mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	Summary: Runtime unrolling of loops needs to emit an expression to compute the loop's runtime trip-count. Avoid runtime unrolling if this computation will be expensive. Depends on D8993. Reviewers: atrick Subscribers: llvm-commits Differential Revision: http://reviews.llvm.org/D8994 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234846 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			423 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			423 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements some loop unrolling utilities for loops with run-time
 | |
| // trip counts.  See LoopUnroll.cpp for unrolling loops with compile-time
 | |
| // trip counts.
 | |
| //
 | |
| // The functions in this file are used to generate extra code when the
 | |
| // run-time trip count modulo the unroll factor is not 0.  When this is the
 | |
| // case, we need to generate code to execute these 'left over' iterations.
 | |
| //
 | |
| // The current strategy generates an if-then-else sequence prior to the
 | |
| // unrolled loop to execute the 'left over' iterations.  Other strategies
 | |
| // include generate a loop before or after the unrolled loop.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Utils/UnrollLoop.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/LoopIterator.h"
 | |
| #include "llvm/Analysis/LoopPass.h"
 | |
| #include "llvm/Analysis/ScalarEvolution.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpander.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Metadata.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/Cloning.h"
 | |
| #include <algorithm>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "loop-unroll"
 | |
| 
 | |
| STATISTIC(NumRuntimeUnrolled,
 | |
|           "Number of loops unrolled with run-time trip counts");
 | |
| 
 | |
| /// Connect the unrolling prolog code to the original loop.
 | |
| /// The unrolling prolog code contains code to execute the
 | |
| /// 'extra' iterations if the run-time trip count modulo the
 | |
| /// unroll count is non-zero.
 | |
| ///
 | |
| /// This function performs the following:
 | |
| /// - Create PHI nodes at prolog end block to combine values
 | |
| ///   that exit the prolog code and jump around the prolog.
 | |
| /// - Add a PHI operand to a PHI node at the loop exit block
 | |
| ///   for values that exit the prolog and go around the loop.
 | |
| /// - Branch around the original loop if the trip count is less
 | |
| ///   than the unroll factor.
 | |
| ///
 | |
| static void ConnectProlog(Loop *L, Value *BECount, unsigned Count,
 | |
|                           BasicBlock *LastPrologBB, BasicBlock *PrologEnd,
 | |
|                           BasicBlock *OrigPH, BasicBlock *NewPH,
 | |
|                           ValueToValueMapTy &VMap, AliasAnalysis *AA,
 | |
|                           DominatorTree *DT, LoopInfo *LI, Pass *P) {
 | |
|   BasicBlock *Latch = L->getLoopLatch();
 | |
|   assert(Latch && "Loop must have a latch");
 | |
| 
 | |
|   // Create a PHI node for each outgoing value from the original loop
 | |
|   // (which means it is an outgoing value from the prolog code too).
 | |
|   // The new PHI node is inserted in the prolog end basic block.
 | |
|   // The new PHI name is added as an operand of a PHI node in either
 | |
|   // the loop header or the loop exit block.
 | |
|   for (succ_iterator SBI = succ_begin(Latch), SBE = succ_end(Latch);
 | |
|        SBI != SBE; ++SBI) {
 | |
|     for (BasicBlock::iterator BBI = (*SBI)->begin();
 | |
|          PHINode *PN = dyn_cast<PHINode>(BBI); ++BBI) {
 | |
| 
 | |
|       // Add a new PHI node to the prolog end block and add the
 | |
|       // appropriate incoming values.
 | |
|       PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName()+".unr",
 | |
|                                        PrologEnd->getTerminator());
 | |
|       // Adding a value to the new PHI node from the original loop preheader.
 | |
|       // This is the value that skips all the prolog code.
 | |
|       if (L->contains(PN)) {
 | |
|         NewPN->addIncoming(PN->getIncomingValueForBlock(NewPH), OrigPH);
 | |
|       } else {
 | |
|         NewPN->addIncoming(Constant::getNullValue(PN->getType()), OrigPH);
 | |
|       }
 | |
| 
 | |
|       Value *V = PN->getIncomingValueForBlock(Latch);
 | |
|       if (Instruction *I = dyn_cast<Instruction>(V)) {
 | |
|         if (L->contains(I)) {
 | |
|           V = VMap[I];
 | |
|         }
 | |
|       }
 | |
|       // Adding a value to the new PHI node from the last prolog block
 | |
|       // that was created.
 | |
|       NewPN->addIncoming(V, LastPrologBB);
 | |
| 
 | |
|       // Update the existing PHI node operand with the value from the
 | |
|       // new PHI node.  How this is done depends on if the existing
 | |
|       // PHI node is in the original loop block, or the exit block.
 | |
|       if (L->contains(PN)) {
 | |
|         PN->setIncomingValue(PN->getBasicBlockIndex(NewPH), NewPN);
 | |
|       } else {
 | |
|         PN->addIncoming(NewPN, PrologEnd);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Create a branch around the orignal loop, which is taken if there are no
 | |
|   // iterations remaining to be executed after running the prologue.
 | |
|   Instruction *InsertPt = PrologEnd->getTerminator();
 | |
| 
 | |
|   assert(Count != 0 && "nonsensical Count!");
 | |
| 
 | |
|   // If BECount <u (Count - 1) then (BECount + 1) & (Count - 1) == (BECount + 1)
 | |
|   // (since Count is a power of 2).  This means %xtraiter is (BECount + 1) and
 | |
|   // and all of the iterations of this loop were executed by the prologue.  Note
 | |
|   // that if BECount <u (Count - 1) then (BECount + 1) cannot unsigned-overflow.
 | |
|   Instruction *BrLoopExit =
 | |
|     new ICmpInst(InsertPt, ICmpInst::ICMP_ULT, BECount,
 | |
|                  ConstantInt::get(BECount->getType(), Count - 1));
 | |
|   BasicBlock *Exit = L->getUniqueExitBlock();
 | |
|   assert(Exit && "Loop must have a single exit block only");
 | |
|   // Split the exit to maintain loop canonicalization guarantees
 | |
|   SmallVector<BasicBlock*, 4> Preds(pred_begin(Exit), pred_end(Exit));
 | |
|   SplitBlockPredecessors(Exit, Preds, ".unr-lcssa", AA, DT, LI,
 | |
|                          P->mustPreserveAnalysisID(LCSSAID));
 | |
|   // Add the branch to the exit block (around the unrolled loop)
 | |
|   BranchInst::Create(Exit, NewPH, BrLoopExit, InsertPt);
 | |
|   InsertPt->eraseFromParent();
 | |
| }
 | |
| 
 | |
| /// Create a clone of the blocks in a loop and connect them together.
 | |
| /// If UnrollProlog is true, loop structure will not be cloned, otherwise a new
 | |
| /// loop will be created including all cloned blocks, and the iterator of it
 | |
| /// switches to count NewIter down to 0.
 | |
| ///
 | |
| static void CloneLoopBlocks(Loop *L, Value *NewIter, const bool UnrollProlog,
 | |
|                             BasicBlock *InsertTop, BasicBlock *InsertBot,
 | |
|                             std::vector<BasicBlock *> &NewBlocks,
 | |
|                             LoopBlocksDFS &LoopBlocks, ValueToValueMapTy &VMap,
 | |
|                             LoopInfo *LI) {
 | |
|   BasicBlock *Preheader = L->getLoopPreheader();
 | |
|   BasicBlock *Header = L->getHeader();
 | |
|   BasicBlock *Latch = L->getLoopLatch();
 | |
|   Function *F = Header->getParent();
 | |
|   LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
 | |
|   LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
 | |
|   Loop *NewLoop = 0;
 | |
|   Loop *ParentLoop = L->getParentLoop();
 | |
|   if (!UnrollProlog) {
 | |
|     NewLoop = new Loop();
 | |
|     if (ParentLoop)
 | |
|       ParentLoop->addChildLoop(NewLoop);
 | |
|     else
 | |
|       LI->addTopLevelLoop(NewLoop);
 | |
|   }
 | |
| 
 | |
|   // For each block in the original loop, create a new copy,
 | |
|   // and update the value map with the newly created values.
 | |
|   for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
 | |
|     BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".prol", F);
 | |
|     NewBlocks.push_back(NewBB);
 | |
| 
 | |
|     if (NewLoop)
 | |
|       NewLoop->addBasicBlockToLoop(NewBB, *LI);
 | |
|     else if (ParentLoop)
 | |
|       ParentLoop->addBasicBlockToLoop(NewBB, *LI);
 | |
| 
 | |
|     VMap[*BB] = NewBB;
 | |
|     if (Header == *BB) {
 | |
|       // For the first block, add a CFG connection to this newly
 | |
|       // created block.
 | |
|       InsertTop->getTerminator()->setSuccessor(0, NewBB);
 | |
| 
 | |
|     }
 | |
|     if (Latch == *BB) {
 | |
|       // For the last block, if UnrollProlog is true, create a direct jump to
 | |
|       // InsertBot. If not, create a loop back to cloned head.
 | |
|       VMap.erase((*BB)->getTerminator());
 | |
|       BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]);
 | |
|       BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator());
 | |
|       if (UnrollProlog) {
 | |
|         LatchBR->eraseFromParent();
 | |
|         BranchInst::Create(InsertBot, NewBB);
 | |
|       } else {
 | |
|         PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2, "prol.iter",
 | |
|                                           FirstLoopBB->getFirstNonPHI());
 | |
|         IRBuilder<> Builder(LatchBR);
 | |
|         Value *IdxSub =
 | |
|             Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
 | |
|                               NewIdx->getName() + ".sub");
 | |
|         Value *IdxCmp =
 | |
|             Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp");
 | |
|         BranchInst::Create(FirstLoopBB, InsertBot, IdxCmp, NewBB);
 | |
|         NewIdx->addIncoming(NewIter, InsertTop);
 | |
|         NewIdx->addIncoming(IdxSub, NewBB);
 | |
|         LatchBR->eraseFromParent();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Change the incoming values to the ones defined in the preheader or
 | |
|   // cloned loop.
 | |
|   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
 | |
|     PHINode *NewPHI = cast<PHINode>(VMap[I]);
 | |
|     if (UnrollProlog) {
 | |
|       VMap[I] = NewPHI->getIncomingValueForBlock(Preheader);
 | |
|       cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI);
 | |
|     } else {
 | |
|       unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
 | |
|       NewPHI->setIncomingBlock(idx, InsertTop);
 | |
|       BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
 | |
|       idx = NewPHI->getBasicBlockIndex(Latch);
 | |
|       Value *InVal = NewPHI->getIncomingValue(idx);
 | |
|       NewPHI->setIncomingBlock(idx, NewLatch);
 | |
|       if (VMap[InVal])
 | |
|         NewPHI->setIncomingValue(idx, VMap[InVal]);
 | |
|     }
 | |
|   }
 | |
|   if (NewLoop) {
 | |
|     // Add unroll disable metadata to disable future unrolling for this loop.
 | |
|     SmallVector<Metadata *, 4> MDs;
 | |
|     // Reserve first location for self reference to the LoopID metadata node.
 | |
|     MDs.push_back(nullptr);
 | |
|     MDNode *LoopID = NewLoop->getLoopID();
 | |
|     if (LoopID) {
 | |
|       // First remove any existing loop unrolling metadata.
 | |
|       for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
 | |
|         bool IsUnrollMetadata = false;
 | |
|         MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
 | |
|         if (MD) {
 | |
|           const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
 | |
|           IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll.");
 | |
|         }
 | |
|         if (!IsUnrollMetadata)
 | |
|           MDs.push_back(LoopID->getOperand(i));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     LLVMContext &Context = NewLoop->getHeader()->getContext();
 | |
|     SmallVector<Metadata *, 1> DisableOperands;
 | |
|     DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable"));
 | |
|     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
 | |
|     MDs.push_back(DisableNode);
 | |
| 
 | |
|     MDNode *NewLoopID = MDNode::get(Context, MDs);
 | |
|     // Set operand 0 to refer to the loop id itself.
 | |
|     NewLoopID->replaceOperandWith(0, NewLoopID);
 | |
|     NewLoop->setLoopID(NewLoopID);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Insert code in the prolog code when unrolling a loop with a
 | |
| /// run-time trip-count.
 | |
| ///
 | |
| /// This method assumes that the loop unroll factor is total number
 | |
| /// of loop bodes in the loop after unrolling. (Some folks refer
 | |
| /// to the unroll factor as the number of *extra* copies added).
 | |
| /// We assume also that the loop unroll factor is a power-of-two. So, after
 | |
| /// unrolling the loop, the number of loop bodies executed is 2,
 | |
| /// 4, 8, etc.  Note - LLVM converts the if-then-sequence to a switch
 | |
| /// instruction in SimplifyCFG.cpp.  Then, the backend decides how code for
 | |
| /// the switch instruction is generated.
 | |
| ///
 | |
| ///        extraiters = tripcount % loopfactor
 | |
| ///        if (extraiters == 0) jump Loop:
 | |
| ///        else jump Prol
 | |
| /// Prol:  LoopBody;
 | |
| ///        extraiters -= 1                 // Omitted if unroll factor is 2.
 | |
| ///        if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
 | |
| ///        if (tripcount < loopfactor) jump End
 | |
| /// Loop:
 | |
| /// ...
 | |
| /// End:
 | |
| ///
 | |
| bool llvm::UnrollRuntimeLoopProlog(Loop *L, unsigned Count,
 | |
|                                    bool AllowExpensiveTripCount, LoopInfo *LI,
 | |
|                                    LPPassManager *LPM) {
 | |
|   // for now, only unroll loops that contain a single exit
 | |
|   if (!L->getExitingBlock())
 | |
|     return false;
 | |
| 
 | |
|   // Make sure the loop is in canonical form, and there is a single
 | |
|   // exit block only.
 | |
|   if (!L->isLoopSimplifyForm() || !L->getUniqueExitBlock())
 | |
|     return false;
 | |
| 
 | |
|   // Use Scalar Evolution to compute the trip count.  This allows more
 | |
|   // loops to be unrolled than relying on induction var simplification
 | |
|   if (!LPM)
 | |
|     return false;
 | |
|   ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>();
 | |
|   if (!SE)
 | |
|     return false;
 | |
| 
 | |
|   // Only unroll loops with a computable trip count and the trip count needs
 | |
|   // to be an int value (allowing a pointer type is a TODO item)
 | |
|   const SCEV *BECountSC = SE->getBackedgeTakenCount(L);
 | |
|   if (isa<SCEVCouldNotCompute>(BECountSC) ||
 | |
|       !BECountSC->getType()->isIntegerTy())
 | |
|     return false;
 | |
| 
 | |
|   unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth();
 | |
| 
 | |
|   // Add 1 since the backedge count doesn't include the first loop iteration
 | |
|   const SCEV *TripCountSC =
 | |
|     SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1));
 | |
|   if (isa<SCEVCouldNotCompute>(TripCountSC))
 | |
|     return false;
 | |
| 
 | |
|   BasicBlock *Header = L->getHeader();
 | |
|   const DataLayout &DL = Header->getModule()->getDataLayout();
 | |
|   SCEVExpander Expander(*SE, DL, "loop-unroll");
 | |
|   if (!AllowExpensiveTripCount && Expander.isHighCostExpansion(TripCountSC, L))
 | |
|     return false;
 | |
| 
 | |
|   // We only handle cases when the unroll factor is a power of 2.
 | |
|   // Count is the loop unroll factor, the number of extra copies added + 1.
 | |
|   if (!isPowerOf2_32(Count))
 | |
|     return false;
 | |
| 
 | |
|   // This constraint lets us deal with an overflowing trip count easily; see the
 | |
|   // comment on ModVal below.
 | |
|   if (Log2_32(Count) > BEWidth)
 | |
|     return false;
 | |
| 
 | |
|   // If this loop is nested, then the loop unroller changes the code in
 | |
|   // parent loop, so the Scalar Evolution pass needs to be run again
 | |
|   if (Loop *ParentLoop = L->getParentLoop())
 | |
|     SE->forgetLoop(ParentLoop);
 | |
| 
 | |
|   // Grab analyses that we preserve.
 | |
|   auto *DTWP = LPM->getAnalysisIfAvailable<DominatorTreeWrapperPass>();
 | |
|   auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
 | |
| 
 | |
|   BasicBlock *PH = L->getLoopPreheader();
 | |
|   BasicBlock *Latch = L->getLoopLatch();
 | |
|   // It helps to splits the original preheader twice, one for the end of the
 | |
|   // prolog code and one for a new loop preheader
 | |
|   BasicBlock *PEnd = SplitEdge(PH, Header, DT, LI);
 | |
|   BasicBlock *NewPH = SplitBlock(PEnd, PEnd->getTerminator(), DT, LI);
 | |
|   BranchInst *PreHeaderBR = cast<BranchInst>(PH->getTerminator());
 | |
| 
 | |
|   // Compute the number of extra iterations required, which is:
 | |
|   //  extra iterations = run-time trip count % (loop unroll factor + 1)
 | |
|   Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
 | |
|                                             PreHeaderBR);
 | |
|   Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(),
 | |
|                                           PreHeaderBR);
 | |
| 
 | |
|   IRBuilder<> B(PreHeaderBR);
 | |
|   Value *ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter");
 | |
| 
 | |
|   // If ModVal is zero, we know that either
 | |
|   //  1. there are no iteration to be run in the prologue loop
 | |
|   // OR
 | |
|   //  2. the addition computing TripCount overflowed
 | |
|   //
 | |
|   // If (2) is true, we know that TripCount really is (1 << BEWidth) and so the
 | |
|   // number of iterations that remain to be run in the original loop is a
 | |
|   // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we
 | |
|   // explicitly check this above).
 | |
| 
 | |
|   Value *BranchVal = B.CreateIsNotNull(ModVal, "lcmp.mod");
 | |
| 
 | |
|   // Branch to either the extra iterations or the cloned/unrolled loop
 | |
|   // We will fix up the true branch label when adding loop body copies
 | |
|   BranchInst::Create(PEnd, PEnd, BranchVal, PreHeaderBR);
 | |
|   assert(PreHeaderBR->isUnconditional() &&
 | |
|          PreHeaderBR->getSuccessor(0) == PEnd &&
 | |
|          "CFG edges in Preheader are not correct");
 | |
|   PreHeaderBR->eraseFromParent();
 | |
|   Function *F = Header->getParent();
 | |
|   // Get an ordered list of blocks in the loop to help with the ordering of the
 | |
|   // cloned blocks in the prolog code
 | |
|   LoopBlocksDFS LoopBlocks(L);
 | |
|   LoopBlocks.perform(LI);
 | |
| 
 | |
|   //
 | |
|   // For each extra loop iteration, create a copy of the loop's basic blocks
 | |
|   // and generate a condition that branches to the copy depending on the
 | |
|   // number of 'left over' iterations.
 | |
|   //
 | |
|   std::vector<BasicBlock *> NewBlocks;
 | |
|   ValueToValueMapTy VMap;
 | |
| 
 | |
|   bool UnrollPrologue = Count == 2;
 | |
| 
 | |
|   // Clone all the basic blocks in the loop. If Count is 2, we don't clone
 | |
|   // the loop, otherwise we create a cloned loop to execute the extra
 | |
|   // iterations. This function adds the appropriate CFG connections.
 | |
|   CloneLoopBlocks(L, ModVal, UnrollPrologue, PH, PEnd, NewBlocks, LoopBlocks,
 | |
|                   VMap, LI);
 | |
| 
 | |
|   // Insert the cloned blocks into function just before the original loop
 | |
|   F->getBasicBlockList().splice(PEnd, F->getBasicBlockList(), NewBlocks[0],
 | |
|                                 F->end());
 | |
| 
 | |
|   // Rewrite the cloned instruction operands to use the values
 | |
|   // created when the clone is created.
 | |
|   for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) {
 | |
|     for (BasicBlock::iterator I = NewBlocks[i]->begin(),
 | |
|                               E = NewBlocks[i]->end();
 | |
|          I != E; ++I) {
 | |
|       RemapInstruction(I, VMap,
 | |
|                        RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Connect the prolog code to the original loop and update the
 | |
|   // PHI functions.
 | |
|   BasicBlock *LastLoopBB = cast<BasicBlock>(VMap[Latch]);
 | |
|   ConnectProlog(L, BECount, Count, LastLoopBB, PEnd, PH, NewPH, VMap,
 | |
|                 /*AliasAnalysis*/ nullptr, DT, LI, LPM->getAsPass());
 | |
|   NumRuntimeUnrolled++;
 | |
|   return true;
 | |
| }
 |