getGC() != Caller->getGC())
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Get the personality function from the callee if it contains a landing pad.
 | |
|   Value *CalleePersonality = nullptr;
 | |
|   for (Function::const_iterator I = CalledFunc->begin(), E = CalledFunc->end();
 | |
|        I != E; ++I)
 | |
|     if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
 | |
|       const BasicBlock *BB = II->getUnwindDest();
 | |
|       const LandingPadInst *LP = BB->getLandingPadInst();
 | |
|       CalleePersonality = LP->getPersonalityFn();
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|   // Find the personality function used by the landing pads of the caller. If it
 | |
|   // exists, then check to see that it matches the personality function used in
 | |
|   // the callee.
 | |
|   if (CalleePersonality) {
 | |
|     for (Function::const_iterator I = Caller->begin(), E = Caller->end();
 | |
|          I != E; ++I)
 | |
|       if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
 | |
|         const BasicBlock *BB = II->getUnwindDest();
 | |
|         const LandingPadInst *LP = BB->getLandingPadInst();
 | |
| 
 | |
|         // If the personality functions match, then we can perform the
 | |
|         // inlining. Otherwise, we can't inline.
 | |
|         // TODO: This isn't 100% true. Some personality functions are proper
 | |
|         //       supersets of others and can be used in place of the other.
 | |
|         if (LP->getPersonalityFn() != CalleePersonality)
 | |
|           return false;
 | |
| 
 | |
|         break;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // Get an iterator to the last basic block in the function, which will have
 | |
|   // the new function inlined after it.
 | |
|   Function::iterator LastBlock = &Caller->back();
 | |
| 
 | |
|   // Make sure to capture all of the return instructions from the cloned
 | |
|   // function.
 | |
|   SmallVector<ReturnInst*, 8> Returns;
 | |
|   ClonedCodeInfo InlinedFunctionInfo;
 | |
|   Function::iterator FirstNewBlock;
 | |
| 
 | |
|   { // Scope to destroy VMap after cloning.
 | |
|     ValueToValueMapTy VMap;
 | |
|     // Keep a list of pair (dst, src) to emit byval initializations.
 | |
|     SmallVector<std::pair<Value*, Value*>, 4> ByValInit;
 | |
| 
 | |
|     auto &DL = Caller->getParent()->getDataLayout();
 | |
| 
 | |
|     assert(CalledFunc->arg_size() == CS.arg_size() &&
 | |
|            "No varargs calls can be inlined!");
 | |
| 
 | |
|     // Calculate the vector of arguments to pass into the function cloner, which
 | |
|     // matches up the formal to the actual argument values.
 | |
|     CallSite::arg_iterator AI = CS.arg_begin();
 | |
|     unsigned ArgNo = 0;
 | |
|     for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
 | |
|          E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
 | |
|       Value *ActualArg = *AI;
 | |
| 
 | |
|       // When byval arguments actually inlined, we need to make the copy implied
 | |
|       // by them explicit.  However, we don't do this if the callee is readonly
 | |
|       // or readnone, because the copy would be unneeded: the callee doesn't
 | |
|       // modify the struct.
 | |
|       if (CS.isByValArgument(ArgNo)) {
 | |
|         ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
 | |
|                                         CalledFunc->getParamAlignment(ArgNo+1));
 | |
|         if (ActualArg != *AI)
 | |
|           ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI));
 | |
|       }
 | |
| 
 | |
|       VMap[I] = ActualArg;
 | |
|     }
 | |
| 
 | |
|     // Add alignment assumptions if necessary. We do this before the inlined
 | |
|     // instructions are actually cloned into the caller so that we can easily
 | |
|     // check what will be known at the start of the inlined code.
 | |
|     AddAlignmentAssumptions(CS, IFI);
 | |
| 
 | |
|     // We want the inliner to prune the code as it copies.  We would LOVE to
 | |
|     // have no dead or constant instructions leftover after inlining occurs
 | |
|     // (which can happen, e.g., because an argument was constant), but we'll be
 | |
|     // happy with whatever the cloner can do.
 | |
|     CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
 | |
|                               /*ModuleLevelChanges=*/false, Returns, ".i",
 | |
|                               &InlinedFunctionInfo, TheCall);
 | |
| 
 | |
|     // Remember the first block that is newly cloned over.
 | |
|     FirstNewBlock = LastBlock; ++FirstNewBlock;
 | |
| 
 | |
|     // Inject byval arguments initialization.
 | |
|     for (std::pair<Value*, Value*> &Init : ByValInit)
 | |
|       HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(),
 | |
|                               FirstNewBlock, IFI);
 | |
| 
 | |
|     // Update the callgraph if requested.
 | |
|     if (IFI.CG)
 | |
|       UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
 | |
| 
 | |
|     // Update inlined instructions' line number information.
 | |
|     fixupLineNumbers(Caller, FirstNewBlock, TheCall);
 | |
| 
 | |
|     // Clone existing noalias metadata if necessary.
 | |
|     CloneAliasScopeMetadata(CS, VMap);
 | |
| 
 | |
|     // Add noalias metadata if necessary.
 | |
|     AddAliasScopeMetadata(CS, VMap, DL, IFI.AA);
 | |
| 
 | |
|     // FIXME: We could register any cloned assumptions instead of clearing the
 | |
|     // whole function's cache.
 | |
|     if (IFI.ACT)
 | |
|       IFI.ACT->getAssumptionCache(*Caller).clear();
 | |
|   }
 | |
| 
 | |
|   // If there are any alloca instructions in the block that used to be the entry
 | |
|   // block for the callee, move them to the entry block of the caller.  First
 | |
|   // calculate which instruction they should be inserted before.  We insert the
 | |
|   // instructions at the end of the current alloca list.
 | |
|   {
 | |
|     BasicBlock::iterator InsertPoint = Caller->begin()->begin();
 | |
|     for (BasicBlock::iterator I = FirstNewBlock->begin(),
 | |
|          E = FirstNewBlock->end(); I != E; ) {
 | |
|       AllocaInst *AI = dyn_cast<AllocaInst>(I++);
 | |
|       if (!AI) continue;
 | |
|       
 | |
|       // If the alloca is now dead, remove it.  This often occurs due to code
 | |
|       // specialization.
 | |
|       if (AI->use_empty()) {
 | |
|         AI->eraseFromParent();
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if (!isa<Constant>(AI->getArraySize()))
 | |
|         continue;
 | |
|       
 | |
|       // Keep track of the static allocas that we inline into the caller.
 | |
|       IFI.StaticAllocas.push_back(AI);
 | |
|       
 | |
|       // Scan for the block of allocas that we can move over, and move them
 | |
|       // all at once.
 | |
|       while (isa<AllocaInst>(I) &&
 | |
|              isa<Constant>(cast<AllocaInst>(I)->getArraySize())) {
 | |
|         IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
 | |
|         ++I;
 | |
|       }
 | |
| 
 | |
|       // Transfer all of the allocas over in a block.  Using splice means
 | |
|       // that the instructions aren't removed from the symbol table, then
 | |
|       // reinserted.
 | |
|       Caller->getEntryBlock().getInstList().splice(InsertPoint,
 | |
|                                                    FirstNewBlock->getInstList(),
 | |
|                                                    AI, I);
 | |
|     }
 | |
|     // Move any dbg.declares describing the allocas into the entry basic block.
 | |
|     DIBuilder DIB(*Caller->getParent());
 | |
|     for (auto &AI : IFI.StaticAllocas)
 | |
|       replaceDbgDeclareForAlloca(AI, AI, DIB, /*Deref=*/false);
 | |
|   }
 | |
| 
 | |
|   bool InlinedMustTailCalls = false;
 | |
|   if (InlinedFunctionInfo.ContainsCalls) {
 | |
|     CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None;
 | |
|     if (CallInst *CI = dyn_cast<CallInst>(TheCall))
 | |
|       CallSiteTailKind = CI->getTailCallKind();
 | |
| 
 | |
|     for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E;
 | |
|          ++BB) {
 | |
|       for (Instruction &I : *BB) {
 | |
|         CallInst *CI = dyn_cast<CallInst>(&I);
 | |
|         if (!CI)
 | |
|           continue;
 | |
| 
 | |
|         // We need to reduce the strength of any inlined tail calls.  For
 | |
|         // musttail, we have to avoid introducing potential unbounded stack
 | |
|         // growth.  For example, if functions 'f' and 'g' are mutually recursive
 | |
|         // with musttail, we can inline 'g' into 'f' so long as we preserve
 | |
|         // musttail on the cloned call to 'f'.  If either the inlined call site
 | |
|         // or the cloned call site is *not* musttail, the program already has
 | |
|         // one frame of stack growth, so it's safe to remove musttail.  Here is
 | |
|         // a table of example transformations:
 | |
|         //
 | |
|         //    f -> musttail g -> musttail f  ==>  f -> musttail f
 | |
|         //    f -> musttail g ->     tail f  ==>  f ->     tail f
 | |
|         //    f ->          g -> musttail f  ==>  f ->          f
 | |
|         //    f ->          g ->     tail f  ==>  f ->          f
 | |
|         CallInst::TailCallKind ChildTCK = CI->getTailCallKind();
 | |
|         ChildTCK = std::min(CallSiteTailKind, ChildTCK);
 | |
|         CI->setTailCallKind(ChildTCK);
 | |
|         InlinedMustTailCalls |= CI->isMustTailCall();
 | |
| 
 | |
|         // Calls inlined through a 'nounwind' call site should be marked
 | |
|         // 'nounwind'.
 | |
|         if (MarkNoUnwind)
 | |
|           CI->setDoesNotThrow();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Leave lifetime markers for the static alloca's, scoping them to the
 | |
|   // function we just inlined.
 | |
|   if (InsertLifetime && !IFI.StaticAllocas.empty()) {
 | |
|     IRBuilder<> builder(FirstNewBlock->begin());
 | |
|     for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
 | |
|       AllocaInst *AI = IFI.StaticAllocas[ai];
 | |
| 
 | |
|       // If the alloca is already scoped to something smaller than the whole
 | |
|       // function then there's no need to add redundant, less accurate markers.
 | |
|       if (hasLifetimeMarkers(AI))
 | |
|         continue;
 | |
| 
 | |
|       // Try to determine the size of the allocation.
 | |
|       ConstantInt *AllocaSize = nullptr;
 | |
|       if (ConstantInt *AIArraySize =
 | |
|           dyn_cast<ConstantInt>(AI->getArraySize())) {
 | |
|         auto &DL = Caller->getParent()->getDataLayout();
 | |
|         Type *AllocaType = AI->getAllocatedType();
 | |
|         uint64_t AllocaTypeSize = DL.getTypeAllocSize(AllocaType);
 | |
|         uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
 | |
| 
 | |
|         // Don't add markers for zero-sized allocas.
 | |
|         if (AllocaArraySize == 0)
 | |
|           continue;
 | |
| 
 | |
|         // Check that array size doesn't saturate uint64_t and doesn't
 | |
|         // overflow when it's multiplied by type size.
 | |
|         if (AllocaArraySize != ~0ULL &&
 | |
|             UINT64_MAX / AllocaArraySize >= AllocaTypeSize) {
 | |
|           AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
 | |
|                                         AllocaArraySize * AllocaTypeSize);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       builder.CreateLifetimeStart(AI, AllocaSize);
 | |
|       for (ReturnInst *RI : Returns) {
 | |
|         // Don't insert llvm.lifetime.end calls between a musttail call and a
 | |
|         // return.  The return kills all local allocas.
 | |
|         if (InlinedMustTailCalls &&
 | |
|             RI->getParent()->getTerminatingMustTailCall())
 | |
|           continue;
 | |
|         IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the inlined code contained dynamic alloca instructions, wrap the inlined
 | |
|   // code with llvm.stacksave/llvm.stackrestore intrinsics.
 | |
|   if (InlinedFunctionInfo.ContainsDynamicAllocas) {
 | |
|     Module *M = Caller->getParent();
 | |
|     // Get the two intrinsics we care about.
 | |
|     Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
 | |
|     Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
 | |
| 
 | |
|     // Insert the llvm.stacksave.
 | |
|     CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin())
 | |
|       .CreateCall(StackSave, "savedstack");
 | |
| 
 | |
|     // Insert a call to llvm.stackrestore before any return instructions in the
 | |
|     // inlined function.
 | |
|     for (ReturnInst *RI : Returns) {
 | |
|       // Don't insert llvm.stackrestore calls between a musttail call and a
 | |
|       // return.  The return will restore the stack pointer.
 | |
|       if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall())
 | |
|         continue;
 | |
|       IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we are inlining for an invoke instruction, we must make sure to rewrite
 | |
|   // any call instructions into invoke instructions.
 | |
|   if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
 | |
|     HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
 | |
| 
 | |
|   // Handle any inlined musttail call sites.  In order for a new call site to be
 | |
|   // musttail, the source of the clone and the inlined call site must have been
 | |
|   // musttail.  Therefore it's safe to return without merging control into the
 | |
|   // phi below.
 | |
|   if (InlinedMustTailCalls) {
 | |
|     // Check if we need to bitcast the result of any musttail calls.
 | |
|     Type *NewRetTy = Caller->getReturnType();
 | |
|     bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy;
 | |
| 
 | |
|     // Handle the returns preceded by musttail calls separately.
 | |
|     SmallVector<ReturnInst *, 8> NormalReturns;
 | |
|     for (ReturnInst *RI : Returns) {
 | |
|       CallInst *ReturnedMustTail =
 | |
|           RI->getParent()->getTerminatingMustTailCall();
 | |
|       if (!ReturnedMustTail) {
 | |
|         NormalReturns.push_back(RI);
 | |
|         continue;
 | |
|       }
 | |
|       if (!NeedBitCast)
 | |
|         continue;
 | |
| 
 | |
|       // Delete the old return and any preceding bitcast.
 | |
|       BasicBlock *CurBB = RI->getParent();
 | |
|       auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue());
 | |
|       RI->eraseFromParent();
 | |
|       if (OldCast)
 | |
|         OldCast->eraseFromParent();
 | |
| 
 | |
|       // Insert a new bitcast and return with the right type.
 | |
|       IRBuilder<> Builder(CurBB);
 | |
|       Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy));
 | |
|     }
 | |
| 
 | |
|     // Leave behind the normal returns so we can merge control flow.
 | |
|     std::swap(Returns, NormalReturns);
 | |
|   }
 | |
| 
 | |
|   // If we cloned in _exactly one_ basic block, and if that block ends in a
 | |
|   // return instruction, we splice the body of the inlined callee directly into
 | |
|   // the calling basic block.
 | |
|   if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
 | |
|     // Move all of the instructions right before the call.
 | |
|     OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
 | |
|                                  FirstNewBlock->begin(), FirstNewBlock->end());
 | |
|     // Remove the cloned basic block.
 | |
|     Caller->getBasicBlockList().pop_back();
 | |
| 
 | |
|     // If the call site was an invoke instruction, add a branch to the normal
 | |
|     // destination.
 | |
|     if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
 | |
|       BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
 | |
|       NewBr->setDebugLoc(Returns[0]->getDebugLoc());
 | |
|     }
 | |
| 
 | |
|     // If the return instruction returned a value, replace uses of the call with
 | |
|     // uses of the returned value.
 | |
|     if (!TheCall->use_empty()) {
 | |
|       ReturnInst *R = Returns[0];
 | |
|       if (TheCall == R->getReturnValue())
 | |
|         TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
 | |
|       else
 | |
|         TheCall->replaceAllUsesWith(R->getReturnValue());
 | |
|     }
 | |
|     // Since we are now done with the Call/Invoke, we can delete it.
 | |
|     TheCall->eraseFromParent();
 | |
| 
 | |
|     // Since we are now done with the return instruction, delete it also.
 | |
|     Returns[0]->eraseFromParent();
 | |
| 
 | |
|     // We are now done with the inlining.
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we have the normal case, of more than one block to inline or
 | |
|   // multiple return sites.
 | |
| 
 | |
|   // We want to clone the entire callee function into the hole between the
 | |
|   // "starter" and "ender" blocks.  How we accomplish this depends on whether
 | |
|   // this is an invoke instruction or a call instruction.
 | |
|   BasicBlock *AfterCallBB;
 | |
|   BranchInst *CreatedBranchToNormalDest = nullptr;
 | |
|   if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
 | |
| 
 | |
|     // Add an unconditional branch to make this look like the CallInst case...
 | |
|     CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall);
 | |
| 
 | |
|     // Split the basic block.  This guarantees that no PHI nodes will have to be
 | |
|     // updated due to new incoming edges, and make the invoke case more
 | |
|     // symmetric to the call case.
 | |
|     AfterCallBB = OrigBB->splitBasicBlock(CreatedBranchToNormalDest,
 | |
|                                           CalledFunc->getName()+".exit");
 | |
| 
 | |
|   } else {  // It's a call
 | |
|     // If this is a call instruction, we need to split the basic block that
 | |
|     // the call lives in.
 | |
|     //
 | |
|     AfterCallBB = OrigBB->splitBasicBlock(TheCall,
 | |
|                                           CalledFunc->getName()+".exit");
 | |
|   }
 | |
| 
 | |
|   // Change the branch that used to go to AfterCallBB to branch to the first
 | |
|   // basic block of the inlined function.
 | |
|   //
 | |
|   TerminatorInst *Br = OrigBB->getTerminator();
 | |
|   assert(Br && Br->getOpcode() == Instruction::Br &&
 | |
|          "splitBasicBlock broken!");
 | |
|   Br->setOperand(0, FirstNewBlock);
 | |
| 
 | |
| 
 | |
|   // Now that the function is correct, make it a little bit nicer.  In
 | |
|   // particular, move the basic blocks inserted from the end of the function
 | |
|   // into the space made by splitting the source basic block.
 | |
|   Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
 | |
|                                      FirstNewBlock, Caller->end());
 | |
| 
 | |
|   // Handle all of the return instructions that we just cloned in, and eliminate
 | |
|   // any users of the original call/invoke instruction.
 | |
|   Type *RTy = CalledFunc->getReturnType();
 | |
| 
 | |
|   PHINode *PHI = nullptr;
 | |
|   if (Returns.size() > 1) {
 | |
|     // The PHI node should go at the front of the new basic block to merge all
 | |
|     // possible incoming values.
 | |
|     if (!TheCall->use_empty()) {
 | |
|       PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
 | |
|                             AfterCallBB->begin());
 | |
|       // Anything that used the result of the function call should now use the
 | |
|       // PHI node as their operand.
 | |
|       TheCall->replaceAllUsesWith(PHI);
 | |
|     }
 | |
| 
 | |
|     // Loop over all of the return instructions adding entries to the PHI node
 | |
|     // as appropriate.
 | |
|     if (PHI) {
 | |
|       for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
 | |
|         ReturnInst *RI = Returns[i];
 | |
|         assert(RI->getReturnValue()->getType() == PHI->getType() &&
 | |
|                "Ret value not consistent in function!");
 | |
|         PHI->addIncoming(RI->getReturnValue(), RI->getParent());
 | |
|       }
 | |
|     }
 | |
| 
 | |
| 
 | |
|     // Add a branch to the merge points and remove return instructions.
 | |
|     DebugLoc Loc;
 | |
|     for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
 | |
|       ReturnInst *RI = Returns[i];
 | |
|       BranchInst* BI = BranchInst::Create(AfterCallBB, RI);
 | |
|       Loc = RI->getDebugLoc();
 | |
|       BI->setDebugLoc(Loc);
 | |
|       RI->eraseFromParent();
 | |
|     }
 | |
|     // We need to set the debug location to *somewhere* inside the
 | |
|     // inlined function. The line number may be nonsensical, but the
 | |
|     // instruction will at least be associated with the right
 | |
|     // function.
 | |
|     if (CreatedBranchToNormalDest)
 | |
|       CreatedBranchToNormalDest->setDebugLoc(Loc);
 | |
|   } else if (!Returns.empty()) {
 | |
|     // Otherwise, if there is exactly one return value, just replace anything
 | |
|     // using the return value of the call with the computed value.
 | |
|     if (!TheCall->use_empty()) {
 | |
|       if (TheCall == Returns[0]->getReturnValue())
 | |
|         TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
 | |
|       else
 | |
|         TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
 | |
|     }
 | |
| 
 | |
|     // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
 | |
|     BasicBlock *ReturnBB = Returns[0]->getParent();
 | |
|     ReturnBB->replaceAllUsesWith(AfterCallBB);
 | |
| 
 | |
|     // Splice the code from the return block into the block that it will return
 | |
|     // to, which contains the code that was after the call.
 | |
|     AfterCallBB->getInstList().splice(AfterCallBB->begin(),
 | |
|                                       ReturnBB->getInstList());
 | |
| 
 | |
|     if (CreatedBranchToNormalDest)
 | |
|       CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc());
 | |
| 
 | |
|     // Delete the return instruction now and empty ReturnBB now.
 | |
|     Returns[0]->eraseFromParent();
 | |
|     ReturnBB->eraseFromParent();
 | |
|   } else if (!TheCall->use_empty()) {
 | |
|     // No returns, but something is using the return value of the call.  Just
 | |
|     // nuke the result.
 | |
|     TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
 | |
|   }
 | |
| 
 | |
|   // Since we are now done with the Call/Invoke, we can delete it.
 | |
|   TheCall->eraseFromParent();
 | |
| 
 | |
|   // If we inlined any musttail calls and the original return is now
 | |
|   // unreachable, delete it.  It can only contain a bitcast and ret.
 | |
|   if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB))
 | |
|     AfterCallBB->eraseFromParent();
 | |
| 
 | |
|   // We should always be able to fold the entry block of the function into the
 | |
|   // single predecessor of the block...
 | |
|   assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
 | |
|   BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
 | |
| 
 | |
|   // Splice the code entry block into calling block, right before the
 | |
|   // unconditional branch.
 | |
|   CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
 | |
|   OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
 | |
| 
 | |
|   // Remove the unconditional branch.
 | |
|   OrigBB->getInstList().erase(Br);
 | |
| 
 | |
|   // Now we can remove the CalleeEntry block, which is now empty.
 | |
|   Caller->getBasicBlockList().erase(CalleeEntry);
 | |
| 
 | |
|   // If we inserted a phi node, check to see if it has a single value (e.g. all
 | |
|   // the entries are the same or undef).  If so, remove the PHI so it doesn't
 | |
|   // block other optimizations.
 | |
|   if (PHI) {
 | |
|     auto &DL = Caller->getParent()->getDataLayout();
 | |
|     if (Value *V = SimplifyInstruction(PHI, DL, nullptr, nullptr,
 | |
|                                        &IFI.ACT->getAssumptionCache(*Caller))) {
 | |
|       PHI->replaceAllUsesWith(V);
 | |
|       PHI->eraseFromParent();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 |