mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108130 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1113 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1113 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===------- ABCD.cpp - Removes redundant conditional branches ------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass removes redundant branch instructions. This algorithm was
 | |
| // described by Rastislav Bodik, Rajiv Gupta and Vivek Sarkar in their paper
 | |
| // "ABCD: Eliminating Array Bounds Checks on Demand (2000)". The original
 | |
| // Algorithm was created to remove array bound checks for strongly typed
 | |
| // languages. This implementation expands the idea and removes any conditional
 | |
| // branches that can be proved redundant, not only those used in array bound
 | |
| // checks. With the SSI representation, each variable has a
 | |
| // constraint. By analyzing these constraints we can prove that a branch is
 | |
| // redundant. When a branch is proved redundant it means that
 | |
| // one direction will always be taken; thus, we can change this branch into an
 | |
| // unconditional jump.
 | |
| // It is advisable to run SimplifyCFG and Aggressive Dead Code Elimination
 | |
| // after ABCD to clean up the code.
 | |
| // This implementation was created based on the implementation of the ABCD
 | |
| // algorithm implemented for the compiler Jitrino.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "abcd"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/OwningPtr.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Transforms/Utils/SSI.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumBranchTested, "Number of conditional branches analyzed");
 | |
| STATISTIC(NumBranchRemoved, "Number of conditional branches removed");
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class ABCD : public FunctionPass {
 | |
|  public:
 | |
|   static char ID;  // Pass identification, replacement for typeid.
 | |
|   ABCD() : FunctionPass(&ID) {}
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|     AU.addRequired<SSI>();
 | |
|   }
 | |
| 
 | |
|   bool runOnFunction(Function &F);
 | |
| 
 | |
|  private:
 | |
|   /// Keep track of whether we've modified the program yet.
 | |
|   bool modified;
 | |
| 
 | |
|   enum ProveResult {
 | |
|     False = 0,
 | |
|     Reduced = 1,
 | |
|     True = 2
 | |
|   };
 | |
| 
 | |
|   typedef ProveResult (*meet_function)(ProveResult, ProveResult);
 | |
|   static ProveResult max(ProveResult res1, ProveResult res2) {
 | |
|     return (ProveResult) std::max(res1, res2);
 | |
|   }
 | |
|   static ProveResult min(ProveResult res1, ProveResult res2) {
 | |
|     return (ProveResult) std::min(res1, res2);
 | |
|   }
 | |
| 
 | |
|   class Bound {
 | |
|    public:
 | |
|     Bound(APInt v, bool upper) : value(v), upper_bound(upper) {}
 | |
|     Bound(const Bound &b, int cnst)
 | |
|       : value(b.value - cnst), upper_bound(b.upper_bound) {}
 | |
|     Bound(const Bound &b, const APInt &cnst)
 | |
|       : value(b.value - cnst), upper_bound(b.upper_bound) {}
 | |
| 
 | |
|     /// Test if Bound is an upper bound
 | |
|     bool isUpperBound() const { return upper_bound; }
 | |
| 
 | |
|     /// Get the bitwidth of this bound
 | |
|     int32_t getBitWidth() const { return value.getBitWidth(); }
 | |
| 
 | |
|     /// Creates a Bound incrementing the one received
 | |
|     static Bound createIncrement(const Bound &b) {
 | |
|       return Bound(b.isUpperBound() ? b.value+1 : b.value-1,
 | |
|                    b.upper_bound);
 | |
|     }
 | |
| 
 | |
|     /// Creates a Bound decrementing the one received
 | |
|     static Bound createDecrement(const Bound &b) {
 | |
|       return Bound(b.isUpperBound() ? b.value-1 : b.value+1,
 | |
|                    b.upper_bound);
 | |
|     }
 | |
| 
 | |
|     /// Test if two bounds are equal
 | |
|     static bool eq(const Bound *a, const Bound *b) {
 | |
|       if (!a || !b) return false;
 | |
| 
 | |
|       assert(a->isUpperBound() == b->isUpperBound());
 | |
|       return a->value == b->value;
 | |
|     }
 | |
| 
 | |
|     /// Test if val is less than or equal to Bound b
 | |
|     static bool leq(APInt val, const Bound &b) {
 | |
|       return b.isUpperBound() ? val.sle(b.value) : val.sge(b.value);
 | |
|     }
 | |
| 
 | |
|     /// Test if Bound a is less then or equal to Bound
 | |
|     static bool leq(const Bound &a, const Bound &b) {
 | |
|       assert(a.isUpperBound() == b.isUpperBound());
 | |
|       return a.isUpperBound() ? a.value.sle(b.value) :
 | |
|                                 a.value.sge(b.value);
 | |
|     }
 | |
| 
 | |
|     /// Test if Bound a is less then Bound b
 | |
|     static bool lt(const Bound &a, const Bound &b) {
 | |
|       assert(a.isUpperBound() == b.isUpperBound());
 | |
|       return a.isUpperBound() ? a.value.slt(b.value) :
 | |
|                                 a.value.sgt(b.value);
 | |
|     }
 | |
| 
 | |
|     /// Test if Bound b is greater then or equal val
 | |
|     static bool geq(const Bound &b, APInt val) {
 | |
|       return leq(val, b);
 | |
|     }
 | |
| 
 | |
|     /// Test if Bound a is greater then or equal Bound b
 | |
|     static bool geq(const Bound &a, const Bound &b) {
 | |
|       return leq(b, a);
 | |
|     }
 | |
| 
 | |
|    private:
 | |
|     APInt value;
 | |
|     bool upper_bound;
 | |
|   };
 | |
| 
 | |
|   /// This class is used to store results some parts of the graph,
 | |
|   /// so information does not need to be recalculated. The maximum false,
 | |
|   /// minimum true and minimum reduced results are stored
 | |
|   class MemoizedResultChart {
 | |
|    public:
 | |
|      MemoizedResultChart() {}
 | |
|      MemoizedResultChart(const MemoizedResultChart &other) {
 | |
|        if (other.max_false)
 | |
|          max_false.reset(new Bound(*other.max_false));
 | |
|        if (other.min_true)
 | |
|          min_true.reset(new Bound(*other.min_true));
 | |
|        if (other.min_reduced)
 | |
|          min_reduced.reset(new Bound(*other.min_reduced));
 | |
|      }
 | |
| 
 | |
|     /// Returns the max false
 | |
|     const Bound *getFalse() const { return max_false.get(); }
 | |
| 
 | |
|     /// Returns the min true
 | |
|     const Bound *getTrue() const { return min_true.get(); }
 | |
| 
 | |
|     /// Returns the min reduced
 | |
|     const Bound *getReduced() const { return min_reduced.get(); }
 | |
| 
 | |
|     /// Return the stored result for this bound
 | |
|     ProveResult getResult(const Bound &bound) const;
 | |
| 
 | |
|     /// Stores a false found
 | |
|     void addFalse(const Bound &bound);
 | |
| 
 | |
|     /// Stores a true found
 | |
|     void addTrue(const Bound &bound);
 | |
| 
 | |
|     /// Stores a Reduced found
 | |
|     void addReduced(const Bound &bound);
 | |
| 
 | |
|     /// Clears redundant reduced
 | |
|     /// If a min_true is smaller than a min_reduced then the min_reduced
 | |
|     /// is unnecessary and then removed. It also works for min_reduced
 | |
|     /// begin smaller than max_false.
 | |
|     void clearRedundantReduced();
 | |
| 
 | |
|     void clear() {
 | |
|       max_false.reset();
 | |
|       min_true.reset();
 | |
|       min_reduced.reset();
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     OwningPtr<Bound> max_false, min_true, min_reduced;
 | |
|   };
 | |
| 
 | |
|   /// This class stores the result found for a node of the graph,
 | |
|   /// so these results do not need to be recalculated, only searched for.
 | |
|   class MemoizedResult {
 | |
|   public:
 | |
|     /// Test if there is true result stored from b to a
 | |
|     /// that is less then the bound
 | |
|     bool hasTrue(Value *b, const Bound &bound) const {
 | |
|       const Bound *trueBound = map.lookup(b).getTrue();
 | |
|       return trueBound && Bound::leq(*trueBound, bound);
 | |
|     }
 | |
| 
 | |
|     /// Test if there is false result stored from b to a
 | |
|     /// that is less then the bound
 | |
|     bool hasFalse(Value *b, const Bound &bound) const {
 | |
|       const Bound *falseBound = map.lookup(b).getFalse();
 | |
|       return falseBound && Bound::leq(*falseBound, bound);
 | |
|     }
 | |
| 
 | |
|     /// Test if there is reduced result stored from b to a
 | |
|     /// that is less then the bound
 | |
|     bool hasReduced(Value *b, const Bound &bound) const {
 | |
|       const Bound *reducedBound = map.lookup(b).getReduced();
 | |
|       return reducedBound && Bound::leq(*reducedBound, bound);
 | |
|     }
 | |
| 
 | |
|     /// Returns the stored bound for b
 | |
|     ProveResult getBoundResult(Value *b, const Bound &bound) {
 | |
|       return map[b].getResult(bound);
 | |
|     }
 | |
| 
 | |
|     /// Clears the map
 | |
|     void clear() {
 | |
|       DenseMapIterator<Value*, MemoizedResultChart> begin = map.begin();
 | |
|       DenseMapIterator<Value*, MemoizedResultChart> end = map.end();
 | |
|       for (; begin != end; ++begin) {
 | |
|         begin->second.clear();
 | |
|       }
 | |
|       map.clear();
 | |
|     }
 | |
| 
 | |
|     /// Stores the bound found
 | |
|     void updateBound(Value *b, const Bound &bound, const ProveResult res);
 | |
| 
 | |
|   private:
 | |
|     // Maps a nod in the graph with its results found.
 | |
|     DenseMap<Value*, MemoizedResultChart> map;
 | |
|   };
 | |
| 
 | |
|   /// This class represents an edge in the inequality graph used by the
 | |
|   /// ABCD algorithm. An edge connects node v to node u with a value c if
 | |
|   /// we could infer a constraint v <= u + c in the source program.
 | |
|   class Edge {
 | |
|   public:
 | |
|     Edge(Value *V, APInt val, bool upper)
 | |
|       : vertex(V), value(val), upper_bound(upper) {}
 | |
| 
 | |
|     Value *getVertex() const { return vertex; }
 | |
|     const APInt &getValue() const { return value; }
 | |
|     bool isUpperBound() const { return upper_bound; }
 | |
| 
 | |
|   private:
 | |
|     Value *vertex;
 | |
|     APInt value;
 | |
|     bool upper_bound;
 | |
|   };
 | |
| 
 | |
|   /// Weighted and Directed graph to represent constraints.
 | |
|   /// There is one type of constraint, a <= b + X, which will generate an
 | |
|   /// edge from b to a with weight X.
 | |
|   class InequalityGraph {
 | |
|   public:
 | |
| 
 | |
|     /// Adds an edge from V_from to V_to with weight value
 | |
|     void addEdge(Value *V_from, Value *V_to, APInt value, bool upper);
 | |
| 
 | |
|     /// Test if there is a node V
 | |
|     bool hasNode(Value *V) const { return graph.count(V); }
 | |
| 
 | |
|     /// Test if there is any edge from V in the upper direction
 | |
|     bool hasEdge(Value *V, bool upper) const;
 | |
| 
 | |
|     /// Returns all edges pointed by vertex V
 | |
|     SmallVector<Edge, 16> getEdges(Value *V) const {
 | |
|       return graph.lookup(V);
 | |
|     }
 | |
| 
 | |
|     /// Prints the graph in dot format.
 | |
|     /// Blue edges represent upper bound and Red lower bound.
 | |
|     void printGraph(raw_ostream &OS, Function &F) const {
 | |
|       printHeader(OS, F);
 | |
|       printBody(OS);
 | |
|       printFooter(OS);
 | |
|     }
 | |
| 
 | |
|     /// Clear the graph
 | |
|     void clear() {
 | |
|       graph.clear();
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     DenseMap<Value *, SmallVector<Edge, 16> > graph;
 | |
| 
 | |
|     /// Prints the header of the dot file
 | |
|     void printHeader(raw_ostream &OS, Function &F) const;
 | |
| 
 | |
|     /// Prints the footer of the dot file
 | |
|     void printFooter(raw_ostream &OS) const {
 | |
|       OS << "}\n";
 | |
|     }
 | |
| 
 | |
|     /// Prints the body of the dot file
 | |
|     void printBody(raw_ostream &OS) const;
 | |
| 
 | |
|     /// Prints vertex source to the dot file
 | |
|     void printVertex(raw_ostream &OS, Value *source) const;
 | |
| 
 | |
|     /// Prints the edge to the dot file
 | |
|     void printEdge(raw_ostream &OS, Value *source, const Edge &edge) const;
 | |
| 
 | |
|     void printName(raw_ostream &OS, Value *info) const;
 | |
|   };
 | |
| 
 | |
|   /// Iterates through all BasicBlocks, if the Terminator Instruction
 | |
|   /// uses an Comparator Instruction, all operands of this comparator
 | |
|   /// are sent to be transformed to SSI. Only Instruction operands are
 | |
|   /// transformed.
 | |
|   void createSSI(Function &F);
 | |
| 
 | |
|   /// Creates the graphs for this function.
 | |
|   /// It will look for all comparators used in branches, and create them.
 | |
|   /// These comparators will create constraints for any instruction as an
 | |
|   /// operand.
 | |
|   void executeABCD(Function &F);
 | |
| 
 | |
|   /// Seeks redundancies in the comparator instruction CI.
 | |
|   /// If the ABCD algorithm can prove that the comparator CI always
 | |
|   /// takes one way, then the Terminator Instruction TI is substituted from
 | |
|   /// a conditional branch to a unconditional one.
 | |
|   /// This code basically receives a comparator, and verifies which kind of
 | |
|   /// instruction it is. Depending on the kind of instruction, we use different
 | |
|   /// strategies to prove its redundancy.
 | |
|   void seekRedundancy(ICmpInst *ICI, TerminatorInst *TI);
 | |
| 
 | |
|   /// Substitutes Terminator Instruction TI, that is a conditional branch,
 | |
|   /// with one unconditional branch. Succ_edge determines if the new
 | |
|   /// unconditional edge will be the first or second edge of the former TI
 | |
|   /// instruction.
 | |
|   void removeRedundancy(TerminatorInst *TI, bool Succ_edge);
 | |
| 
 | |
|   /// When an conditional branch is removed, the BasicBlock that is no longer
 | |
|   /// reachable will have problems in phi functions. This method fixes these
 | |
|   /// phis removing the former BasicBlock from the list of incoming BasicBlocks
 | |
|   /// of all phis. In case the phi remains with no predecessor it will be
 | |
|   /// marked to be removed later.
 | |
|   void fixPhi(BasicBlock *BB, BasicBlock *Succ);
 | |
| 
 | |
|   /// Removes phis that have no predecessor
 | |
|   void removePhis();
 | |
| 
 | |
|   /// Creates constraints for Instructions.
 | |
|   /// If the constraint for this instruction has already been created
 | |
|   /// nothing is done.
 | |
|   void createConstraintInstruction(Instruction *I);
 | |
| 
 | |
|   /// Creates constraints for Binary Operators.
 | |
|   /// It will create constraints only for addition and subtraction,
 | |
|   /// the other binary operations are not treated by ABCD.
 | |
|   /// For additions in the form a = b + X and a = X + b, where X is a constant,
 | |
|   /// the constraint a <= b + X can be obtained. For this constraint, an edge
 | |
|   /// a->b with weight X is added to the lower bound graph, and an edge
 | |
|   /// b->a with weight -X is added to the upper bound graph.
 | |
|   /// Only subtractions in the format a = b - X is used by ABCD.
 | |
|   /// Edges are created using the same semantic as addition.
 | |
|   void createConstraintBinaryOperator(BinaryOperator *BO);
 | |
| 
 | |
|   /// Creates constraints for Comparator Instructions.
 | |
|   /// Only comparators that have any of the following operators
 | |
|   /// are used to create constraints: >=, >, <=, <. And only if
 | |
|   /// at least one operand is an Instruction. In a Comparator Instruction
 | |
|   /// a op b, there will be 4 sigma functions a_t, a_f, b_t and b_f. Where
 | |
|   /// t and f represent sigma for operands in true and false branches. The
 | |
|   /// following constraints can be obtained. a_t <= a, a_f <= a, b_t <= b and
 | |
|   /// b_f <= b. There are two more constraints that depend on the operator.
 | |
|   /// For the operator <= : a_t <= b_t   and b_f <= a_f-1
 | |
|   /// For the operator <  : a_t <= b_t-1 and b_f <= a_f
 | |
|   /// For the operator >= : b_t <= a_t   and a_f <= b_f-1
 | |
|   /// For the operator >  : b_t <= a_t-1 and a_f <= b_f
 | |
|   void createConstraintCmpInst(ICmpInst *ICI, TerminatorInst *TI);
 | |
| 
 | |
|   /// Creates constraints for PHI nodes.
 | |
|   /// In a PHI node a = phi(b,c) we can create the constraint
 | |
|   /// a<= max(b,c). With this constraint there will be the edges,
 | |
|   /// b->a and c->a with weight 0 in the lower bound graph, and the edges
 | |
|   /// a->b and a->c with weight 0 in the upper bound graph.
 | |
|   void createConstraintPHINode(PHINode *PN);
 | |
| 
 | |
|   /// Given a binary operator, we are only interest in the case
 | |
|   /// that one operand is an Instruction and the other is a ConstantInt. In
 | |
|   /// this case the method returns true, otherwise false. It also obtains the
 | |
|   /// Instruction and ConstantInt from the BinaryOperator and returns it.
 | |
|   bool createBinaryOperatorInfo(BinaryOperator *BO, Instruction **I1,
 | |
|                                 Instruction **I2, ConstantInt **C1,
 | |
|                                 ConstantInt **C2);
 | |
| 
 | |
|   /// This method creates a constraint between a Sigma and an Instruction.
 | |
|   /// These constraints are created as soon as we find a comparator that uses a
 | |
|   /// SSI variable.
 | |
|   void createConstraintSigInst(Instruction *I_op, BasicBlock *BB_succ_t,
 | |
|                                BasicBlock *BB_succ_f, PHINode **SIG_op_t,
 | |
|                                PHINode **SIG_op_f);
 | |
| 
 | |
|   /// If PN_op1 and PN_o2 are different from NULL, create a constraint
 | |
|   /// PN_op2 -> PN_op1 with value. In case any of them is NULL, replace
 | |
|   /// with the respective V_op#, if V_op# is a ConstantInt.
 | |
|   void createConstraintSigSig(PHINode *SIG_op1, PHINode *SIG_op2, 
 | |
|                               ConstantInt *V_op1, ConstantInt *V_op2,
 | |
|                               APInt value);
 | |
| 
 | |
|   /// Returns the sigma representing the Instruction I in BasicBlock BB.
 | |
|   /// Returns NULL in case there is no sigma for this Instruction in this
 | |
|   /// Basic Block. This methods assume that sigmas are the first instructions
 | |
|   /// in a block, and that there can be only two sigmas in a block. So it will
 | |
|   /// only look on the first two instructions of BasicBlock BB.
 | |
|   PHINode *findSigma(BasicBlock *BB, Instruction *I);
 | |
| 
 | |
|   /// Original ABCD algorithm to prove redundant checks.
 | |
|   /// This implementation works on any kind of inequality branch.
 | |
|   bool demandProve(Value *a, Value *b, int c, bool upper_bound);
 | |
| 
 | |
|   /// Prove that distance between b and a is <= bound
 | |
|   ProveResult prove(Value *a, Value *b, const Bound &bound, unsigned level);
 | |
| 
 | |
|   /// Updates the distance value for a and b
 | |
|   void updateMemDistance(Value *a, Value *b, const Bound &bound, unsigned level,
 | |
|                          meet_function meet);
 | |
| 
 | |
|   InequalityGraph inequality_graph;
 | |
|   MemoizedResult mem_result;
 | |
|   DenseMap<Value*, const Bound*> active;
 | |
|   SmallPtrSet<Value*, 16> created;
 | |
|   SmallVector<PHINode *, 16> phis_to_remove;
 | |
| };
 | |
| 
 | |
| }  // end anonymous namespace.
 | |
| 
 | |
| char ABCD::ID = 0;
 | |
| static RegisterPass<ABCD> X("abcd", "ABCD: Eliminating Array Bounds Checks on Demand");
 | |
| 
 | |
| 
 | |
| bool ABCD::runOnFunction(Function &F) {
 | |
|   modified = false;
 | |
|   createSSI(F);
 | |
|   executeABCD(F);
 | |
|   DEBUG(inequality_graph.printGraph(dbgs(), F));
 | |
|   removePhis();
 | |
| 
 | |
|   inequality_graph.clear();
 | |
|   mem_result.clear();
 | |
|   active.clear();
 | |
|   created.clear();
 | |
|   phis_to_remove.clear();
 | |
|   return modified;
 | |
| }
 | |
| 
 | |
| /// Iterates through all BasicBlocks, if the Terminator Instruction
 | |
| /// uses an Comparator Instruction, all operands of this comparator
 | |
| /// are sent to be transformed to SSI. Only Instruction operands are
 | |
| /// transformed.
 | |
| void ABCD::createSSI(Function &F) {
 | |
|   SSI *ssi = &getAnalysis<SSI>();
 | |
| 
 | |
|   SmallVector<Instruction *, 16> Insts;
 | |
| 
 | |
|   for (Function::iterator begin = F.begin(), end = F.end();
 | |
|        begin != end; ++begin) {
 | |
|     BasicBlock *BB = begin;
 | |
|     TerminatorInst *TI = BB->getTerminator();
 | |
|     if (TI->getNumOperands() == 0)
 | |
|       continue;
 | |
| 
 | |
|     if (ICmpInst *ICI = dyn_cast<ICmpInst>(TI->getOperand(0))) {
 | |
|       if (Instruction *I = dyn_cast<Instruction>(ICI->getOperand(0))) {
 | |
|         modified = true;  // XXX: but yet createSSI might do nothing
 | |
|         Insts.push_back(I);
 | |
|       }
 | |
|       if (Instruction *I = dyn_cast<Instruction>(ICI->getOperand(1))) {
 | |
|         modified = true;
 | |
|         Insts.push_back(I);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   ssi->createSSI(Insts);
 | |
| }
 | |
| 
 | |
| /// Creates the graphs for this function.
 | |
| /// It will look for all comparators used in branches, and create them.
 | |
| /// These comparators will create constraints for any instruction as an
 | |
| /// operand.
 | |
| void ABCD::executeABCD(Function &F) {
 | |
|   for (Function::iterator begin = F.begin(), end = F.end();
 | |
|        begin != end; ++begin) {
 | |
|     BasicBlock *BB = begin;
 | |
|     TerminatorInst *TI = BB->getTerminator();
 | |
|     if (TI->getNumOperands() == 0)
 | |
|       continue;
 | |
| 
 | |
|     ICmpInst *ICI = dyn_cast<ICmpInst>(TI->getOperand(0));
 | |
|     if (!ICI || !ICI->getOperand(0)->getType()->isIntegerTy())
 | |
|       continue;
 | |
| 
 | |
|     createConstraintCmpInst(ICI, TI);
 | |
|     seekRedundancy(ICI, TI);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Seeks redundancies in the comparator instruction CI.
 | |
| /// If the ABCD algorithm can prove that the comparator CI always
 | |
| /// takes one way, then the Terminator Instruction TI is substituted from
 | |
| /// a conditional branch to a unconditional one.
 | |
| /// This code basically receives a comparator, and verifies which kind of
 | |
| /// instruction it is. Depending on the kind of instruction, we use different
 | |
| /// strategies to prove its redundancy.
 | |
| void ABCD::seekRedundancy(ICmpInst *ICI, TerminatorInst *TI) {
 | |
|   CmpInst::Predicate Pred = ICI->getPredicate();
 | |
| 
 | |
|   Value *source, *dest;
 | |
|   int distance1, distance2;
 | |
|   bool upper;
 | |
| 
 | |
|   switch(Pred) {
 | |
|     case CmpInst::ICMP_SGT: // signed greater than
 | |
|       upper = false;
 | |
|       distance1 = 1;
 | |
|       distance2 = 0;
 | |
|       break;
 | |
| 
 | |
|     case CmpInst::ICMP_SGE: // signed greater or equal
 | |
|       upper = false;
 | |
|       distance1 = 0;
 | |
|       distance2 = -1;
 | |
|       break;
 | |
| 
 | |
|     case CmpInst::ICMP_SLT: // signed less than
 | |
|       upper = true;
 | |
|       distance1 = -1;
 | |
|       distance2 = 0;
 | |
|       break;
 | |
| 
 | |
|     case CmpInst::ICMP_SLE: // signed less or equal
 | |
|       upper = true;
 | |
|       distance1 = 0;
 | |
|       distance2 = 1;
 | |
|       break;
 | |
| 
 | |
|     default:
 | |
|       return;
 | |
|   }
 | |
| 
 | |
|   ++NumBranchTested;
 | |
|   source = ICI->getOperand(0);
 | |
|   dest = ICI->getOperand(1);
 | |
|   if (demandProve(dest, source, distance1, upper)) {
 | |
|     removeRedundancy(TI, true);
 | |
|   } else if (demandProve(dest, source, distance2, !upper)) {
 | |
|     removeRedundancy(TI, false);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Substitutes Terminator Instruction TI, that is a conditional branch,
 | |
| /// with one unconditional branch. Succ_edge determines if the new
 | |
| /// unconditional edge will be the first or second edge of the former TI
 | |
| /// instruction.
 | |
| void ABCD::removeRedundancy(TerminatorInst *TI, bool Succ_edge) {
 | |
|   BasicBlock *Succ;
 | |
|   if (Succ_edge) {
 | |
|     Succ = TI->getSuccessor(0);
 | |
|     fixPhi(TI->getParent(), TI->getSuccessor(1));
 | |
|   } else {
 | |
|     Succ = TI->getSuccessor(1);
 | |
|     fixPhi(TI->getParent(), TI->getSuccessor(0));
 | |
|   }
 | |
| 
 | |
|   BranchInst::Create(Succ, TI);
 | |
|   TI->eraseFromParent();  // XXX: invoke
 | |
|   ++NumBranchRemoved;
 | |
|   modified = true;
 | |
| }
 | |
| 
 | |
| /// When an conditional branch is removed, the BasicBlock that is no longer
 | |
| /// reachable will have problems in phi functions. This method fixes these
 | |
| /// phis removing the former BasicBlock from the list of incoming BasicBlocks
 | |
| /// of all phis. In case the phi remains with no predecessor it will be
 | |
| /// marked to be removed later.
 | |
| void ABCD::fixPhi(BasicBlock *BB, BasicBlock *Succ) {
 | |
|   BasicBlock::iterator begin = Succ->begin();
 | |
|   while (PHINode *PN = dyn_cast<PHINode>(begin++)) {
 | |
|     PN->removeIncomingValue(BB, false);
 | |
|     if (PN->getNumIncomingValues() == 0)
 | |
|       phis_to_remove.push_back(PN);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Removes phis that have no predecessor
 | |
| void ABCD::removePhis() {
 | |
|   for (unsigned i = 0, e = phis_to_remove.size(); i != e; ++i) {
 | |
|     PHINode *PN = phis_to_remove[i];
 | |
|     PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
 | |
|     PN->eraseFromParent();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Creates constraints for Instructions.
 | |
| /// If the constraint for this instruction has already been created
 | |
| /// nothing is done.
 | |
| void ABCD::createConstraintInstruction(Instruction *I) {
 | |
|   // Test if this instruction has not been created before
 | |
|   if (created.insert(I)) {
 | |
|     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
 | |
|       createConstraintBinaryOperator(BO);
 | |
|     } else if (PHINode *PN = dyn_cast<PHINode>(I)) {
 | |
|       createConstraintPHINode(PN);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Creates constraints for Binary Operators.
 | |
| /// It will create constraints only for addition and subtraction,
 | |
| /// the other binary operations are not treated by ABCD.
 | |
| /// For additions in the form a = b + X and a = X + b, where X is a constant,
 | |
| /// the constraint a <= b + X can be obtained. For this constraint, an edge
 | |
| /// a->b with weight X is added to the lower bound graph, and an edge
 | |
| /// b->a with weight -X is added to the upper bound graph.
 | |
| /// Only subtractions in the format a = b - X is used by ABCD.
 | |
| /// Edges are created using the same semantic as addition.
 | |
| void ABCD::createConstraintBinaryOperator(BinaryOperator *BO) {
 | |
|   Instruction *I1 = NULL, *I2 = NULL;
 | |
|   ConstantInt *CI1 = NULL, *CI2 = NULL;
 | |
| 
 | |
|   // Test if an operand is an Instruction and the other is a Constant
 | |
|   if (!createBinaryOperatorInfo(BO, &I1, &I2, &CI1, &CI2))
 | |
|     return;
 | |
| 
 | |
|   Instruction *I = 0;
 | |
|   APInt value;
 | |
| 
 | |
|   switch (BO->getOpcode()) {
 | |
|     case Instruction::Add:
 | |
|       if (I1) {
 | |
|         I = I1;
 | |
|         value = CI2->getValue();
 | |
|       } else if (I2) {
 | |
|         I = I2;
 | |
|         value = CI1->getValue();
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     case Instruction::Sub:
 | |
|       // Instructions like a = X-b, where X is a constant are not represented
 | |
|       // in the graph.
 | |
|       if (!I1)
 | |
|         return;
 | |
| 
 | |
|       I = I1;
 | |
|       value = -CI2->getValue();
 | |
|       break;
 | |
| 
 | |
|     default:
 | |
|       return;
 | |
|   }
 | |
| 
 | |
|   inequality_graph.addEdge(I, BO, value, true);
 | |
|   inequality_graph.addEdge(BO, I, -value, false);
 | |
|   createConstraintInstruction(I);
 | |
| }
 | |
| 
 | |
| /// Given a binary operator, we are only interest in the case
 | |
| /// that one operand is an Instruction and the other is a ConstantInt. In
 | |
| /// this case the method returns true, otherwise false. It also obtains the
 | |
| /// Instruction and ConstantInt from the BinaryOperator and returns it.
 | |
| bool ABCD::createBinaryOperatorInfo(BinaryOperator *BO, Instruction **I1,
 | |
|                                     Instruction **I2, ConstantInt **C1,
 | |
|                                     ConstantInt **C2) {
 | |
|   Value *op1 = BO->getOperand(0);
 | |
|   Value *op2 = BO->getOperand(1);
 | |
| 
 | |
|   if ((*I1 = dyn_cast<Instruction>(op1))) {
 | |
|     if ((*C2 = dyn_cast<ConstantInt>(op2)))
 | |
|       return true; // First is Instruction and second ConstantInt
 | |
| 
 | |
|     return false; // Both are Instruction
 | |
|   } else {
 | |
|     if ((*C1 = dyn_cast<ConstantInt>(op1)) &&
 | |
|         (*I2 = dyn_cast<Instruction>(op2)))
 | |
|       return true; // First is ConstantInt and second Instruction
 | |
| 
 | |
|     return false; // Both are not Instruction
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Creates constraints for Comparator Instructions.
 | |
| /// Only comparators that have any of the following operators
 | |
| /// are used to create constraints: >=, >, <=, <. And only if
 | |
| /// at least one operand is an Instruction. In a Comparator Instruction
 | |
| /// a op b, there will be 4 sigma functions a_t, a_f, b_t and b_f. Where
 | |
| /// t and f represent sigma for operands in true and false branches. The
 | |
| /// following constraints can be obtained. a_t <= a, a_f <= a, b_t <= b and
 | |
| /// b_f <= b. There are two more constraints that depend on the operator.
 | |
| /// For the operator <= : a_t <= b_t   and b_f <= a_f-1
 | |
| /// For the operator <  : a_t <= b_t-1 and b_f <= a_f
 | |
| /// For the operator >= : b_t <= a_t   and a_f <= b_f-1
 | |
| /// For the operator >  : b_t <= a_t-1 and a_f <= b_f
 | |
| void ABCD::createConstraintCmpInst(ICmpInst *ICI, TerminatorInst *TI) {
 | |
|   Value *V_op1 = ICI->getOperand(0);
 | |
|   Value *V_op2 = ICI->getOperand(1);
 | |
| 
 | |
|   if (!V_op1->getType()->isIntegerTy())
 | |
|     return;
 | |
| 
 | |
|   Instruction *I_op1 = dyn_cast<Instruction>(V_op1);
 | |
|   Instruction *I_op2 = dyn_cast<Instruction>(V_op2);
 | |
| 
 | |
|   // Test if at least one operand is an Instruction
 | |
|   if (!I_op1 && !I_op2)
 | |
|     return;
 | |
| 
 | |
|   BasicBlock *BB_succ_t = TI->getSuccessor(0);
 | |
|   BasicBlock *BB_succ_f = TI->getSuccessor(1);
 | |
| 
 | |
|   PHINode *SIG_op1_t = NULL, *SIG_op1_f = NULL,
 | |
|           *SIG_op2_t = NULL, *SIG_op2_f = NULL;
 | |
| 
 | |
|   createConstraintSigInst(I_op1, BB_succ_t, BB_succ_f, &SIG_op1_t, &SIG_op1_f);
 | |
|   createConstraintSigInst(I_op2, BB_succ_t, BB_succ_f, &SIG_op2_t, &SIG_op2_f);
 | |
| 
 | |
|   int32_t width = cast<IntegerType>(V_op1->getType())->getBitWidth();
 | |
|   APInt MinusOne = APInt::getAllOnesValue(width);
 | |
|   APInt Zero = APInt::getNullValue(width);
 | |
| 
 | |
|   CmpInst::Predicate Pred = ICI->getPredicate();
 | |
|   ConstantInt *CI1 = dyn_cast<ConstantInt>(V_op1);
 | |
|   ConstantInt *CI2 = dyn_cast<ConstantInt>(V_op2);
 | |
|   switch (Pred) {
 | |
|   case CmpInst::ICMP_SGT:  // signed greater than
 | |
|     createConstraintSigSig(SIG_op2_t, SIG_op1_t, CI2, CI1, MinusOne);
 | |
|     createConstraintSigSig(SIG_op1_f, SIG_op2_f, CI1, CI2, Zero);
 | |
|     break;
 | |
| 
 | |
|   case CmpInst::ICMP_SGE:  // signed greater or equal
 | |
|     createConstraintSigSig(SIG_op2_t, SIG_op1_t, CI2, CI1, Zero);
 | |
|     createConstraintSigSig(SIG_op1_f, SIG_op2_f, CI1, CI2, MinusOne);
 | |
|     break;
 | |
| 
 | |
|   case CmpInst::ICMP_SLT:  // signed less than
 | |
|     createConstraintSigSig(SIG_op1_t, SIG_op2_t, CI1, CI2, MinusOne);
 | |
|     createConstraintSigSig(SIG_op2_f, SIG_op1_f, CI2, CI1, Zero);
 | |
|     break;
 | |
| 
 | |
|   case CmpInst::ICMP_SLE:  // signed less or equal
 | |
|     createConstraintSigSig(SIG_op1_t, SIG_op2_t, CI1, CI2, Zero);
 | |
|     createConstraintSigSig(SIG_op2_f, SIG_op1_f, CI2, CI1, MinusOne);
 | |
|     break;
 | |
| 
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (I_op1)
 | |
|     createConstraintInstruction(I_op1);
 | |
|   if (I_op2)
 | |
|     createConstraintInstruction(I_op2);
 | |
| }
 | |
| 
 | |
| /// Creates constraints for PHI nodes.
 | |
| /// In a PHI node a = phi(b,c) we can create the constraint
 | |
| /// a<= max(b,c). With this constraint there will be the edges,
 | |
| /// b->a and c->a with weight 0 in the lower bound graph, and the edges
 | |
| /// a->b and a->c with weight 0 in the upper bound graph.
 | |
| void ABCD::createConstraintPHINode(PHINode *PN) {
 | |
|   // FIXME: We really want to disallow sigma nodes, but I don't know the best
 | |
|   // way to detect the other than this.
 | |
|   if (PN->getNumOperands() == 2) return;
 | |
|   
 | |
|   int32_t width = cast<IntegerType>(PN->getType())->getBitWidth();
 | |
|   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|     Value *V = PN->getIncomingValue(i);
 | |
|     if (Instruction *I = dyn_cast<Instruction>(V)) {
 | |
|       createConstraintInstruction(I);
 | |
|     }
 | |
|     inequality_graph.addEdge(V, PN, APInt(width, 0), true);
 | |
|     inequality_graph.addEdge(V, PN, APInt(width, 0), false);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// This method creates a constraint between a Sigma and an Instruction.
 | |
| /// These constraints are created as soon as we find a comparator that uses a
 | |
| /// SSI variable.
 | |
| void ABCD::createConstraintSigInst(Instruction *I_op, BasicBlock *BB_succ_t,
 | |
|                                    BasicBlock *BB_succ_f, PHINode **SIG_op_t,
 | |
|                                    PHINode **SIG_op_f) {
 | |
|   *SIG_op_t = findSigma(BB_succ_t, I_op);
 | |
|   *SIG_op_f = findSigma(BB_succ_f, I_op);
 | |
| 
 | |
|   if (*SIG_op_t) {
 | |
|     int32_t width = cast<IntegerType>((*SIG_op_t)->getType())->getBitWidth();
 | |
|     inequality_graph.addEdge(I_op, *SIG_op_t, APInt(width, 0), true);
 | |
|     inequality_graph.addEdge(*SIG_op_t, I_op, APInt(width, 0), false);
 | |
|   }
 | |
|   if (*SIG_op_f) {
 | |
|     int32_t width = cast<IntegerType>((*SIG_op_f)->getType())->getBitWidth();
 | |
|     inequality_graph.addEdge(I_op, *SIG_op_f, APInt(width, 0), true);
 | |
|     inequality_graph.addEdge(*SIG_op_f, I_op, APInt(width, 0), false);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// If PN_op1 and PN_o2 are different from NULL, create a constraint
 | |
| /// PN_op2 -> PN_op1 with value. In case any of them is NULL, replace
 | |
| /// with the respective V_op#, if V_op# is a ConstantInt.
 | |
| void ABCD::createConstraintSigSig(PHINode *SIG_op1, PHINode *SIG_op2,
 | |
|                                   ConstantInt *V_op1, ConstantInt *V_op2,
 | |
|                                   APInt value) {
 | |
|   if (SIG_op1 && SIG_op2) {
 | |
|     inequality_graph.addEdge(SIG_op2, SIG_op1, value, true);
 | |
|     inequality_graph.addEdge(SIG_op1, SIG_op2, -value, false);
 | |
|   } else if (SIG_op1 && V_op2) {
 | |
|     inequality_graph.addEdge(V_op2, SIG_op1, value, true);
 | |
|     inequality_graph.addEdge(SIG_op1, V_op2, -value, false);
 | |
|   } else if (SIG_op2 && V_op1) {
 | |
|     inequality_graph.addEdge(SIG_op2, V_op1, value, true);
 | |
|     inequality_graph.addEdge(V_op1, SIG_op2, -value, false);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Returns the sigma representing the Instruction I in BasicBlock BB.
 | |
| /// Returns NULL in case there is no sigma for this Instruction in this
 | |
| /// Basic Block. This methods assume that sigmas are the first instructions
 | |
| /// in a block, and that there can be only two sigmas in a block. So it will
 | |
| /// only look on the first two instructions of BasicBlock BB.
 | |
| PHINode *ABCD::findSigma(BasicBlock *BB, Instruction *I) {
 | |
|   // BB has more than one predecessor, BB cannot have sigmas.
 | |
|   if (I == NULL || BB->getSinglePredecessor() == NULL)
 | |
|     return NULL;
 | |
| 
 | |
|   BasicBlock::iterator begin = BB->begin();
 | |
|   BasicBlock::iterator end = BB->end();
 | |
| 
 | |
|   for (unsigned i = 0; i < 2 && begin != end; ++i, ++begin) {
 | |
|     Instruction *I_succ = begin;
 | |
|     if (PHINode *PN = dyn_cast<PHINode>(I_succ))
 | |
|       if (PN->getIncomingValue(0) == I)
 | |
|         return PN;
 | |
|   }
 | |
| 
 | |
|   return NULL;
 | |
| }
 | |
| 
 | |
| /// Original ABCD algorithm to prove redundant checks.
 | |
| /// This implementation works on any kind of inequality branch.
 | |
| bool ABCD::demandProve(Value *a, Value *b, int c, bool upper_bound) {
 | |
|   int32_t width = cast<IntegerType>(a->getType())->getBitWidth();
 | |
|   Bound bound(APInt(width, c), upper_bound);
 | |
| 
 | |
|   mem_result.clear();
 | |
|   active.clear();
 | |
| 
 | |
|   ProveResult res = prove(a, b, bound, 0);
 | |
|   return res != False;
 | |
| }
 | |
| 
 | |
| /// Prove that distance between b and a is <= bound
 | |
| ABCD::ProveResult ABCD::prove(Value *a, Value *b, const Bound &bound,
 | |
|                               unsigned level) {
 | |
|   // if (C[b-a<=e] == True for some e <= bound
 | |
|   // Same or stronger difference was already proven
 | |
|   if (mem_result.hasTrue(b, bound))
 | |
|     return True;
 | |
| 
 | |
|   // if (C[b-a<=e] == False for some e >= bound
 | |
|   // Same or weaker difference was already disproved
 | |
|   if (mem_result.hasFalse(b, bound))
 | |
|     return False;
 | |
| 
 | |
|   // if (C[b-a<=e] == Reduced for some e <= bound
 | |
|   // b is on a cycle that was reduced for same or stronger difference
 | |
|   if (mem_result.hasReduced(b, bound))
 | |
|     return Reduced;
 | |
| 
 | |
|   // traversal reached the source vertex
 | |
|   if (a == b && Bound::geq(bound, APInt(bound.getBitWidth(), 0, true)))
 | |
|     return True;
 | |
| 
 | |
|   // if b has no predecessor then fail
 | |
|   if (!inequality_graph.hasEdge(b, bound.isUpperBound()))
 | |
|     return False;
 | |
| 
 | |
|   // a cycle was encountered
 | |
|   if (active.count(b)) {
 | |
|     if (Bound::leq(*active.lookup(b), bound))
 | |
|       return Reduced; // a "harmless" cycle
 | |
| 
 | |
|     return False; // an amplifying cycle
 | |
|   }
 | |
| 
 | |
|   active[b] = &bound;
 | |
|   PHINode *PN = dyn_cast<PHINode>(b);
 | |
| 
 | |
|   // Test if a Value is a Phi. If it is a PHINode with more than 1 incoming
 | |
|   // value, then it is a phi, if it has 1 incoming value it is a sigma.
 | |
|   if (PN && PN->getNumIncomingValues() > 1)
 | |
|     updateMemDistance(a, b, bound, level, min);
 | |
|   else
 | |
|     updateMemDistance(a, b, bound, level, max);
 | |
| 
 | |
|   active.erase(b);
 | |
| 
 | |
|   ABCD::ProveResult res = mem_result.getBoundResult(b, bound);
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| /// Updates the distance value for a and b
 | |
| void ABCD::updateMemDistance(Value *a, Value *b, const Bound &bound,
 | |
|                              unsigned level, meet_function meet) {
 | |
|   ABCD::ProveResult res = (meet == max) ? False : True;
 | |
| 
 | |
|   SmallVector<Edge, 16> Edges = inequality_graph.getEdges(b);
 | |
|   SmallVector<Edge, 16>::iterator begin = Edges.begin(), end = Edges.end();
 | |
| 
 | |
|   for (; begin != end ; ++begin) {
 | |
|     if (((res >= Reduced) && (meet == max)) ||
 | |
|        ((res == False) && (meet == min))) {
 | |
|       break;
 | |
|     }
 | |
|     const Edge &in = *begin;
 | |
|     if (in.isUpperBound() == bound.isUpperBound()) {
 | |
|       Value *succ = in.getVertex();
 | |
|       res = meet(res, prove(a, succ, Bound(bound, in.getValue()),
 | |
|                             level+1));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   mem_result.updateBound(b, bound, res);
 | |
| }
 | |
| 
 | |
| /// Return the stored result for this bound
 | |
| ABCD::ProveResult ABCD::MemoizedResultChart::getResult(const Bound &bound)const{
 | |
|   if (max_false && Bound::leq(bound, *max_false))
 | |
|     return False;
 | |
|   if (min_true && Bound::leq(*min_true, bound))
 | |
|     return True;
 | |
|   if (min_reduced && Bound::leq(*min_reduced, bound))
 | |
|     return Reduced;
 | |
|   return False;
 | |
| }
 | |
| 
 | |
| /// Stores a false found
 | |
| void ABCD::MemoizedResultChart::addFalse(const Bound &bound) {
 | |
|   if (!max_false || Bound::leq(*max_false, bound))
 | |
|     max_false.reset(new Bound(bound));
 | |
| 
 | |
|   if (Bound::eq(max_false.get(), min_reduced.get()))
 | |
|     min_reduced.reset(new Bound(Bound::createIncrement(*min_reduced)));
 | |
|   if (Bound::eq(max_false.get(), min_true.get()))
 | |
|     min_true.reset(new Bound(Bound::createIncrement(*min_true)));
 | |
|   if (Bound::eq(min_reduced.get(), min_true.get()))
 | |
|     min_reduced.reset();
 | |
|   clearRedundantReduced();
 | |
| }
 | |
| 
 | |
| /// Stores a true found
 | |
| void ABCD::MemoizedResultChart::addTrue(const Bound &bound) {
 | |
|   if (!min_true || Bound::leq(bound, *min_true))
 | |
|     min_true.reset(new Bound(bound));
 | |
| 
 | |
|   if (Bound::eq(min_true.get(), min_reduced.get()))
 | |
|     min_reduced.reset(new Bound(Bound::createDecrement(*min_reduced)));
 | |
|   if (Bound::eq(min_true.get(), max_false.get()))
 | |
|     max_false.reset(new Bound(Bound::createDecrement(*max_false)));
 | |
|   if (Bound::eq(max_false.get(), min_reduced.get()))
 | |
|     min_reduced.reset();
 | |
|   clearRedundantReduced();
 | |
| }
 | |
| 
 | |
| /// Stores a Reduced found
 | |
| void ABCD::MemoizedResultChart::addReduced(const Bound &bound) {
 | |
|   if (!min_reduced || Bound::leq(bound, *min_reduced))
 | |
|     min_reduced.reset(new Bound(bound));
 | |
| 
 | |
|   if (Bound::eq(min_reduced.get(), min_true.get()))
 | |
|     min_true.reset(new Bound(Bound::createIncrement(*min_true)));
 | |
|   if (Bound::eq(min_reduced.get(), max_false.get()))
 | |
|     max_false.reset(new Bound(Bound::createDecrement(*max_false)));
 | |
| }
 | |
| 
 | |
| /// Clears redundant reduced
 | |
| /// If a min_true is smaller than a min_reduced then the min_reduced
 | |
| /// is unnecessary and then removed. It also works for min_reduced
 | |
| /// begin smaller than max_false.
 | |
| void ABCD::MemoizedResultChart::clearRedundantReduced() {
 | |
|   if (min_true && min_reduced && Bound::lt(*min_true, *min_reduced))
 | |
|     min_reduced.reset();
 | |
|   if (max_false && min_reduced && Bound::lt(*min_reduced, *max_false))
 | |
|     min_reduced.reset();
 | |
| }
 | |
| 
 | |
| /// Stores the bound found
 | |
| void ABCD::MemoizedResult::updateBound(Value *b, const Bound &bound,
 | |
|                                        const ProveResult res) {
 | |
|   if (res == False) {
 | |
|     map[b].addFalse(bound);
 | |
|   } else if (res == True) {
 | |
|     map[b].addTrue(bound);
 | |
|   } else {
 | |
|     map[b].addReduced(bound);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Adds an edge from V_from to V_to with weight value
 | |
| void ABCD::InequalityGraph::addEdge(Value *V_to, Value *V_from,
 | |
|                                     APInt value, bool upper) {
 | |
|   assert(V_from->getType() == V_to->getType());
 | |
|   assert(cast<IntegerType>(V_from->getType())->getBitWidth() ==
 | |
|          value.getBitWidth());
 | |
| 
 | |
|   graph[V_from].push_back(Edge(V_to, value, upper));
 | |
| }
 | |
| 
 | |
| /// Test if there is any edge from V in the upper direction
 | |
| bool ABCD::InequalityGraph::hasEdge(Value *V, bool upper) const {
 | |
|   SmallVector<Edge, 16> it = graph.lookup(V);
 | |
| 
 | |
|   SmallVector<Edge, 16>::iterator begin = it.begin();
 | |
|   SmallVector<Edge, 16>::iterator end = it.end();
 | |
|   for (; begin != end; ++begin) {
 | |
|     if (begin->isUpperBound() == upper) {
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Prints the header of the dot file
 | |
| void ABCD::InequalityGraph::printHeader(raw_ostream &OS, Function &F) const {
 | |
|   OS << "digraph dotgraph {\n";
 | |
|   OS << "label=\"Inequality Graph for \'";
 | |
|   OS << F.getNameStr() << "\' function\";\n";
 | |
|   OS << "node [shape=record,fontname=\"Times-Roman\",fontsize=14];\n";
 | |
| }
 | |
| 
 | |
| /// Prints the body of the dot file
 | |
| void ABCD::InequalityGraph::printBody(raw_ostream &OS) const {
 | |
|   DenseMap<Value *, SmallVector<Edge, 16> >::const_iterator begin =
 | |
|       graph.begin(), end = graph.end();
 | |
| 
 | |
|   for (; begin != end ; ++begin) {
 | |
|     SmallVector<Edge, 16>::const_iterator begin_par =
 | |
|         begin->second.begin(), end_par = begin->second.end();
 | |
|     Value *source = begin->first;
 | |
| 
 | |
|     printVertex(OS, source);
 | |
| 
 | |
|     for (; begin_par != end_par ; ++begin_par) {
 | |
|       const Edge &edge = *begin_par;
 | |
|       printEdge(OS, source, edge);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Prints vertex source to the dot file
 | |
| ///
 | |
| void ABCD::InequalityGraph::printVertex(raw_ostream &OS, Value *source) const {
 | |
|   OS << "\"";
 | |
|   printName(OS, source);
 | |
|   OS << "\"";
 | |
|   OS << " [label=\"{";
 | |
|   printName(OS, source);
 | |
|   OS << "}\"];\n";
 | |
| }
 | |
| 
 | |
| /// Prints the edge to the dot file
 | |
| void ABCD::InequalityGraph::printEdge(raw_ostream &OS, Value *source,
 | |
|                                       const Edge &edge) const {
 | |
|   Value *dest = edge.getVertex();
 | |
|   APInt value = edge.getValue();
 | |
|   bool upper = edge.isUpperBound();
 | |
| 
 | |
|   OS << "\"";
 | |
|   printName(OS, source);
 | |
|   OS << "\"";
 | |
|   OS << " -> ";
 | |
|   OS << "\"";
 | |
|   printName(OS, dest);
 | |
|   OS << "\"";
 | |
|   OS << " [label=\"" << value << "\"";
 | |
|   if (upper) {
 | |
|     OS << "color=\"blue\"";
 | |
|   } else {
 | |
|     OS << "color=\"red\"";
 | |
|   }
 | |
|   OS << "];\n";
 | |
| }
 | |
| 
 | |
| void ABCD::InequalityGraph::printName(raw_ostream &OS, Value *info) const {
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(info)) {
 | |
|     OS << *CI;
 | |
|   } else {
 | |
|     if (!info->hasName()) {
 | |
|       info->setName("V");
 | |
|     }
 | |
|     OS << info->getNameStr();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// createABCDPass - The public interface to this file...
 | |
| FunctionPass *llvm::createABCDPass() {
 | |
|   return new ABCD();
 | |
| }
 |