mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	This speeds up simplifycfg on this program, from 44.87s to 0.29s (with
a profiled build):
 #define CL0(a) case a: goto c;
 #define CL1(a) CL0(a##0) CL0(a##1) CL0(a##2) CL0(a##3) CL0(a##4) CL0(a##5) \
 CL0(a##6) CL0(a##7) CL0(a##8) CL0(a##9)
 #define CL2(a) CL1(a##0) CL1(a##1) CL1(a##2) CL1(a##3) CL1(a##4) CL1(a##5) \
 CL1(a##6) CL1(a##7) CL1(a##8) CL1(a##9)
 #define CL3(a) CL2(a##0) CL2(a##1) CL2(a##2) CL2(a##3) CL2(a##4) CL2(a##5) \
 CL2(a##6) CL2(a##7) CL2(a##8) CL2(a##9)
 #define CL4(a) CL3(a##0) CL3(a##1) CL3(a##2) CL3(a##3) CL3(a##4) CL3(a##5) \
 CL3(a##6) CL3(a##7) CL3(a##8) CL3(a##9)
 void f();
 void a() {
     int b;
  c: switch (b) {
         CL4(1)
     }
 }
This testcase is contrived to expose N^2 behavior, but this patch should speedup
simplifycfg on any programs that use large switch statements.  This testcase
comes from GCC PR17895.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@17389 91177308-0d34-0410-b5e6-96231b3b80d8
		
	
		
			
				
	
	
		
			1244 lines
		
	
	
		
			53 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1244 lines
		
	
	
		
			53 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
 | 
						|
// 
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
// 
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Peephole optimize the CFG.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "simplifycfg"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Type.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <functional>
 | 
						|
#include <set>
 | 
						|
#include <map>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
// PropagatePredecessorsForPHIs - This gets "Succ" ready to have the
 | 
						|
// predecessors from "BB".  This is a little tricky because "Succ" has PHI
 | 
						|
// nodes, which need to have extra slots added to them to hold the merge edges
 | 
						|
// from BB's predecessors, and BB itself might have had PHI nodes in it.  This
 | 
						|
// function returns true (failure) if the Succ BB already has a predecessor that
 | 
						|
// is a predecessor of BB and incoming PHI arguments would not be discernible.
 | 
						|
//
 | 
						|
// Assumption: Succ is the single successor for BB.
 | 
						|
//
 | 
						|
static bool PropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
 | 
						|
  assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
 | 
						|
 | 
						|
  if (!isa<PHINode>(Succ->front()))
 | 
						|
    return false;  // We can make the transformation, no problem.
 | 
						|
 | 
						|
  // If there is more than one predecessor, and there are PHI nodes in
 | 
						|
  // the successor, then we need to add incoming edges for the PHI nodes
 | 
						|
  //
 | 
						|
  const std::vector<BasicBlock*> BBPreds(pred_begin(BB), pred_end(BB));
 | 
						|
 | 
						|
  // Check to see if one of the predecessors of BB is already a predecessor of
 | 
						|
  // Succ.  If so, we cannot do the transformation if there are any PHI nodes
 | 
						|
  // with incompatible values coming in from the two edges!
 | 
						|
  //
 | 
						|
  for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ); PI != PE; ++PI)
 | 
						|
    if (std::find(BBPreds.begin(), BBPreds.end(), *PI) != BBPreds.end()) {
 | 
						|
      // Loop over all of the PHI nodes checking to see if there are
 | 
						|
      // incompatible values coming in.
 | 
						|
      for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
 | 
						|
        PHINode *PN = cast<PHINode>(I);
 | 
						|
        // Loop up the entries in the PHI node for BB and for *PI if the values
 | 
						|
        // coming in are non-equal, we cannot merge these two blocks (instead we
 | 
						|
        // should insert a conditional move or something, then merge the
 | 
						|
        // blocks).
 | 
						|
        int Idx1 = PN->getBasicBlockIndex(BB);
 | 
						|
        int Idx2 = PN->getBasicBlockIndex(*PI);
 | 
						|
        assert(Idx1 != -1 && Idx2 != -1 &&
 | 
						|
               "Didn't have entries for my predecessors??");
 | 
						|
        if (PN->getIncomingValue(Idx1) != PN->getIncomingValue(Idx2))
 | 
						|
          return true;  // Values are not equal...
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  // Loop over all of the PHI nodes in the successor BB.
 | 
						|
  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
 | 
						|
    PHINode *PN = cast<PHINode>(I);
 | 
						|
    Value *OldVal = PN->removeIncomingValue(BB, false);
 | 
						|
    assert(OldVal && "No entry in PHI for Pred BB!");
 | 
						|
 | 
						|
    // If this incoming value is one of the PHI nodes in BB, the new entries in
 | 
						|
    // the PHI node are the entries from the old PHI.
 | 
						|
    if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
 | 
						|
      PHINode *OldValPN = cast<PHINode>(OldVal);
 | 
						|
      for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
 | 
						|
        PN->addIncoming(OldValPN->getIncomingValue(i),
 | 
						|
                        OldValPN->getIncomingBlock(i));
 | 
						|
    } else {
 | 
						|
      for (std::vector<BasicBlock*>::const_iterator PredI = BBPreds.begin(), 
 | 
						|
             End = BBPreds.end(); PredI != End; ++PredI) {
 | 
						|
        // Add an incoming value for each of the new incoming values...
 | 
						|
        PN->addIncoming(OldVal, *PredI);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// GetIfCondition - Given a basic block (BB) with two predecessors (and
 | 
						|
/// presumably PHI nodes in it), check to see if the merge at this block is due
 | 
						|
/// to an "if condition".  If so, return the boolean condition that determines
 | 
						|
/// which entry into BB will be taken.  Also, return by references the block
 | 
						|
/// that will be entered from if the condition is true, and the block that will
 | 
						|
/// be entered if the condition is false.
 | 
						|
/// 
 | 
						|
///
 | 
						|
static Value *GetIfCondition(BasicBlock *BB,
 | 
						|
                             BasicBlock *&IfTrue, BasicBlock *&IfFalse) {
 | 
						|
  assert(std::distance(pred_begin(BB), pred_end(BB)) == 2 &&
 | 
						|
         "Function can only handle blocks with 2 predecessors!");
 | 
						|
  BasicBlock *Pred1 = *pred_begin(BB);
 | 
						|
  BasicBlock *Pred2 = *++pred_begin(BB);
 | 
						|
 | 
						|
  // We can only handle branches.  Other control flow will be lowered to
 | 
						|
  // branches if possible anyway.
 | 
						|
  if (!isa<BranchInst>(Pred1->getTerminator()) ||
 | 
						|
      !isa<BranchInst>(Pred2->getTerminator()))
 | 
						|
    return 0;
 | 
						|
  BranchInst *Pred1Br = cast<BranchInst>(Pred1->getTerminator());
 | 
						|
  BranchInst *Pred2Br = cast<BranchInst>(Pred2->getTerminator());
 | 
						|
 | 
						|
  // Eliminate code duplication by ensuring that Pred1Br is conditional if
 | 
						|
  // either are.
 | 
						|
  if (Pred2Br->isConditional()) {
 | 
						|
    // If both branches are conditional, we don't have an "if statement".  In
 | 
						|
    // reality, we could transform this case, but since the condition will be
 | 
						|
    // required anyway, we stand no chance of eliminating it, so the xform is
 | 
						|
    // probably not profitable.
 | 
						|
    if (Pred1Br->isConditional())
 | 
						|
      return 0;
 | 
						|
 | 
						|
    std::swap(Pred1, Pred2);
 | 
						|
    std::swap(Pred1Br, Pred2Br);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Pred1Br->isConditional()) {
 | 
						|
    // If we found a conditional branch predecessor, make sure that it branches
 | 
						|
    // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
 | 
						|
    if (Pred1Br->getSuccessor(0) == BB &&
 | 
						|
        Pred1Br->getSuccessor(1) == Pred2) {
 | 
						|
      IfTrue = Pred1;
 | 
						|
      IfFalse = Pred2;
 | 
						|
    } else if (Pred1Br->getSuccessor(0) == Pred2 &&
 | 
						|
               Pred1Br->getSuccessor(1) == BB) {
 | 
						|
      IfTrue = Pred2;
 | 
						|
      IfFalse = Pred1;
 | 
						|
    } else {
 | 
						|
      // We know that one arm of the conditional goes to BB, so the other must
 | 
						|
      // go somewhere unrelated, and this must not be an "if statement".
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    // The only thing we have to watch out for here is to make sure that Pred2
 | 
						|
    // doesn't have incoming edges from other blocks.  If it does, the condition
 | 
						|
    // doesn't dominate BB.
 | 
						|
    if (++pred_begin(Pred2) != pred_end(Pred2))
 | 
						|
      return 0;
 | 
						|
 | 
						|
    return Pred1Br->getCondition();
 | 
						|
  }
 | 
						|
 | 
						|
  // Ok, if we got here, both predecessors end with an unconditional branch to
 | 
						|
  // BB.  Don't panic!  If both blocks only have a single (identical)
 | 
						|
  // predecessor, and THAT is a conditional branch, then we're all ok!
 | 
						|
  if (pred_begin(Pred1) == pred_end(Pred1) ||
 | 
						|
      ++pred_begin(Pred1) != pred_end(Pred1) ||
 | 
						|
      pred_begin(Pred2) == pred_end(Pred2) ||
 | 
						|
      ++pred_begin(Pred2) != pred_end(Pred2) ||
 | 
						|
      *pred_begin(Pred1) != *pred_begin(Pred2))
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // Otherwise, if this is a conditional branch, then we can use it!
 | 
						|
  BasicBlock *CommonPred = *pred_begin(Pred1);
 | 
						|
  if (BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator())) {
 | 
						|
    assert(BI->isConditional() && "Two successors but not conditional?");
 | 
						|
    if (BI->getSuccessor(0) == Pred1) {
 | 
						|
      IfTrue = Pred1;
 | 
						|
      IfFalse = Pred2;
 | 
						|
    } else {
 | 
						|
      IfTrue = Pred2;
 | 
						|
      IfFalse = Pred1;
 | 
						|
    }
 | 
						|
    return BI->getCondition();
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// If we have a merge point of an "if condition" as accepted above, return true
 | 
						|
// if the specified value dominates the block.  We don't handle the true
 | 
						|
// generality of domination here, just a special case which works well enough
 | 
						|
// for us.
 | 
						|
//
 | 
						|
// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
 | 
						|
// see if V (which must be an instruction) is cheap to compute and is
 | 
						|
// non-trapping.  If both are true, the instruction is inserted into the set and
 | 
						|
// true is returned.
 | 
						|
static bool DominatesMergePoint(Value *V, BasicBlock *BB,
 | 
						|
                                std::set<Instruction*> *AggressiveInsts) {
 | 
						|
  Instruction *I = dyn_cast<Instruction>(V);
 | 
						|
  if (!I) return true;    // Non-instructions all dominate instructions.
 | 
						|
  BasicBlock *PBB = I->getParent();
 | 
						|
 | 
						|
  // We don't want to allow wierd loops that might have the "if condition" in
 | 
						|
  // the bottom of this block.
 | 
						|
  if (PBB == BB) return false;
 | 
						|
 | 
						|
  // If this instruction is defined in a block that contains an unconditional
 | 
						|
  // branch to BB, then it must be in the 'conditional' part of the "if
 | 
						|
  // statement".
 | 
						|
  if (BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()))
 | 
						|
    if (BI->isUnconditional() && BI->getSuccessor(0) == BB) {
 | 
						|
      if (!AggressiveInsts) return false;
 | 
						|
      // Okay, it looks like the instruction IS in the "condition".  Check to
 | 
						|
      // see if its a cheap instruction to unconditionally compute, and if it
 | 
						|
      // only uses stuff defined outside of the condition.  If so, hoist it out.
 | 
						|
      switch (I->getOpcode()) {
 | 
						|
      default: return false;  // Cannot hoist this out safely.
 | 
						|
      case Instruction::Load:
 | 
						|
        // We can hoist loads that are non-volatile and obviously cannot trap.
 | 
						|
        if (cast<LoadInst>(I)->isVolatile())
 | 
						|
          return false;
 | 
						|
        if (!isa<AllocaInst>(I->getOperand(0)) &&
 | 
						|
            !isa<Constant>(I->getOperand(0)))
 | 
						|
          return false;
 | 
						|
 | 
						|
        // Finally, we have to check to make sure there are no instructions
 | 
						|
        // before the load in its basic block, as we are going to hoist the loop
 | 
						|
        // out to its predecessor.
 | 
						|
        if (PBB->begin() != BasicBlock::iterator(I))
 | 
						|
          return false;
 | 
						|
        break;
 | 
						|
      case Instruction::Add:
 | 
						|
      case Instruction::Sub:
 | 
						|
      case Instruction::And:
 | 
						|
      case Instruction::Or:
 | 
						|
      case Instruction::Xor:
 | 
						|
      case Instruction::Shl:
 | 
						|
      case Instruction::Shr:
 | 
						|
        break;   // These are all cheap and non-trapping instructions.
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Okay, we can only really hoist these out if their operands are not
 | 
						|
      // defined in the conditional region.
 | 
						|
      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
 | 
						|
        if (!DominatesMergePoint(I->getOperand(i), BB, 0))
 | 
						|
          return false;
 | 
						|
      // Okay, it's safe to do this!  Remember this instruction.
 | 
						|
      AggressiveInsts->insert(I);
 | 
						|
    }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// GatherConstantSetEQs - Given a potentially 'or'd together collection of seteq
 | 
						|
// instructions that compare a value against a constant, return the value being
 | 
						|
// compared, and stick the constant into the Values vector.
 | 
						|
static Value *GatherConstantSetEQs(Value *V, std::vector<ConstantInt*> &Values){
 | 
						|
  if (Instruction *Inst = dyn_cast<Instruction>(V))
 | 
						|
    if (Inst->getOpcode() == Instruction::SetEQ) {
 | 
						|
      if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
 | 
						|
        Values.push_back(C);
 | 
						|
        return Inst->getOperand(0);
 | 
						|
      } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
 | 
						|
        Values.push_back(C);
 | 
						|
        return Inst->getOperand(1);
 | 
						|
      }
 | 
						|
    } else if (Inst->getOpcode() == Instruction::Or) {
 | 
						|
      if (Value *LHS = GatherConstantSetEQs(Inst->getOperand(0), Values))
 | 
						|
        if (Value *RHS = GatherConstantSetEQs(Inst->getOperand(1), Values))
 | 
						|
          if (LHS == RHS)
 | 
						|
            return LHS;
 | 
						|
    }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
// GatherConstantSetNEs - Given a potentially 'and'd together collection of
 | 
						|
// setne instructions that compare a value against a constant, return the value
 | 
						|
// being compared, and stick the constant into the Values vector.
 | 
						|
static Value *GatherConstantSetNEs(Value *V, std::vector<ConstantInt*> &Values){
 | 
						|
  if (Instruction *Inst = dyn_cast<Instruction>(V))
 | 
						|
    if (Inst->getOpcode() == Instruction::SetNE) {
 | 
						|
      if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
 | 
						|
        Values.push_back(C);
 | 
						|
        return Inst->getOperand(0);
 | 
						|
      } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
 | 
						|
        Values.push_back(C);
 | 
						|
        return Inst->getOperand(1);
 | 
						|
      }
 | 
						|
    } else if (Inst->getOpcode() == Instruction::Cast) {
 | 
						|
      // Cast of X to bool is really a comparison against zero.
 | 
						|
      assert(Inst->getType() == Type::BoolTy && "Can only handle bool values!");
 | 
						|
      Values.push_back(ConstantInt::get(Inst->getOperand(0)->getType(), 0));
 | 
						|
      return Inst->getOperand(0);
 | 
						|
    } else if (Inst->getOpcode() == Instruction::And) {
 | 
						|
      if (Value *LHS = GatherConstantSetNEs(Inst->getOperand(0), Values))
 | 
						|
        if (Value *RHS = GatherConstantSetNEs(Inst->getOperand(1), Values))
 | 
						|
          if (LHS == RHS)
 | 
						|
            return LHS;
 | 
						|
    }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/// GatherValueComparisons - If the specified Cond is an 'and' or 'or' of a
 | 
						|
/// bunch of comparisons of one value against constants, return the value and
 | 
						|
/// the constants being compared.
 | 
						|
static bool GatherValueComparisons(Instruction *Cond, Value *&CompVal,
 | 
						|
                                   std::vector<ConstantInt*> &Values) {
 | 
						|
  if (Cond->getOpcode() == Instruction::Or) {
 | 
						|
    CompVal = GatherConstantSetEQs(Cond, Values);
 | 
						|
 | 
						|
    // Return true to indicate that the condition is true if the CompVal is
 | 
						|
    // equal to one of the constants.
 | 
						|
    return true;
 | 
						|
  } else if (Cond->getOpcode() == Instruction::And) {
 | 
						|
    CompVal = GatherConstantSetNEs(Cond, Values);
 | 
						|
        
 | 
						|
    // Return false to indicate that the condition is false if the CompVal is
 | 
						|
    // equal to one of the constants.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// ErasePossiblyDeadInstructionTree - If the specified instruction is dead and
 | 
						|
/// has no side effects, nuke it.  If it uses any instructions that become dead
 | 
						|
/// because the instruction is now gone, nuke them too.
 | 
						|
static void ErasePossiblyDeadInstructionTree(Instruction *I) {
 | 
						|
  if (isInstructionTriviallyDead(I)) {
 | 
						|
    std::vector<Value*> Operands(I->op_begin(), I->op_end());
 | 
						|
    I->getParent()->getInstList().erase(I);
 | 
						|
    for (unsigned i = 0, e = Operands.size(); i != e; ++i)
 | 
						|
      if (Instruction *OpI = dyn_cast<Instruction>(Operands[i]))
 | 
						|
        ErasePossiblyDeadInstructionTree(OpI);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// SafeToMergeTerminators - Return true if it is safe to merge these two
 | 
						|
/// terminator instructions together.
 | 
						|
///
 | 
						|
static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
 | 
						|
  if (SI1 == SI2) return false;  // Can't merge with self!
 | 
						|
 | 
						|
  // It is not safe to merge these two switch instructions if they have a common
 | 
						|
  // successor, and if that successor has a PHI node, and if *that* PHI node has
 | 
						|
  // conflicting incoming values from the two switch blocks.
 | 
						|
  BasicBlock *SI1BB = SI1->getParent();
 | 
						|
  BasicBlock *SI2BB = SI2->getParent();
 | 
						|
  std::set<BasicBlock*> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
 | 
						|
 | 
						|
  for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
 | 
						|
    if (SI1Succs.count(*I))
 | 
						|
      for (BasicBlock::iterator BBI = (*I)->begin();
 | 
						|
           isa<PHINode>(BBI); ++BBI) {
 | 
						|
        PHINode *PN = cast<PHINode>(BBI);
 | 
						|
        if (PN->getIncomingValueForBlock(SI1BB) !=
 | 
						|
            PN->getIncomingValueForBlock(SI2BB))
 | 
						|
          return false;
 | 
						|
      }
 | 
						|
        
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
 | 
						|
/// now be entries in it from the 'NewPred' block.  The values that will be
 | 
						|
/// flowing into the PHI nodes will be the same as those coming in from
 | 
						|
/// ExistPred, an existing predecessor of Succ.
 | 
						|
static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
 | 
						|
                                  BasicBlock *ExistPred) {
 | 
						|
  assert(std::find(succ_begin(ExistPred), succ_end(ExistPred), Succ) !=
 | 
						|
         succ_end(ExistPred) && "ExistPred is not a predecessor of Succ!");
 | 
						|
  if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
 | 
						|
 | 
						|
  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
 | 
						|
    PHINode *PN = cast<PHINode>(I);
 | 
						|
    Value *V = PN->getIncomingValueForBlock(ExistPred);
 | 
						|
    PN->addIncoming(V, NewPred);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// isValueEqualityComparison - Return true if the specified terminator checks to
 | 
						|
// see if a value is equal to constant integer value.
 | 
						|
static Value *isValueEqualityComparison(TerminatorInst *TI) {
 | 
						|
  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
 | 
						|
    // Do not permit merging of large switch instructions into their
 | 
						|
    // predecessors unless there is only one predecessor.
 | 
						|
    if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()),
 | 
						|
                                               pred_end(SI->getParent())) > 128)
 | 
						|
      return 0;
 | 
						|
 | 
						|
    return SI->getCondition();
 | 
						|
  }
 | 
						|
  if (BranchInst *BI = dyn_cast<BranchInst>(TI))
 | 
						|
    if (BI->isConditional() && BI->getCondition()->hasOneUse())
 | 
						|
      if (SetCondInst *SCI = dyn_cast<SetCondInst>(BI->getCondition()))
 | 
						|
        if ((SCI->getOpcode() == Instruction::SetEQ ||
 | 
						|
             SCI->getOpcode() == Instruction::SetNE) && 
 | 
						|
            isa<ConstantInt>(SCI->getOperand(1)))
 | 
						|
          return SCI->getOperand(0);
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
// Given a value comparison instruction, decode all of the 'cases' that it
 | 
						|
// represents and return the 'default' block.
 | 
						|
static BasicBlock *
 | 
						|
GetValueEqualityComparisonCases(TerminatorInst *TI, 
 | 
						|
                                std::vector<std::pair<ConstantInt*,
 | 
						|
                                                      BasicBlock*> > &Cases) {
 | 
						|
  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
 | 
						|
    Cases.reserve(SI->getNumCases());
 | 
						|
    for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
 | 
						|
      Cases.push_back(std::make_pair(cast<ConstantInt>(SI->getCaseValue(i)),
 | 
						|
                                     SI->getSuccessor(i)));
 | 
						|
    return SI->getDefaultDest();
 | 
						|
  }
 | 
						|
 | 
						|
  BranchInst *BI = cast<BranchInst>(TI);
 | 
						|
  SetCondInst *SCI = cast<SetCondInst>(BI->getCondition());
 | 
						|
  Cases.push_back(std::make_pair(cast<ConstantInt>(SCI->getOperand(1)),
 | 
						|
                                 BI->getSuccessor(SCI->getOpcode() ==
 | 
						|
                                                        Instruction::SetNE)));
 | 
						|
  return BI->getSuccessor(SCI->getOpcode() == Instruction::SetEQ);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// FoldValueComparisonIntoPredecessors - The specified terminator is a value
 | 
						|
// equality comparison instruction (either a switch or a branch on "X == c").
 | 
						|
// See if any of the predecessors of the terminator block are value comparisons
 | 
						|
// on the same value.  If so, and if safe to do so, fold them together.
 | 
						|
static bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI) {
 | 
						|
  BasicBlock *BB = TI->getParent();
 | 
						|
  Value *CV = isValueEqualityComparison(TI);  // CondVal
 | 
						|
  assert(CV && "Not a comparison?");
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
 | 
						|
  while (!Preds.empty()) {
 | 
						|
    BasicBlock *Pred = Preds.back();
 | 
						|
    Preds.pop_back();
 | 
						|
    
 | 
						|
    // See if the predecessor is a comparison with the same value.
 | 
						|
    TerminatorInst *PTI = Pred->getTerminator();
 | 
						|
    Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal
 | 
						|
 | 
						|
    if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
 | 
						|
      // Figure out which 'cases' to copy from SI to PSI.
 | 
						|
      std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases;
 | 
						|
      BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
 | 
						|
 | 
						|
      std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
 | 
						|
      BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
 | 
						|
 | 
						|
      // Based on whether the default edge from PTI goes to BB or not, fill in
 | 
						|
      // PredCases and PredDefault with the new switch cases we would like to
 | 
						|
      // build.
 | 
						|
      std::vector<BasicBlock*> NewSuccessors;
 | 
						|
 | 
						|
      if (PredDefault == BB) {
 | 
						|
        // If this is the default destination from PTI, only the edges in TI
 | 
						|
        // that don't occur in PTI, or that branch to BB will be activated.
 | 
						|
        std::set<ConstantInt*> PTIHandled;
 | 
						|
        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
 | 
						|
          if (PredCases[i].second != BB)
 | 
						|
            PTIHandled.insert(PredCases[i].first);
 | 
						|
          else {
 | 
						|
            // The default destination is BB, we don't need explicit targets.
 | 
						|
            std::swap(PredCases[i], PredCases.back());
 | 
						|
            PredCases.pop_back();
 | 
						|
            --i; --e;
 | 
						|
          }
 | 
						|
 | 
						|
        // Reconstruct the new switch statement we will be building.
 | 
						|
        if (PredDefault != BBDefault) {
 | 
						|
          PredDefault->removePredecessor(Pred);
 | 
						|
          PredDefault = BBDefault;
 | 
						|
          NewSuccessors.push_back(BBDefault);
 | 
						|
        }
 | 
						|
        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
 | 
						|
          if (!PTIHandled.count(BBCases[i].first) &&
 | 
						|
              BBCases[i].second != BBDefault) {
 | 
						|
            PredCases.push_back(BBCases[i]);
 | 
						|
            NewSuccessors.push_back(BBCases[i].second);
 | 
						|
          }
 | 
						|
 | 
						|
      } else {
 | 
						|
        // If this is not the default destination from PSI, only the edges
 | 
						|
        // in SI that occur in PSI with a destination of BB will be
 | 
						|
        // activated.
 | 
						|
        std::set<ConstantInt*> PTIHandled;
 | 
						|
        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
 | 
						|
          if (PredCases[i].second == BB) {
 | 
						|
            PTIHandled.insert(PredCases[i].first);
 | 
						|
            std::swap(PredCases[i], PredCases.back());
 | 
						|
            PredCases.pop_back();
 | 
						|
            --i; --e;
 | 
						|
          }
 | 
						|
 | 
						|
        // Okay, now we know which constants were sent to BB from the
 | 
						|
        // predecessor.  Figure out where they will all go now.
 | 
						|
        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
 | 
						|
          if (PTIHandled.count(BBCases[i].first)) {
 | 
						|
            // If this is one we are capable of getting...
 | 
						|
            PredCases.push_back(BBCases[i]);
 | 
						|
            NewSuccessors.push_back(BBCases[i].second);
 | 
						|
            PTIHandled.erase(BBCases[i].first);// This constant is taken care of
 | 
						|
          }
 | 
						|
 | 
						|
        // If there are any constants vectored to BB that TI doesn't handle,
 | 
						|
        // they must go to the default destination of TI.
 | 
						|
        for (std::set<ConstantInt*>::iterator I = PTIHandled.begin(),
 | 
						|
               E = PTIHandled.end(); I != E; ++I) {
 | 
						|
          PredCases.push_back(std::make_pair(*I, BBDefault));
 | 
						|
          NewSuccessors.push_back(BBDefault);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Okay, at this point, we know which new successor Pred will get.  Make
 | 
						|
      // sure we update the number of entries in the PHI nodes for these
 | 
						|
      // successors.
 | 
						|
      for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
 | 
						|
        AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
 | 
						|
 | 
						|
      // Now that the successors are updated, create the new Switch instruction.
 | 
						|
      SwitchInst *NewSI = new SwitchInst(CV, PredDefault, PTI);
 | 
						|
      for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
 | 
						|
        NewSI->addCase(PredCases[i].first, PredCases[i].second);
 | 
						|
      Pred->getInstList().erase(PTI);
 | 
						|
 | 
						|
      // Okay, last check.  If BB is still a successor of PSI, then we must
 | 
						|
      // have an infinite loop case.  If so, add an infinitely looping block
 | 
						|
      // to handle the case to preserve the behavior of the code.
 | 
						|
      BasicBlock *InfLoopBlock = 0;
 | 
						|
      for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
 | 
						|
        if (NewSI->getSuccessor(i) == BB) {
 | 
						|
          if (InfLoopBlock == 0) {
 | 
						|
            // Insert it at the end of the loop, because it's either code,
 | 
						|
            // or it won't matter if it's hot. :)
 | 
						|
            InfLoopBlock = new BasicBlock("infloop", BB->getParent());
 | 
						|
            new BranchInst(InfLoopBlock, InfLoopBlock);
 | 
						|
          }
 | 
						|
          NewSI->setSuccessor(i, InfLoopBlock);
 | 
						|
        }
 | 
						|
          
 | 
						|
      Changed = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// ConstantIntOrdering - This class implements a stable ordering of constant
 | 
						|
  /// integers that does not depend on their address.  This is important for
 | 
						|
  /// applications that sort ConstantInt's to ensure uniqueness.
 | 
						|
  struct ConstantIntOrdering {
 | 
						|
    bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
 | 
						|
      return LHS->getRawValue() < RHS->getRawValue();
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// SimplifyCFG - This function is used to do simplification of a CFG.  For
 | 
						|
// example, it adjusts branches to branches to eliminate the extra hop, it
 | 
						|
// eliminates unreachable basic blocks, and does other "peephole" optimization
 | 
						|
// of the CFG.  It returns true if a modification was made.
 | 
						|
//
 | 
						|
// WARNING:  The entry node of a function may not be simplified.
 | 
						|
//
 | 
						|
bool llvm::SimplifyCFG(BasicBlock *BB) {
 | 
						|
  bool Changed = false;
 | 
						|
  Function *M = BB->getParent();
 | 
						|
 | 
						|
  assert(BB && BB->getParent() && "Block not embedded in function!");
 | 
						|
  assert(BB->getTerminator() && "Degenerate basic block encountered!");
 | 
						|
  assert(&BB->getParent()->front() != BB && "Can't Simplify entry block!");
 | 
						|
 | 
						|
  // Remove basic blocks that have no predecessors... which are unreachable.
 | 
						|
  if (pred_begin(BB) == pred_end(BB) ||
 | 
						|
      *pred_begin(BB) == BB && ++pred_begin(BB) == pred_end(BB)) {
 | 
						|
    DEBUG(std::cerr << "Removing BB: \n" << *BB);
 | 
						|
 | 
						|
    // Loop through all of our successors and make sure they know that one
 | 
						|
    // of their predecessors is going away.
 | 
						|
    for_each(succ_begin(BB), succ_end(BB),
 | 
						|
	     std::bind2nd(std::mem_fun(&BasicBlock::removePredecessor), BB));
 | 
						|
 | 
						|
    while (!BB->empty()) {
 | 
						|
      Instruction &I = BB->back();
 | 
						|
      // If this instruction is used, replace uses with an arbitrary
 | 
						|
      // constant value.  Because control flow can't get here, we don't care
 | 
						|
      // what we replace the value with.  Note that since this block is 
 | 
						|
      // unreachable, and all values contained within it must dominate their
 | 
						|
      // uses, that all uses will eventually be removed.
 | 
						|
      if (!I.use_empty()) 
 | 
						|
        // Make all users of this instruction reference the constant instead
 | 
						|
        I.replaceAllUsesWith(Constant::getNullValue(I.getType()));
 | 
						|
      
 | 
						|
      // Remove the instruction from the basic block
 | 
						|
      BB->getInstList().pop_back();
 | 
						|
    }
 | 
						|
    M->getBasicBlockList().erase(BB);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check to see if we can constant propagate this terminator instruction
 | 
						|
  // away...
 | 
						|
  Changed |= ConstantFoldTerminator(BB);
 | 
						|
 | 
						|
  // Check to see if this block has no non-phi instructions and only a single
 | 
						|
  // successor.  If so, replace references to this basic block with references
 | 
						|
  // to the successor.
 | 
						|
  succ_iterator SI(succ_begin(BB));
 | 
						|
  if (SI != succ_end(BB) && ++SI == succ_end(BB)) {  // One succ?
 | 
						|
    BasicBlock::iterator BBI = BB->begin();  // Skip over phi nodes...
 | 
						|
    while (isa<PHINode>(*BBI)) ++BBI;
 | 
						|
 | 
						|
    BasicBlock *Succ = *succ_begin(BB); // There is exactly one successor.
 | 
						|
    if (BBI->isTerminator() &&  // Terminator is the only non-phi instruction!
 | 
						|
        Succ != BB) {           // Don't hurt infinite loops!
 | 
						|
      // If our successor has PHI nodes, then we need to update them to include
 | 
						|
      // entries for BB's predecessors, not for BB itself.  Be careful though,
 | 
						|
      // if this transformation fails (returns true) then we cannot do this
 | 
						|
      // transformation!
 | 
						|
      //
 | 
						|
      if (!PropagatePredecessorsForPHIs(BB, Succ)) {
 | 
						|
        DEBUG(std::cerr << "Killing Trivial BB: \n" << *BB);
 | 
						|
        
 | 
						|
        if (isa<PHINode>(&BB->front())) {
 | 
						|
          std::vector<BasicBlock*>
 | 
						|
            OldSuccPreds(pred_begin(Succ), pred_end(Succ));
 | 
						|
        
 | 
						|
          // Move all PHI nodes in BB to Succ if they are alive, otherwise
 | 
						|
          // delete them.
 | 
						|
          while (PHINode *PN = dyn_cast<PHINode>(&BB->front()))
 | 
						|
            if (PN->use_empty())
 | 
						|
              BB->getInstList().erase(BB->begin());  // Nuke instruction.
 | 
						|
            else {
 | 
						|
              // The instruction is alive, so this means that Succ must have
 | 
						|
              // *ONLY* had BB as a predecessor, and the PHI node is still valid
 | 
						|
              // now.  Simply move it into Succ, because we know that BB
 | 
						|
              // strictly dominated Succ.
 | 
						|
              BB->getInstList().remove(BB->begin());
 | 
						|
              Succ->getInstList().push_front(PN);
 | 
						|
              
 | 
						|
              // We need to add new entries for the PHI node to account for
 | 
						|
              // predecessors of Succ that the PHI node does not take into
 | 
						|
              // account.  At this point, since we know that BB dominated succ,
 | 
						|
              // this means that we should any newly added incoming edges should
 | 
						|
              // use the PHI node as the value for these edges, because they are
 | 
						|
              // loop back edges.
 | 
						|
              for (unsigned i = 0, e = OldSuccPreds.size(); i != e; ++i)
 | 
						|
                if (OldSuccPreds[i] != BB)
 | 
						|
                  PN->addIncoming(PN, OldSuccPreds[i]);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        
 | 
						|
        // Everything that jumped to BB now goes to Succ.
 | 
						|
        std::string OldName = BB->getName();
 | 
						|
        BB->replaceAllUsesWith(Succ);
 | 
						|
        BB->eraseFromParent();              // Delete the old basic block.
 | 
						|
 | 
						|
        if (!OldName.empty() && !Succ->hasName())  // Transfer name if we can
 | 
						|
          Succ->setName(OldName);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is a returning block with only PHI nodes in it, fold the return
 | 
						|
  // instruction into any unconditional branch predecessors.
 | 
						|
  //
 | 
						|
  // If any predecessor is a conditional branch that just selects among
 | 
						|
  // different return values, fold the replace the branch/return with a select
 | 
						|
  // and return.
 | 
						|
  if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
 | 
						|
    BasicBlock::iterator BBI = BB->getTerminator();
 | 
						|
    if (BBI == BB->begin() || isa<PHINode>(--BBI)) {
 | 
						|
      // Find predecessors that end with branches.
 | 
						|
      std::vector<BasicBlock*> UncondBranchPreds;
 | 
						|
      std::vector<BranchInst*> CondBranchPreds;
 | 
						|
      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
 | 
						|
        TerminatorInst *PTI = (*PI)->getTerminator();
 | 
						|
        if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
 | 
						|
          if (BI->isUnconditional())
 | 
						|
            UncondBranchPreds.push_back(*PI);
 | 
						|
          else
 | 
						|
            CondBranchPreds.push_back(BI);
 | 
						|
      }
 | 
						|
      
 | 
						|
      // If we found some, do the transformation!
 | 
						|
      if (!UncondBranchPreds.empty()) {
 | 
						|
        while (!UncondBranchPreds.empty()) {
 | 
						|
          BasicBlock *Pred = UncondBranchPreds.back();
 | 
						|
          UncondBranchPreds.pop_back();
 | 
						|
          Instruction *UncondBranch = Pred->getTerminator();
 | 
						|
          // Clone the return and add it to the end of the predecessor.
 | 
						|
          Instruction *NewRet = RI->clone();
 | 
						|
          Pred->getInstList().push_back(NewRet);
 | 
						|
 | 
						|
          // If the return instruction returns a value, and if the value was a
 | 
						|
          // PHI node in "BB", propagate the right value into the return.
 | 
						|
          if (NewRet->getNumOperands() == 1)
 | 
						|
            if (PHINode *PN = dyn_cast<PHINode>(NewRet->getOperand(0)))
 | 
						|
              if (PN->getParent() == BB)
 | 
						|
                NewRet->setOperand(0, PN->getIncomingValueForBlock(Pred));
 | 
						|
          // Update any PHI nodes in the returning block to realize that we no
 | 
						|
          // longer branch to them.
 | 
						|
          BB->removePredecessor(Pred);
 | 
						|
          Pred->getInstList().erase(UncondBranch);
 | 
						|
        }
 | 
						|
 | 
						|
        // If we eliminated all predecessors of the block, delete the block now.
 | 
						|
        if (pred_begin(BB) == pred_end(BB))
 | 
						|
          // We know there are no successors, so just nuke the block.
 | 
						|
          M->getBasicBlockList().erase(BB);
 | 
						|
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
 | 
						|
      // Check out all of the conditional branches going to this return
 | 
						|
      // instruction.  If any of them just select between returns, change the
 | 
						|
      // branch itself into a select/return pair.
 | 
						|
      while (!CondBranchPreds.empty()) {
 | 
						|
        BranchInst *BI = CondBranchPreds.back();
 | 
						|
        CondBranchPreds.pop_back();
 | 
						|
        BasicBlock *TrueSucc = BI->getSuccessor(0);
 | 
						|
        BasicBlock *FalseSucc = BI->getSuccessor(1);
 | 
						|
        BasicBlock *OtherSucc = TrueSucc == BB ? FalseSucc : TrueSucc;
 | 
						|
 | 
						|
        // Check to see if the non-BB successor is also a return block.
 | 
						|
        if (isa<ReturnInst>(OtherSucc->getTerminator())) {
 | 
						|
          // Check to see if there are only PHI instructions in this block.
 | 
						|
          BasicBlock::iterator OSI = OtherSucc->getTerminator();
 | 
						|
          if (OSI == OtherSucc->begin() || isa<PHINode>(--OSI)) {
 | 
						|
            // Okay, we found a branch that is going to two return nodes.  If
 | 
						|
            // there is no return value for this function, just change the
 | 
						|
            // branch into a return.
 | 
						|
            if (RI->getNumOperands() == 0) {
 | 
						|
              TrueSucc->removePredecessor(BI->getParent());
 | 
						|
              FalseSucc->removePredecessor(BI->getParent());
 | 
						|
              new ReturnInst(0, BI);
 | 
						|
              BI->getParent()->getInstList().erase(BI);
 | 
						|
              return true;
 | 
						|
            }
 | 
						|
 | 
						|
            // Otherwise, figure out what the true and false return values are
 | 
						|
            // so we can insert a new select instruction.
 | 
						|
            Value *TrueValue = TrueSucc->getTerminator()->getOperand(0);
 | 
						|
            Value *FalseValue = FalseSucc->getTerminator()->getOperand(0);
 | 
						|
 | 
						|
            // Unwrap any PHI nodes in the return blocks.
 | 
						|
            if (PHINode *TVPN = dyn_cast<PHINode>(TrueValue))
 | 
						|
              if (TVPN->getParent() == TrueSucc)
 | 
						|
                TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
 | 
						|
            if (PHINode *FVPN = dyn_cast<PHINode>(FalseValue))
 | 
						|
              if (FVPN->getParent() == FalseSucc)
 | 
						|
                FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
 | 
						|
 | 
						|
            TrueSucc->removePredecessor(BI->getParent());
 | 
						|
            FalseSucc->removePredecessor(BI->getParent());
 | 
						|
 | 
						|
            // Insert a new select instruction.
 | 
						|
            Value *NewRetVal;
 | 
						|
            Value *BrCond = BI->getCondition();
 | 
						|
            if (TrueValue != FalseValue)
 | 
						|
              NewRetVal = new SelectInst(BrCond, TrueValue,
 | 
						|
                                         FalseValue, "retval", BI);
 | 
						|
            else
 | 
						|
              NewRetVal = TrueValue;
 | 
						|
 | 
						|
            new ReturnInst(NewRetVal, BI);
 | 
						|
            BI->getParent()->getInstList().erase(BI);
 | 
						|
            if (BrCond->use_empty())
 | 
						|
              if (Instruction *BrCondI = dyn_cast<Instruction>(BrCond))
 | 
						|
                BrCondI->getParent()->getInstList().erase(BrCondI);
 | 
						|
            return true;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->begin())) {
 | 
						|
    // Check to see if the first instruction in this block is just an unwind.
 | 
						|
    // If so, replace any invoke instructions which use this as an exception
 | 
						|
    // destination with call instructions, and any unconditional branch
 | 
						|
    // predecessor with an unwind.
 | 
						|
    //
 | 
						|
    std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
 | 
						|
    while (!Preds.empty()) {
 | 
						|
      BasicBlock *Pred = Preds.back();
 | 
						|
      if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator())) {
 | 
						|
        if (BI->isUnconditional()) {
 | 
						|
          Pred->getInstList().pop_back();  // nuke uncond branch
 | 
						|
          new UnwindInst(Pred);            // Use unwind.
 | 
						|
          Changed = true;
 | 
						|
        }
 | 
						|
      } else if (InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator()))
 | 
						|
        if (II->getUnwindDest() == BB) {
 | 
						|
          // Insert a new branch instruction before the invoke, because this
 | 
						|
          // is now a fall through...
 | 
						|
          BranchInst *BI = new BranchInst(II->getNormalDest(), II);
 | 
						|
          Pred->getInstList().remove(II);   // Take out of symbol table
 | 
						|
          
 | 
						|
          // Insert the call now...
 | 
						|
          std::vector<Value*> Args(II->op_begin()+3, II->op_end());
 | 
						|
          CallInst *CI = new CallInst(II->getCalledValue(), Args,
 | 
						|
                                      II->getName(), BI);
 | 
						|
          // If the invoke produced a value, the Call now does instead
 | 
						|
          II->replaceAllUsesWith(CI);
 | 
						|
          delete II;
 | 
						|
          Changed = true;
 | 
						|
        }
 | 
						|
      
 | 
						|
      Preds.pop_back();
 | 
						|
    }
 | 
						|
 | 
						|
    // If this block is now dead, remove it.
 | 
						|
    if (pred_begin(BB) == pred_end(BB)) {
 | 
						|
      // We know there are no successors, so just nuke the block.
 | 
						|
      M->getBasicBlockList().erase(BB);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->begin())) {
 | 
						|
    if (isValueEqualityComparison(SI))
 | 
						|
      if (FoldValueComparisonIntoPredecessors(SI))
 | 
						|
        return SimplifyCFG(BB) || 1;
 | 
						|
  } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
 | 
						|
    if (BI->isConditional()) {
 | 
						|
      if (Value *CompVal = isValueEqualityComparison(BI)) {
 | 
						|
        // This block must be empty, except for the setcond inst, if it exists.
 | 
						|
        BasicBlock::iterator I = BB->begin();
 | 
						|
        if (&*I == BI ||
 | 
						|
            (&*I == cast<Instruction>(BI->getCondition()) &&
 | 
						|
             &*++I == BI))
 | 
						|
          if (FoldValueComparisonIntoPredecessors(BI))
 | 
						|
            return SimplifyCFG(BB) | true;
 | 
						|
      }
 | 
						|
 | 
						|
      // If this basic block is ONLY a setcc and a branch, and if a predecessor
 | 
						|
      // branches to us and one of our successors, fold the setcc into the
 | 
						|
      // predecessor and use logical operations to pick the right destination.
 | 
						|
      BasicBlock *TrueDest  = BI->getSuccessor(0);
 | 
						|
      BasicBlock *FalseDest = BI->getSuccessor(1);
 | 
						|
      if (BinaryOperator *Cond = dyn_cast<BinaryOperator>(BI->getCondition()))
 | 
						|
        if (Cond->getParent() == BB && &BB->front() == Cond &&
 | 
						|
            Cond->getNext() == BI && Cond->hasOneUse() &&
 | 
						|
            TrueDest != BB && FalseDest != BB)
 | 
						|
          for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI!=E; ++PI)
 | 
						|
            if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
 | 
						|
              if (PBI->isConditional() && SafeToMergeTerminators(BI, PBI)) {
 | 
						|
                BasicBlock *PredBlock = *PI;
 | 
						|
                if (PBI->getSuccessor(0) == FalseDest ||
 | 
						|
                    PBI->getSuccessor(1) == TrueDest) {
 | 
						|
                  // Invert the predecessors condition test (xor it with true),
 | 
						|
                  // which allows us to write this code once.
 | 
						|
                  Value *NewCond =
 | 
						|
                    BinaryOperator::createNot(PBI->getCondition(),
 | 
						|
                                    PBI->getCondition()->getName()+".not", PBI);
 | 
						|
                  PBI->setCondition(NewCond);
 | 
						|
                  BasicBlock *OldTrue = PBI->getSuccessor(0);
 | 
						|
                  BasicBlock *OldFalse = PBI->getSuccessor(1);
 | 
						|
                  PBI->setSuccessor(0, OldFalse);
 | 
						|
                  PBI->setSuccessor(1, OldTrue);
 | 
						|
                }
 | 
						|
 | 
						|
                if (PBI->getSuccessor(0) == TrueDest ||
 | 
						|
                    PBI->getSuccessor(1) == FalseDest) {
 | 
						|
                  // Clone Cond into the predecessor basic block, and or/and the
 | 
						|
                  // two conditions together.
 | 
						|
                  Instruction *New = Cond->clone();
 | 
						|
                  New->setName(Cond->getName());
 | 
						|
                  Cond->setName(Cond->getName()+".old");
 | 
						|
                  PredBlock->getInstList().insert(PBI, New);
 | 
						|
                  Instruction::BinaryOps Opcode =
 | 
						|
                    PBI->getSuccessor(0) == TrueDest ?
 | 
						|
                    Instruction::Or : Instruction::And;
 | 
						|
                  Value *NewCond = 
 | 
						|
                    BinaryOperator::create(Opcode, PBI->getCondition(),
 | 
						|
                                           New, "bothcond", PBI);
 | 
						|
                  PBI->setCondition(NewCond);
 | 
						|
                  if (PBI->getSuccessor(0) == BB) {
 | 
						|
                    AddPredecessorToBlock(TrueDest, PredBlock, BB);
 | 
						|
                    PBI->setSuccessor(0, TrueDest);
 | 
						|
                  }
 | 
						|
                  if (PBI->getSuccessor(1) == BB) {
 | 
						|
                    AddPredecessorToBlock(FalseDest, PredBlock, BB);
 | 
						|
                    PBI->setSuccessor(1, FalseDest);
 | 
						|
                  }
 | 
						|
                  return SimplifyCFG(BB) | 1;
 | 
						|
                }
 | 
						|
              }
 | 
						|
 | 
						|
      // If this block ends with a branch instruction, and if there is one
 | 
						|
      // predecessor, see if the previous block ended with a branch on the same
 | 
						|
      // condition, which makes this conditional branch redundant.
 | 
						|
      pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
 | 
						|
      BasicBlock *OnlyPred = *PI++;
 | 
						|
      for (; PI != PE; ++PI)// Search all predecessors, see if they are all same
 | 
						|
        if (*PI != OnlyPred) {
 | 
						|
          OnlyPred = 0;       // There are multiple different predecessors...
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      
 | 
						|
      if (OnlyPred)
 | 
						|
        if (BranchInst *PBI = dyn_cast<BranchInst>(OnlyPred->getTerminator()))
 | 
						|
          if (PBI->isConditional() &&
 | 
						|
              PBI->getCondition() == BI->getCondition() &&
 | 
						|
              (PBI->getSuccessor(0) != BB || PBI->getSuccessor(1) != BB)) {
 | 
						|
            // Okay, the outcome of this conditional branch is statically
 | 
						|
            // knowable.  Delete the outgoing CFG edge that is impossible to
 | 
						|
            // execute.
 | 
						|
            bool CondIsTrue = PBI->getSuccessor(0) == BB;
 | 
						|
            BI->getSuccessor(CondIsTrue)->removePredecessor(BB);
 | 
						|
            new BranchInst(BI->getSuccessor(!CondIsTrue), BB);
 | 
						|
            BB->getInstList().erase(BI);
 | 
						|
            return SimplifyCFG(BB) | true;
 | 
						|
          }
 | 
						|
    }
 | 
						|
  } else if (isa<UnreachableInst>(BB->getTerminator())) {
 | 
						|
    // If there are any instructions immediately before the unreachable that can
 | 
						|
    // be removed, do so.
 | 
						|
    Instruction *Unreachable = BB->getTerminator();
 | 
						|
    while (Unreachable != BB->begin()) {
 | 
						|
      BasicBlock::iterator BBI = Unreachable;
 | 
						|
      --BBI;
 | 
						|
      if (isa<CallInst>(BBI)) break;
 | 
						|
      // Delete this instruction
 | 
						|
      BB->getInstList().erase(BBI);
 | 
						|
      Changed = true;
 | 
						|
    }
 | 
						|
 | 
						|
    // If the unreachable instruction is the first in the block, take a gander
 | 
						|
    // at all of the predecessors of this instruction, and simplify them.
 | 
						|
    if (&BB->front() == Unreachable) {
 | 
						|
      std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
 | 
						|
      for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
 | 
						|
        TerminatorInst *TI = Preds[i]->getTerminator();
 | 
						|
 | 
						|
        if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
 | 
						|
          if (BI->isUnconditional()) {
 | 
						|
            if (BI->getSuccessor(0) == BB) {
 | 
						|
              new UnreachableInst(TI);
 | 
						|
              TI->eraseFromParent();
 | 
						|
              Changed = true;
 | 
						|
            }
 | 
						|
          } else {
 | 
						|
            if (BI->getSuccessor(0) == BB) {
 | 
						|
              new BranchInst(BI->getSuccessor(1), BI);
 | 
						|
              BI->eraseFromParent();
 | 
						|
            } else if (BI->getSuccessor(1) == BB) {
 | 
						|
              new BranchInst(BI->getSuccessor(0), BI);
 | 
						|
              BI->eraseFromParent();
 | 
						|
              Changed = true;
 | 
						|
            }
 | 
						|
          }
 | 
						|
        } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
 | 
						|
          for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
 | 
						|
            if (SI->getSuccessor(i) == BB) {
 | 
						|
              SI->removeCase(i);
 | 
						|
              --i; --e;
 | 
						|
              Changed = true;
 | 
						|
            }
 | 
						|
          // If the default value is unreachable, figure out the most popular
 | 
						|
          // destination and make it the default.
 | 
						|
          if (SI->getSuccessor(0) == BB) {
 | 
						|
            std::map<BasicBlock*, unsigned> Popularity;
 | 
						|
            for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
 | 
						|
              Popularity[SI->getSuccessor(i)]++;
 | 
						|
 | 
						|
            // Find the most popular block.
 | 
						|
            unsigned MaxPop = 0;
 | 
						|
            BasicBlock *MaxBlock = 0;
 | 
						|
            for (std::map<BasicBlock*, unsigned>::iterator
 | 
						|
                   I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
 | 
						|
              if (I->second > MaxPop) {
 | 
						|
                MaxPop = I->second;
 | 
						|
                MaxBlock = I->first;
 | 
						|
              }
 | 
						|
            }
 | 
						|
            if (MaxBlock) {
 | 
						|
              // Make this the new default, allowing us to delete any explicit
 | 
						|
              // edges to it.
 | 
						|
              SI->setSuccessor(0, MaxBlock);
 | 
						|
              Changed = true;
 | 
						|
 | 
						|
              for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
 | 
						|
                if (SI->getSuccessor(i) == MaxBlock) {
 | 
						|
                  SI->removeCase(i);
 | 
						|
                  --i; --e;
 | 
						|
                }
 | 
						|
            }
 | 
						|
          }
 | 
						|
        } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
 | 
						|
          if (II->getUnwindDest() == BB) {
 | 
						|
            // Convert the invoke to a call instruction.  This would be a good
 | 
						|
            // place to note that the call does not throw though.
 | 
						|
            BranchInst *BI = new BranchInst(II->getNormalDest(), II);
 | 
						|
            II->removeFromParent();   // Take out of symbol table
 | 
						|
          
 | 
						|
            // Insert the call now...
 | 
						|
            std::vector<Value*> Args(II->op_begin()+3, II->op_end());
 | 
						|
            CallInst *CI = new CallInst(II->getCalledValue(), Args,
 | 
						|
                                        II->getName(), BI);
 | 
						|
            // If the invoke produced a value, the Call does now instead.
 | 
						|
            II->replaceAllUsesWith(CI);
 | 
						|
            delete II;
 | 
						|
            Changed = true;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // If this block is now dead, remove it.
 | 
						|
      if (pred_begin(BB) == pred_end(BB)) {
 | 
						|
        // We know there are no successors, so just nuke the block.
 | 
						|
        M->getBasicBlockList().erase(BB);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Merge basic blocks into their predecessor if there is only one distinct
 | 
						|
  // pred, and if there is only one distinct successor of the predecessor, and
 | 
						|
  // if there are no PHI nodes.
 | 
						|
  //
 | 
						|
  pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
 | 
						|
  BasicBlock *OnlyPred = *PI++;
 | 
						|
  for (; PI != PE; ++PI)  // Search all predecessors, see if they are all same
 | 
						|
    if (*PI != OnlyPred) {
 | 
						|
      OnlyPred = 0;       // There are multiple different predecessors...
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
  BasicBlock *OnlySucc = 0;
 | 
						|
  if (OnlyPred && OnlyPred != BB &&    // Don't break self loops
 | 
						|
      OnlyPred->getTerminator()->getOpcode() != Instruction::Invoke) {
 | 
						|
    // Check to see if there is only one distinct successor...
 | 
						|
    succ_iterator SI(succ_begin(OnlyPred)), SE(succ_end(OnlyPred));
 | 
						|
    OnlySucc = BB;
 | 
						|
    for (; SI != SE; ++SI)
 | 
						|
      if (*SI != OnlySucc) {
 | 
						|
        OnlySucc = 0;     // There are multiple distinct successors!
 | 
						|
        break;
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  if (OnlySucc) {
 | 
						|
    DEBUG(std::cerr << "Merging: " << *BB << "into: " << *OnlyPred);
 | 
						|
    TerminatorInst *Term = OnlyPred->getTerminator();
 | 
						|
 | 
						|
    // Resolve any PHI nodes at the start of the block.  They are all
 | 
						|
    // guaranteed to have exactly one entry if they exist, unless there are
 | 
						|
    // multiple duplicate (but guaranteed to be equal) entries for the
 | 
						|
    // incoming edges.  This occurs when there are multiple edges from
 | 
						|
    // OnlyPred to OnlySucc.
 | 
						|
    //
 | 
						|
    while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
 | 
						|
      PN->replaceAllUsesWith(PN->getIncomingValue(0));
 | 
						|
      BB->getInstList().pop_front();  // Delete the phi node...
 | 
						|
    }
 | 
						|
 | 
						|
    // Delete the unconditional branch from the predecessor...
 | 
						|
    OnlyPred->getInstList().pop_back();
 | 
						|
      
 | 
						|
    // Move all definitions in the successor to the predecessor...
 | 
						|
    OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
 | 
						|
                                     
 | 
						|
    // Make all PHI nodes that referred to BB now refer to Pred as their
 | 
						|
    // source...
 | 
						|
    BB->replaceAllUsesWith(OnlyPred);
 | 
						|
 | 
						|
    std::string OldName = BB->getName();
 | 
						|
 | 
						|
    // Erase basic block from the function... 
 | 
						|
    M->getBasicBlockList().erase(BB);
 | 
						|
 | 
						|
    // Inherit predecessors name if it exists...
 | 
						|
    if (!OldName.empty() && !OnlyPred->hasName())
 | 
						|
      OnlyPred->setName(OldName);
 | 
						|
      
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
 | 
						|
    if (BranchInst *BI = dyn_cast<BranchInst>((*PI)->getTerminator()))
 | 
						|
      // Change br (X == 0 | X == 1), T, F into a switch instruction.
 | 
						|
      if (BI->isConditional() && isa<Instruction>(BI->getCondition())) {
 | 
						|
        Instruction *Cond = cast<Instruction>(BI->getCondition());
 | 
						|
        // If this is a bunch of seteq's or'd together, or if it's a bunch of
 | 
						|
        // 'setne's and'ed together, collect them.
 | 
						|
        Value *CompVal = 0;
 | 
						|
        std::vector<ConstantInt*> Values;
 | 
						|
        bool TrueWhenEqual = GatherValueComparisons(Cond, CompVal, Values);
 | 
						|
        if (CompVal && CompVal->getType()->isInteger()) {
 | 
						|
          // There might be duplicate constants in the list, which the switch
 | 
						|
          // instruction can't handle, remove them now.
 | 
						|
          std::sort(Values.begin(), Values.end(), ConstantIntOrdering());
 | 
						|
          Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
 | 
						|
          
 | 
						|
          // Figure out which block is which destination.
 | 
						|
          BasicBlock *DefaultBB = BI->getSuccessor(1);
 | 
						|
          BasicBlock *EdgeBB    = BI->getSuccessor(0);
 | 
						|
          if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
 | 
						|
          
 | 
						|
          // Create the new switch instruction now.
 | 
						|
          SwitchInst *New = new SwitchInst(CompVal, DefaultBB, BI);
 | 
						|
          
 | 
						|
          // Add all of the 'cases' to the switch instruction.
 | 
						|
          for (unsigned i = 0, e = Values.size(); i != e; ++i)
 | 
						|
            New->addCase(Values[i], EdgeBB);
 | 
						|
          
 | 
						|
          // We added edges from PI to the EdgeBB.  As such, if there were any
 | 
						|
          // PHI nodes in EdgeBB, they need entries to be added corresponding to
 | 
						|
          // the number of edges added.
 | 
						|
          for (BasicBlock::iterator BBI = EdgeBB->begin();
 | 
						|
               isa<PHINode>(BBI); ++BBI) {
 | 
						|
            PHINode *PN = cast<PHINode>(BBI);
 | 
						|
            Value *InVal = PN->getIncomingValueForBlock(*PI);
 | 
						|
            for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
 | 
						|
              PN->addIncoming(InVal, *PI);
 | 
						|
          }
 | 
						|
 | 
						|
          // Erase the old branch instruction.
 | 
						|
          (*PI)->getInstList().erase(BI);
 | 
						|
 | 
						|
          // Erase the potentially condition tree that was used to computed the
 | 
						|
          // branch condition.
 | 
						|
          ErasePossiblyDeadInstructionTree(Cond);
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
  // If there is a trivial two-entry PHI node in this basic block, and we can
 | 
						|
  // eliminate it, do so now.
 | 
						|
  if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
 | 
						|
    if (PN->getNumIncomingValues() == 2) {
 | 
						|
      // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
 | 
						|
      // statement", which has a very simple dominance structure.  Basically, we
 | 
						|
      // are trying to find the condition that is being branched on, which
 | 
						|
      // subsequently causes this merge to happen.  We really want control
 | 
						|
      // dependence information for this check, but simplifycfg can't keep it up
 | 
						|
      // to date, and this catches most of the cases we care about anyway.
 | 
						|
      //
 | 
						|
      BasicBlock *IfTrue, *IfFalse;
 | 
						|
      if (Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse)) {
 | 
						|
        DEBUG(std::cerr << "FOUND IF CONDITION!  " << *IfCond << "  T: "
 | 
						|
              << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
 | 
						|
 | 
						|
        // Loop over the PHI's seeing if we can promote them all to select
 | 
						|
        // instructions.  While we are at it, keep track of the instructions
 | 
						|
        // that need to be moved to the dominating block.
 | 
						|
        std::set<Instruction*> AggressiveInsts;
 | 
						|
        bool CanPromote = true;
 | 
						|
 | 
						|
        BasicBlock::iterator AfterPHIIt = BB->begin();
 | 
						|
        while (isa<PHINode>(AfterPHIIt)) {
 | 
						|
          PHINode *PN = cast<PHINode>(AfterPHIIt++);
 | 
						|
          if (PN->getIncomingValue(0) == PN->getIncomingValue(1))
 | 
						|
            PN->replaceAllUsesWith(PN->getIncomingValue(0));
 | 
						|
          else if (!DominatesMergePoint(PN->getIncomingValue(0), BB,
 | 
						|
                                        &AggressiveInsts) ||
 | 
						|
                   !DominatesMergePoint(PN->getIncomingValue(1), BB,
 | 
						|
                                        &AggressiveInsts)) {
 | 
						|
            CanPromote = false;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        // Did we eliminate all PHI's?
 | 
						|
        CanPromote |= AfterPHIIt == BB->begin();
 | 
						|
 | 
						|
        // If we all PHI nodes are promotable, check to make sure that all
 | 
						|
        // instructions in the predecessor blocks can be promoted as well.  If
 | 
						|
        // not, we won't be able to get rid of the control flow, so it's not
 | 
						|
        // worth promoting to select instructions.
 | 
						|
        BasicBlock *DomBlock = 0, *IfBlock1 = 0, *IfBlock2 = 0;
 | 
						|
        if (CanPromote) {
 | 
						|
          PN = cast<PHINode>(BB->begin());
 | 
						|
          BasicBlock *Pred = PN->getIncomingBlock(0);
 | 
						|
          if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
 | 
						|
            IfBlock1 = Pred;
 | 
						|
            DomBlock = *pred_begin(Pred);
 | 
						|
            for (BasicBlock::iterator I = Pred->begin();
 | 
						|
                 !isa<TerminatorInst>(I); ++I)
 | 
						|
              if (!AggressiveInsts.count(I)) {
 | 
						|
                // This is not an aggressive instruction that we can promote.
 | 
						|
                // Because of this, we won't be able to get rid of the control
 | 
						|
                // flow, so the xform is not worth it.
 | 
						|
                CanPromote = false;
 | 
						|
                break;
 | 
						|
              }
 | 
						|
          }
 | 
						|
 | 
						|
          Pred = PN->getIncomingBlock(1);
 | 
						|
          if (CanPromote && 
 | 
						|
              cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
 | 
						|
            IfBlock2 = Pred;
 | 
						|
            DomBlock = *pred_begin(Pred);
 | 
						|
            for (BasicBlock::iterator I = Pred->begin();
 | 
						|
                 !isa<TerminatorInst>(I); ++I)
 | 
						|
              if (!AggressiveInsts.count(I)) {
 | 
						|
                // This is not an aggressive instruction that we can promote.
 | 
						|
                // Because of this, we won't be able to get rid of the control
 | 
						|
                // flow, so the xform is not worth it.
 | 
						|
                CanPromote = false;
 | 
						|
                break;
 | 
						|
              }
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        // If we can still promote the PHI nodes after this gauntlet of tests,
 | 
						|
        // do all of the PHI's now.
 | 
						|
        if (CanPromote) {
 | 
						|
          // Move all 'aggressive' instructions, which are defined in the
 | 
						|
          // conditional parts of the if's up to the dominating block.
 | 
						|
          if (IfBlock1) {
 | 
						|
            DomBlock->getInstList().splice(DomBlock->getTerminator(),
 | 
						|
                                           IfBlock1->getInstList(),
 | 
						|
                                           IfBlock1->begin(),
 | 
						|
                                           IfBlock1->getTerminator());
 | 
						|
          }
 | 
						|
          if (IfBlock2) {
 | 
						|
            DomBlock->getInstList().splice(DomBlock->getTerminator(),
 | 
						|
                                           IfBlock2->getInstList(),
 | 
						|
                                           IfBlock2->begin(),
 | 
						|
                                           IfBlock2->getTerminator());
 | 
						|
          }
 | 
						|
 | 
						|
          while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
 | 
						|
            // Change the PHI node into a select instruction.
 | 
						|
            Value *TrueVal =
 | 
						|
              PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
 | 
						|
            Value *FalseVal =
 | 
						|
              PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
 | 
						|
 | 
						|
            std::string Name = PN->getName(); PN->setName("");
 | 
						|
            PN->replaceAllUsesWith(new SelectInst(IfCond, TrueVal, FalseVal,
 | 
						|
                                                  Name, AfterPHIIt));
 | 
						|
            BB->getInstList().erase(PN);
 | 
						|
          }
 | 
						|
          Changed = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  
 | 
						|
  return Changed;
 | 
						|
}
 |