mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	This is to be consistent with StringSet and ultimately with the standard library's associative container insert function. This lead to updating SmallSet::insert to return pair<iterator, bool>, and then to update SmallPtrSet::insert to return pair<iterator, bool>, and then to update all the existing users of those functions... git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222334 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1804 lines
		
	
	
		
			68 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1804 lines
		
	
	
		
			68 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines routines for folding instructions into constants.
 | 
						|
//
 | 
						|
// Also, to supplement the basic IR ConstantExpr simplifications,
 | 
						|
// this file defines some additional folding routines that can make use of
 | 
						|
// DataLayout information. These functions cannot go in IR due to library
 | 
						|
// dependency issues.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Analysis/ConstantFolding.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/StringMap.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/Config/config.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/GetElementPtrTypeIterator.h"
 | 
						|
#include "llvm/IR/GlobalVariable.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/Intrinsics.h"
 | 
						|
#include "llvm/IR/Operator.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Target/TargetLibraryInfo.h"
 | 
						|
#include <cerrno>
 | 
						|
#include <cmath>
 | 
						|
 | 
						|
#ifdef HAVE_FENV_H
 | 
						|
#include <fenv.h>
 | 
						|
#endif
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Constant Folding internal helper functions
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// Constant fold bitcast, symbolically evaluating it with DataLayout.
 | 
						|
/// This always returns a non-null constant, but it may be a
 | 
						|
/// ConstantExpr if unfoldable.
 | 
						|
static Constant *FoldBitCast(Constant *C, Type *DestTy,
 | 
						|
                             const DataLayout &TD) {
 | 
						|
  // Catch the obvious splat cases.
 | 
						|
  if (C->isNullValue() && !DestTy->isX86_MMXTy())
 | 
						|
    return Constant::getNullValue(DestTy);
 | 
						|
  if (C->isAllOnesValue() && !DestTy->isX86_MMXTy() &&
 | 
						|
      !DestTy->isPtrOrPtrVectorTy()) // Don't get ones for ptr types!
 | 
						|
    return Constant::getAllOnesValue(DestTy);
 | 
						|
 | 
						|
  // Handle a vector->integer cast.
 | 
						|
  if (IntegerType *IT = dyn_cast<IntegerType>(DestTy)) {
 | 
						|
    VectorType *VTy = dyn_cast<VectorType>(C->getType());
 | 
						|
    if (!VTy)
 | 
						|
      return ConstantExpr::getBitCast(C, DestTy);
 | 
						|
 | 
						|
    unsigned NumSrcElts = VTy->getNumElements();
 | 
						|
    Type *SrcEltTy = VTy->getElementType();
 | 
						|
 | 
						|
    // If the vector is a vector of floating point, convert it to vector of int
 | 
						|
    // to simplify things.
 | 
						|
    if (SrcEltTy->isFloatingPointTy()) {
 | 
						|
      unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
 | 
						|
      Type *SrcIVTy =
 | 
						|
        VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
 | 
						|
      // Ask IR to do the conversion now that #elts line up.
 | 
						|
      C = ConstantExpr::getBitCast(C, SrcIVTy);
 | 
						|
    }
 | 
						|
 | 
						|
    ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C);
 | 
						|
    if (!CDV)
 | 
						|
      return ConstantExpr::getBitCast(C, DestTy);
 | 
						|
 | 
						|
    // Now that we know that the input value is a vector of integers, just shift
 | 
						|
    // and insert them into our result.
 | 
						|
    unsigned BitShift = TD.getTypeAllocSizeInBits(SrcEltTy);
 | 
						|
    APInt Result(IT->getBitWidth(), 0);
 | 
						|
    for (unsigned i = 0; i != NumSrcElts; ++i) {
 | 
						|
      Result <<= BitShift;
 | 
						|
      if (TD.isLittleEndian())
 | 
						|
        Result |= CDV->getElementAsInteger(NumSrcElts-i-1);
 | 
						|
      else
 | 
						|
        Result |= CDV->getElementAsInteger(i);
 | 
						|
    }
 | 
						|
 | 
						|
    return ConstantInt::get(IT, Result);
 | 
						|
  }
 | 
						|
 | 
						|
  // The code below only handles casts to vectors currently.
 | 
						|
  VectorType *DestVTy = dyn_cast<VectorType>(DestTy);
 | 
						|
  if (!DestVTy)
 | 
						|
    return ConstantExpr::getBitCast(C, DestTy);
 | 
						|
 | 
						|
  // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
 | 
						|
  // vector so the code below can handle it uniformly.
 | 
						|
  if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
 | 
						|
    Constant *Ops = C; // don't take the address of C!
 | 
						|
    return FoldBitCast(ConstantVector::get(Ops), DestTy, TD);
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is a bitcast from constant vector -> vector, fold it.
 | 
						|
  if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
 | 
						|
    return ConstantExpr::getBitCast(C, DestTy);
 | 
						|
 | 
						|
  // If the element types match, IR can fold it.
 | 
						|
  unsigned NumDstElt = DestVTy->getNumElements();
 | 
						|
  unsigned NumSrcElt = C->getType()->getVectorNumElements();
 | 
						|
  if (NumDstElt == NumSrcElt)
 | 
						|
    return ConstantExpr::getBitCast(C, DestTy);
 | 
						|
 | 
						|
  Type *SrcEltTy = C->getType()->getVectorElementType();
 | 
						|
  Type *DstEltTy = DestVTy->getElementType();
 | 
						|
 | 
						|
  // Otherwise, we're changing the number of elements in a vector, which
 | 
						|
  // requires endianness information to do the right thing.  For example,
 | 
						|
  //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
 | 
						|
  // folds to (little endian):
 | 
						|
  //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
 | 
						|
  // and to (big endian):
 | 
						|
  //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
 | 
						|
 | 
						|
  // First thing is first.  We only want to think about integer here, so if
 | 
						|
  // we have something in FP form, recast it as integer.
 | 
						|
  if (DstEltTy->isFloatingPointTy()) {
 | 
						|
    // Fold to an vector of integers with same size as our FP type.
 | 
						|
    unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
 | 
						|
    Type *DestIVTy =
 | 
						|
      VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
 | 
						|
    // Recursively handle this integer conversion, if possible.
 | 
						|
    C = FoldBitCast(C, DestIVTy, TD);
 | 
						|
 | 
						|
    // Finally, IR can handle this now that #elts line up.
 | 
						|
    return ConstantExpr::getBitCast(C, DestTy);
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, we know the destination is integer, if the input is FP, convert
 | 
						|
  // it to integer first.
 | 
						|
  if (SrcEltTy->isFloatingPointTy()) {
 | 
						|
    unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
 | 
						|
    Type *SrcIVTy =
 | 
						|
      VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
 | 
						|
    // Ask IR to do the conversion now that #elts line up.
 | 
						|
    C = ConstantExpr::getBitCast(C, SrcIVTy);
 | 
						|
    // If IR wasn't able to fold it, bail out.
 | 
						|
    if (!isa<ConstantVector>(C) &&  // FIXME: Remove ConstantVector.
 | 
						|
        !isa<ConstantDataVector>(C))
 | 
						|
      return C;
 | 
						|
  }
 | 
						|
 | 
						|
  // Now we know that the input and output vectors are both integer vectors
 | 
						|
  // of the same size, and that their #elements is not the same.  Do the
 | 
						|
  // conversion here, which depends on whether the input or output has
 | 
						|
  // more elements.
 | 
						|
  bool isLittleEndian = TD.isLittleEndian();
 | 
						|
 | 
						|
  SmallVector<Constant*, 32> Result;
 | 
						|
  if (NumDstElt < NumSrcElt) {
 | 
						|
    // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
 | 
						|
    Constant *Zero = Constant::getNullValue(DstEltTy);
 | 
						|
    unsigned Ratio = NumSrcElt/NumDstElt;
 | 
						|
    unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
 | 
						|
    unsigned SrcElt = 0;
 | 
						|
    for (unsigned i = 0; i != NumDstElt; ++i) {
 | 
						|
      // Build each element of the result.
 | 
						|
      Constant *Elt = Zero;
 | 
						|
      unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
 | 
						|
      for (unsigned j = 0; j != Ratio; ++j) {
 | 
						|
        Constant *Src =dyn_cast<ConstantInt>(C->getAggregateElement(SrcElt++));
 | 
						|
        if (!Src)  // Reject constantexpr elements.
 | 
						|
          return ConstantExpr::getBitCast(C, DestTy);
 | 
						|
 | 
						|
        // Zero extend the element to the right size.
 | 
						|
        Src = ConstantExpr::getZExt(Src, Elt->getType());
 | 
						|
 | 
						|
        // Shift it to the right place, depending on endianness.
 | 
						|
        Src = ConstantExpr::getShl(Src,
 | 
						|
                                   ConstantInt::get(Src->getType(), ShiftAmt));
 | 
						|
        ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
 | 
						|
 | 
						|
        // Mix it in.
 | 
						|
        Elt = ConstantExpr::getOr(Elt, Src);
 | 
						|
      }
 | 
						|
      Result.push_back(Elt);
 | 
						|
    }
 | 
						|
    return ConstantVector::get(Result);
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
 | 
						|
  unsigned Ratio = NumDstElt/NumSrcElt;
 | 
						|
  unsigned DstBitSize = TD.getTypeSizeInBits(DstEltTy);
 | 
						|
 | 
						|
  // Loop over each source value, expanding into multiple results.
 | 
						|
  for (unsigned i = 0; i != NumSrcElt; ++i) {
 | 
						|
    Constant *Src = dyn_cast<ConstantInt>(C->getAggregateElement(i));
 | 
						|
    if (!Src)  // Reject constantexpr elements.
 | 
						|
      return ConstantExpr::getBitCast(C, DestTy);
 | 
						|
 | 
						|
    unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
 | 
						|
    for (unsigned j = 0; j != Ratio; ++j) {
 | 
						|
      // Shift the piece of the value into the right place, depending on
 | 
						|
      // endianness.
 | 
						|
      Constant *Elt = ConstantExpr::getLShr(Src,
 | 
						|
                                  ConstantInt::get(Src->getType(), ShiftAmt));
 | 
						|
      ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
 | 
						|
 | 
						|
      // Truncate the element to an integer with the same pointer size and
 | 
						|
      // convert the element back to a pointer using a inttoptr.
 | 
						|
      if (DstEltTy->isPointerTy()) {
 | 
						|
        IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize);
 | 
						|
        Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy);
 | 
						|
        Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy));
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Truncate and remember this piece.
 | 
						|
      Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return ConstantVector::get(Result);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// If this constant is a constant offset from a global, return the global and
 | 
						|
/// the constant. Because of constantexprs, this function is recursive.
 | 
						|
static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
 | 
						|
                                       APInt &Offset, const DataLayout &TD) {
 | 
						|
  // Trivial case, constant is the global.
 | 
						|
  if ((GV = dyn_cast<GlobalValue>(C))) {
 | 
						|
    unsigned BitWidth = TD.getPointerTypeSizeInBits(GV->getType());
 | 
						|
    Offset = APInt(BitWidth, 0);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, if this isn't a constant expr, bail out.
 | 
						|
  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
 | 
						|
  if (!CE) return false;
 | 
						|
 | 
						|
  // Look through ptr->int and ptr->ptr casts.
 | 
						|
  if (CE->getOpcode() == Instruction::PtrToInt ||
 | 
						|
      CE->getOpcode() == Instruction::BitCast ||
 | 
						|
      CE->getOpcode() == Instruction::AddrSpaceCast)
 | 
						|
    return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
 | 
						|
 | 
						|
  // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
 | 
						|
  GEPOperator *GEP = dyn_cast<GEPOperator>(CE);
 | 
						|
  if (!GEP)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned BitWidth = TD.getPointerTypeSizeInBits(GEP->getType());
 | 
						|
  APInt TmpOffset(BitWidth, 0);
 | 
						|
 | 
						|
  // If the base isn't a global+constant, we aren't either.
 | 
						|
  if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, TD))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Otherwise, add any offset that our operands provide.
 | 
						|
  if (!GEP->accumulateConstantOffset(TD, TmpOffset))
 | 
						|
    return false;
 | 
						|
 | 
						|
  Offset = TmpOffset;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Recursive helper to read bits out of global. C is the constant being copied
 | 
						|
/// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
 | 
						|
/// results into and BytesLeft is the number of bytes left in
 | 
						|
/// the CurPtr buffer. TD is the target data.
 | 
						|
static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
 | 
						|
                               unsigned char *CurPtr, unsigned BytesLeft,
 | 
						|
                               const DataLayout &TD) {
 | 
						|
  assert(ByteOffset <= TD.getTypeAllocSize(C->getType()) &&
 | 
						|
         "Out of range access");
 | 
						|
 | 
						|
  // If this element is zero or undefined, we can just return since *CurPtr is
 | 
						|
  // zero initialized.
 | 
						|
  if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
 | 
						|
    if (CI->getBitWidth() > 64 ||
 | 
						|
        (CI->getBitWidth() & 7) != 0)
 | 
						|
      return false;
 | 
						|
 | 
						|
    uint64_t Val = CI->getZExtValue();
 | 
						|
    unsigned IntBytes = unsigned(CI->getBitWidth()/8);
 | 
						|
 | 
						|
    for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
 | 
						|
      int n = ByteOffset;
 | 
						|
      if (!TD.isLittleEndian())
 | 
						|
        n = IntBytes - n - 1;
 | 
						|
      CurPtr[i] = (unsigned char)(Val >> (n * 8));
 | 
						|
      ++ByteOffset;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
 | 
						|
    if (CFP->getType()->isDoubleTy()) {
 | 
						|
      C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), TD);
 | 
						|
      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
 | 
						|
    }
 | 
						|
    if (CFP->getType()->isFloatTy()){
 | 
						|
      C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), TD);
 | 
						|
      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
 | 
						|
    }
 | 
						|
    if (CFP->getType()->isHalfTy()){
 | 
						|
      C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), TD);
 | 
						|
      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
 | 
						|
    const StructLayout *SL = TD.getStructLayout(CS->getType());
 | 
						|
    unsigned Index = SL->getElementContainingOffset(ByteOffset);
 | 
						|
    uint64_t CurEltOffset = SL->getElementOffset(Index);
 | 
						|
    ByteOffset -= CurEltOffset;
 | 
						|
 | 
						|
    while (1) {
 | 
						|
      // If the element access is to the element itself and not to tail padding,
 | 
						|
      // read the bytes from the element.
 | 
						|
      uint64_t EltSize = TD.getTypeAllocSize(CS->getOperand(Index)->getType());
 | 
						|
 | 
						|
      if (ByteOffset < EltSize &&
 | 
						|
          !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
 | 
						|
                              BytesLeft, TD))
 | 
						|
        return false;
 | 
						|
 | 
						|
      ++Index;
 | 
						|
 | 
						|
      // Check to see if we read from the last struct element, if so we're done.
 | 
						|
      if (Index == CS->getType()->getNumElements())
 | 
						|
        return true;
 | 
						|
 | 
						|
      // If we read all of the bytes we needed from this element we're done.
 | 
						|
      uint64_t NextEltOffset = SL->getElementOffset(Index);
 | 
						|
 | 
						|
      if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
 | 
						|
        return true;
 | 
						|
 | 
						|
      // Move to the next element of the struct.
 | 
						|
      CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
 | 
						|
      BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
 | 
						|
      ByteOffset = 0;
 | 
						|
      CurEltOffset = NextEltOffset;
 | 
						|
    }
 | 
						|
    // not reached.
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
 | 
						|
      isa<ConstantDataSequential>(C)) {
 | 
						|
    Type *EltTy = C->getType()->getSequentialElementType();
 | 
						|
    uint64_t EltSize = TD.getTypeAllocSize(EltTy);
 | 
						|
    uint64_t Index = ByteOffset / EltSize;
 | 
						|
    uint64_t Offset = ByteOffset - Index * EltSize;
 | 
						|
    uint64_t NumElts;
 | 
						|
    if (ArrayType *AT = dyn_cast<ArrayType>(C->getType()))
 | 
						|
      NumElts = AT->getNumElements();
 | 
						|
    else
 | 
						|
      NumElts = C->getType()->getVectorNumElements();
 | 
						|
 | 
						|
    for (; Index != NumElts; ++Index) {
 | 
						|
      if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
 | 
						|
                              BytesLeft, TD))
 | 
						|
        return false;
 | 
						|
 | 
						|
      uint64_t BytesWritten = EltSize - Offset;
 | 
						|
      assert(BytesWritten <= EltSize && "Not indexing into this element?");
 | 
						|
      if (BytesWritten >= BytesLeft)
 | 
						|
        return true;
 | 
						|
 | 
						|
      Offset = 0;
 | 
						|
      BytesLeft -= BytesWritten;
 | 
						|
      CurPtr += BytesWritten;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
 | 
						|
    if (CE->getOpcode() == Instruction::IntToPtr &&
 | 
						|
        CE->getOperand(0)->getType() == TD.getIntPtrType(CE->getType())) {
 | 
						|
      return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
 | 
						|
                                BytesLeft, TD);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, unknown initializer type.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
 | 
						|
                                                 const DataLayout &TD) {
 | 
						|
  PointerType *PTy = cast<PointerType>(C->getType());
 | 
						|
  Type *LoadTy = PTy->getElementType();
 | 
						|
  IntegerType *IntType = dyn_cast<IntegerType>(LoadTy);
 | 
						|
 | 
						|
  // If this isn't an integer load we can't fold it directly.
 | 
						|
  if (!IntType) {
 | 
						|
    unsigned AS = PTy->getAddressSpace();
 | 
						|
 | 
						|
    // If this is a float/double load, we can try folding it as an int32/64 load
 | 
						|
    // and then bitcast the result.  This can be useful for union cases.  Note
 | 
						|
    // that address spaces don't matter here since we're not going to result in
 | 
						|
    // an actual new load.
 | 
						|
    Type *MapTy;
 | 
						|
    if (LoadTy->isHalfTy())
 | 
						|
      MapTy = Type::getInt16PtrTy(C->getContext(), AS);
 | 
						|
    else if (LoadTy->isFloatTy())
 | 
						|
      MapTy = Type::getInt32PtrTy(C->getContext(), AS);
 | 
						|
    else if (LoadTy->isDoubleTy())
 | 
						|
      MapTy = Type::getInt64PtrTy(C->getContext(), AS);
 | 
						|
    else if (LoadTy->isVectorTy()) {
 | 
						|
      MapTy = PointerType::getIntNPtrTy(C->getContext(),
 | 
						|
                                        TD.getTypeAllocSizeInBits(LoadTy),
 | 
						|
                                        AS);
 | 
						|
    } else
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    C = FoldBitCast(C, MapTy, TD);
 | 
						|
    if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, TD))
 | 
						|
      return FoldBitCast(Res, LoadTy, TD);
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
 | 
						|
  if (BytesLoaded > 32 || BytesLoaded == 0)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  GlobalValue *GVal;
 | 
						|
  APInt Offset;
 | 
						|
  if (!IsConstantOffsetFromGlobal(C, GVal, Offset, TD))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  GlobalVariable *GV = dyn_cast<GlobalVariable>(GVal);
 | 
						|
  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
 | 
						|
      !GV->getInitializer()->getType()->isSized())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // If we're loading off the beginning of the global, some bytes may be valid,
 | 
						|
  // but we don't try to handle this.
 | 
						|
  if (Offset.isNegative())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // If we're not accessing anything in this constant, the result is undefined.
 | 
						|
  if (Offset.getZExtValue() >=
 | 
						|
      TD.getTypeAllocSize(GV->getInitializer()->getType()))
 | 
						|
    return UndefValue::get(IntType);
 | 
						|
 | 
						|
  unsigned char RawBytes[32] = {0};
 | 
						|
  if (!ReadDataFromGlobal(GV->getInitializer(), Offset.getZExtValue(), RawBytes,
 | 
						|
                          BytesLoaded, TD))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  APInt ResultVal = APInt(IntType->getBitWidth(), 0);
 | 
						|
  if (TD.isLittleEndian()) {
 | 
						|
    ResultVal = RawBytes[BytesLoaded - 1];
 | 
						|
    for (unsigned i = 1; i != BytesLoaded; ++i) {
 | 
						|
      ResultVal <<= 8;
 | 
						|
      ResultVal |= RawBytes[BytesLoaded - 1 - i];
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    ResultVal = RawBytes[0];
 | 
						|
    for (unsigned i = 1; i != BytesLoaded; ++i) {
 | 
						|
      ResultVal <<= 8;
 | 
						|
      ResultVal |= RawBytes[i];
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return ConstantInt::get(IntType->getContext(), ResultVal);
 | 
						|
}
 | 
						|
 | 
						|
static Constant *ConstantFoldLoadThroughBitcast(ConstantExpr *CE,
 | 
						|
                                                const DataLayout *DL) {
 | 
						|
  if (!DL)
 | 
						|
    return nullptr;
 | 
						|
  auto *DestPtrTy = dyn_cast<PointerType>(CE->getType());
 | 
						|
  if (!DestPtrTy)
 | 
						|
    return nullptr;
 | 
						|
  Type *DestTy = DestPtrTy->getElementType();
 | 
						|
 | 
						|
  Constant *C = ConstantFoldLoadFromConstPtr(CE->getOperand(0), DL);
 | 
						|
  if (!C)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  do {
 | 
						|
    Type *SrcTy = C->getType();
 | 
						|
 | 
						|
    // If the type sizes are the same and a cast is legal, just directly
 | 
						|
    // cast the constant.
 | 
						|
    if (DL->getTypeSizeInBits(DestTy) == DL->getTypeSizeInBits(SrcTy)) {
 | 
						|
      Instruction::CastOps Cast = Instruction::BitCast;
 | 
						|
      // If we are going from a pointer to int or vice versa, we spell the cast
 | 
						|
      // differently.
 | 
						|
      if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
 | 
						|
        Cast = Instruction::IntToPtr;
 | 
						|
      else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
 | 
						|
        Cast = Instruction::PtrToInt;
 | 
						|
 | 
						|
      if (CastInst::castIsValid(Cast, C, DestTy))
 | 
						|
        return ConstantExpr::getCast(Cast, C, DestTy);
 | 
						|
    }
 | 
						|
 | 
						|
    // If this isn't an aggregate type, there is nothing we can do to drill down
 | 
						|
    // and find a bitcastable constant.
 | 
						|
    if (!SrcTy->isAggregateType())
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    // We're simulating a load through a pointer that was bitcast to point to
 | 
						|
    // a different type, so we can try to walk down through the initial
 | 
						|
    // elements of an aggregate to see if some part of th e aggregate is
 | 
						|
    // castable to implement the "load" semantic model.
 | 
						|
    C = C->getAggregateElement(0u);
 | 
						|
  } while (C);
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Return the value that a load from C would produce if it is constant and
 | 
						|
/// determinable. If this is not determinable, return null.
 | 
						|
Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
 | 
						|
                                             const DataLayout *TD) {
 | 
						|
  // First, try the easy cases:
 | 
						|
  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
 | 
						|
    if (GV->isConstant() && GV->hasDefinitiveInitializer())
 | 
						|
      return GV->getInitializer();
 | 
						|
 | 
						|
  // If the loaded value isn't a constant expr, we can't handle it.
 | 
						|
  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
 | 
						|
  if (!CE)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  if (CE->getOpcode() == Instruction::GetElementPtr) {
 | 
						|
    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) {
 | 
						|
      if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
 | 
						|
        if (Constant *V =
 | 
						|
             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
 | 
						|
          return V;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (CE->getOpcode() == Instruction::BitCast)
 | 
						|
    if (Constant *LoadedC = ConstantFoldLoadThroughBitcast(CE, TD))
 | 
						|
      return LoadedC;
 | 
						|
 | 
						|
  // Instead of loading constant c string, use corresponding integer value
 | 
						|
  // directly if string length is small enough.
 | 
						|
  StringRef Str;
 | 
						|
  if (TD && getConstantStringInfo(CE, Str) && !Str.empty()) {
 | 
						|
    unsigned StrLen = Str.size();
 | 
						|
    Type *Ty = cast<PointerType>(CE->getType())->getElementType();
 | 
						|
    unsigned NumBits = Ty->getPrimitiveSizeInBits();
 | 
						|
    // Replace load with immediate integer if the result is an integer or fp
 | 
						|
    // value.
 | 
						|
    if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
 | 
						|
        (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
 | 
						|
      APInt StrVal(NumBits, 0);
 | 
						|
      APInt SingleChar(NumBits, 0);
 | 
						|
      if (TD->isLittleEndian()) {
 | 
						|
        for (signed i = StrLen-1; i >= 0; i--) {
 | 
						|
          SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
 | 
						|
          StrVal = (StrVal << 8) | SingleChar;
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        for (unsigned i = 0; i < StrLen; i++) {
 | 
						|
          SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
 | 
						|
          StrVal = (StrVal << 8) | SingleChar;
 | 
						|
        }
 | 
						|
        // Append NULL at the end.
 | 
						|
        SingleChar = 0;
 | 
						|
        StrVal = (StrVal << 8) | SingleChar;
 | 
						|
      }
 | 
						|
 | 
						|
      Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
 | 
						|
      if (Ty->isFloatingPointTy())
 | 
						|
        Res = ConstantExpr::getBitCast(Res, Ty);
 | 
						|
      return Res;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If this load comes from anywhere in a constant global, and if the global
 | 
						|
  // is all undef or zero, we know what it loads.
 | 
						|
  if (GlobalVariable *GV =
 | 
						|
        dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, TD))) {
 | 
						|
    if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
 | 
						|
      Type *ResTy = cast<PointerType>(C->getType())->getElementType();
 | 
						|
      if (GV->getInitializer()->isNullValue())
 | 
						|
        return Constant::getNullValue(ResTy);
 | 
						|
      if (isa<UndefValue>(GV->getInitializer()))
 | 
						|
        return UndefValue::get(ResTy);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Try hard to fold loads from bitcasted strange and non-type-safe things.
 | 
						|
  if (TD)
 | 
						|
    return FoldReinterpretLoadFromConstPtr(CE, *TD);
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
static Constant *ConstantFoldLoadInst(const LoadInst *LI, const DataLayout *TD){
 | 
						|
  if (LI->isVolatile()) return nullptr;
 | 
						|
 | 
						|
  if (Constant *C = dyn_cast<Constant>(LI->getOperand(0)))
 | 
						|
    return ConstantFoldLoadFromConstPtr(C, TD);
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// One of Op0/Op1 is a constant expression.
 | 
						|
/// Attempt to symbolically evaluate the result of a binary operator merging
 | 
						|
/// these together.  If target data info is available, it is provided as DL,
 | 
						|
/// otherwise DL is null.
 | 
						|
static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
 | 
						|
                                           Constant *Op1, const DataLayout *DL){
 | 
						|
  // SROA
 | 
						|
 | 
						|
  // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
 | 
						|
  // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
 | 
						|
  // bits.
 | 
						|
 | 
						|
 | 
						|
  if (Opc == Instruction::And && DL) {
 | 
						|
    unsigned BitWidth = DL->getTypeSizeInBits(Op0->getType()->getScalarType());
 | 
						|
    APInt KnownZero0(BitWidth, 0), KnownOne0(BitWidth, 0);
 | 
						|
    APInt KnownZero1(BitWidth, 0), KnownOne1(BitWidth, 0);
 | 
						|
    computeKnownBits(Op0, KnownZero0, KnownOne0, DL);
 | 
						|
    computeKnownBits(Op1, KnownZero1, KnownOne1, DL);
 | 
						|
    if ((KnownOne1 | KnownZero0).isAllOnesValue()) {
 | 
						|
      // All the bits of Op0 that the 'and' could be masking are already zero.
 | 
						|
      return Op0;
 | 
						|
    }
 | 
						|
    if ((KnownOne0 | KnownZero1).isAllOnesValue()) {
 | 
						|
      // All the bits of Op1 that the 'and' could be masking are already zero.
 | 
						|
      return Op1;
 | 
						|
    }
 | 
						|
 | 
						|
    APInt KnownZero = KnownZero0 | KnownZero1;
 | 
						|
    APInt KnownOne = KnownOne0 & KnownOne1;
 | 
						|
    if ((KnownZero | KnownOne).isAllOnesValue()) {
 | 
						|
      return ConstantInt::get(Op0->getType(), KnownOne);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If the constant expr is something like &A[123] - &A[4].f, fold this into a
 | 
						|
  // constant.  This happens frequently when iterating over a global array.
 | 
						|
  if (Opc == Instruction::Sub && DL) {
 | 
						|
    GlobalValue *GV1, *GV2;
 | 
						|
    APInt Offs1, Offs2;
 | 
						|
 | 
						|
    if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *DL))
 | 
						|
      if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *DL) &&
 | 
						|
          GV1 == GV2) {
 | 
						|
        unsigned OpSize = DL->getTypeSizeInBits(Op0->getType());
 | 
						|
 | 
						|
        // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
 | 
						|
        // PtrToInt may change the bitwidth so we have convert to the right size
 | 
						|
        // first.
 | 
						|
        return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
 | 
						|
                                                Offs2.zextOrTrunc(OpSize));
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// If array indices are not pointer-sized integers, explicitly cast them so
 | 
						|
/// that they aren't implicitly casted by the getelementptr.
 | 
						|
static Constant *CastGEPIndices(ArrayRef<Constant *> Ops,
 | 
						|
                                Type *ResultTy, const DataLayout *TD,
 | 
						|
                                const TargetLibraryInfo *TLI) {
 | 
						|
  if (!TD)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Type *IntPtrTy = TD->getIntPtrType(ResultTy);
 | 
						|
 | 
						|
  bool Any = false;
 | 
						|
  SmallVector<Constant*, 32> NewIdxs;
 | 
						|
  for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
 | 
						|
    if ((i == 1 ||
 | 
						|
         !isa<StructType>(GetElementPtrInst::getIndexedType(
 | 
						|
                            Ops[0]->getType(),
 | 
						|
                            Ops.slice(1, i - 1)))) &&
 | 
						|
        Ops[i]->getType() != IntPtrTy) {
 | 
						|
      Any = true;
 | 
						|
      NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
 | 
						|
                                                                      true,
 | 
						|
                                                                      IntPtrTy,
 | 
						|
                                                                      true),
 | 
						|
                                              Ops[i], IntPtrTy));
 | 
						|
    } else
 | 
						|
      NewIdxs.push_back(Ops[i]);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Any)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Constant *C = ConstantExpr::getGetElementPtr(Ops[0], NewIdxs);
 | 
						|
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
 | 
						|
    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
 | 
						|
      C = Folded;
 | 
						|
  }
 | 
						|
 | 
						|
  return C;
 | 
						|
}
 | 
						|
 | 
						|
/// Strip the pointer casts, but preserve the address space information.
 | 
						|
static Constant* StripPtrCastKeepAS(Constant* Ptr) {
 | 
						|
  assert(Ptr->getType()->isPointerTy() && "Not a pointer type");
 | 
						|
  PointerType *OldPtrTy = cast<PointerType>(Ptr->getType());
 | 
						|
  Ptr = Ptr->stripPointerCasts();
 | 
						|
  PointerType *NewPtrTy = cast<PointerType>(Ptr->getType());
 | 
						|
 | 
						|
  // Preserve the address space number of the pointer.
 | 
						|
  if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
 | 
						|
    NewPtrTy = NewPtrTy->getElementType()->getPointerTo(
 | 
						|
      OldPtrTy->getAddressSpace());
 | 
						|
    Ptr = ConstantExpr::getPointerCast(Ptr, NewPtrTy);
 | 
						|
  }
 | 
						|
  return Ptr;
 | 
						|
}
 | 
						|
 | 
						|
/// If we can symbolically evaluate the GEP constant expression, do so.
 | 
						|
static Constant *SymbolicallyEvaluateGEP(ArrayRef<Constant *> Ops,
 | 
						|
                                         Type *ResultTy, const DataLayout *TD,
 | 
						|
                                         const TargetLibraryInfo *TLI) {
 | 
						|
  Constant *Ptr = Ops[0];
 | 
						|
  if (!TD || !Ptr->getType()->getPointerElementType()->isSized() ||
 | 
						|
      !Ptr->getType()->isPointerTy())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Type *IntPtrTy = TD->getIntPtrType(Ptr->getType());
 | 
						|
  Type *ResultElementTy = ResultTy->getPointerElementType();
 | 
						|
 | 
						|
  // If this is a constant expr gep that is effectively computing an
 | 
						|
  // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
 | 
						|
  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
 | 
						|
    if (!isa<ConstantInt>(Ops[i])) {
 | 
						|
 | 
						|
      // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
 | 
						|
      // "inttoptr (sub (ptrtoint Ptr), V)"
 | 
						|
      if (Ops.size() == 2 && ResultElementTy->isIntegerTy(8)) {
 | 
						|
        ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[1]);
 | 
						|
        assert((!CE || CE->getType() == IntPtrTy) &&
 | 
						|
               "CastGEPIndices didn't canonicalize index types!");
 | 
						|
        if (CE && CE->getOpcode() == Instruction::Sub &&
 | 
						|
            CE->getOperand(0)->isNullValue()) {
 | 
						|
          Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
 | 
						|
          Res = ConstantExpr::getSub(Res, CE->getOperand(1));
 | 
						|
          Res = ConstantExpr::getIntToPtr(Res, ResultTy);
 | 
						|
          if (ConstantExpr *ResCE = dyn_cast<ConstantExpr>(Res))
 | 
						|
            Res = ConstantFoldConstantExpression(ResCE, TD, TLI);
 | 
						|
          return Res;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
  unsigned BitWidth = TD->getTypeSizeInBits(IntPtrTy);
 | 
						|
  APInt Offset =
 | 
						|
    APInt(BitWidth, TD->getIndexedOffset(Ptr->getType(),
 | 
						|
                                         makeArrayRef((Value *const*)
 | 
						|
                                                        Ops.data() + 1,
 | 
						|
                                                      Ops.size() - 1)));
 | 
						|
  Ptr = StripPtrCastKeepAS(Ptr);
 | 
						|
 | 
						|
  // If this is a GEP of a GEP, fold it all into a single GEP.
 | 
						|
  while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
 | 
						|
    SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end());
 | 
						|
 | 
						|
    // Do not try the incorporate the sub-GEP if some index is not a number.
 | 
						|
    bool AllConstantInt = true;
 | 
						|
    for (unsigned i = 0, e = NestedOps.size(); i != e; ++i)
 | 
						|
      if (!isa<ConstantInt>(NestedOps[i])) {
 | 
						|
        AllConstantInt = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    if (!AllConstantInt)
 | 
						|
      break;
 | 
						|
 | 
						|
    Ptr = cast<Constant>(GEP->getOperand(0));
 | 
						|
    Offset += APInt(BitWidth,
 | 
						|
                    TD->getIndexedOffset(Ptr->getType(), NestedOps));
 | 
						|
    Ptr = StripPtrCastKeepAS(Ptr);
 | 
						|
  }
 | 
						|
 | 
						|
  // If the base value for this address is a literal integer value, fold the
 | 
						|
  // getelementptr to the resulting integer value casted to the pointer type.
 | 
						|
  APInt BasePtr(BitWidth, 0);
 | 
						|
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
 | 
						|
    if (CE->getOpcode() == Instruction::IntToPtr) {
 | 
						|
      if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
 | 
						|
        BasePtr = Base->getValue().zextOrTrunc(BitWidth);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Ptr->isNullValue() || BasePtr != 0) {
 | 
						|
    Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
 | 
						|
    return ConstantExpr::getIntToPtr(C, ResultTy);
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise form a regular getelementptr. Recompute the indices so that
 | 
						|
  // we eliminate over-indexing of the notional static type array bounds.
 | 
						|
  // This makes it easy to determine if the getelementptr is "inbounds".
 | 
						|
  // Also, this helps GlobalOpt do SROA on GlobalVariables.
 | 
						|
  Type *Ty = Ptr->getType();
 | 
						|
  assert(Ty->isPointerTy() && "Forming regular GEP of non-pointer type");
 | 
						|
  SmallVector<Constant *, 32> NewIdxs;
 | 
						|
 | 
						|
  do {
 | 
						|
    if (SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
 | 
						|
      if (ATy->isPointerTy()) {
 | 
						|
        // The only pointer indexing we'll do is on the first index of the GEP.
 | 
						|
        if (!NewIdxs.empty())
 | 
						|
          break;
 | 
						|
 | 
						|
        // Only handle pointers to sized types, not pointers to functions.
 | 
						|
        if (!ATy->getElementType()->isSized())
 | 
						|
          return nullptr;
 | 
						|
      }
 | 
						|
 | 
						|
      // Determine which element of the array the offset points into.
 | 
						|
      APInt ElemSize(BitWidth, TD->getTypeAllocSize(ATy->getElementType()));
 | 
						|
      if (ElemSize == 0)
 | 
						|
        // The element size is 0. This may be [0 x Ty]*, so just use a zero
 | 
						|
        // index for this level and proceed to the next level to see if it can
 | 
						|
        // accommodate the offset.
 | 
						|
        NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0));
 | 
						|
      else {
 | 
						|
        // The element size is non-zero divide the offset by the element
 | 
						|
        // size (rounding down), to compute the index at this level.
 | 
						|
        APInt NewIdx = Offset.udiv(ElemSize);
 | 
						|
        Offset -= NewIdx * ElemSize;
 | 
						|
        NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx));
 | 
						|
      }
 | 
						|
      Ty = ATy->getElementType();
 | 
						|
    } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
 | 
						|
      // If we end up with an offset that isn't valid for this struct type, we
 | 
						|
      // can't re-form this GEP in a regular form, so bail out. The pointer
 | 
						|
      // operand likely went through casts that are necessary to make the GEP
 | 
						|
      // sensible.
 | 
						|
      const StructLayout &SL = *TD->getStructLayout(STy);
 | 
						|
      if (Offset.uge(SL.getSizeInBytes()))
 | 
						|
        break;
 | 
						|
 | 
						|
      // Determine which field of the struct the offset points into. The
 | 
						|
      // getZExtValue is fine as we've already ensured that the offset is
 | 
						|
      // within the range representable by the StructLayout API.
 | 
						|
      unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
 | 
						|
      NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
 | 
						|
                                         ElIdx));
 | 
						|
      Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
 | 
						|
      Ty = STy->getTypeAtIndex(ElIdx);
 | 
						|
    } else {
 | 
						|
      // We've reached some non-indexable type.
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  } while (Ty != ResultElementTy);
 | 
						|
 | 
						|
  // If we haven't used up the entire offset by descending the static
 | 
						|
  // type, then the offset is pointing into the middle of an indivisible
 | 
						|
  // member, so we can't simplify it.
 | 
						|
  if (Offset != 0)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Create a GEP.
 | 
						|
  Constant *C = ConstantExpr::getGetElementPtr(Ptr, NewIdxs);
 | 
						|
  assert(C->getType()->getPointerElementType() == Ty &&
 | 
						|
         "Computed GetElementPtr has unexpected type!");
 | 
						|
 | 
						|
  // If we ended up indexing a member with a type that doesn't match
 | 
						|
  // the type of what the original indices indexed, add a cast.
 | 
						|
  if (Ty != ResultElementTy)
 | 
						|
    C = FoldBitCast(C, ResultTy, *TD);
 | 
						|
 | 
						|
  return C;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Constant Folding public APIs
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// Try to constant fold the specified instruction.
 | 
						|
/// If successful, the constant result is returned, if not, null is returned.
 | 
						|
/// Note that this fails if not all of the operands are constant.  Otherwise,
 | 
						|
/// this function can only fail when attempting to fold instructions like loads
 | 
						|
/// and stores, which have no constant expression form.
 | 
						|
Constant *llvm::ConstantFoldInstruction(Instruction *I,
 | 
						|
                                        const DataLayout *TD,
 | 
						|
                                        const TargetLibraryInfo *TLI) {
 | 
						|
  // Handle PHI nodes quickly here...
 | 
						|
  if (PHINode *PN = dyn_cast<PHINode>(I)) {
 | 
						|
    Constant *CommonValue = nullptr;
 | 
						|
 | 
						|
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
      Value *Incoming = PN->getIncomingValue(i);
 | 
						|
      // If the incoming value is undef then skip it.  Note that while we could
 | 
						|
      // skip the value if it is equal to the phi node itself we choose not to
 | 
						|
      // because that would break the rule that constant folding only applies if
 | 
						|
      // all operands are constants.
 | 
						|
      if (isa<UndefValue>(Incoming))
 | 
						|
        continue;
 | 
						|
      // If the incoming value is not a constant, then give up.
 | 
						|
      Constant *C = dyn_cast<Constant>(Incoming);
 | 
						|
      if (!C)
 | 
						|
        return nullptr;
 | 
						|
      // Fold the PHI's operands.
 | 
						|
      if (ConstantExpr *NewC = dyn_cast<ConstantExpr>(C))
 | 
						|
        C = ConstantFoldConstantExpression(NewC, TD, TLI);
 | 
						|
      // If the incoming value is a different constant to
 | 
						|
      // the one we saw previously, then give up.
 | 
						|
      if (CommonValue && C != CommonValue)
 | 
						|
        return nullptr;
 | 
						|
      CommonValue = C;
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    // If we reach here, all incoming values are the same constant or undef.
 | 
						|
    return CommonValue ? CommonValue : UndefValue::get(PN->getType());
 | 
						|
  }
 | 
						|
 | 
						|
  // Scan the operand list, checking to see if they are all constants, if so,
 | 
						|
  // hand off to ConstantFoldInstOperands.
 | 
						|
  SmallVector<Constant*, 8> Ops;
 | 
						|
  for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
 | 
						|
    Constant *Op = dyn_cast<Constant>(*i);
 | 
						|
    if (!Op)
 | 
						|
      return nullptr;  // All operands not constant!
 | 
						|
 | 
						|
    // Fold the Instruction's operands.
 | 
						|
    if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(Op))
 | 
						|
      Op = ConstantFoldConstantExpression(NewCE, TD, TLI);
 | 
						|
 | 
						|
    Ops.push_back(Op);
 | 
						|
  }
 | 
						|
 | 
						|
  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
 | 
						|
    return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
 | 
						|
                                           TD, TLI);
 | 
						|
 | 
						|
  if (const LoadInst *LI = dyn_cast<LoadInst>(I))
 | 
						|
    return ConstantFoldLoadInst(LI, TD);
 | 
						|
 | 
						|
  if (InsertValueInst *IVI = dyn_cast<InsertValueInst>(I)) {
 | 
						|
    return ConstantExpr::getInsertValue(
 | 
						|
                                cast<Constant>(IVI->getAggregateOperand()),
 | 
						|
                                cast<Constant>(IVI->getInsertedValueOperand()),
 | 
						|
                                IVI->getIndices());
 | 
						|
  }
 | 
						|
 | 
						|
  if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I)) {
 | 
						|
    return ConstantExpr::getExtractValue(
 | 
						|
                                    cast<Constant>(EVI->getAggregateOperand()),
 | 
						|
                                    EVI->getIndices());
 | 
						|
  }
 | 
						|
 | 
						|
  return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Ops, TD, TLI);
 | 
						|
}
 | 
						|
 | 
						|
static Constant *
 | 
						|
ConstantFoldConstantExpressionImpl(const ConstantExpr *CE, const DataLayout *TD,
 | 
						|
                                   const TargetLibraryInfo *TLI,
 | 
						|
                                   SmallPtrSetImpl<ConstantExpr *> &FoldedOps) {
 | 
						|
  SmallVector<Constant *, 8> Ops;
 | 
						|
  for (User::const_op_iterator i = CE->op_begin(), e = CE->op_end(); i != e;
 | 
						|
       ++i) {
 | 
						|
    Constant *NewC = cast<Constant>(*i);
 | 
						|
    // Recursively fold the ConstantExpr's operands. If we have already folded
 | 
						|
    // a ConstantExpr, we don't have to process it again.
 | 
						|
    if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(NewC)) {
 | 
						|
      if (FoldedOps.insert(NewCE).second)
 | 
						|
        NewC = ConstantFoldConstantExpressionImpl(NewCE, TD, TLI, FoldedOps);
 | 
						|
    }
 | 
						|
    Ops.push_back(NewC);
 | 
						|
  }
 | 
						|
 | 
						|
  if (CE->isCompare())
 | 
						|
    return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
 | 
						|
                                           TD, TLI);
 | 
						|
  return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(), Ops, TD, TLI);
 | 
						|
}
 | 
						|
 | 
						|
/// Attempt to fold the constant expression
 | 
						|
/// using the specified DataLayout.  If successful, the constant result is
 | 
						|
/// result is returned, if not, null is returned.
 | 
						|
Constant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE,
 | 
						|
                                               const DataLayout *TD,
 | 
						|
                                               const TargetLibraryInfo *TLI) {
 | 
						|
  SmallPtrSet<ConstantExpr *, 4> FoldedOps;
 | 
						|
  return ConstantFoldConstantExpressionImpl(CE, TD, TLI, FoldedOps);
 | 
						|
}
 | 
						|
 | 
						|
/// Attempt to constant fold an instruction with the
 | 
						|
/// specified opcode and operands.  If successful, the constant result is
 | 
						|
/// returned, if not, null is returned.  Note that this function can fail when
 | 
						|
/// attempting to fold instructions like loads and stores, which have no
 | 
						|
/// constant expression form.
 | 
						|
///
 | 
						|
/// TODO: This function neither utilizes nor preserves nsw/nuw/inbounds/etc
 | 
						|
/// information, due to only being passed an opcode and operands. Constant
 | 
						|
/// folding using this function strips this information.
 | 
						|
///
 | 
						|
Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
 | 
						|
                                         ArrayRef<Constant *> Ops,
 | 
						|
                                         const DataLayout *TD,
 | 
						|
                                         const TargetLibraryInfo *TLI) {
 | 
						|
  // Handle easy binops first.
 | 
						|
  if (Instruction::isBinaryOp(Opcode)) {
 | 
						|
    if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1])) {
 | 
						|
      if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD))
 | 
						|
        return C;
 | 
						|
    }
 | 
						|
 | 
						|
    return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
 | 
						|
  }
 | 
						|
 | 
						|
  switch (Opcode) {
 | 
						|
  default: return nullptr;
 | 
						|
  case Instruction::ICmp:
 | 
						|
  case Instruction::FCmp: llvm_unreachable("Invalid for compares");
 | 
						|
  case Instruction::Call:
 | 
						|
    if (Function *F = dyn_cast<Function>(Ops.back()))
 | 
						|
      if (canConstantFoldCallTo(F))
 | 
						|
        return ConstantFoldCall(F, Ops.slice(0, Ops.size() - 1), TLI);
 | 
						|
    return nullptr;
 | 
						|
  case Instruction::PtrToInt:
 | 
						|
    // If the input is a inttoptr, eliminate the pair.  This requires knowing
 | 
						|
    // the width of a pointer, so it can't be done in ConstantExpr::getCast.
 | 
						|
    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
 | 
						|
      if (TD && CE->getOpcode() == Instruction::IntToPtr) {
 | 
						|
        Constant *Input = CE->getOperand(0);
 | 
						|
        unsigned InWidth = Input->getType()->getScalarSizeInBits();
 | 
						|
        unsigned PtrWidth = TD->getPointerTypeSizeInBits(CE->getType());
 | 
						|
        if (PtrWidth < InWidth) {
 | 
						|
          Constant *Mask =
 | 
						|
            ConstantInt::get(CE->getContext(),
 | 
						|
                             APInt::getLowBitsSet(InWidth, PtrWidth));
 | 
						|
          Input = ConstantExpr::getAnd(Input, Mask);
 | 
						|
        }
 | 
						|
        // Do a zext or trunc to get to the dest size.
 | 
						|
        return ConstantExpr::getIntegerCast(Input, DestTy, false);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
 | 
						|
  case Instruction::IntToPtr:
 | 
						|
    // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
 | 
						|
    // the int size is >= the ptr size and the address spaces are the same.
 | 
						|
    // This requires knowing the width of a pointer, so it can't be done in
 | 
						|
    // ConstantExpr::getCast.
 | 
						|
    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
 | 
						|
      if (TD && CE->getOpcode() == Instruction::PtrToInt) {
 | 
						|
        Constant *SrcPtr = CE->getOperand(0);
 | 
						|
        unsigned SrcPtrSize = TD->getPointerTypeSizeInBits(SrcPtr->getType());
 | 
						|
        unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
 | 
						|
 | 
						|
        if (MidIntSize >= SrcPtrSize) {
 | 
						|
          unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
 | 
						|
          if (SrcAS == DestTy->getPointerAddressSpace())
 | 
						|
            return FoldBitCast(CE->getOperand(0), DestTy, *TD);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
 | 
						|
  case Instruction::Trunc:
 | 
						|
  case Instruction::ZExt:
 | 
						|
  case Instruction::SExt:
 | 
						|
  case Instruction::FPTrunc:
 | 
						|
  case Instruction::FPExt:
 | 
						|
  case Instruction::UIToFP:
 | 
						|
  case Instruction::SIToFP:
 | 
						|
  case Instruction::FPToUI:
 | 
						|
  case Instruction::FPToSI:
 | 
						|
  case Instruction::AddrSpaceCast:
 | 
						|
      return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
 | 
						|
  case Instruction::BitCast:
 | 
						|
    if (TD)
 | 
						|
      return FoldBitCast(Ops[0], DestTy, *TD);
 | 
						|
    return ConstantExpr::getBitCast(Ops[0], DestTy);
 | 
						|
  case Instruction::Select:
 | 
						|
    return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
 | 
						|
  case Instruction::ExtractElement:
 | 
						|
    return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
 | 
						|
  case Instruction::InsertElement:
 | 
						|
    return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
 | 
						|
  case Instruction::ShuffleVector:
 | 
						|
    return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
 | 
						|
  case Instruction::GetElementPtr:
 | 
						|
    if (Constant *C = CastGEPIndices(Ops, DestTy, TD, TLI))
 | 
						|
      return C;
 | 
						|
    if (Constant *C = SymbolicallyEvaluateGEP(Ops, DestTy, TD, TLI))
 | 
						|
      return C;
 | 
						|
 | 
						|
    return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Attempt to constant fold a compare
 | 
						|
/// instruction (icmp/fcmp) with the specified operands.  If it fails, it
 | 
						|
/// returns a constant expression of the specified operands.
 | 
						|
Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
 | 
						|
                                                Constant *Ops0, Constant *Ops1,
 | 
						|
                                                const DataLayout *TD,
 | 
						|
                                                const TargetLibraryInfo *TLI) {
 | 
						|
  // fold: icmp (inttoptr x), null         -> icmp x, 0
 | 
						|
  // fold: icmp (ptrtoint x), 0            -> icmp x, null
 | 
						|
  // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
 | 
						|
  // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
 | 
						|
  //
 | 
						|
  // ConstantExpr::getCompare cannot do this, because it doesn't have TD
 | 
						|
  // around to know if bit truncation is happening.
 | 
						|
  if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
 | 
						|
    if (TD && Ops1->isNullValue()) {
 | 
						|
      if (CE0->getOpcode() == Instruction::IntToPtr) {
 | 
						|
        Type *IntPtrTy = TD->getIntPtrType(CE0->getType());
 | 
						|
        // Convert the integer value to the right size to ensure we get the
 | 
						|
        // proper extension or truncation.
 | 
						|
        Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
 | 
						|
                                                   IntPtrTy, false);
 | 
						|
        Constant *Null = Constant::getNullValue(C->getType());
 | 
						|
        return ConstantFoldCompareInstOperands(Predicate, C, Null, TD, TLI);
 | 
						|
      }
 | 
						|
 | 
						|
      // Only do this transformation if the int is intptrty in size, otherwise
 | 
						|
      // there is a truncation or extension that we aren't modeling.
 | 
						|
      if (CE0->getOpcode() == Instruction::PtrToInt) {
 | 
						|
        Type *IntPtrTy = TD->getIntPtrType(CE0->getOperand(0)->getType());
 | 
						|
        if (CE0->getType() == IntPtrTy) {
 | 
						|
          Constant *C = CE0->getOperand(0);
 | 
						|
          Constant *Null = Constant::getNullValue(C->getType());
 | 
						|
          return ConstantFoldCompareInstOperands(Predicate, C, Null, TD, TLI);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
 | 
						|
      if (TD && CE0->getOpcode() == CE1->getOpcode()) {
 | 
						|
        if (CE0->getOpcode() == Instruction::IntToPtr) {
 | 
						|
          Type *IntPtrTy = TD->getIntPtrType(CE0->getType());
 | 
						|
 | 
						|
          // Convert the integer value to the right size to ensure we get the
 | 
						|
          // proper extension or truncation.
 | 
						|
          Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
 | 
						|
                                                      IntPtrTy, false);
 | 
						|
          Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
 | 
						|
                                                      IntPtrTy, false);
 | 
						|
          return ConstantFoldCompareInstOperands(Predicate, C0, C1, TD, TLI);
 | 
						|
        }
 | 
						|
 | 
						|
        // Only do this transformation if the int is intptrty in size, otherwise
 | 
						|
        // there is a truncation or extension that we aren't modeling.
 | 
						|
        if (CE0->getOpcode() == Instruction::PtrToInt) {
 | 
						|
          Type *IntPtrTy = TD->getIntPtrType(CE0->getOperand(0)->getType());
 | 
						|
          if (CE0->getType() == IntPtrTy &&
 | 
						|
              CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
 | 
						|
            return ConstantFoldCompareInstOperands(Predicate,
 | 
						|
                                                   CE0->getOperand(0),
 | 
						|
                                                   CE1->getOperand(0),
 | 
						|
                                                   TD,
 | 
						|
                                                   TLI);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
 | 
						|
    // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
 | 
						|
    if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
 | 
						|
        CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
 | 
						|
      Constant *LHS =
 | 
						|
        ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0), Ops1,
 | 
						|
                                        TD, TLI);
 | 
						|
      Constant *RHS =
 | 
						|
        ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(1), Ops1,
 | 
						|
                                        TD, TLI);
 | 
						|
      unsigned OpC =
 | 
						|
        Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
 | 
						|
      Constant *Ops[] = { LHS, RHS };
 | 
						|
      return ConstantFoldInstOperands(OpC, LHS->getType(), Ops, TD, TLI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Given a constant and a getelementptr constantexpr, return the constant value
 | 
						|
/// being addressed by the constant expression, or null if something is funny
 | 
						|
/// and we can't decide.
 | 
						|
Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
 | 
						|
                                                       ConstantExpr *CE) {
 | 
						|
  if (!CE->getOperand(1)->isNullValue())
 | 
						|
    return nullptr;  // Do not allow stepping over the value!
 | 
						|
 | 
						|
  // Loop over all of the operands, tracking down which value we are
 | 
						|
  // addressing.
 | 
						|
  for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) {
 | 
						|
    C = C->getAggregateElement(CE->getOperand(i));
 | 
						|
    if (!C)
 | 
						|
      return nullptr;
 | 
						|
  }
 | 
						|
  return C;
 | 
						|
}
 | 
						|
 | 
						|
/// Given a constant and getelementptr indices (with an *implied* zero pointer
 | 
						|
/// index that is not in the list), return the constant value being addressed by
 | 
						|
/// a virtual load, or null if something is funny and we can't decide.
 | 
						|
Constant *llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
 | 
						|
                                                  ArrayRef<Constant*> Indices) {
 | 
						|
  // Loop over all of the operands, tracking down which value we are
 | 
						|
  // addressing.
 | 
						|
  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
 | 
						|
    C = C->getAggregateElement(Indices[i]);
 | 
						|
    if (!C)
 | 
						|
      return nullptr;
 | 
						|
  }
 | 
						|
  return C;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  Constant Folding for Calls
 | 
						|
//
 | 
						|
 | 
						|
/// Return true if it's even possible to fold a call to the specified function.
 | 
						|
bool llvm::canConstantFoldCallTo(const Function *F) {
 | 
						|
  switch (F->getIntrinsicID()) {
 | 
						|
  case Intrinsic::fabs:
 | 
						|
  case Intrinsic::minnum:
 | 
						|
  case Intrinsic::maxnum:
 | 
						|
  case Intrinsic::log:
 | 
						|
  case Intrinsic::log2:
 | 
						|
  case Intrinsic::log10:
 | 
						|
  case Intrinsic::exp:
 | 
						|
  case Intrinsic::exp2:
 | 
						|
  case Intrinsic::floor:
 | 
						|
  case Intrinsic::ceil:
 | 
						|
  case Intrinsic::sqrt:
 | 
						|
  case Intrinsic::pow:
 | 
						|
  case Intrinsic::powi:
 | 
						|
  case Intrinsic::bswap:
 | 
						|
  case Intrinsic::ctpop:
 | 
						|
  case Intrinsic::ctlz:
 | 
						|
  case Intrinsic::cttz:
 | 
						|
  case Intrinsic::fma:
 | 
						|
  case Intrinsic::fmuladd:
 | 
						|
  case Intrinsic::copysign:
 | 
						|
  case Intrinsic::round:
 | 
						|
  case Intrinsic::sadd_with_overflow:
 | 
						|
  case Intrinsic::uadd_with_overflow:
 | 
						|
  case Intrinsic::ssub_with_overflow:
 | 
						|
  case Intrinsic::usub_with_overflow:
 | 
						|
  case Intrinsic::smul_with_overflow:
 | 
						|
  case Intrinsic::umul_with_overflow:
 | 
						|
  case Intrinsic::convert_from_fp16:
 | 
						|
  case Intrinsic::convert_to_fp16:
 | 
						|
  case Intrinsic::x86_sse_cvtss2si:
 | 
						|
  case Intrinsic::x86_sse_cvtss2si64:
 | 
						|
  case Intrinsic::x86_sse_cvttss2si:
 | 
						|
  case Intrinsic::x86_sse_cvttss2si64:
 | 
						|
  case Intrinsic::x86_sse2_cvtsd2si:
 | 
						|
  case Intrinsic::x86_sse2_cvtsd2si64:
 | 
						|
  case Intrinsic::x86_sse2_cvttsd2si:
 | 
						|
  case Intrinsic::x86_sse2_cvttsd2si64:
 | 
						|
    return true;
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  case 0: break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!F->hasName())
 | 
						|
    return false;
 | 
						|
  StringRef Name = F->getName();
 | 
						|
 | 
						|
  // In these cases, the check of the length is required.  We don't want to
 | 
						|
  // return true for a name like "cos\0blah" which strcmp would return equal to
 | 
						|
  // "cos", but has length 8.
 | 
						|
  switch (Name[0]) {
 | 
						|
  default: return false;
 | 
						|
  case 'a':
 | 
						|
    return Name == "acos" || Name == "asin" || Name == "atan" || Name =="atan2";
 | 
						|
  case 'c':
 | 
						|
    return Name == "cos" || Name == "ceil" || Name == "cosf" || Name == "cosh";
 | 
						|
  case 'e':
 | 
						|
    return Name == "exp" || Name == "exp2";
 | 
						|
  case 'f':
 | 
						|
    return Name == "fabs" || Name == "fmod" || Name == "floor";
 | 
						|
  case 'l':
 | 
						|
    return Name == "log" || Name == "log10";
 | 
						|
  case 'p':
 | 
						|
    return Name == "pow";
 | 
						|
  case 's':
 | 
						|
    return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
 | 
						|
      Name == "sinf" || Name == "sqrtf";
 | 
						|
  case 't':
 | 
						|
    return Name == "tan" || Name == "tanh";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static Constant *GetConstantFoldFPValue(double V, Type *Ty) {
 | 
						|
  if (Ty->isHalfTy()) {
 | 
						|
    APFloat APF(V);
 | 
						|
    bool unused;
 | 
						|
    APF.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &unused);
 | 
						|
    return ConstantFP::get(Ty->getContext(), APF);
 | 
						|
  }
 | 
						|
  if (Ty->isFloatTy())
 | 
						|
    return ConstantFP::get(Ty->getContext(), APFloat((float)V));
 | 
						|
  if (Ty->isDoubleTy())
 | 
						|
    return ConstantFP::get(Ty->getContext(), APFloat(V));
 | 
						|
  llvm_unreachable("Can only constant fold half/float/double");
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
/// Clear the floating-point exception state.
 | 
						|
static inline void llvm_fenv_clearexcept() {
 | 
						|
#if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
 | 
						|
  feclearexcept(FE_ALL_EXCEPT);
 | 
						|
#endif
 | 
						|
  errno = 0;
 | 
						|
}
 | 
						|
 | 
						|
/// Test if a floating-point exception was raised.
 | 
						|
static inline bool llvm_fenv_testexcept() {
 | 
						|
  int errno_val = errno;
 | 
						|
  if (errno_val == ERANGE || errno_val == EDOM)
 | 
						|
    return true;
 | 
						|
#if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
 | 
						|
  if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
 | 
						|
    return true;
 | 
						|
#endif
 | 
						|
  return false;
 | 
						|
}
 | 
						|
} // End namespace
 | 
						|
 | 
						|
static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
 | 
						|
                                Type *Ty) {
 | 
						|
  llvm_fenv_clearexcept();
 | 
						|
  V = NativeFP(V);
 | 
						|
  if (llvm_fenv_testexcept()) {
 | 
						|
    llvm_fenv_clearexcept();
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  return GetConstantFoldFPValue(V, Ty);
 | 
						|
}
 | 
						|
 | 
						|
static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
 | 
						|
                                      double V, double W, Type *Ty) {
 | 
						|
  llvm_fenv_clearexcept();
 | 
						|
  V = NativeFP(V, W);
 | 
						|
  if (llvm_fenv_testexcept()) {
 | 
						|
    llvm_fenv_clearexcept();
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  return GetConstantFoldFPValue(V, Ty);
 | 
						|
}
 | 
						|
 | 
						|
/// Attempt to fold an SSE floating point to integer conversion of a constant
 | 
						|
/// floating point. If roundTowardZero is false, the default IEEE rounding is
 | 
						|
/// used (toward nearest, ties to even). This matches the behavior of the
 | 
						|
/// non-truncating SSE instructions in the default rounding mode. The desired
 | 
						|
/// integer type Ty is used to select how many bits are available for the
 | 
						|
/// result. Returns null if the conversion cannot be performed, otherwise
 | 
						|
/// returns the Constant value resulting from the conversion.
 | 
						|
static Constant *ConstantFoldConvertToInt(const APFloat &Val,
 | 
						|
                                          bool roundTowardZero, Type *Ty) {
 | 
						|
  // All of these conversion intrinsics form an integer of at most 64bits.
 | 
						|
  unsigned ResultWidth = Ty->getIntegerBitWidth();
 | 
						|
  assert(ResultWidth <= 64 &&
 | 
						|
         "Can only constant fold conversions to 64 and 32 bit ints");
 | 
						|
 | 
						|
  uint64_t UIntVal;
 | 
						|
  bool isExact = false;
 | 
						|
  APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
 | 
						|
                                              : APFloat::rmNearestTiesToEven;
 | 
						|
  APFloat::opStatus status = Val.convertToInteger(&UIntVal, ResultWidth,
 | 
						|
                                                  /*isSigned=*/true, mode,
 | 
						|
                                                  &isExact);
 | 
						|
  if (status != APFloat::opOK && status != APFloat::opInexact)
 | 
						|
    return nullptr;
 | 
						|
  return ConstantInt::get(Ty, UIntVal, /*isSigned=*/true);
 | 
						|
}
 | 
						|
 | 
						|
static double getValueAsDouble(ConstantFP *Op) {
 | 
						|
  Type *Ty = Op->getType();
 | 
						|
 | 
						|
  if (Ty->isFloatTy())
 | 
						|
    return Op->getValueAPF().convertToFloat();
 | 
						|
 | 
						|
  if (Ty->isDoubleTy())
 | 
						|
    return Op->getValueAPF().convertToDouble();
 | 
						|
 | 
						|
  bool unused;
 | 
						|
  APFloat APF = Op->getValueAPF();
 | 
						|
  APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &unused);
 | 
						|
  return APF.convertToDouble();
 | 
						|
}
 | 
						|
 | 
						|
static Constant *ConstantFoldScalarCall(StringRef Name, unsigned IntrinsicID,
 | 
						|
                                        Type *Ty, ArrayRef<Constant *> Operands,
 | 
						|
                                        const TargetLibraryInfo *TLI) {
 | 
						|
  if (Operands.size() == 1) {
 | 
						|
    if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
 | 
						|
      if (IntrinsicID == Intrinsic::convert_to_fp16) {
 | 
						|
        APFloat Val(Op->getValueAPF());
 | 
						|
 | 
						|
        bool lost = false;
 | 
						|
        Val.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &lost);
 | 
						|
 | 
						|
        return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
 | 
						|
      }
 | 
						|
 | 
						|
      if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
 | 
						|
        return nullptr;
 | 
						|
 | 
						|
      if (IntrinsicID == Intrinsic::round) {
 | 
						|
        APFloat V = Op->getValueAPF();
 | 
						|
        V.roundToIntegral(APFloat::rmNearestTiesToAway);
 | 
						|
        return ConstantFP::get(Ty->getContext(), V);
 | 
						|
      }
 | 
						|
 | 
						|
      /// We only fold functions with finite arguments. Folding NaN and inf is
 | 
						|
      /// likely to be aborted with an exception anyway, and some host libms
 | 
						|
      /// have known errors raising exceptions.
 | 
						|
      if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
 | 
						|
        return nullptr;
 | 
						|
 | 
						|
      /// Currently APFloat versions of these functions do not exist, so we use
 | 
						|
      /// the host native double versions.  Float versions are not called
 | 
						|
      /// directly but for all these it is true (float)(f((double)arg)) ==
 | 
						|
      /// f(arg).  Long double not supported yet.
 | 
						|
      double V = getValueAsDouble(Op);
 | 
						|
 | 
						|
      switch (IntrinsicID) {
 | 
						|
        default: break;
 | 
						|
        case Intrinsic::fabs:
 | 
						|
          return ConstantFoldFP(fabs, V, Ty);
 | 
						|
#if HAVE_LOG2
 | 
						|
        case Intrinsic::log2:
 | 
						|
          return ConstantFoldFP(log2, V, Ty);
 | 
						|
#endif
 | 
						|
#if HAVE_LOG
 | 
						|
        case Intrinsic::log:
 | 
						|
          return ConstantFoldFP(log, V, Ty);
 | 
						|
#endif
 | 
						|
#if HAVE_LOG10
 | 
						|
        case Intrinsic::log10:
 | 
						|
          return ConstantFoldFP(log10, V, Ty);
 | 
						|
#endif
 | 
						|
#if HAVE_EXP
 | 
						|
        case Intrinsic::exp:
 | 
						|
          return ConstantFoldFP(exp, V, Ty);
 | 
						|
#endif
 | 
						|
#if HAVE_EXP2
 | 
						|
        case Intrinsic::exp2:
 | 
						|
          return ConstantFoldFP(exp2, V, Ty);
 | 
						|
#endif
 | 
						|
        case Intrinsic::floor:
 | 
						|
          return ConstantFoldFP(floor, V, Ty);
 | 
						|
        case Intrinsic::ceil:
 | 
						|
          return ConstantFoldFP(ceil, V, Ty);
 | 
						|
      }
 | 
						|
 | 
						|
      if (!TLI)
 | 
						|
        return nullptr;
 | 
						|
 | 
						|
      switch (Name[0]) {
 | 
						|
      case 'a':
 | 
						|
        if (Name == "acos" && TLI->has(LibFunc::acos))
 | 
						|
          return ConstantFoldFP(acos, V, Ty);
 | 
						|
        else if (Name == "asin" && TLI->has(LibFunc::asin))
 | 
						|
          return ConstantFoldFP(asin, V, Ty);
 | 
						|
        else if (Name == "atan" && TLI->has(LibFunc::atan))
 | 
						|
          return ConstantFoldFP(atan, V, Ty);
 | 
						|
        break;
 | 
						|
      case 'c':
 | 
						|
        if (Name == "ceil" && TLI->has(LibFunc::ceil))
 | 
						|
          return ConstantFoldFP(ceil, V, Ty);
 | 
						|
        else if (Name == "cos" && TLI->has(LibFunc::cos))
 | 
						|
          return ConstantFoldFP(cos, V, Ty);
 | 
						|
        else if (Name == "cosh" && TLI->has(LibFunc::cosh))
 | 
						|
          return ConstantFoldFP(cosh, V, Ty);
 | 
						|
        else if (Name == "cosf" && TLI->has(LibFunc::cosf))
 | 
						|
          return ConstantFoldFP(cos, V, Ty);
 | 
						|
        break;
 | 
						|
      case 'e':
 | 
						|
        if (Name == "exp" && TLI->has(LibFunc::exp))
 | 
						|
          return ConstantFoldFP(exp, V, Ty);
 | 
						|
 | 
						|
        if (Name == "exp2" && TLI->has(LibFunc::exp2)) {
 | 
						|
          // Constant fold exp2(x) as pow(2,x) in case the host doesn't have a
 | 
						|
          // C99 library.
 | 
						|
          return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      case 'f':
 | 
						|
        if (Name == "fabs" && TLI->has(LibFunc::fabs))
 | 
						|
          return ConstantFoldFP(fabs, V, Ty);
 | 
						|
        else if (Name == "floor" && TLI->has(LibFunc::floor))
 | 
						|
          return ConstantFoldFP(floor, V, Ty);
 | 
						|
        break;
 | 
						|
      case 'l':
 | 
						|
        if (Name == "log" && V > 0 && TLI->has(LibFunc::log))
 | 
						|
          return ConstantFoldFP(log, V, Ty);
 | 
						|
        else if (Name == "log10" && V > 0 && TLI->has(LibFunc::log10))
 | 
						|
          return ConstantFoldFP(log10, V, Ty);
 | 
						|
        else if (IntrinsicID == Intrinsic::sqrt &&
 | 
						|
                 (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())) {
 | 
						|
          if (V >= -0.0)
 | 
						|
            return ConstantFoldFP(sqrt, V, Ty);
 | 
						|
          else {
 | 
						|
            // Unlike the sqrt definitions in C/C++, POSIX, and IEEE-754 - which
 | 
						|
            // all guarantee or favor returning NaN - the square root of a
 | 
						|
            // negative number is not defined for the LLVM sqrt intrinsic.
 | 
						|
            // This is because the intrinsic should only be emitted in place of
 | 
						|
            // libm's sqrt function when using "no-nans-fp-math".
 | 
						|
            return UndefValue::get(Ty);
 | 
						|
          }
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      case 's':
 | 
						|
        if (Name == "sin" && TLI->has(LibFunc::sin))
 | 
						|
          return ConstantFoldFP(sin, V, Ty);
 | 
						|
        else if (Name == "sinh" && TLI->has(LibFunc::sinh))
 | 
						|
          return ConstantFoldFP(sinh, V, Ty);
 | 
						|
        else if (Name == "sqrt" && V >= 0 && TLI->has(LibFunc::sqrt))
 | 
						|
          return ConstantFoldFP(sqrt, V, Ty);
 | 
						|
        else if (Name == "sqrtf" && V >= 0 && TLI->has(LibFunc::sqrtf))
 | 
						|
          return ConstantFoldFP(sqrt, V, Ty);
 | 
						|
        else if (Name == "sinf" && TLI->has(LibFunc::sinf))
 | 
						|
          return ConstantFoldFP(sin, V, Ty);
 | 
						|
        break;
 | 
						|
      case 't':
 | 
						|
        if (Name == "tan" && TLI->has(LibFunc::tan))
 | 
						|
          return ConstantFoldFP(tan, V, Ty);
 | 
						|
        else if (Name == "tanh" && TLI->has(LibFunc::tanh))
 | 
						|
          return ConstantFoldFP(tanh, V, Ty);
 | 
						|
        break;
 | 
						|
      default:
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
 | 
						|
      switch (IntrinsicID) {
 | 
						|
      case Intrinsic::bswap:
 | 
						|
        return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
 | 
						|
      case Intrinsic::ctpop:
 | 
						|
        return ConstantInt::get(Ty, Op->getValue().countPopulation());
 | 
						|
      case Intrinsic::convert_from_fp16: {
 | 
						|
        APFloat Val(APFloat::IEEEhalf, Op->getValue());
 | 
						|
 | 
						|
        bool lost = false;
 | 
						|
        APFloat::opStatus status =
 | 
						|
          Val.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &lost);
 | 
						|
 | 
						|
        // Conversion is always precise.
 | 
						|
        (void)status;
 | 
						|
        assert(status == APFloat::opOK && !lost &&
 | 
						|
               "Precision lost during fp16 constfolding");
 | 
						|
 | 
						|
        return ConstantFP::get(Ty->getContext(), Val);
 | 
						|
      }
 | 
						|
      default:
 | 
						|
        return nullptr;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Support ConstantVector in case we have an Undef in the top.
 | 
						|
    if (isa<ConstantVector>(Operands[0]) ||
 | 
						|
        isa<ConstantDataVector>(Operands[0])) {
 | 
						|
      Constant *Op = cast<Constant>(Operands[0]);
 | 
						|
      switch (IntrinsicID) {
 | 
						|
      default: break;
 | 
						|
      case Intrinsic::x86_sse_cvtss2si:
 | 
						|
      case Intrinsic::x86_sse_cvtss2si64:
 | 
						|
      case Intrinsic::x86_sse2_cvtsd2si:
 | 
						|
      case Intrinsic::x86_sse2_cvtsd2si64:
 | 
						|
        if (ConstantFP *FPOp =
 | 
						|
              dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
 | 
						|
          return ConstantFoldConvertToInt(FPOp->getValueAPF(),
 | 
						|
                                          /*roundTowardZero=*/false, Ty);
 | 
						|
      case Intrinsic::x86_sse_cvttss2si:
 | 
						|
      case Intrinsic::x86_sse_cvttss2si64:
 | 
						|
      case Intrinsic::x86_sse2_cvttsd2si:
 | 
						|
      case Intrinsic::x86_sse2_cvttsd2si64:
 | 
						|
        if (ConstantFP *FPOp =
 | 
						|
              dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
 | 
						|
          return ConstantFoldConvertToInt(FPOp->getValueAPF(),
 | 
						|
                                          /*roundTowardZero=*/true, Ty);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (isa<UndefValue>(Operands[0])) {
 | 
						|
      if (IntrinsicID == Intrinsic::bswap)
 | 
						|
        return Operands[0];
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Operands.size() == 2) {
 | 
						|
    if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
 | 
						|
      if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
 | 
						|
        return nullptr;
 | 
						|
      double Op1V = getValueAsDouble(Op1);
 | 
						|
 | 
						|
      if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
 | 
						|
        if (Op2->getType() != Op1->getType())
 | 
						|
          return nullptr;
 | 
						|
 | 
						|
        double Op2V = getValueAsDouble(Op2);
 | 
						|
        if (IntrinsicID == Intrinsic::pow) {
 | 
						|
          return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
 | 
						|
        }
 | 
						|
        if (IntrinsicID == Intrinsic::copysign) {
 | 
						|
          APFloat V1 = Op1->getValueAPF();
 | 
						|
          APFloat V2 = Op2->getValueAPF();
 | 
						|
          V1.copySign(V2);
 | 
						|
          return ConstantFP::get(Ty->getContext(), V1);
 | 
						|
        }
 | 
						|
 | 
						|
        if (IntrinsicID == Intrinsic::minnum) {
 | 
						|
          const APFloat &C1 = Op1->getValueAPF();
 | 
						|
          const APFloat &C2 = Op2->getValueAPF();
 | 
						|
          return ConstantFP::get(Ty->getContext(), minnum(C1, C2));
 | 
						|
        }
 | 
						|
 | 
						|
        if (IntrinsicID == Intrinsic::maxnum) {
 | 
						|
          const APFloat &C1 = Op1->getValueAPF();
 | 
						|
          const APFloat &C2 = Op2->getValueAPF();
 | 
						|
          return ConstantFP::get(Ty->getContext(), maxnum(C1, C2));
 | 
						|
        }
 | 
						|
 | 
						|
        if (!TLI)
 | 
						|
          return nullptr;
 | 
						|
        if (Name == "pow" && TLI->has(LibFunc::pow))
 | 
						|
          return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
 | 
						|
        if (Name == "fmod" && TLI->has(LibFunc::fmod))
 | 
						|
          return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
 | 
						|
        if (Name == "atan2" && TLI->has(LibFunc::atan2))
 | 
						|
          return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
 | 
						|
      } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
 | 
						|
        if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy())
 | 
						|
          return ConstantFP::get(Ty->getContext(),
 | 
						|
                                 APFloat((float)std::pow((float)Op1V,
 | 
						|
                                                 (int)Op2C->getZExtValue())));
 | 
						|
        if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy())
 | 
						|
          return ConstantFP::get(Ty->getContext(),
 | 
						|
                                 APFloat((float)std::pow((float)Op1V,
 | 
						|
                                                 (int)Op2C->getZExtValue())));
 | 
						|
        if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy())
 | 
						|
          return ConstantFP::get(Ty->getContext(),
 | 
						|
                                 APFloat((double)std::pow((double)Op1V,
 | 
						|
                                                   (int)Op2C->getZExtValue())));
 | 
						|
      }
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    if (ConstantInt *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
 | 
						|
      if (ConstantInt *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
 | 
						|
        switch (IntrinsicID) {
 | 
						|
        default: break;
 | 
						|
        case Intrinsic::sadd_with_overflow:
 | 
						|
        case Intrinsic::uadd_with_overflow:
 | 
						|
        case Intrinsic::ssub_with_overflow:
 | 
						|
        case Intrinsic::usub_with_overflow:
 | 
						|
        case Intrinsic::smul_with_overflow:
 | 
						|
        case Intrinsic::umul_with_overflow: {
 | 
						|
          APInt Res;
 | 
						|
          bool Overflow;
 | 
						|
          switch (IntrinsicID) {
 | 
						|
          default: llvm_unreachable("Invalid case");
 | 
						|
          case Intrinsic::sadd_with_overflow:
 | 
						|
            Res = Op1->getValue().sadd_ov(Op2->getValue(), Overflow);
 | 
						|
            break;
 | 
						|
          case Intrinsic::uadd_with_overflow:
 | 
						|
            Res = Op1->getValue().uadd_ov(Op2->getValue(), Overflow);
 | 
						|
            break;
 | 
						|
          case Intrinsic::ssub_with_overflow:
 | 
						|
            Res = Op1->getValue().ssub_ov(Op2->getValue(), Overflow);
 | 
						|
            break;
 | 
						|
          case Intrinsic::usub_with_overflow:
 | 
						|
            Res = Op1->getValue().usub_ov(Op2->getValue(), Overflow);
 | 
						|
            break;
 | 
						|
          case Intrinsic::smul_with_overflow:
 | 
						|
            Res = Op1->getValue().smul_ov(Op2->getValue(), Overflow);
 | 
						|
            break;
 | 
						|
          case Intrinsic::umul_with_overflow:
 | 
						|
            Res = Op1->getValue().umul_ov(Op2->getValue(), Overflow);
 | 
						|
            break;
 | 
						|
          }
 | 
						|
          Constant *Ops[] = {
 | 
						|
            ConstantInt::get(Ty->getContext(), Res),
 | 
						|
            ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
 | 
						|
          };
 | 
						|
          return ConstantStruct::get(cast<StructType>(Ty), Ops);
 | 
						|
        }
 | 
						|
        case Intrinsic::cttz:
 | 
						|
          if (Op2->isOne() && Op1->isZero()) // cttz(0, 1) is undef.
 | 
						|
            return UndefValue::get(Ty);
 | 
						|
          return ConstantInt::get(Ty, Op1->getValue().countTrailingZeros());
 | 
						|
        case Intrinsic::ctlz:
 | 
						|
          if (Op2->isOne() && Op1->isZero()) // ctlz(0, 1) is undef.
 | 
						|
            return UndefValue::get(Ty);
 | 
						|
          return ConstantInt::get(Ty, Op1->getValue().countLeadingZeros());
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Operands.size() != 3)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  if (const ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
 | 
						|
    if (const ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
 | 
						|
      if (const ConstantFP *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
 | 
						|
        switch (IntrinsicID) {
 | 
						|
        default: break;
 | 
						|
        case Intrinsic::fma:
 | 
						|
        case Intrinsic::fmuladd: {
 | 
						|
          APFloat V = Op1->getValueAPF();
 | 
						|
          APFloat::opStatus s = V.fusedMultiplyAdd(Op2->getValueAPF(),
 | 
						|
                                                   Op3->getValueAPF(),
 | 
						|
                                                   APFloat::rmNearestTiesToEven);
 | 
						|
          if (s != APFloat::opInvalidOp)
 | 
						|
            return ConstantFP::get(Ty->getContext(), V);
 | 
						|
 | 
						|
          return nullptr;
 | 
						|
        }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
static Constant *ConstantFoldVectorCall(StringRef Name, unsigned IntrinsicID,
 | 
						|
                                        VectorType *VTy,
 | 
						|
                                        ArrayRef<Constant *> Operands,
 | 
						|
                                        const TargetLibraryInfo *TLI) {
 | 
						|
  SmallVector<Constant *, 4> Result(VTy->getNumElements());
 | 
						|
  SmallVector<Constant *, 4> Lane(Operands.size());
 | 
						|
  Type *Ty = VTy->getElementType();
 | 
						|
 | 
						|
  for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
 | 
						|
    // Gather a column of constants.
 | 
						|
    for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
 | 
						|
      Constant *Agg = Operands[J]->getAggregateElement(I);
 | 
						|
      if (!Agg)
 | 
						|
        return nullptr;
 | 
						|
 | 
						|
      Lane[J] = Agg;
 | 
						|
    }
 | 
						|
 | 
						|
    // Use the regular scalar folding to simplify this column.
 | 
						|
    Constant *Folded = ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI);
 | 
						|
    if (!Folded)
 | 
						|
      return nullptr;
 | 
						|
    Result[I] = Folded;
 | 
						|
  }
 | 
						|
 | 
						|
  return ConstantVector::get(Result);
 | 
						|
}
 | 
						|
 | 
						|
/// Attempt to constant fold a call to the specified function
 | 
						|
/// with the specified arguments, returning null if unsuccessful.
 | 
						|
Constant *
 | 
						|
llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
 | 
						|
                       const TargetLibraryInfo *TLI) {
 | 
						|
  if (!F->hasName())
 | 
						|
    return nullptr;
 | 
						|
  StringRef Name = F->getName();
 | 
						|
 | 
						|
  Type *Ty = F->getReturnType();
 | 
						|
 | 
						|
  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
 | 
						|
    return ConstantFoldVectorCall(Name, F->getIntrinsicID(), VTy, Operands, TLI);
 | 
						|
 | 
						|
  return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI);
 | 
						|
}
 |